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Abstract

This work follows up a previous paper at conference Cyberworlds 2018 for automatic
border detection of cutaneous melanoma and other skin lesions from macroscopic med-
ical images. Given a set of feature points on the boundary of the skin lesion obtained
by a dermatologist, we introduce a new method for automatic least-squares B-spline
curve fitting of such feature points. The method is based on the original cuckoo search
algorithm used in the conference paper but with three major modifications: (1) we
use an enhanced version of the algorithm in which the parameters change dynamically
with the generations; (2) this improved method is coupled with the Luus-Jaakola local
search heuristics for better performance; (3) the original Bézier curves are now replaced
by the more powerful and more general B-spline curves, providing extra flexibility and
lower polynomial degree. The new method (called memetic improved cuckoo search
algorithm) has been applied to a benchmark comprised of ten medical images of skin
lesions. The computer results show that it performs very well and yields a border curve
enclosing the lesion and fitting the feature points with good accuracy. Furthermore,
a comparison with ten alternative methods in the literature (six standard mathemati-
cal methods for B-spline fitting, two state-of-the art methods in medical imaging, the
method in our conference paper and the non-memetic version of our new method)
shows that it outperforms all these methods in terms of numerical accuracy for the
instances in our reference benchmark.

Keywords: swarm intelligence, cuckoo search algorithm, medical image
segmentation, cutaneous melanoma, border detection, B-spline curves

1. Introduction

1.1. Motivation

Malignant cutaneous melanoma is the most common type of skin cancer. According
to figures of the World Health Organization, the number of patients in 2015 was more
than 3.1 million people worldwide, with about 60,000 deceases. It is a particularly
dangerous cancer because it can invade nearby tissues and spread to other parts of the
body (e.g., liver, bone, lung, or brain). It is also one of the most rapidly increasing
kinds of cancer in the world. Just for illustration, a total of more than 68,100 cases
and 8,700 deceases were reported in USA in 2010. These figures escalated to more

Preprint submitted to Advanced Engineering Informatics July 5, 2019

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0



than 73,800 cases and 9,900 deceases in 2015 and last available data suggest that this
increasing tendency will continue for a while. As a result, melanoma has become one
of the biggest current concerns all over the world regarding public health.

Melanoma is a kind of cancer typically caused by the ultraviolet light exposure
(although other factors can also play an important role in many cases). It arises from
pigment-containing cells called melanocytes. As such, it usually happens in the skin
(then called cutaneous melanoma) although cases of melanoma have also been reported
in the mouth, digestive tract, and even the eye. However, those cases are quite rare,
so melanoma is usually considered to be a skin disease. A very important feature of
melanoma is that early detection is critical for survival. When detected early, the 5-
year survival rate ranges between 89�95% for stages I and II with peaks of 99% for
stage 0, while it decreases to 25�70% for stage III and only 7�20% for stage IV. In this
regard, early diagnosis is particularly important as early-stage melanoma can usually
be removed by a simple clinical procedure (very often, just a simple excision might be
enough).

Visual inspection by self-examination or examination by a specialist are the most
usual diagnostic procedures. Unfortunately, it is often hard to discriminate the melanoma
from other skin diseases such as common moles or naevus. Therefore, this procedure
is subjective and time-consuming, even for trained practitioners. Other diagnostic
procedures include the popular ABCDE (Asymmetry, Border irregular, Color uneven,
Diameter, Evolving) method, the 7-point checklist, the Menzies scale, and some types
of biopsy (tangential, incisional, punch, excisional, optical, etc). However, since these
procedures rely strongly on human intervention, they can lead to medical results that
can differ even among experienced dermatologists. Other kind of procedures involve
imaging tests, such as X-ray, computer tomography (CT) scan, positron emission to-
mography (PET) scan, magnetic resonance imaging (MRI) scan, and others. In most
cases, these procedures are used to look for the possible spread of melanoma to lymph
nodes or other organs in the body rather than for early identification.

Two commonly used image acquisition methods for early diagnosis are standard
digital camera and dermoscopy. The former is of great help for patients with difficult
access to a dermatologist, as they can simply take a close picture with a standard digital
camera or mobile phone (macroscopic image) and send it to the professional for remote
examination. Dermoscopy is more precise and improves the discrimination between a
real cutaneous melanoma and other skin lesions. As a consequence, it is very useful
for decreasing the cases of screening errors [3]. However, it is also affected by errors
derived from the subjectivity of human interpretation of images, and it is therefore
dependent on the proficiency of the medical expert. In fact, it has been shown that
the accuracy of early diagnosis decreases significantly for inexperienced practitioners.

The previous discussion emphasizes the need for computer-aided techniques for auto-
matic diagnosis of melanoma at early stages. Although some semi-automatic methods
for early diagnosis have already been developed, they still rely on human intervention
and therefore, they are error-prone and time-consuming. Nowadays, there is a strong
demand for automated procedures at least to alleviate the load on the human part in
some critical steps (semi-automatic diagnosis). This is a top priority in current research
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in the field and the main motivation of this paper.

1.2. Segmentation procedures

The first goal in melanoma diagnosis is to classify the skin lesion as benign or malig-
nant. To this aim, automatic or semi-automatic analysis of medical images is commonly
used in a diagnosis pipeline involving several steps. One of the most important ones is
image segmentation. At this step, the lesion is roughly discriminated from the back-
ground skin to focus on the area of interest for better identification and classification
of the melanoma. Several methods have been applied to this problem. Early popular
imaging approaches focused on properties such as color, histogram or gradient. They
include thresholding [6, 20], clustering [38, 49], and edge-based methods [2]. Other
methods are: level set methods [32], gradient vector flow snakes [10, 50], and active
contours [31], driven by the seminal work in computer graphics in [27].

The first task in segmentation is border detection, which means determining the
border curve of the lesion from the image. This border structure is a useful source
of helpful information for accurate diagnosis. For instance, usual clinical features for
diagnosis, such as the asymmetry, border irregularity, or diameter (features tracked
in the ABCDE method), can be seamlessly computed from the detected border. This
boundary is also used for other important clinical procedures such as the extraction of
blue-white areas, or the recognition of atypical pigment networks and globules, among
others.

Until recently, the task of border detection was carried out manually by dermatolo-
gists. Based on their previous experience, they use the mouse to select different points
of the picture on the computer screen to provide an input collection of feature points.
Such points are joined with segments to define a draft polyline that must cover the
full region of the skin lesion, either accurately in simple cases or in excess otherwise
(so that the initial polyline will always be moved inward until it reaches the boundary
of the skin lesion). Once again, this manual procedure is prone to errors and time
consuming. It also demands a high degree of expertise for accurate results. Taking
advantage of the segmentation methods mentioned above, it is desirable to automate
the process for efficiency and higher accuracy. On the other hand, the polyline is not
the best graphical primitive for this process, because the border of skin lesions is rarely
piecewise linear, but smooth. Since the input data consists of a collection of 2D points,
parametric approximation schemes seem to be particularly suitable for this task.

A previous paper by the authors presented at Cyberworlds 2018 conference [19] ad-
dressed this problem by using polynomial Bézier curves. In that case, we had to deal
with a data parameterization problem, subsequently converted into a least-squares min-
imization problem. To solve it, a cuckoo search algorithm was proposed. The method
was successful applied to compute the outline curves of two illustrative examples of a
benign and a malignant skin lesions (a naevus and a melanoma, respectively).

In spite of our positive results, during the reviewing process it was pointed out that
the complex shape of the boundaries of skin lesions typically demands very high de-
grees for data fitting through a single Bézier curve. Following the reviewer suggestions,
the present paper overcomes this limitation by using piecewise polynomial functions,
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particularly B-spline curves. Although these curves are more powerful than the Bézier
counterpart, they are also more difficult to deal with, as they introduce new parameters
(the breakpoints) that are also to be computed. To cope with these new extra param-
eters, our previous approach is modified in this paper in two different ways: on one
hand, we consider a modification of the original cuckoo search algorithm that allows its
parameters to change over the iterations instead of keeping a fixed value. On the other
hand, the modified method is also coupled with a local search procedure to improve
its performance. These new features are described in detail in Sect. 4.

1.3. Main contributions of this paper

Main contributions of this paper are:

• The previous approach in [19] based on Bézier curves is now replaced by the
(more powerful) B-spline curves. The piecewise mathematical structure of the B-
splines make them an ideal solution to overcome the problem of high polynomial
degrees inherent in Bézier-based approximation schemes. The new approach is
also more general, as the Bézier curves are particular cases of B-spline curves.

• Since the B-spline curves introduce new parameters (the breakpoints) that have
also to be computed, the corresponding optimization problem becomes more
difficult to solve. This new problem is now addressed by using a modification of
the original cuckoo search algorithm called improved cuckoo search algorithm [41],
which allows its parameters pa and α to change over the iterations, instead of the
fixed value used in the original algorithm. This modification leads to substantial
improvements in computer speed and accuracy.

• This modified method is also hybridized with a local search optimizer called
Luus-Jaakola heuristics to enhance the search capabilities of the method in the
neighborhood of the local minima. Our results show that this memetic method
leads to significant improvements in accuracy compared to the non-coupled ver-
sion.

1.4. Structure of this paper

This paper is organized as follows: Section 2 describes some previous work on curve
approximation, including the recent application of computational intelligence tech-
niques for that purpose. The original cuckoo search algorithm, its improved version
and its hybridization with the Luus-Jaakola heuristics for local search are described in
Section 3. Our automatic method for border detection with B-spline curves is described
in Section 4, including parameter tuning and implementation issues. Our experimen-
tal results on a benchmark of medical images of skin lesions is discussed in Section 5.
Comparative work with other classical and state-of-the-art alternative methods in the
field is also discussed in the section. The paper closes with the main conclusions and
some plans for future work in the subject.
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2. Previous Work

Data approximation with free-form curves has been a recurrent topic of research for
several decades. Classical approaches based on numerical methods were introduced
in the 60s and 70s, while more sophisticated methods were developed in the 80s and
90s to solve particular cases (see [5, 8, 11] for an introduction to the field). From a
mathematical standpoint, the problem can be expressed as an optimization problem
[8, 26]. Unfortunately, classical optimization techniques have not been very successful in
solving the general problem, so several alternative methods have been proposed. They
include curvature-based distance minimization [42], error bounds [34], and dominant
points [35]. Although they are successful in solving academic cases, they are also
limited by some ideal constraints (high differentiability, noiseless data) difficult to meet
for many real-world instances.

In the last two decades some artificial intelligence methods have been proposed for
this problem: standard neural networks [21], self-organizing maps [22], Bernstein basis
function networks [29], and neural networks combined with partial differential equations
[4]. The use of the more general functional networks is proposed in [24]. The paper in
[25] applies support vector machines (SVM) to the least-squares fitting problem with
B-spline curves. The work in [17] combines functional networks and genetic algorithms
to enhance the performance.

The most recent trend in this area is to apply nature-inspired metaheuristic tech-
niques [43, 44], such as those from evolutionary computation [7, 23] and swarm intelli-
gence [9, 28]. Such techniques are very advantageous because they do not require the
function under optimization to be differentiable, can be applied when little information
is available, and are very robust to irregular or incomplete sampling, noise in data, and
other artifacts. Evolutionary computation and swarm intelligence methods applied to
this issue include genetic algorithms [47, 48] artificial immune systems [16, 40], par-
ticle swarm optimization [12], firefly algorithm [13, 14] and memetic approaches [15].
However, these schemes are generally tailored for explicit curves and cannot be applied
to the parametric case. A recent paper by the authors filled this gap with a method
based on cuckoo search for border detection with Bézier curves. The method works
well, but requires high-degree curves for complex boundary shapes. In this work we aim
at overcoming this limitation by means of a powerful modification of a nature-inspired
method called cuckoo search algorithm to address the problem using B-spline curves,
as discussed in next sections.

3. Cuckoo Search Algorithms

3.1. Original Method (CSA)

Cuckoo search algorithm (CSA) is a nature-inspired continuous optimization method
proposed by X.S. Yang and S. Deb in 2009 [45]. The algorithm is based on the brood
parasitism behavior by some cuckoo species that lay their eggs in the nests of other
(host) birds. This strategy is aimed at avoiding the parental investment in the up-
bringing of their offspring, and to minimize the risk of egg loss by distributing the eggs
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among several nests. Sometimes, it may happen that these host birds discover such
alien eggs and take responsive actions (for instance: leaving the nest to build a new
one or throwing the eggs away). At their turn, the brood parasites have also designed
sophisticated strategies (i.e., shorter incubation periods for their eggs, a different egg
coloration and even egg pattern mimicking those of the hosts, rapid nestling growth
an others) to secure that the host birds will eventually take care of their progeny.

This unconventional behavior is used as a the metaphor for the cuckoo search al-
gorithm. In CSA, the eggs in the nest represent a set of candidate solutions for an
optimization problem with the cuckoo egg being a new candidate solution. The ratio-
nale of the method is to use these new solutions given by the cuckoo eggs to replace
current solutions associated with by the eggs in the nest. This substitution, performed
iteratively, will finally lead to a high-quality solutions of the problem.

For the computational implementation of the CSA, it is convenient to consider these
three ideal rules [45, 46]:

1. Each cuckoo dumps one egg at each time, laid in a random nest;

2. At each generation, the best nests (associated with good solutions) will be main-
tained for next generation;

3. The number of host nests is considered fixed. Also, a host may discover an alien
egg with a certain probability, pa P r0, 1s. Then, the host bird can throw the egg
away or leave the nest to build another somewhere else.

For computational efficiency, the last rule can be replaced by an amount of the total
nests being substituted by new ones. Also, for some optimization problems, the quality
of a solution can be taken to be proportional to the fitness function. However, other
sophisticated formulas for the objective function can be considered as well.

These basic rules are the core of the CSA. The main steps of its corresponding pseudo-
code are summarized in Table 1. We consider an initial population chosen randomly of
n host nests and run the algorithm in an iterative fashion. In [45] the initial values of
the jth component of the ith nest are given by xj

i p0q � rand.pupj
i � low

j
i q � low

j
i , with

up
j
i and lowj

i being the upper and lower bounds of such a component, respectively, and
rand is a uniform random constant on the open interval p0, 1q. With this choice, the
initial variable values of the variables are always inside the search space. These border
conditions are systematically checked for each generation.

At each generation g, we select randomly a cuckoo egg i. Then, new solutions
xipg� 1q are generated through Lévy flights, a random walk approach where the steps
are described by their step-lengths according to a probability distribution and whose
directions are random and isotropic. As indicated in [45], the use of Lévy flights is
adviced over other random walks as it provides better overall performance for the
algorithm. The evolution equation for Lévy flights is as follows:

xipg � 1q � xipgq � α ` levypλq (1)

where g means the current generation, α ¡ 0 is the step size (associated with the scale
of the optimization problem) and symbol ` means the entry-wise multiplication. We
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Table 1: Original CSA with Lévy flights.

Algorithm: Original CSA via Lévy Flights

begin

Fitness function hpxq, x � px1, . . . , xDqT
Generate initial population of P host nests xi pi � 1, 2, . . . ,Pq
while pt  MaxGenerationq

Choose a cuckoo (say, i) randomly using Lévy flights
Computer its fitness, Fi

Select a new nest (say, j) randomly
if (hpxiq ¡ hpxjqq

Replace xj by xi

end

An amount (pa) of poor nests are abandoned; new
nests are built using Lévy flights

Preserve the best solutions (elitism)
Rank all solutions to determine the best one

end while

Return the best solution and fitness value
end

remark that Eq. (1) is basically a Markov chain, as the location at generation g � 1
only depends on the location at generation g (first term) and a transition probability
(second term), modulated by the Lévy distribution as:

levypλq � g�λ, p1   λ ¤ 3q (2)

with infinite variance and infinite mean. Computationally, random numbers generation
with Lévy flights is a two-step process: first, choose a random direction given by the
uniform distribution; then, generate of steps according to the Lévy distribution. It is
suggested to use the Mantegna algorithm for symmetric distributions, in which positive
and negative steps are considered. The procedure is similar to that in our previous
paper in [19], so the interested reader is kindly referred to that entry for further details.

At each generation, the cuckoo search algorithm computes the fitness of any new
solution and compares it with the current one. In case of improvement, the new
solution replaces the previous one. Also, all current solutions at that generation are
ranked according to their fitness values and the best solution so far is stored in vector
xbest, which is then transferred to the next generation. Also, an amount of the worse
nests is rejected and replaced by new candidate solutions to increase the explorative
capabilities of the method to find better solutions. The ratio of replacement pa is a
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parameter of the method that requires proper tuning for optimal performance. This
process is repeated for successive generations until a stopping criterion is met. Popular
stopping criteria are: (1) reaching a solution better than a feasible threshold; (2) a
given number of generations is reached, or (3) several back to back generations do not
improve the results.

3.2. Improved Cuckoo Search Algorithm (ICSA)

The improved cuckoo search algorithm (ICSA) is a modification of the original CSA
proposed in [41] for performance enhancement. In this modified version, the parameters
pa and α change dynamically over the time, in contrast with the fixed values in the
original CSA. In ICSA the parameter pa varies as:

pt
a � paM

� paM
� pam

Λ
t (3)

where M and m indicate the maximum and minimum values for the parameter respec-
tively, and Λ means the total number of generations. According to Eq. (3), pa decreases
linearly with the generations from paM

to pam
. At initial stages, it takes a high value to

promote diversity in the pool of solutions, but it is decreased at later stages to intensify
the search in the neighborhood of best candidates of the population. The parameter
α, taken constant in the CSA, is also used to promote a trade-off between exploration
and exploitation in search space. In particular, it is varied dynamically as:

αt � αM Exp

�
Ln pαm{αMq

Λ
t



(4)

starting with a high value, αM , for extensive exploration and reducing it to a low value,
αm, to enforce exploitation until reaching the optimum.

3.3. Memetic ICSA with Luus-Jaakola Heuristics

The success of nature-inspired metaheuristic techniques for optimization relies to a
large extent on a feasible trade-off between two conflicting search procedures: explo-
ration and exploitation. The former aims at generating solutions as varied as possible
to move in the search space on a global scale. Exploitation focuses the search on a
local region around a current good solution. An effective way to achieve this desired
trade-off is given by the memetic algorithms, which consists of the hybridization of a
global search optimization method with local search procedures [18]. This memetic
paradigm is becoming popular owing to its adequate combination of global and local
search features within a common framework.

In this paper, we present a new memetic approach for proper balance between ex-
ploration and exploitation. Our approach is based on the ICSA for global optimization
described in Section 3.2. This modified improved scheme is coupled with a local search
procedure: the Luus-Jaakola (LJ) method, introduced in [30] for nonlinear program-
ming problems. It is a gradient-free heuristics with an initialization step, at which
random uniform values are chosen within the search space. Then, the current position
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of the potential solution is perturbed by adding a sampled random uniform value to
each component within its lower and upper bounds to generate a new candidate solu-
tion. Whenever the fitness improves with this change, the new solution replaces the
current one; otherwise, the sampling space is decreased by a multiplicative factor (taken
as 0.98 in this work). This process is repeated iteratively such that the neighborhood
of the solution decreases and the procedure finally converges to a point.

4. The Proposed Method

4.1. Problem to be Solved

The problem of automatic border detection with B-spline curves addressed here can
be stated as follows:

Given a collection of feature points from the border of a skin lesion, deter-
mined by a trained dermatologist from a macroscopic image of the lesion,
compute automatically the B-spline curve providing the best fitting (accord-
ing to an error metrics) to the input data points and enclosing the lesion.

If data were acquired from smooth and simple shapes through accurate procedures,
the problem might be addressed through classical interpolation techniques. However,
manually-acquired medical data are prone by noise and irregular sampling, so interpo-
lation methods are not adequate, since they force the fitting functions to pass through
the noisy outliers. To overcome this drawback, approximation techniques are applied
instead. In this case, the border detection can be formulated as a continuous optimiza-
tion problem in the form of a least-squares fitting problem [8, 36, 37].

An adequate choice of the fitting functions is required to solve this optimization
problem. The best ones in this regard are the free-form parametric curves, which are
very flexible and well-suited for interactive design. In our previous conference paper
[19] we used Bézier curves, as they are simple to implement and very popular in many
fields. However, during the review of the paper it was wisely remarked that fitting
a large collection of data points through a single Bézier curve typically leads to very
high degree polynomials for complicated and highly oscillating shapes, an undesirable
feature in data fitting. The reviewer also suggested to employ piecewise polynomials
instead. Several options are available for this task (e.g., cubic splines). Amongst them,
the B-spline curves are the most preferred fitting curves, as they are very general and
powerful and are included as basic primitives in all major CAD/CAM programs of the
market. Based on these reasons, in this work we address the border detection problem
with B-splines curves. These curves are described in next paragraphs. Further details
can be found in [37].

Let Υ � tυ0 � α, υ1, . . . , υν , υν�1 � βu be a strictly increasing sequence of non-
negative real numbers called breakpoints on the interval rα, βs � R. In this work
vectors are written in bold. Without loss of generality, rα, βs can be r0, 1s. For each
sequence Υ, the k-th B-spline basis function ψ

ρ
kpωq of order ρ (i.e., degree ρ � 1) is
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computed recurrently as:

ψ1
kpω,Υq � $&% 1 if υk ¤ ω   υk�1

0 otherwise
(5)

for k � 0, . . . , ν, and:

ψ
ρ
kpω,Υq � ω � υk

υk�ρ�1 � υk

ψ
ρ�1

k pω,Υq � υk�ρ � ω

υk�ρ � υk

ψ
ρ�1

k�1pω,Υq (6)

for ρ ¡ 1 and k � 0, . . . , ν � ρ� 1. When necessary, take
0

0
� 0 in Eq. (6). Note that

ψ
ρ
kpω,Υq is a nonlinear function of Υ.
A B-spline curve of order ρ with breakpoints Υ, denoted as Φpω,Υq, is given by:

Φpω,Υq � σ̧

i�0

Ξi ψ
ρ
i pω,Υq (7)

where Ξ � tΞiui�0,...,σ are coefficients of the curve called poles and tψρ
i pω,Υqui are

defined above. We assume that the end breakpoints are repeated ρ times, so that the
curve interpolates the first and last poles, i.e., Φpα,Υq � Ξ0 and Φpβ,Υq � Ξσ, a
useful property in medical imaging applications and other fields. However, our method
does not depend on these assumptions.

Consider now an input set of sorted featured points tΘkuk�1,...,χ on the boundary
between a skin lesion and its background image, selected by a trained dermatologist
from macroscopic images. Our goal is to determine the B-spline curve Φpω,Υq of order
ρ approximating better such feature points tΘkuk. Since the curve is parametric, we
need a suitable data parameterization, so that each Θk is associated with a parameter
value ξk P rα, βs. According to our previous assumptions, we can take Φpξ1,Υq � Θ1

and Φpξχ,Υq � Θχ and perform curve fitting on the remaining parameters:

Θk � Φpξk,Υq � σ̧

i�0

Ξi ψ
ρ
i pξk,Υq (8)

for k � 2, . . . , χ� 1. Eq. (8) can be compacted in matrix notation as:

Θ � Ψ.Ξ (9)

where Θ � pΘ2, . . . ,Θχ�1qT , Ξ � pΞ0, . . . ,ΞσqT , Ψ � �tψρ
i pξl,Υqui�0,...,σ ; l�2,...,χ�1

	
,

and p.qT indicates the transpose of a matrix. Note that the dimension of the search
space is given by D � R

n in Eq. (9) is npσ � 1q � ν � χ � 2, which can be very large
for complicated shapes.
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The system (9) is overdetermined, so matrix Ψ is not invertible and the system has
not analytical solution. Instead, we consider the least squares fitting of (8), given by:

Λ � minimizetΞiuitυjujtξkuk �
χ�1

ķ�2

����������Θk � σ̧

i�0

Ξi ψ
ρ
i pξk,Υq����������

2

�
(10)

where ||.||2 is the Euclidean norm. Since our input consists of the feature points ex-
clusively, solving Eq. (10) requires to obtain all free variables of the problem. This is
a difficult and challenging task, since such variables are intertwined in a complicated
(and highly nonlinear) way. For this reason, many previous methods assume the val-
ues for some of those variables and then compute the remaining ones. As a result, the
procedure depends on the initial choice of such values. Furthermore, the problem is
nonconvex because the curve is a nonconvex function of the breakpoints, and multi-
modal (there could be several local minima of the fitness function). In short, Eq. (10)
is a nonlinear, multimodal, and nonconvex continuous optimization problem.

4.2. Our Approach

Our procedure to solve the border detection problem is to apply the memetic ICSA
described above to determine optimal values for the parameters of the functional Λ in
Eq. (10). The input of our method consists of:

1. the input feature points, tΘkuk�1,...,χ,

2. the order ρ of the B-spline curve, and

3. the number of poles, σ.

The first item is given by the dermatologist, while the last two items are chosen by the
user. Regarding the order, low values provide little flexibility for shape control while
high values introduce unwanted wriggles and require further computation, so these ex-
treme values are to be avoided. A standard choice is the 4th-order B-splines, hence it
is the value taken in this work. We remark however that the method is independent
on our choice. The number of poles is determined empirically after carrying out com-
puter simulations for different values and selecting the one with the best fitting error.
Alternatively, a penalty term (e.g., the Akaike information criterion) can be inserted
in Eq. (10) to penalize unnecessarily large values for this parameter.

Once these values are set, the memetic ICSA method is executed for an initial
population of P individuals (nests). Each host nest, denoted by Nκ (κ � 1, . . . ,P) and
representing a potential solution of Eq. (10), is given by a vector:

Nκ � �
ξκ
2 , ξ

κ
3 , . . . , ξ

κ
χ�1; υ

κ
1 , υ

κ
2 , . . . , υ

κ
ν ;Ξκ

0 ,Ξ
κ
1 , . . . ,Ξ

κ
σ

�
(11)

corresponding to the data parameterization
 
ξκ
2 , ξ

κ
3 , . . . , ξ

κ
χ�1

( P r0, 1sχ�1 the break-
points tυκ

1 , υ
κ
2 , . . . , υ

κ
νu � p0, 1q and the poles tΞκ

0 ,Ξ
κ
1 , . . . ,Ξ

κ
σu P R

σ, respectively.
These vectors are initialized randomly within their respective domains and then sorted.
The, our method is applied for a given number of generations Ngen, large enough to
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guarantee convergence. At each generation, our method obtains new potential solu-
tions of the fitting problem. Some of them will improve the fitness and will be preserved
for the next generation, while those with worse fitness will be discarded and replaced
by new solutions. The nest with the best global value after convergence is the optimal
solution of our problem.

4.3. Parameter tuning

A great shortcoming of nature-inspired metaheuristic optimization techniques is their
dependence on several parameters that require proper tuning for good performance.
This problem is exacerbated by the lack of sufficient theoretical results about optimal
parameter values and the fact that such values do depend on the problem, so favorable
values for a certain problem might become troublesome for other problems. This means
that the parameter tuning is a serious issue when we apply metaheuristic techniques.
Fortunately, our method is particularly well suited for this problem. In contrast to
most metaheuristic methods, our approach requires only three parameters:

• the number of generations, Ngen,

• the size of our population, P, and

• the probability pa.

Finding proper values for these parameters is a fully empirical task. Based on hundreds
of executions, we found that Niter � 20, 000 is enough to reach convergence for most
examples of our benchmark. However, the examples with the largest amount of feature
points might require as many as 30, 000 generations for optimality. We also tested
population sizes ranging from 50 to 200 individuals, and found that P � 100 is adequate
for our problem. Finally, we tested values of pa from 0.1 to 0.9 with step-size 0.05 and
found little variation in our results, although values in the range 0.1 � 0.4 perform
slightly better. We eventually set pa � 0.3 in this paper.

4.4. Implementation issues

The source code of our method has been implemented by the authors in Matlab,
version 2015b running on Windows 10 OS. Our implementation of the ICSA method is
based on a very efficient vectorized implementation of the original CSA freely available
in [33], but adapted to the improved version as described in [41]. Our implementation
of the local search procedure is based on [30] but strongly optimized for better perfor-
mance. The experiments were executed on a 3.7 GHz. Intel Core i7 processor PC with
16 GB. of RAM.

5. Computational Experiments

5.1. Benchmark and Results

We applied our method to several examples of macroscopic images of skin lesions.
In this paper, we restrict the discussion to a benchmark of ten medical images, labelled
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from Example I to Example X and shown in Figure 1. All images have been obtained
from the repository of digital medical images of the Department of Dermatology of
the Medical Center, Groningen University (The Netherlands). All images correspond
to melanoma except Examples I, III and IV, which correspond to benign skin lesions
(naveus in all cases). As shown in Figure 1, it is very difficult to distinguish visually
the melanoma from other skin lesions.

Only two examples of our benchmark (Examples II and IV) are graphically displayed
to keep the manuscript in manageable size. They are shown in Figs. 2 and 3, respec-
tively. Both figures share a similar structure: they show the original skin lesion image
(top-left), the best border curve obtained with our method along with the original and
the recovered feature points (top-right), the lesion borderline from the feature points
combined with the lesion image for better visualization (bottom-left) and the conver-
gence diagram (bottom-right). From the figures we can see that our memetic ICSA
method yields an excellent matching of the feature points for both examples. This fact
is clearly noticeable in the top-right pictures, where the original feature points (shown
as red empty circles) and the approximated lesion border curve (in blue solid line with
filled diamond symbols for the corresponding recovered feature points) are displayed.
Note the remarkable visual matching between the original and the recovered feature
points for both examples. Similarly, good visual results have also been obtained for
the other eight examples in the benchmark.

This very good visual matching is numerically confirmed by our results, reported
in Table 2. The table shows the number of original feature points (second column)
and the RMSE (root-mean-square error) obtained with our method (last column) for
ten examples in the benchmark, arranged in rows. The RMSE error is given by:
RMSE � a

Λ{χ and is preferred over the Λ value because the later does not consider
the number of feature points. As shown in last column of the table, the RMSE takes
values between low 10�1 and high 10�2, which means a very good fitting error in
all cases. We remark that these error values also depend on the quality of feature
points, which are obtained manually and hence, subjected to noise. In other words,
the process does not rely exclusively on the efficiency of the method, with the quality
of initial screening by the dermatologist also being an important factor. Obviously, it
would be desirable to develop an automatic procedure for this initial screening as well,
but this task is out of the scope of this paper.

5.2. Comparative Analysis

It is always convenient to carry out a comparison between our method and other
alternative approaches in the field. For this comparative work, we consider three types
of methods: on one hand, we consider the classical mathematical procedures for B-
spline curves given by three standard parameterization techniques (uniform, chord-
length, and centripetal) and two methods for computing the breakpoints (uniform and
averaging), as described in [11, 37]. The combination of all couples parameterization-
breakpoints gives a total of six methods. They are shown in columns 3-5 of the table,
where each column shows (in rows) the results of the uniform (U) and averaging (A)
breakpoint computation methods for each parameterization scheme. We also con-
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sider two of the most popular state-of-the-art approaches in the medical imaging field:
thresholding [39] and clustering [6]. The corresponding RMSE errors are reported in
columns 6–7 of Table 2. Finally, we include in this discussion the results obtained
with our previous cukoo search algorithm method for Bézier curves reported in our
conference paper in [19] (column 8) and the results of the ICSA method with B-spline
curves without the local search, i.e., the non-memetic version of our method (column
9). Finally, the RMSE results with our memetic ICSA method for B-spline curves
are shown in column 10. For each example, the best results are boldfaced for easier
identification.

The results of this comparative analysis show that our new method outperforms the
ten alternative methods used in our comparison for the examples in our benchmark.
In particular, this new method improves the results of our previous conference paper
(column 8) even although it was also based on the cuckoo search algorithm. This
fact can be attributed to three factors: on one hand, to the ability of the B-splines
to approximate the feature points better than the Bézier curves owing to the extra
degrees of freedom given by the breakpoints and the use of a low degree for the curve,
in good agreement with the reviewers comments; on other hand, to the use of an
improved version of the cuckoo search algorithm; and, finally, to the hybridization
with an effective local search algorithm. The effect of this last factor becomes evident
from the comparison between the last two columns in Table 2. On the other hand,
our method improves the results of the thresholding and clustering methods, which
are widely considered two of the best state-of-the-art techniques in medical imaging.
Note, for instance, that these methods improve the results with the standard CSA in
our conference paper for the Examples VI, VII, IX and X. However, they are in turn
outperformed by the method in this paper for all instances in our benchmark.

6. Conclusions and Future Work

This work is a substantial extension of a previous conference paper at Cyberworlds
2018 for automatic border detection of cutaneous melanoma and other skin lesions from
macroscopic medical images. Using a set of feature points obtained by a dermatologist
and laying on the boundary of the skin lesion, the paper introduces a new method to
compute automatically the B-spline curve fitting such feature points better according
to the least-squares approximation. The method is based on an improved version of the
cuckoo search algorithm in which the parameters are allowed to change dynamically
over the generations. This scheme is hybridized with the Luus-Jaakola local search
heuristics for better performance. Experimental results on a benchmark of ten med-
ical images of skin lesions (mostly melanomas) show that our method performs very
well and yields a border curve enclosing the lesion and fitting the feature points with
high accuracy. A comparative analysis with ten alternative methods in the literature
(including six standard mathematical methods for B-spline fitting, two state-of-the
art approaches in medical imaging, the previous method in our conference paper and
the non-memetic version of our method) shows that our method outperforms all these
methods in terms of numerical accuracy for all instances in our benchmark.
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Of course, the method also comes with limitations. In our opinion, the most critical
one is the computation time. Although the CPU time depends on the particular ex-
ample under analysis and many other factors, our simulations require typically about
20,000 iterations or more to converge, which means several minutes for an individual
execution. This fact prevents the method to be applied to real-time diagnosis or other
medical applications where computational speed is a critical factor. We remark, how-
ever, that these CPU times are still quite competitive with those of state-of-the-art
approaches in the field.

Regarding the future work, our method is sensitive to the quality of the feature
points, which are acquired by manual procedures. To overcome this limitation, we plan
to analyze some interesting approaches based on fusion thresholding [1] to capture the
feature points automatically, so that our method is seamlessly integrated in a fully
automatic pipeline. Possible modifications of our method to decrease its computation
time are also part of our goals for future work in this field.
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Figure 1: Benchmark of skin lesion images used in this paper: (l-r, t-b) Examples I to X.
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Figure 2: Example II (melanoma): (top-left) lesion image; (top-right) best border curve with original
and recovered feature points; (bottom-left) lesion borderline from feature points superimposed on the
lesion image for better visualization; (bottom-right) convergence diagram of our method.
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Figure 3: Example IV (naveus): (top-left) lesion image; (top-right) best border curve with original
and recovered feature points; (bottom-left) lesion borderline from feature points superimposed on the
lesion image for better visualization; (bottom-right) convergence diagram of our method.
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Table 2: Comparative results of our method with ten alternative methods in the literature (in columns) for the instances in our benchmark (in
rows). From left to right: example, number of feature points, classical mathematical techniques for parameterization (uniform, chord-length and
centripetal) and breakpoints (in rows: uniform (U) and averaging (A)), state-of-the-art approaches (thresholding, clustering), the previous CSA
method in [19], the improved cuckoo search method (ICSA) without local search, and the memetic ICSA (the method introduced in this paper).

Example # points Uniform Chord-length Centripetal Thresholding Clustering CSA ICSA Memetic ICSA

I 223
3.2918E�1 (U) 3.0223E�1 (U) 2.9806E�1 (U)

2.1615E�1 1.9739E�1 1.5674E�1 1.4375E�1 1.2912E�1
3.1126E�1 (A) 2.6871E�1 (A) 2.7133E�1 (A)

II 77
2.3525E�1 (U) 2.0219E�1 (U) 1.9832E�1 (U)

1.6318E�1 1.5494E�1 1.2594E�1 9.9217E�2 9.8654E�2
2.1996E�1 (A) 1.7828E�1 (A) 17651E�1 (A)

III 162
3.6322E�1 (U) 2.9177E�1 (U) 2.8351E�1 (U)

2.1166E�1 2.1397E�1 1.0321E�1 8.8773E�2 8.7355E�2
3.4911E�1 (A) 2.7314E�1 (A) 2.6502E�1 (A)

IV 220
3.4592E�1 (U) 2.5924E�1 (U) 2.6102E�1 (U)

2.1358E�1 2.0709E�1 9.0672E�2 8.2656E�2 8.0493E�2
3.0973E�1 (A) 2.3691E�1 (A) 2.4015E�1 (A)

V 149
4.3651E�1 (U) 4.0547E�1 (U) 3.9833E�1 (U)

3.6815E�1 3.7626E�1 1.4777E�1 1.1150E�1 1.0603E�1
4.1908E�1 (A) 3.6925E�1 (A) 3.7442E�1 (A)

VI 213
3.7615E�1 (U) 3.4423E�1 (U) 3.4681E�1 (U)

3.1244E�1 2.9275E�1 3.2166E�1 2.8996E�1 2.8315E�1
3.5908E�1 (A) 3.2112E�1 (A) 3.1788E�1 (A)

VII 96
1.6013E�1 (U) 1.2814E�1 (U) 1.3207E�1 (U)

9.2512E�2 9.2753E�2 1.0422E�1 7.9113E�2 7.8086E�2
1.2956E�1 (A) 9.6644E�2 (A) 9.9167E�2 (A)

VIII 113
3.0392E�1 (U) 2.6322E�1 (U) 2.6019E�1 (U)

2.3907E�1 2.4449E�1 2.3827E�1 2.1224E�1 2.0578E�1
2.8752E�1 (A) 2.4215E�1 (A) 2.4533E�1 (A)

IX 162
2.9667E�1 (U) 2.5291E�1 (U) 2.5488E�1 (U)

2.2904E�1 2.5306E�1 2.3116E�1 2.1635E�1 2.1104E�1
2.8702E�1 (A) 2.3723E�1 (A) 2.4259E�1 (A)

X 155
2.4893E�1 (U) 2.1133E�1 (U) 2.0426E�1 (U)

1.8609E�1 1.8214E�1 1.8375E�1 1.5108E�1 1.4492E�1
2.3726E�1 (A) 1.9675E�1 (A) 1.8506E�1 (A)
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