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Modified OFS-RDS Bat Algorithm for IFS Encoding
of Bitmap Fractal Binary Images

Abstract

This work is an extension of a previous paper (presented at the Cyberworlds 2019 confer-
ence) introducing a new method for fractal compression of bitmap binary images. That
work is now extended and enhanced through three new valuable features: (1) the bat
algorithm is replaced by an improved version based on optimal forage strategy (OFS)
and random disturbance strategy (RDS); (2) the inclusion of new similarity metrics; and
(3) the consideration of a variable number of contractive maps, whose value can change
dynamically over the population and over the iterations. The first feature improves the
search capability of the method, the second one improves the reconstruction accuracy,
and the third one computes the optimal number of contractive maps automatically. This
new scheme is applied to a benchmark of two binary fractal images exhibiting a complex
and irregular fractal shape. The graphical and numerical results show that the method
performs very well, being able to reconstruct the input images with high accuracy. It also
computes the optimal number of contractive maps in a fully automatic way. A compar-
ative work with other alternative methods described in the literature is also carried out.
It shows that the presented method outperforms the previous approaches significantly.

Keywords: swarm intelligence, bat algorithm, fractal compression, iterated function
systems, bitmap images

1. Introduction

1.1. Motivation

Image compression has been a very active field of research for decades. However, the
increasing volume of traffic and sharing of online video and image content has led to an
impressive resurgence of interest in image compression. Its primary goal is to reduce the
cost for storage and/or transmission of digital images by taking advantage of internal
redundancies in the images. This technology provides efficient storage of digital images
as well as fast and reliable transmission of images among different devices and over the
Internet. There are many techniques available for digital image compression [17, 32, 34].
In this paper, we focus on fractal image compression, a lossy compression technique based
on the fractal geometry that relies on the fact that, very often, some parts of an image
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resemble other parts of the same image. This feature is also characteristic in fractal
geometry, as the fractal objects exhibit the property of self-similarity: they show (at
least, approximately) similar patterns at different scales [12].

The core idea of fractal compression is to identify similar parts within a digital image
and then, compute affine transformations connecting them, so that the image can be
(approximately) reconstructed through iterative application of such transformations on
an initial image [6, 13]. This is done through the so-called iterated functions systems
(IFS). Basically, an IFS is a finite set of contractive affine maps {¢;};=1,.,, defined on a
complete metric space, M. These affine maps depend on several parameters accounting
for different 2D geometrical operations (scaling, rotation, shearing, and translation). The
collection of suitable values of such parameters for all affine maps of the IFS used to
reconstruct a given digital image is called the IFS code of the image.

The iterated function systems were developed by Hutchinson in [23]. He proved that
any IFS on a complete metric space has a unique non-empty compact fixed set (called the
attractor of the IFS), whose graphical representation is a fractal image. He also defined
an iterative way to obtain the attractor of an IFS through the Hutchinson operator (see
Sect. 2 for details).

In a previous paper (presented at the Cyberworlds 2019 conference), the authors pro-
posed a modified bat algorithm coupled with a local search heuristics for fractal image
compression of bitmap images [15]. The method performs well, with a similarity percent-
age of about 68% for the test example in the paper, but was also limited in some ways.
For instance, it does not compute the number of contractive maps (which is assumed to be
an input of the method). On the other hand, although it outperforms previous methods,
its accuracy can still be further improved. The present contribution is aimed at improving
that work, as explained in next section.

1.2. Main contributions and structure of this paper

In this work, the bat algorithm-based method introduced in our previous conference
paper in [15] is extended and enhanced in several ways. The main contributions of this
paper can be summarized as follows:

e The local search in [15] is restricted to the neighborhood of the current best solution,
which might be far from the global optimum. This problem is overcome through a
new local search procedure based on optimal forage strategy (OFS). This strategy
promotes the moves with large benefit during the local search of the method, not
only those around the current best.

e In the method in [15], only new solutions with a better fitness (positive moves) can
be accepted. This limits the exploratory capacity of the method. To overcome this
drawback, a new random disturbance strategy (RDS) is applied, with the effect that



negative moves can also be accepted. This strategy avoids the method to get stuck
in a local optimum.

e [t is convenient to prioritize the exploration in the early stages of the method,
in order to cover the entire search space and identify the most promising search
areas, and to proceed later with the intensification of the search in those areas.
Accordingly, our method includes a new parameter to switch the behavior between
early exploration and late intensification through new evolution equations especially
tailored for each particular phase.

e In the method in [15], the number of contractive maps () is fixed and assumed to
be known. In this paper, the value of 1 can change dynamically over the population
and over the iterations. Furthermore, our new method computes the optimal value
of n automatically and accurately.

e As a consequence of the previous changes, the elitism and the mutation operators of
the method in [15] are no longer necessary, so in our new method they are removed.

e In this work, several similarity functions (i.e., Hamming, intersection, symmetric
difference) and other metrics are considered and analyzed in order to get a bet-
ter insight about the method and its internal operating principles. This analysis
provides valuable information to identify limitations of some metrics as well as to
determine the best metrics for this problem.

e As a result of all these improvements, we obtain a Hamming similarity percentage
of 86% and 92% for the two examples in the paper. To the best of our knowledge,
no previous method has reported such high similarity values, even although they
generally use simpler examples than those used in this work.

e A comparative analysis with other alternative methods reported in the literature
shows that our method outperforms them by a large margin for the examples in
this work.

This paper is organized as follows: Sect. 2 discusses the previous work in the field.
The basic concepts and definitions needed to follow the paper are presented in Sect. 3.
Then, Sect. 4 describes the collage theorem, the theoretical basis of the digital image
compression with IFS. The proposed method is explained in detail in Sect. 5. The
computational experiments and the main graphical and numerical results are discussed
in Sect. 6. The comparative work of our method with other approaches described in the
literature and the computational complexity and CPU times are also reported in that
section. The paper closes with the conclusions and some ideas for future work in the field.



2. Previous Work

The concept of fractal encoding of images can be traced back to the seminal work in the
1980s by Michael Barnsley, who obtained several patents for fractal image compression
based on his developments on iterated function systems (see [5] for details). The theo-
retical basis of this work was established a bit earlier by Hutchinson in [23], and then, in
[3], where the famous collage theorem was presented. The use of fractal transformations
to encode images was introduced in [2]. A popular algorithm for fractal images was pub-
lished in [4]. This work was enhanced with the first automatic algorithm in [24], based on
a new concept called partitioned iterated function systems (PIFS). These methods used
exhaustive search strategies and thus, they were computationally expensive, leading to
low encoding speed. A lot of work has been done to tackle this issue, using quadtrees,
rectangular partitions, and triangular partitions, sometimes in combination with cluster-
ing. The list of proposed methods is very large to be included here. The interested reader
is referred to the review in [33].

Unfortunately, the fractal image compression problem has revealed to be extremely
difficult and, except for some particular cases, no general solution has been reported yet.
In general, this problem is strongly affected by the encoding/decoding asymmetry: en-
coding is extremely computationally expensive, owing to the need to find self-similarities
in the image. On the contrary, decoding is astonishingly fast. This fact has made this
technology impractical for real-time applications. Many attempts have been done to re-
duce the huge computational time required for the encoding phase. They include moment
matching [1, 14, 37], wavelet transforms [7], and gradient search [38]. However, they are
still computational expensive and only work properly for particular cases.

It has been observed that fractal image compression can be formulated as an optimiza-
tion problem. Therefore, it is a good candidate for metaheuristic techniques, such as those
typically found in evolutionary computing and swarm intelligence. Genetic algorithms and
genetic programming have been applied in [27, 44] to determine the IFS coding of fractal
bitmap images. Work about fractal compression using PIFS in combination with genetic
algorithms can be found in [39, 40, 43]. Also, an evolutionary algorithm has been applied
in [9] for fractal coding of binary images. Fractal image compression with different vari-
ations of the particle swarm optimization can be found in [30, 36]. Other examples of
these techniques can be found in are [11, 16, 31, 35].

3. Mathematical Background

In this section, we provide the basic concepts and definitions needed to follow the paper.
Further details can be found in [5, 10, 13].

Let (X,d) be a metric space, where X is a set and d a distance defined on X. A
contractive map ¢ on (X,d) is a function ¢ : X — X for which there is a real number

4



0 < k < 1 such that:
d(o(z),d(y)) < k.d(z,y) Ve,ye X

An important result is the Banach fized-point theorem, which states that every con-
tractive map on a non-empty complete metric space has a unique fixed point. Moreover,
given any = € X, the sequence x, ¢(x), ¢(¢p(x)), ... resulting from composing ¢ iteratively
with itself, converges to the fixed point.

Let M = (€2, ¥) be a complete metric space, where 2 < R™, and ¥ is a distance on
Q. An [FS (iterated function system) is a finite set {¢;};_1,., of contractive affine maps
¢i : & —> Q defined on M. In this paper, the IF'S will be denoted as W = {Q; ¢4, ..., ¢, }.
Since in this paper we are focused on 2D bitmap images, from now on we consider the
complete metric space (R?,dy), where dy denotes the Euclidean distance. Therefore, the
affine maps ¢, are bivariate functions given by:

* Hﬂ eli O.H

13 &2 21 U2 &2 P
This expression can be written in vector notation as: ®,(E) = ©,.E + X,, where O,
is a 2 x 2 matrix describing the rotation, scaling, and shearing operations and ¥, is a 2D
vector describing the translations. Since ¢, is contractive, the eigenvalues of ©,, denoted

as AT, A5, hold: [Af] < 1 and also we have y,, = [det(©,)| < 1. Intuitively, this means
that the map ¢, shrinks distances between points.

From Eq. (1), we can see that any contractive affine map ¢, is uniquely defined by
the set of parameters {67, 0%,, 05,05, 0% o5}. Furthermore, any IFS, say W, is fully
characterized by the collection of parameters {ij, 07 }ij=1,2:—1,..n- This set of parameters
is called the IFS code of W.

Let Cs(€2) denote the set of all compact (i.e., closed and bounded) subsets of €. Note
that the bitmap images are compact subsets of R?. The Hausdorff metric h on Cs() is
defined as:

h(R,S) = mazx {d,(R,S),dy(S,R)} (2)

where: d,(R,S) = max min dy(z, y).
zeR  yeS

It has been proved that, since (R?, dy) is a complete metric space, so is (Cs(€2), ) [5].
We can define a transformation, H, called the Hutchinson operator on Cs(€2), as:

HEB) = | JoB)  vBeCs(®) )

This operator defines the join action of all contractive maps ¢,. Since all the ¢, are
contractions in (R?, dy), H is also a contraction in (Cs(€2), h) [23]. Then, according to the



Banach fixed-point theorem, H has a unique fixed point, H(A) = A. Interestingly, the
set A (called the attractor of the IFS) is a fractal image.

Given an IFS with 1 contractive maps {¢1, ..., ¢,}, there are several methods for ren-
dering its corresponding attractor [20]. The most popular one is the probabilistic al-
gorithm, where each contractive map ¢, is associated with a probability w, > 0, such

7
that Z w, = 1. Starting with an compact set Eqg € €2, and proceeding iteratively, one

k=1
of the maps of the IFS is randomly chosen at iteration j with probability w, to yield

—

2, = ¢x(Ej_1). The process is repeated again for the resulting set, and so on. It can

be proved that {Ej}j = A, meaning that this iterative process can be used to render the
attractor [5, 19]. The couple (W, P) comprised of the IFS, W, and the set of probabilities
P = {wr,...,wy}, is called and IFS with probabilities (IFSP). The initial set Zy can be
any compact set. However, since the maps ¢, are contractive, it is advisable to take =
as a single point for computational efficiency.

The set of probabilities, P, plays a significant role for the good performance of the
rendering process. Several approaches to compute suitable values for the w, can be found
in the literature [12, 18]. The most popular method, called Barnsley’s algorithm (also,
chaos game), consists of taking a probability value w, related to the area filled by the
contractive map ¢,, which is proportional to its contractive factor, p, = |det(®,)| =
0%, .05, — 0%,.05,|. The method then selects:

g

n
> 122
j=1

This is also the method used in this paper. Other choices are possible as well, even leading
to more efficient values [19]. However, this problem is out of the scope of this work and
will not be addressed here.

4. Digital Image Compression with IFS: the Collage Theorem

The starting point for digital image compression with IFS is the collage theorem, firstly
reported in [3]. Given an IFS, W = {Q; ¢y, ..., ¢,}, with contractivity factor 0 < p <1
(given by p = max p,, where p, is the contractivity factor of the map ), and L a
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non-empty compact subset £ € Cs(€2), if

H(LH(E) - H (c, U mc)) <o



for some € = 0, where H(.,.) is the Hausdorff metric, then

€
I—p

H(L, A) <

where A is the attractor of the IFS. This is equivalent to say that:

1 7
H( LA <—H|L, (L) ]
(£.4) < 7= ( U o >>

In practical terms, the collage theorem states that given any (not necessarily fractal)
digital image F, there exists an IF'S, say VW, whose attractor has a graphical representation
F' that approximates F accurately, according to the Hausdorff metric. In other words,
any digital image can be graphically approximated through an IFS.

This theorem defines the basis of any fractal image compression method. To reconstruct
a digital image F, we need to obtain the collection of parameters of an IFS (i.e. its
IFS coding), providing a good approximation of F by H(F). However, it is enough to
approximate F by H(Z), where 7 is any initial image (note that the attractor of W is
independent of the initial image 7). Such approximation must be measured according to
a predefined similarity function S computing the graphical distance between F and H(I).

The discussion in previous paragraph means that digital image compression with IFS
can be formulated as the following optimization problem:

optimize S (F,H(I)) (5)

for some similarity function §. This problem is far from being trivial. To begin, the
problem is continuous, because all free variables in {©,, ¥, w,}; are real-valued. It is
also constrained, because the corresponding functions ¢, have to be contractive. Further-
more, the problem is multimodal, as there can be several global or local optima of the
similarity function. Finally, the problem can be high-dimensional for complex images,
which might require many contractive maps for accurate reconstruction. Obviously, this
problem cannot be solved through classical mathematical optimization techniques. Sev-
eral alternative techniques have been proposed to tackle this issue, as already described
in Sect. 2. However, the problem remains open and new (more powerful) methods are
still required to address this problem.

5. The Proposed Method

The proposed method is presented in this section. Firstly, a brief overview of the
method is described. Then, the different elements of the method are discussed in detail.



5.1. Owverview of the method

The input of our method is a fractal image, F. It is assumed that F is given as a
rectangular binary bitmap image of size M x N (measured in pixels) on the compact
domain Q = [a,b] x [c, d] = R% Mathematically, the image is represented by a matrix of
Os and 1s and size M x N, where value 1 means that the corresponding pixel belongs to
the image, and 0 otherwise. The goal is to compute the IFS W = {¢1, ..., ¢,} optimizing
the expression (5). Note that this task also implies to obtain the optimal number of
contractive functions, n (which was assumed to be known in the previous conference
paper). To this aim, we consider an initial population of potential candidate solutions
(called individuals or bats), as discussed in Sect. 5.2. Then, the method described in
Sect. 5.4 is applied to obtain the solution of our optimization problem using the fitness
functions described in Sect. 5.3. Next sections describe the different components of the
method in detail.

5.2. Representation of individuals and search space

Evolutionary algorithms always need an adequate representation of the individuals of
the population either in the phenotype or in the genotype. In this problem, the phenotype
corresponds to a realization of a particular potential solution leading to the attractor of
the corresponding IF'S. In this work we consider the genotype, given by the chromosomes,
a sequence of genes encoding the properties of the individuals. In this method, the
population at iteration ¢ is a set of P individuals (called bats), {Wi, W5, ..., WL}, where
each W is a collection of 7, contractive maps:

W,i = {(bi,w g,u?"'v(b;y,u} (V = 17"'77)) (6>

where: ' ' ' ' ' ‘

qb’;,, = (@iﬁ’t, Qi’é’t, 9%4&, 9;,3,t7 Ui’y’t, O_;,u,t) (i=1,...,n,) (7)
subjected to the constraint that every gb';y must be contractive. This is equivalent to say
that the following constraints must hold:

(br") + (#557) <1
(075°) + (6557) <1 (8)
(035) + (015) + (0557 + (6557)" < 1+ (5570557 — 035".035)

Note that each bat WY may have a different length, 7,. This is in clear contrast with
the work in [15] where all bats are assumed to have the same length. This new feature
provides a mechanism to compute the optimal value of 7.

These bats W are initialized with uniform random variables within the search space,
given by the compact domain © = [a,b] x [¢,d]. Applying Eq. (1) to the four corner
points of the unit square leads to a set of constraints for the free variables. In particular:
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In conclusion, the individuals in our population must fulfill the constraints given by
Egs. (8)-(9). These conditions must be checked at every iteration step ¢.

5.8. The fitness function

Eq (5) requires a similarity function, S, measuring the distance between the attractor
of the IFS, given by H(I), and the original image F. A natural choice is given by
the Hausdorff distance between both sets, given by Eq. (2). However, this metric is
computational expensive. Furthermore, it is not fully reliable for our goals, as it may
identify as similar, images that are actually different geometrically. For these reasons,
other similarity functions have been proposed in the literature [9, 15]. In this work, we
consider three of them, discussed in following paragraphs.

A classical choice is given by the Hamming distance, A. Given two binary images, F;
and Fy, of the same size M x N and domain D, they can be represented as two binary
matrices of Os and 1s for the two channel colors. Then, the Hamming distance is given
by:

AFLF) = ), 1Fi(e,y) — Falx,y)l

(w,y)€D

where F;(z,y) indicates the value (either 0 or 1) of the pixel (z,y) for the image Fj,
7 = 1,2. From this expression, we can define the Hamming similarity function, Sa, as:

A(Fy, Fs)

Sa(F1, F) =1— < N

(10)
Note that A(Fi, F2) computes the number of mismatches between both images, and
hence, Sa(Fi, F2) returns the rate of matches relative to the image size. As a result,
values of Sa(F1,Fs) close to 1 mean that the images are very similar, with the value 1
indicating that they are identical.



Other possibility is given by the intersection similarity function, S, given by:

(Fi N Fa)g

Sm(flvfé) = <f1 U f2>.

(11)

where (.)g represents the number of active (black) pixels of the image.

We can also consider a similarity function based on the symmetric difference between
sets, ©, given by:
FloF,=(F—F) U (F— F)

Then, we define the symmetric difference similarity function, Sg, as:

(F1©F2)m

8P B =15 O Fom

(12)

Note that the similarity functions Sa and S, lead to maximization problems (the higher,
the better), while Sg corresponds to a minimization problem. However, we remark that,
for any two sets A and B, we have: A© B = (AU B) — (A M B).Therefore, S, and Sg
yield complementary results, meaning that one of them can be safely omitted. Therefore,
we will report only the results for So and S., meaning that our problem in Eq. (5) is
always a maximization problem on the interval [0, 1].

5.4. Our Approach: Modified OFS-RDS Bat Algorithm

Our previous conference paper in [15] addressed the fractal image compression problem
through the bat algorithm, a popular swarm intelligence method for optimization. To
this aim, the original bat algorithm was enhanced with three additional features: a new
population model with strong elitism, so that the best solutions are preserved to the next
generation; new random individuals and mutation operators, to improve the exploratory
capacity of the swarm; and a local search heuristics, to strengthen the exploitation phase
in the neighborhood of the local optima at later stages. The results in that paper show
that the method works well but it can still be further improved in several ways. A critical
issue is the optimal number of contractive maps, which is not computed but assumed to
be known. This prevents the method to be used in real-world applications, for which this
a priori knowledge is almost never available. On the other hand, the similarity error can
arguably be enhanced through further improvement of the local and global search phases
of the bat algorithm.

An interesting variation of the bat algorithm to tackle these issues has been recently
proposed in the literature [8]. In that modification, the original bat algorithm is combined
with two different strategies: firstly, an optimal forage strategy (OFS) is used to drive the
search direction for each bat; then, a random disturbance strategy (RDS) is applied to
enhance the global search pattern of the method. These new features are advantageously
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used in this work, as explained below.

5.4.1. Original Bat Algorithm
In the original bat algorithm, there are three evolution equations for the position, x?;
velocity v; and frequency, f7, of the i-th individual (bat) at generation g, as follows:

fzg = gzm + ﬁ( g@a:}c - fgzm) (13)
vi o= VI xIT - xd]fY (14)
x! = Xf_l + v? (15)

where 3 is a random variable following the uniform distribution on [0, 1], and x% denotes
the global best position (solution) according to a given fitness function. These equations
are updated iteratively in order to look for better solutions in the search space. The
position vector is used to encode the potential solutions of the optimization problem under
analysis, while the velocity and frequency provide underlying mechanisms to modify the
position during the iterative process. To this goal, the bat algorithm considers two search
patterns for the bats: a global search, driven with probability ¢ (called the pulse rate),
and a local search with probability 1—rY. The pulse rate is not constant, but changes over
the time according to the equation: r? 1= 19(1 — e79). The global search is modulated
through Eqgs. (13)-(15), while the local search is driven by a local random walk of the
form:

xITh = x9 + e A (16)

with € a uniform random variable on [—1, 1] and A9 =< A > being the average loudness
of all the bats at generation g.

Whenever a new solution is better than the previous best one, it is accepted according
to a probability that depends on the value of the loudness. If the solution is accepted,
the loudness decreases, while the rate of pulse emission decreases. The evolution rule for
loudness is: AT = aA? where « is a constant. Typically, each bat has different values
for its loudness and pulse emission rate, which are obtained by randomization by taking
an initial loudness AY € (0, 2).

5.4.2. OFS-RDS Bat Algorithm

The paper in [8] proposes a modification of the original bat algorithm based on two
observations. The first one is that the local search at generation g in Eq. (16) is restricted
to the neighborhood of the best solution of the whole swarm, x%. If the global optimum is
far from this current best, the local search at that generation becomes essentially useless.
This problem can be overcome through a new local search procedure inspired by the
optimal forage strategy (OFS). This strategy is driven by a new term called the benefit
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of the i-th bat, bY, given by:

_ J6D = F

b

(17)

This benefit term is computed as the ratio between the energy obtained when the bat
moves from old position x?~' to new position x? at iteration g, given by f(x?) — f(x¢71),
and the energy invested in the local search, which depends on the distance between both
positions, |[x? — x?'||. With this strategy, the method promotes the moves with large
benefits during the local search, not merely those based on the current best of the swarm.

The second observation is that any new solution is probabilistically accepted if and only
if it is better than the current solution. This limits the exploratory capacity of the swarm,
as only positive moves are allowed at the short term, while negative ones are forbidden,
even if they become positive at the long term. To overcome this limitation, a random
disturbance strategy (RDS) is applied, in which Eq. (14) is replaced by:

-1 -1
vi = o(xj —x ) (18)
where indices 7 and k are randomly selected from the population, and p is a uniform
random variable on the interval (0,1). The effect of this new equation is to prevent the
bat to move within the line between xJ ~!and x¢, forcing it to explore other areas of the
search space.

These modifications lead to a new method called OFS-RDS bat algorithm. It has
proved to outperform the original bat algorithm on a benchmark of 28 functions proposed
as the test suite in the IEEE CEC-2013 competition for real-parameter optimization [8].

5.4.3. Modified OFS-RDS Bat Algorithm

In order to apply the OFS-RDS bat algorithm to the optimization problem of this work,
some additional modifications with respect to our previous method in [15] are needed, as
follows:

e the elitism of the previous conference paper [15] is advantageous when a fixed number
of contractive maps is used. However, in this new approach, this number changes
dynamically over the generations, meaning that the global optimum can change
drastically, especially at early stages of the iterative process. In this scenario, this
elitist procedure becomes useless and, therefore, it has been removed.

e the population model in the previous conference paper is no longer required; the
exploratory capacities that it offered are now assumed by the optimal forage and
random disturbance strategies.

e the mutation operators in [15] are now replaced by a switching procedure between
Egs. (14) and (18) ressembling that in [8]. At early stages of the bat algorithm,
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say T generations, Eq. (18) is preferred in order to explore the search space more
efficiently, switching to Eq. (14) for exploitation of the best solution at later stages
of the algorithm.

The resulting method is coupled with a local search heuristics for further search intensifi-
cation in the neighborhood of the global optimum. Similar to [15], in this work we apply
the Luus-Jaakola local search procedure [28], as it shows a satisfactory performance. A
detailed explanation can be found in [15] and is omitted here to avoid unnecessary dupli-
cation of material.

6. Computational Experiments and Results

6.1. Benchmark and Computational Procedure

The method described in the previous section has been applied to two illustrative
examples of fractal images. The images, called blocks and bush, are displayed in Figure
1(top) left and right, respectively. The first one was already presented in the conference
paper and is used here for comparative purposes. Both images are generated through
the chaos game algorithm with an IFS comprised of five contractive maps, identified with
colors blue, dark yellow, red, dark pink, and light green for the blocks image, and peach,
beige, green, dark magenta, and mustard, for the bush fractal. We remark however, that
the color is used for better visualization of the contractive maps but does not play any
role in the method, which is applied to binary (black and white) images exclusively. The
images have been generated with one million points and processed as bitmap images of
size 450 x 450 pixels.

For each example, the input of our method is the bitmap file of the given fractal image,
denoted as Z onwards. It consists of a collection of 202,500 pixels, encoded as a numerical
binary square matrix of order 450. Numerically, its elements are Os and 1s, corresponding
to the pixels of the fractal image and the pixels of the background, respectively. They
are shown in Fig. 1(bottom), with the 1s and Os represented as black and white pixels,
respectively. The number of black and white pixels for the initial input image Z, denoted
as M7 and Oz respectively, is By = 21,790 and O7 = 180, 710.

We apply the method described in Sect. 5 using a population of 100 bats, following
the representation described in Sect. 5.2. FEach bat corresponds to an IFS comprised of n
contractive functions. Different to the work in [15], the value is 7 is not fixed but allowed
to take integer values between 3 and 12. All bats are initialized with random uniform
variables for the initial population. Without loss of generality, we can consider the search
space to be @ = [-2,2] x [-2,2], i.e., a = ¢ = —2, and b = d = 2. Each contractive
function is subjected to the constraints given by Egs. (8)-(9). As a result, 100 random
initial images are generated for different random numbers of contractive functions. Then,
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Figure 1: Example images of this paper in colored (top) and binary (bottom) versions: (left) blocks;
(right) bush.

the method in Sect. 5.4 is applied for a given number of generations, set to G,,.. = 10,000
in this work, as this value ensures convergence for all examples we tried so far.

Table 1 reports the different parameters of the method and the values used in this
paper. The parameter tuning has been discussed in the conference paper and is omitted
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Table 1: Modified OFS-RDS bat algorithm parameters and values used in this work.

Symbol Meaning Used Value
P population size 100
Gmaz | max. number of iterations 10,000
AY initial loudness 0.5
Ain minimum loudness 0
70 initial pulse rate 0.2
Jmas maximum frequency 1.5
Q multiplicative factor 0.3
v exponential factor 0.2
T switching parameter 8,500

here to avoid duplication of material. Still, there is a new parameter, T, called switching
parameter, to switch between Eqgs. (14) and (18), as described in Sect. 5.4.3. It is set to
T = 8,500 generations in this paper.

6.2. Results

This section discusses the main results of this paper. Firstly, the graphical results are
shown. Then, the numerical results are reported and analyzed. Finally, a comparative
work with other alternative techniques is discussed.

6.2.1. Graphical results

Since the conference paper showed graphical results for the blocks example, the graph-
ical results for the bush example are used for our discussion here. Figures 2-5 show the
evolution of the best solution of the population for the 10,000 iterations with step-size
250, starting with a random initial image for that example. The images are organized in
two parts: on the left, the attractor of the IFS is depicted, with a different color for each
contractive map; on the right, this colored attractor is combined with the target image
(in black) superimposed on the attractor for better visualization of the difference between
both images. These images are also shown in two QuickTime videos: Videol.mov (length:
84 seconds; size: 1.4 MB) and Video2.mov (length: 82 seconds; size: 1.8 MB), submitted
as accompanying material of this paper.

The first image in Fig. 2 corresponds to one of the 100 random images in the initial
population for the method in this paper. As the reader can see, this initial random image
is very far from the target image. As shown in the subsequent images of the sequence in
Figs. 2-5, the application of our method reduces this high discrepancy over the iterations,
until reaching a very good approximation of the target image. Note also that the number
of contractive maps, 7, indicated by different colors in the figure, change dynamically
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Figure 2: (I-r, t-b) Evolution of the best solution for 0 to 2,250 iterations (step-size 250).
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Figure 3: (I-r, t-b) Evolution of the best solution for 2,500 to 4,750 iterations (step-size 250).
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Figure 4: (I-r, t-b) Evolution of the population best for 5,000 to 7,250 iterations (step-size 250).
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Figure 5: (I-r, t-b) Evolution of the population best for 7,500 to 9,750 iterations (step-size 250).
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over the iterations. For instance, the initial random image in Fig. 2 (top-left) has n =7
contractive maps, but this value is increased to n = 8 at iteration g = 500 (Fig. 2, second
row-left), and decreased to n = 6 at iteration g = 1000 (Fig. 2, third row-left), where
the contractive maps in red and blue from the previous image have been automatically
removed. Whenever a new contractive map is added, a new color is assigned to the map
for better identification. That is the reason why we can see different variations of the
color palette throughout Figures 2 to 5.

From Figs. 2-5 we can see that the method is able to approximate the input image
with increasing fidelity over the generations. This improvement is visually noticeable by
simple observation of the general shape of the global best solution. At initial stages of the
iterative process, the shape of the global best changes dramatically, which corresponds
to a higher explorative phase, when the method explores the overall search space looking
for promising solutions. This variation decreases over the iterations, leading to a more
exploitative phase at later stages of the method, when the global shape is slightly modified
through small incremental changes in order to enhance local features of the image. As
a result, the global best is getting visually closer to the target image, until reaching
convergence, when the final attractor image does not change and, consequently, the fitness
function value no longer improves.

Figure 6 summarizes the graphical results of the global best of our method for the
blocks (left) and the bush (right) examples in this paper. The top row shows the re-
constructed images of the input images in Fig. 1. A simple visual comparison of the
original and the reconstructed images shows that the method performs very well, as the
final reconstructed images are very similar visually to the input images. The second and
third rows of the figure show respectively the union and the intersection sets (displayed
in inverted colors for better visualization) of the input and the reconstructed images.
These images show that the method is able to capture successfully the major features of
the input images even although they exhibit a complicated and irregular fractal pattern.
These union and intersection sets will be used in next section to compute the intersection
similarity function, S, and other additional similarity metrics.

Figs. 7-10 (left to right, top to bottom) show the evolution of the union (left) and the
intersection (right) sets of the input and the approximating fractal images of the bush
example for the 10,000 iterations with step-size 250. Note the huge difference between the
union and the intersection sets at the early stages of the method. This difference is visually
decreasing over the iterations, until the global shape of the input fractal image becomes
apparent at later stages of the procedure. Two additional videos, showing respectively the
evolution of the union and the intersection sets for the bush example, are also submitted
as accompanying material of the paper.
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Figure 6: Graphical results of our method for the blocks (left) and the bush (right) examples in Fig.
1: (top) best reconstructed images; (middle) union and (bottom) intersection sets of the input and
reconstructed images in inverted binary colors.
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Figure 7: (I-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images
of the bush example for 0 to 2,250 iterations (step-size 250).
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Figure 8: (I-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images
of the bush example for 2,500 to 4,750 iterations (step-size 250).
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Figure 9: (I-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images
of the bush example for 5,000 to 7,250 iterations (step-size 250).
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Figure 10: (I-r, t-b) Union (left) and intersection (right) sets of the input and the approximating fractal
images of the bush example for 7,500 to 9,750 iterations (step-size 250).
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6.2.2. Numerical results

The good graphical results described in previous paragraphs are well supported by the
numerical results. Tables 2 and 3summarize the main results obtained for the bush and
the blocks fractal examples, respectively. The tables show the results obtained for the
global best solution for the 10,000 generations sampled with step-size 250 (in rows). For
each generation value g within this range, the following data are reported (in columns):
number of generation, ¢g; number of contractive maps, 7, of the best solution at generation
g; active (black) and background (white) pixels of the reconstructed image (labelled as
R onwards), denoted as B and Og, respectively; number of pixels with different binary
values for the input image, 7 and the reconstructed image, R, denoted as Or.r; value
of the Hamming similarity function (see Eq. (10)), Sa (between 0 and 1; the higher, the
better); number of pixels in the intersection and union sets Z "R and Z U R, denoted as
Bl and W, respectively; value of the intersection similarity function (see Eq. (11)), Sn;
and finally, two new metrics for this paper, the rate of active pixels in the intersection
set T n R with respect to the active pixels of the input image, Z, and the reconstructed
image, R, denoted as B, /B; and W, /By, respectively.

Table 2 provides a lot of information to explain the previous observations about the
graphical results. For instance, the values of 1 in second column show that indeed the
method can change automatically the number of contractive maps over the time in order
to get a better approximation of the input image. These changes do not necessarily lead
to an improvement of the similarity between Z and R at the short term. For instance,
the method changed from 7 = 8 at generation g = 2,000 to n = 5 at generation g =
2,250, even although Sa decreases from 0.850405 to 0.845353. A similar effect occurs at
generations 5,000, 6,500 and others. These situations are allowed in order to avoid the
method to get stuck in a local optimum and also to explore the search space more efficiently
looking for more promising solutions. This is also the reason why we also removed the
elitism of the previous conference paper in this enhanced version of the algorithm. Note
also that the value of 7 in the table changes from 5 to 10 over the generations (the ground
truth for the input image is n = 5, but this knowledge is never used in the method),
even although we allow it to take values between 3 and 12 (actually, these values are
used for the initial random population, and they survive for a while, but the table only
reports the best solution of the population). This means that the method is able to
automatically select suitable values for 7 within a smaller subset of the initial proposal.
We also remark that the value for the global best is never below 5, a clear indication that
the input image cannot be replicated well with fewer than 5 contractive maps. Finally, we
remark that the value of n keeps constant for the last 1,500 iterations, once convergence
is achieved. Furthermore, this value matches the real value of the input image, a clear
evidence of the strong ability of our method for fractal image reconstruction. A similar
behavior can be observed in Table 3, although even larger values of n can be obtained
for this example. This effect can be explained by the fact that this fractal image covers
a larger area than the other example, so the method initially assigns more contractive
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Table 2: Numerical results of our method for the bush fractal example (see the main text for details).

g n s Or DI;éR SA P u Sﬁ .m/.I .m/.R
0 7| 76,876 | 125,624 | 75,304 | 0.628128 | 11,681 | 86,985 | 0.134288 | 0.536072 | 0.151946
250 7| 34,502 | 167,998 | 41,602 | 0.794558 | 7,345 | 48,947 | 0.150060 | 0.337081 | 0.212886
500 8 | 35,791 | 166,709 | 42,223 | 0.791491 | 7,679 | 49,902 | 0.153882 | 0.352409 | 0.214551
750 8 | 29,185 | 173,315 | 35,713 | 0.823640 | 7,631 | 43,344 | 0.176057 | 0.350207 | 0.261470
1,000 | 6 | 23,466 | 179,034 | 32,600 | 0.839012 | 6,328 | 38,928 | 0.162557 | 0.290408 | 0.269667
1,250 7| 28,676 | 173,824 | 30,898 | 0.847417 | 9,784 | 40,682 | 0.240499 | 0.449013 | 0.341191
1,500 7| 31,412 | 171,088 | 29,408 | 0.854775 | 11,897 | 41,305 | 0.288028 | 0.545984 | 0.378741
1,750 7| 29,544 | 172,956 | 26,860 | 0.867358 | 12,237 | 39,097 | 0.312991 | 0.561588 | 0.414196
2,000 8 | 17,613 | 184,887 | 30,293 | 0.850405 | 4,555 | 34,848 | 0.130711 | 0.209041 | 0.258616
2,250 5 25,378 | 177,122 | 31,316 | 0.845353 | 7,926 | 39,242 | 0.201977 | 0.363745 | 0.312318
2,500 7| 21,136 | 181,364 | 31,512 | 0.844385 | 5,707 | 37,219 | 0.153336 | 0.261909 | 0.270013
2,750 7| 26,626 | 175,874 | 33,278 | 0.835664 | 7,569 | 40,847 | 0.185301 | 0.347361 | 0.284271
3,000 7| 33,603 | 168,897 | 35,061 | 0.826859 | 10,166 | 45,227 | 0.224777 | 0.466544 | 0.302533
3,250 6 | 22,836 | 179,664 | 30,792 | 0.847941 | 6,917 | 37,709 | 0.183431 | 0.317439 | 0.302899
3,500 6 | 20,497 | 182,003 | 30,333 | 0.850207 | 5,977 | 36,310 | 0.164610 | 0.274300 | 0.291604
3,750 7| 25,409 | 177,091 | 32,543 | 0.839294 | 7,328 | 39,871 | 0.183793 | 0.336301 | 0.288402
4,000 7| 24,821 | 177,679 | 28,069 | 0.861388 | 9,271 | 37,340 | 0.248286 | 0.425470 | 0.373514
4,250 8 | 19,401 | 183,099 | 26,245 | 0.870395 | 7,473 | 33,718 | 0.221632 | 0.342955 | 0.385186
4,500 9 | 19,923 | 182,577 | 25,383 | 0.874652 | 8,165 | 33,548 | 0.243383 | 0.374713 | 0.409828
4,750 9 | 21,545 | 180,955 | 28,811 | 0.857723 | 7,262 | 36,073 | 0.201314 | 0.333272 | 0.337062
5,000 9 | 17,163 | 185,337 | 28,927 | 0.857151 | 5,013 | 33,940 | 0.147702 | 0.230060 | 0.292082
5,250 | 10 | 24,647 | 177,853 | 31,997 | 0.841991 | 7,220 | 39,217 | 0.184104 | 0.331345 | 0.292936
5,000 | 9 | 31,957 | 170,543 | 35,299 | 0.825684 | 9,224 | 44,523 | 0.207174 | 0.423313 | 0.288638
5,750 | 10 | 36,942 | 165,558 | 35,376 | 0.825304 | 11,678 | 47,054 | 0.248183 | 0.535934 | 0.316117
6,000 | 10 | 35,116 | 167,384 | 31,182 | 0.846015 | 12,862 | 44,044 | 0.292026 | 0.590271 | 0.366272
6,250 | 10 | 30,230 | 172,270 | 29,804 | 0.85282 | 11,108 | 40,912 | 0.271512 | 0.509775 | 0.367450
6,500 | 10 | 25,871 | 176,629 | 29,545 | 0.854099 | 9,058 | 38,603 | 0.234645 | 0.415695 | 0.350122
6,750 | 9 | 27,978 | 174,522 | 31,604 | 0.843931 | 9,082 | 40,686 | 0.223222 | 0.416797 | 0.324612
7,000 8 | 28,649 | 173,851 | 33,277 | 0.835669 | 8,581 | 41,858 | 0.205003 | 0.393804 | 0.299522
7,250 8 | 24,790 | 177,710 | 30,698 | 0.848405 | 7,941 | 38,639 | 0.205518 | 0.364433 | 0.320331
7,500 7| 22,282 | 180,218 | 27,716 | 0.863131 | 8,178 | 35,894 | 0.227838 | 0.375311 | 0.367023
7,750 | 6 | 23,972 | 178,528 | 28,344 | 0.860030 | 8,709 | 37,053 | 0.235042 | 0.399679 | 0.363299
8,000 | 6 | 25,982 | 176,518 | 29,772 | 0.852978 | 9,000 | 38,772 | 0.232126 | 0.413034 | 0.346394
8,250 | 6 | 23,415 | 179,085 | 26,607 | 0.868607 | 9,299 | 35,906 | 0.258982 | 0.426755 | 0.397139
8,500 5| 23,079 | 179,421 | 28,999 | 0.856795 | 7,935 | 36,934 | 0.214843 | 0.364158 | 0.343819
8,750 5| 15,578 | 186,922 | 24,066 | 0.881156 | 6,651 | 30,717 | 0.216525 | 0.305232 | 0.426948
9,000 5 | 17,144 | 185,356 | 21,854 | 0.892079 | 8,540 | 30,394 | 0.280977 | 0.391923 | 0.498133
9,250 5 | 17,599 | 184,901 | 22,087 | 0.890928 | 8,661 | 30,738 | 0.281443 | 0.397017 | 0.491562
9,500 5 | 23,433 | 179,067 | 16,475 | 0.918642 | 14,374 | 30,849 | 0.465947 | 0.659662 | 0.613408
9,750 5 | 23,123 | 179,377 | 14,843 | 0.926701 | 15,035 | 29,878 | 0.503213 | 0.689995 | 0.650218
10,000 5 23,118 | 179,382 | 14,840 | 0.926716 | 15,040 | 29,862 | 0.503650 | 0.690225 | 0.650575
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Table 3: Numerical results of our method for the blocks fractal example (see the main text for details).

g n s Or DI#R SA u. u Sﬁ .m/.I .ﬁ/.R
0 6 | 71,738 | 130,762 | 75,850 | 0.625432 | 33,111 | 108,961 | 0.303879 | 0.470768 | 0.461555
250 5 | 39,994 | 162,506 | 71,276 | 0.648020 | 19,526 | 90,802 | 0.215039 | 0.277618 | 0.488223
500 6 | 41,041 | 161,459 | 72,555 | 0.641704 | 19,410 | 91,965 | 0.211059 | 0.275969 | 0.472942
750 7| 43,749 | 158,751 | 74,477 | 0.632212 | 19,803 | 94,280 | 0.210045 | 0.281557 | 0.452650
1,000 7| 47,134 | 155,366 | 71,342 | 0.647694 | 23,063 | 94,405 | 0.244299 | 0.327907 | 0.489307
1,250 8 | 53,603 | 148,897 | 70,847 | 0.650138 | 26,545 | 97,392 | 0.272558 | 0.377413 | 0.495215
1,500 8 | 63,913 | 138,587 | 67,871 | 0.664835 | 33,188 | 101,059 | 0.328402 | 0.471863 | 0.519268
1,750 9 | 74,864 | 127,636 | 67,278 | 0.667763 | 38,960 | 106,238 | 0.366724 | 0.553928 | 0.520410
2,000 9 | 77,051 | 125,449 | 68,157 | 0.663422 | 39,614 | 107,771 | 0.367576 | 0.563227 | 0.514127
2,250 9 | 61,484 | 141,016 | 68,472 | 0.661867 | 31,673 | 100,145 | 0.316271 | 0.450323 | 0.515142
2,500 8 | 61,124 | 141,376 | 67,018 | 0.669047 | 32,220 | 99,238 | 0.324674 | 0.458101 | 0.527125
2,750 8 | 60,638 | 141,862 | 67,048 | 0.668899 | 31,962 | 99,010 | 0.322816 | 0.454432 | 0.527095
3,000 9 | 65,275 | 137,225 | 65,867 | 0.674731 | 34,871 | 100,738 | 0.346155 | 0.495792 | 0.534217
3,250 10 | 73,025 | 129,475 | 64,299 | 0.682474 | 39,530 | 103,829 | 0.380722 | 0.562033 | 0.541321
3,500 7 | 58,583 | 143,917 | 64,765 | 0.680173 | 32,076 | 96,841 | 0.331223 | 0.456053 | 0.547531
3,750 8 | 65,465 | 137,035 | 64,379 | 0.682079 | 35,710 | 100,089 | 0.356782 | 0.507720 | 0.545482
4,000 8 | 66,643 | 135,857 | 62,323 | 0.692232 | 37,327 | 99,650 | 0.374581 | 0.530711 | 0.560104
4,250 9 | 63,706 | 138,794 | 62,606 | 0.690835 | 35,717 | 98,323 | 0.363262 | 0.507820 | 0.560654
4,500 9 | 64,024 | 138,476 | 61,844 | 0.694598 | 36,257 | 98,101 | 0.369588 | 0.515497 | 0.566303
4,750 9 | 72,818 | 129,682 | 63,066 | 0.688563 | 40,043 | 103,109 | 0.388356 | 0.569326 | 0.549905
5,000 10 | 78,712 | 123,788 | 61,616 | 0.695723 | 43,715 | 105,331 | 0.415025 | 0.621534 | 0.555379
5,250 | 111 | 83,355 | 119,145 | 64,265 | 0.682642 | 44,712 | 108,977 | 0.410288 | 0.635710 | 0.536405
5,500 9 | 75,991 | 126,509 | 59,505 | 0.706148 | 43,410 | 102,915 | 0.421804 | 0.617198 | 0.571252
5,750 12 | 87,587 | 114,913 | 64,989 | 0.679067 | 46,466 | 111,455 | 0.416904 | 0.660648 | 0.530513
6,000 10 | 81,388 | 121,112 | 61,344 | 0.697067 | 45,189 | 106,533 | 0.424178 | 0.642492 | 0.555229
6,250 11 | 82,167 | 120,333 | 60,939 | 0.699067 | 45,781 | 106,720 | 0.428982 | 0.650909 | 0.557170
6,500 7| 63,364 | 139,136 | 58,360 | 0.711802 | 37,669 | 96,029 | 0.392267 | 0.535573 | 0.594486
6,750 6 | 62,371 | 140,129 | 57,395 | 0.716568 | 37,665 | 95,050 | 0.396160 | 0.535374 | 0.603726
7,000 7| 61,304 | 141,196 | 56,632 | 0.720336 | 37,503 | 94,135 | 0.398396 | 0.533213 | 0.611755
7,250 6 | 50,287 | 152,213 | 60,505 | 0.701210 | 30,058 | 90,563 | 0.331902 | 0.427361 | 0.597729
7,500 6 | 46,681 | 155,819 | 59,951 | 0.703946 | 28,532 | 88,483 | 0.322457 | 0.405664 | 0.611212
7,750 6 | 64,065 | 138,435 | 46,317 | 0.771274 | 44,041 | 90,358 | 0.487406 | 0.626169 | 0.687442
8,000 5 | 64,964 | 137,536 | 47,290 | 0.766469 | 44,004 | 91,294 | 0.482003 | 0.625643 | 0.677360
8,250 6 | 54,287 | 148,213 | 51,699 | 0.744696 | 36,461 | 88,160 | 0.413578 | 0.518398 | 0.671634
8,500 6 | 67,205 | 135,295 | 41,465 | 0.795235 | 48,037 | 89,502 | 0.536714 | 0.682984 | 0.714783
8,750 6 | 67,349 | 135,151 | 44,365 | 0.780914 | 46,659 | 91,024 | 0.512601 | 0.663392 | 0.692794
9,000 6 | 73,323 | 129,177 | 39,645 | 0.804222 | 52,006 | 91,651 | 0.567435 | 0.739415 | 0.709273
9,250 5 | 70,349 | 132,151 | 42,199 | 0.791610 | 49,242 | 91,441 | 0.538511 | 0.700117 | 0.699967
9,500 5 | 70,081 | 132,419 | 36,903 | 0.817763 | 51,756 | 88,659 | 0.583765 | 0.735860 | 0.738517
9,750 5 | 69,203 | 133,297 | 33,907 | 0.832558 | 52,815 | 86,722 | 0.609015 | 0.750917 | 0.763189
10,000 5 | 70,814 | 131,686 | 28,482 | 0.859348 | 56,333 | 84,815 | 0.664187 | 0.800936 | 0.795507
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maps during the exploration phase. This number is then refined at later stages, where
the number of contractive functions is reduced but their contractivity factors increase in
order to compensate for the missing functions.

The number of black (white) pixels of the reconstructed image, given by B (Ox) is a
good indicator of the performance of the method. Obviously, this number should ideally
match the value for the input image, By = 21,790 and By = 70,334 for the bush and
blocks images, respectively. From third column in Tables 2 and 3, we can see that this
value oscillates dynamically above and below of this value, until settling in the values
BM; = 23,118 and WMz = 70,814, an error less than 6% and 1%, respectively.

Another valuable indicator is the number of pixels (either black or white) with different
binary values for Z and R, 7%, reported in the fifth column of the tables. This value
is quite large at initial generation, but decreases over the generations, drastically at the
beginning and at slower pace at late stages, until reaching the plateau value at Az.r =
14, 840 for the bush example in Table 2. From this amount, 6,754 pixels correspond to the
difference set 7 — R, while 8,086 belong to the difference set R —Z. The value of Or.xr
is used to compute the Hamming similarity function, one of the best indicators of the
quality of the approximation. Its values are shown in the sixth column of the table. Note
that the final reconstructed image has a Hamming similarity of 0.926716, an excellent
rate of matching of about 92.6%. A similar behavior is observed for the blocks example in
Table 3, with a final Hamming similarity of 0.859348, a rate of matching of about 85.9%.
To our knowledge, no other previous method reported values of this order, even although
some methods consider much simpler images than those used in our benchmark.

The number of black pixels in the intersection Z n 'R and union Z n R sets is very
useful to quantify the degree of similarity of both images (the reader can see the evolution
of the union and the intersection sets for the 10,000 generations with step-size 250 in
to additional accompanying QuickTime videos: Video3.mov (length: 82 seconds; size:
1.5 MB) and Video4.mov (length: 82 seconds; size: 0.8 MB). These values, reported in
columns 7-8 of the table, are used to compute the intersection similarity function S,
shown in column 9. Note that this value oscillates up and down until reaching a final
value of &, = 0.503650. This value might appear surprising in the light of the very
good matching between Z and R, confirmed by our graphical results and other indicators
such as Sa. However, it should be taken into account that any minor distortion of the
image (e.g., rotation, scaling, or translation) might induce substantial changes on the
values of this similarity function, even although the general shape of the image is still well
reproduced. Furthermore, even if these variations occur at a local level, they are amplified
by the self-similar nature of the fractal. As a result, they have a dramatic effect on the
numerical results. On the other hand, we point out that this metric talks about the black
pixels exclusively. As a result, it can also be strongly affected by the size of the fractal
image. To analyze this effect in detail, we compute B /B; and H. /By, in columns 10
and 11, respectively. Their final results indicate that the rate of overlapping between
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Table 4: Comparative results of Sa for the blocks and bush examples with our method and other
alternative approaches (best results in bold).

Method blocks example | bush example
Multilayer perceptron [21]: 0.2154 0.3959
Simulated annealing [25]: 0.2671 0.3874
Genetic algorithms [22]: 0.5389 0.6087
Firefly algorithm [41]: 0.4613 0.5389
Original bat algorithm [42]: 0.6245 0.6874
Modified bat algorithm w/o LS [15]: 0.6693 0.7385
Modified bat algorithm with LS [15]: 0.6804 0.7744
Modified OFS-RDS bat algorithm: 0.8617 0.9267

IR and Z (resp. R) is about 69% (resp. 65%) for the black pixels. These results seem
to disagree our previous conclusion of the good matching between both images. However,
a further analysis show that the similar computations for the white pixels, i.e. O~/Oz and
O~/0Or, show rates of 95.52% and 96.23%, respectively. This observation is supported by
the results for the blocks image, which has a significant larger amount of black pixels. In
this case, the rates B, /By and B /By, are about 80% and 79.5%, respectively, leading
to a better value for the intersection similarity function: S, = 0.664187. As a conclusion,
when the number of black pixels of the image is small compared to the number of white
pixels, the S, metric can be somehow misleading, and it should be complemented with
(or even replaced by) other more reliable indicators, particularly Sa.

6.3. Comparative Analysis

It is always advisable to carry out a comparative work of the proposed method with
other alternative approaches described in the literature. To this aim, seven different meth-
ods are considered: artificial neural networks, simulated annealing, genetic algorithms,
the firefly algorithm, the original bat algorithm, and two variants of the the modified
bat algorithm introduced in our previous conference paper [15], namely without and with
local search (LS). They are good representatives of different families of methods: neural
networks is one of the most widely used artificial intelligence methodologies; simulated
annealing is a popular single-particle method; genetic algorithms are a standard method
in the field of evolutionary computation; and firefly and bat algorithms are popular choices
of population-based swarm intelligence algorithms. Furthermore, all these set of methods
have already been applied to this problem.

Regarding the configuration and parameter tuning of these alternative methods, for
the neural networks we consider a multilayer perceptron (MLP), which is reported to be
a universal function approximator. In our configuration, the MLP includes 30 neurons
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(as many as the actual free variables of the problem) in a single hidden layer, with the
Levenberg-Marquardt back propagation algorithm used for training [26, 29]. Whenever
possible, we consider a similar parameter tuning as in this paper for a fair comparison
of the methods. For instance, we consider a population of 100 individuals and 10,000
iterations for the genetic algorithms, firefly algorithm, and bat algorithm, while a total
of 106 iterations are considered for simulated annealing to compensate the fact that only
a single particle is considered. In this way, we consider the same number of function
evaluations as with the other methods.

Table 4 shows the comparative results for the blocks and bush examples (arranged
in columns). The different methods used in the comparison are listed in rows. For each
method, the value of Sa is reported. The best results are highlighted in bold for easier
identification. From the table, we can see that the method in this paper outperforms
all other alternative approaches in this comparison. Furthermore, the improvement rate
is really significant, not merely incremental. These results are a good validation of this
method with respect to the current state-of-the-art methods in the field.

6.4. Computational Complexity and CPU Times

It is well-known that it is not possible to determine the computational complexity of
metaheuristic methods (such as the bat algorithm used in this paper) on a general basis,
as it depends on a number of factors such as the population size, number of generations,
number of free variables, parameter tuning, landscape of the search space, and so on. To
make things even harder, the metaheuristic methods cannot always guarantee to find the
global optimum. In this situation, the classical approach is to compute either the number
of functions evaluations or the CPU time of the algorithm. For the examples in this paper
and the parameter tuning described in Sect. 6.1, the CPU time for a single execution is
about 5-8 hours, depending on the size and complexity of the image. These CPU times
have been obtained with Matlab, version 2018a running on a personal PC with a 3.7 GHz.
Intel Core i7 processor and 16 GB. of RAM. Obviously, these CPU times make the method
unsuitable for real-time applications. However, they are quite competitive with respect
to other similar approaches, such as those discussed in our comparative work. Regarding
the complexity of the similarity functions, they have a worst case time complexity of
O(M x N) for binary images of size M x N. As a result, their complexity is linear with
the number of pixels of the image.

7. Conclusions and Future Work

This paper presents a new method for fractal compression of bitmap binary images
encoded as IFS. The method is based on the application of a modified bat algorithm to
compute all the parameters of the IFS code of the image automatically. This work follows
up our previous paper in [15] extended and enhanced through three new valuable features:
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1. The bat algorithm in the previous conference paper is replaced by an improved
version based on the optimal forage strategy (OFS) and the random disturbance
strategy (RDS). These two strategies improve the search capability of the method,
by promoting large benefit moves during the local search phase without restricting
them to the neighborhood of the current best, and by allowing some negative moves,
with the goal to prevent the method to get stuck in local optima. The method also
includes a switching procedure for a better balance between early exploration and
late intensification.

2. Opposed to the conference paper, the number of contractive maps, 7, is allowed to
change for different individuals in the population and also to change dynamically
over the iterations. Our new method computes the optimal value of n automatically
and accurately.

3. This work considers several similarity functions and other metrics to improve our
understanding of the method and improve its accuracy.

This new method is applied to a benchmark of two binary fractal images exhibiting a
complex and irregular fractal shape. The graphical and numerical results show that the
method performs very well, being able to reconstruct the input images with a Hamming
similarity percentage of 86% and 92%, much better than the results obtained by previous
approaches. From these results, we conclude that the method is really promising and has
a lot of potential in the field.

Of course, the method has also some limitations. Perhaps the most critical one concerns
the computation times, which ranges about 4-10 hours for the experiments described here
and others not reported here to keep the paper in manageable size. These CPU times are
prohibitive for applications requiring high-speed encoding. On the contrary, the decoding
time is extremely fast and actually well suited for real-time applications. On the other
hand, the accuracy might be still further improved, at least, theoretically. Although it
is not realistic to expect a perfect matching, we think that the number of mismatches
between the input and the reconstructed images might be reduced even a little bit more.
We are currently working to improve these features.

Other ideas for future work in the field include the extension of this method to general
black-and-white images containing shades of gray, the development of methods for effective
IFS encoding of color images for different color spaces, and the development of new
approaches to reduce the computational load in order to make this technology efficient
for image and video storage with regards to video streaming and other online applications.
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