
Journal of Systems Architecture 157 (2024) 103300

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Using MAST for modeling and response-time analysis of real-time
applications with GPUs
Iosu Gomez a,b,∗, Unai Díaz de Cerio a, Jorge Parra a, Juan M. Rivas b, J. Javier Gutiérrez b,
Michael González Harbour b

a Distributed and Connected Intelligence Department, IKERLAN Research Centre, Basque Research and Technology Alliance (BRTA), Arrasate-Mondragón, Spain
b Software Engineering and Real-Time Group, Universidad de Cantabria, Spain

A R T I C L E I N F O

Keywords:
Real time
Modeling
Schedulability analysis
Time partitioning
GPUs

A B S T R A C T

The ever increasing computing demands in embedded systems is driving the adoption of hardware accelerators
such as GPUs, which offer powerful platforms that can compute parallel workloads efficiently. Relevant critical
applications that benefit from such platforms, for instance autonomous driving, usually impose additional
real-time requirements that must be met to guarantee the correctness of the systems. In this paper, we
propose exploiting readily available and extensively validated techniques to model and analyze real-time
systems with GPUs. Specifically, we propose a methodology to employ the MAST model to characterize such
systems, and different variants of the Offset-Based Response-Time Analysis techniques to validate the real-time
requirements. We verify our approach with a real industrial application sourced from the railway industry.
Through a comprehensive evaluation involving synthetic and real task-sets, we characterize the applicability of
the approach, and we also show how estimated worst-case response times are aligned with real measurements
up to 87.2%.
1. Introduction

Modern cyber–physical systems must handle increasingly compu-
tationally intensive workloads. For this reason, nowadays there is a
trend to employ heterogeneous architectures with several processors
and specific hardware accelerators to meet the new demands. Smart
mobility applications use computationally intensive algorithms, such
as Artificial Intelligence algorithms, to achieve advanced perception,
planning or decision-making tasks. Additionally, these systems must
meet both functional safety and real-time requirements. Thus, it is not
only essential for the computation result to be functionally correct, it
also has to comply with imposed time constrains. This field of research
is of great industrial interest, as it can be seen in the various industrial
challenges proposed at international conferences [1–3].

One of the more common hardware accelerators are the integrated
GPUs (Graphics Processing Unit) architectures, which are platforms
that contain a general purpose GPU integrated together with a CPU
cluster in a single MPSoC (Multiprocessor System on Chip) connected
by the system’s global memory. GPUs enhance the performance of
cyber–physical systems, enabling efficient parallel processing for data-
intensive workloads. Although the computational power and efficiency
of GPUs would clearly benefit emerging real-time applications such

∗ Corresponding author at: Distributed and Connected Intelligence Department, IKERLAN Research Centre, Basque Research and Technology Alliance (BRTA),
Arrasate-Mondragón, Spain.

E-mail address: iosu.gomez@ikerlan.es (I. Gomez).

as smart mobility, their adoption for these types of applications is
hindered by the unknown nature of their internal scheduling mech-
anisms. Managing these internal mechanisms is crucial for obtaining
predictable response times and, subsequently, for the correct implemen-
tation of real-time applications. For that reason, there is presently an
intense research effort to propose solutions that enable the safe usage
of GPUs in real-time applications [4,5].

Furthermore, the concept of partitioning is a strategy extensively
adopted in highly critical applications such as avionics, to ensure
spatial and temporal isolation. This method creates time partitions,
where applications allocated in different partitions can be effectively
executed in isolation. In this paper, we will follow a similar terminology
to the one defined in the ARINC 653 [6] avionics standard. Time
partitioning is also a crucial aspect to consider in safety-critical systems
running on heterogeneous platforms because of the isolation on critical
functionalities that can be achieved [7]. For instance, one benefit of
this kind of isolation is the possibility to control the CPU–GPU memory
interference [8,9] caused by an intensive memory usage. Partitioning
techniques have also been used before in multi-core systems [10] to
mitigate the effects of interference. Another essential aspect that time
https://doi.org/10.1016/j.sysarc.2024.103300
Received 31 January 2024; Received in revised form 26 September 2024; Accepted
vailable online 8 November 2024
383-7621/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
 30 October 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:iosu.gomez@ikerlan.es
https://doi.org/10.1016/j.sysarc.2024.103300
https://doi.org/10.1016/j.sysarc.2024.103300
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2024.103300&domain=pdf
http://creativecommons.org/licenses/by/4.0/

I. Gomez et al.

M

m

i
r
p
a

w
w

o

t
m

t
p
(

(

n

i

n
c
d
w
p

b
w
t
f

r
i

t
a
i
d

a
r
a

m
f
w
s
e
a
n

Journal of Systems Architecture 157 (2024) 103300
partitioning can leverage [11], is managing concurrent accesses to the
GPU when multiple tasks request off-loading workload to the accelera-
tor. Coexisting workloads on the GPU can result in unpredictable timing
behavior due to its unknown internal scheduling mechanisms [12].

This paper aims to model GPU-based real-time applications by using
AST (Modeling and Analysis Suite for real-Time applications) [13],

which provides us with a model aligned with the OMG MARTE stan-
dard [14], as well as a set of response-time analysis tools for distributed
systems. The latest version of the meta-model, MAST-2 [15], adds

odeling elements to support time partitioning. In addition, GPUs are
not directly supported by MAST. To overcome these limitations, the
method proposed in this paper enables modeling GPUs with exist-
ng modeling elements and also allows the application of the latest
esponse-time analysis techniques for hierarchically scheduled time-
artitioned distributed real-time systems [16,17] using the currently
vailable tools.

In order to demonstrate the applicability of the proposed method,
e will model an industrial use case related to railway systems, in
hich the application, consisting of a genetic algorithm accelerated on

a GPU, runs on a partitioned environment with temporal isolation. This
kind of optimization algorithms are highly parallelizable, so they can
benefit from the use of GPUs. Two different implementations of the
parallel version of the genetic algorithm will be explored.

Furthermore, the analysis techniques that can be applied to these
systems have a certain pessimism when calculating the upper bounds
on the response times. Accordingly, this work will also include a
characterization of the precision that is achieved by the application
of this methodology. Different analysis techniques are proposed and
evaluated in multiple configurations, first on a simple example that
will help to understand the behavior of these systems, and later on the
complete industrial use case.

The paper is organized as follows. Section 2 presents an overview of
GPUs and related work on modeling real-time applications with GPUs.
Section 3 describes the industrial use case addressed in this work. In
Section 4, an overview of the MAST model and the available analysis
techniques is given. This section also proposes how to model this kind
f applications with MAST. Section 5 shows a characterization of the

proposed methodology for modeling applications with GPUs through
a simple example. In Section 6, this methodology is applied to the
industrial use case. Section 7 presents an extensive evaluation of the
proposed methodology. Finally, Section 8 shows the main conclusions,
as well as possible future work.

2. Overview and related work

2.1. Overview on GPUs

In integrated GPU architectures, the GPU is embedded in the system
ogether with the CPUs, sharing the global memory as a communication
edium. In order to offload workload into the GPU, the CPU has to

provide the necessary data to the GPU, launch the Kernel (the job to be
executed in the GPU), and get the results back. There are three main
memory management configurations to perform the data transfer be-
tween the CPU and the GPU: Standard Copy (SC), Zero-Copy (ZC), and
Unified Memory (UM). The Standard Copy method involves copying the
data between dedicated memory spaces of the CPU and GPU. The Zero-
Copy method creates a common memory space accessible by both CPU
and GPU; in this way, data can be exchanged efficiently via memory
pointers. Lastly, the Unified Memory abstracts internal data copies by
unifying CPU an GPU memory spaces, which simplifies data handling
for developers. However, its underlying mechanisms are unknown and
thus unpredictable [18].

Once a Kernel is launched, it is divided into thread blocks. The
hread blocks go through different stages and schedulers until they are
rocessed by the GPU’s processing units, called Stream Multiprocessors
SM). There, the thread blocks are divided into 32 thread collections
 a

2
(Warps) and executed concurrently in a Single Instruction Multiple Data
SIMD) manner, where each thread of the Kernel is assigned to one GPU

physical core. The behavior of these internal scheduling mechanisms is
ot well documented by the GPU manufacturers, and despite multiple

reverse engineering efforts [19–21], they remain generally unknown to
the public.

2.2. Overview on time partitioning

In our proposal, we consider ARINC-like partitioning as the first
scheduler layer. This standard specifies that partitions are executed
n fixed time windows, following a predefined order inside a cyclic

interval called Major Frame (MAF). Applications within each partition
are scheduled inside the partition’s designated time windows. We will
refer to the time consumed by a partition inside the MAF as the
Available Utilization (AU), which represents the percentage of CPU
utilization consumed by a certain partition. A single MAF can contain
more than one time window for the same partition. The number of
windows for the partition is fixed. According to [22], increasing the
umber of time windows within a fixed-length MAF reduces the worst-
ase response times of applications executed in a partition, due to
ecreasing the size of the unavailability gaps, i.e., the intervals during
hich the CPU is unavailable to the application, between the different
artition windows. The impact of context switches between partitions

is not discussed in this paper. As observed in [22], we considered it a
non-critical aspect for the scope of our work.

2.3. Related work

The growing interest in GPU platforms for critical applications can
e observed in the number of recent papers published in this field. The
ork [4] presents an exhaustive review of functional, safety and real-

ime aspects of GPUs. Additionally, in [5] a review of the use of GPUs
or real-time applications is presented, which can be considered as an

extension of the previously mentioned work, focusing on techniques for
optimizing temporal parameters and meeting deadlines.

Concerning the modeling and response-time analysis of GPU-based
heterogeneous platforms, several studies [23–25] have arisen in re-
sponse to the industrial challenge proposed in [1]. The challenge
equested proposals for computing response times and mapping tasks
n an autonomous driving application accelerated by GPUs.

The works [23,24] presented similar approaches to the challenge.
In [23], the authors proposed a solution based on response-time analy-
sis considering fully-preemptive tasks for both CPU and GPU tasks. CPU
asks are scheduled under rate monotonic scheduling while GPU tasks
re scheduled under weighted round robin (WRR). The solution takes
nto account CPU–GPU memory contention models, memory access and
ifferent data offloading mechanism. The authors in [24] presented an

approach to analyze end-to-end latencies for GPU-based applications
ssuming that all tasks, including CPU and GPU tasks, have the same
ead-execute-write structure and are fully-preemptive. CPU tasks follow
 fixed-priority scheduling policy where they are statically assigned to

cores, while the GPU uses a WRR policy with fixed window lengths.
Both works also present optimization techniques based on genetic
algorithms. These execution models enable the computation of GPU’s
response times. Neither temporal isolation nor Directed Acyclic Graphs
(DAGs) are considered in these works.

The work [25] proposed a response-time analysis and an opti-
ization approach for applications running on heterogeneous plat-

orms. This paper also considers a fixed-priority scheduling policy
ith static allocation for CPU tasks, while GPU tasks are modeled as

elf-suspending tasks. The work uses jitter-based analysis to calculate
nd-to-end response times. This work also includes a response-time
nalysis for GPU operations based on two scheduling policies: WRR and
on-preemptive fixed-priority. The proposed optimization is based on

 Mixed-Integer Linear Programming (MILP) technique that provides

I. Gomez et al.

i
a
p
I
w

e
o

t

i
r
t
i
t
c
f
r
i
n
c
s

m

s
t
a
i
a

t

u

p
i
P
c
i

b
C

m

b
o
t
G
e
c

Journal of Systems Architecture 157 (2024) 103300
a task-to-core allocation and priority assignment to reduce end-to-
end latencies and ensure schedulability. However, this work does not
incorporate temporal isolation and the possibility to employ DAGs.

Besides the responses to the previously mentioned industrial chal-
lenge, a different approach considering a DAG model executing on
heterogeneous platforms is presented in [26]. This work includes a
DAG transformation algorithm that enhances the response-time analysis
by reducing CPU blocking times when offloading workload on the
GPU. In [27], the authors present another approach for modeling DAGs
n heterogeneous platforms. They consider that tasks are statically
ssigned to available processing resources. The presented model sup-
orts using different scheduling policies for each processing resource.
n addition to the model, a response-time analysis is presented, as
ell as multiple algorithms for task allocation. As the rest of the

aforementioned works, time partitioning is not considered.
Our work contributes to the analysis of complex distributed systems

executed on heterogeneous platforms, enabling the incorporation of
time partitioning. The presented proposal is supported by pre-existing
analysis techniques included in MAST. Thus, it potentially supports
DAGs (as the analysis techniques do), although this issue is out of the
scope of the paper and its specific study will not be explicitly addressed.

3. Motivating industrial use case

In the context of smart mobility, the demand in railway systems
for increasing the Grade of Automation (GoA) of a train requires
higher computational loads, as well as incorporating new functional-
ities into the system. The European Rail Traffic Management System
(ERTMS) [28] is the European standard that aims to ensure interop-
rability among national railway networks while improving the safety
f train traffic. ERTMS defines the Automatic Train Operation (ATO)

subsystem [29], which provides non-safety functions to the train, while
the safety functions are ensured by the European Train Control System
(ETCS). The set of functionalities incorporated in the ATO includes
actions that traditionally were achieved manually by the train driver,
such as achieving a specific speed profile, traction and brake control,
and door opening and closing, among others.

The industrial use case addressed in this work is based on a proto-
ype developed in CAF Signalling [30], called Profile Optimizer (PO).

The PO is an application tasked with the computation of the opera-
tional speed profile, an ATO functionality that determines the optimal
speed profile for a minimum energy consumption while simultaneously
maximizing comfort and punctuality. This represents an optimization
problem that is solved by a genetic algorithm. The algorithm takes an
initial population of potential speed profile solutions, and subjects them
in an iterative way to selection, crossover, and mutation operations
until the most suitable profile is obtained.

A high-level diagram of the Profile Optimizer algorithm is shown
n Fig. 1. First, the PO loads the genetic algorithm configuration pa-
ameters (population size, crossover factor, etc.), train information, and
rack data into the memory. It then generates random solutions until an
nitial population is completed. After processing this initial population,
he CPU starts executing the genetic algorithm’s iterative cycle. This
ycle is executed in a loop until any of the following conditions is
ulfilled: (1) the algorithm achieved a suitable solution, or (2) it has
eached a maximum number of iterations. At the beginning of each
teration, the algorithm prepares the necessary data for calculating the
ew generation. For every individual in the population, the algorithm
alculates the new individual (solution), obtains the solution’s complete
peed profile, evaluates the new solution, and calculates the energy

consumption. It computes this sequentially for each individual in the
population. When the new population is obtained, the algorithm mixes
it with the previous population and selects the best individuals for the
next iteration. It also checks if an improvement has been made and if
any of the loop conditions have been fulfilled, in which case the PO
ends its execution. Otherwise, it continues with the next iteration.
 a

3
Fig. 1. Profile Optimizer algorithm’s diagram.

Fig. 2. Profile Optimizer algorithm executed in a GPU using Zero-Copy memory
anagement.

The pre-existing implementation of the PO algorithm relies on a
equential architecture designed for CPUs. Upon a deeper inspection of
he algorithm, it was determined that the individuals in a population
re completely independent from each other, and thus can be processed
ndependently and concurrently, for example on multiple cores or
ccelerated on GPUs.

We propose adapting the PO application so that the paralleliz-
able parts of the application could run on GPU devices, enabling
he concurrent computation of large populations. For this purpose,

we modified the PO algorithm to enable parallel processing on GPUs
sing the CUDA programming model [31]. We identified two specific

sections within the original code that can be parallelized: the initial
opulation computation and the generation of the new population
nside the iterative cycle of the genetic algorithm. In the modified
O version, the operations for each individual in both sections are
omputed concurrently on the GPU, using one GPU thread for each
ndividual.

Two different sub-variants of the GPU-enabled PO algorithm have
een implemented, that differ on how the data transfer between the
PU and GPU is performed: data transfer with (1) Zero-Copy, or with

(2) Standard Copy.
The PO algorithm implemented with Zero-Copy is shown in Fig. 2.

The sections executed on the CPU are shown in blue, while the ones
executed on the GPU are shown in green. In this implementation, both
the GPU and CPU directly operate on data that is stored in shared
memory, and thus there is no need for any dedicated copy operation.

Fig. 3 illustrates the PO algorithm with Standard Copy. Here, the
ost substantial change is that in the absence of a common memory

space, it is necessary to make explicit data copies between the CPU and
GPU private memory spaces. These data transfers add extra operations
to the execution of the algorithm: the CPU requests the GPU driver
to perform the data copy, and then the data copy itself is performed
y the GPU’s Copy Engine. Every time a Kernel is launched, at least
ne data transfer must be made to provide the necessary input data to
he Kernel, and another data transfer to get the results back from the
PU. Specifically, in the PO algorithm, the Kernel in charge of gen-
rating the initial random population requires as input the algorithm
onfiguration parameters, and generates the initial random population
s output. Then, the Kernel responsible for calculating the population

I. Gomez et al.

m

i
t

u
s

a

t
t
a

s
b
d
a

s
a
t

b
s

(

E

m
c
f
o
t

Journal of Systems Architecture 157 (2024) 103300
Fig. 3. Profile Optimizer algorithm executed in a GPU using Standard Copy memory
anagement.

and solving the speed profile requires as input the previous population
n addition to the algorithm configuration parameters, and produces
he new population and the speed profile of each individual.

This section has provided the adaptations of the PO algorithm to
se GPUs, with Standard Copy and Zero-Copy memory management
chemes. Section 6 will describe how these specific adaptations can

be modeled with MAST in the context of a time-partitioned real-time
system.

4. Modeling and analysis

4.1. MAST model overview

As mentioned before, MAST (Modeling and Analysis Suite for real-
Time applications) [13] is a modeling technique together with a set of
nalysis tools. The MAST model allows describing the timing properties

of a real-time system, focusing on the relevant aspects for the analysis
of the timing behavior. The model describes the software architecture
of the application, as well as its deployment on the hardware platform.
It supports complex distributed systems.

MAST also includes schedulability analysis tools that can work on
he model to calculate worst-case response times that can be compared
o the deadlines to check the system schedulability. The tools can make
n automatic calculation of blocking times due to the use of mutually

exclusive resources. They can also perform an automatic assignment of
scheduling parameters such as thread priorities and ceilings for mutual
exclusion resources. In addition, the tools are capable of performing
ensitivity analysis to find out how close or far a system is from
eing schedulable, thus providing valuable information to the system
eveloper, that can help in identifying bottlenecks. There are tools
vailable for different analysis techniques (see Section 4.2).

When modeling a real-time system with MAST, the application is
described as a number of responses to events, called end-to-end flows
(e2e flows). The events that trigger e2e flows can be generated inside
the system, for instance from the system clock in case of periodic
events, or may come from external hardware through an interrupt. The
implest e2e flow just contains one step representing the execution of
n operation (a piece of sequential software) by a thread scheduled by

he system scheduler. An operation is characterized by its worst-case H

4
Fig. 4. A simple e2e flow triggered by a periodic event.

Fig. 5. Linear e2e flow with a delay element.

Fig. 6. Graph representing a multipath e2e flow with fork and join elements.

execution time (WCET). It also allows specifying a best-case execu-
tion time (BCET), which enables analysis techniques to obtain tighter
ounds of worst-case response times [32]. The scheduler obeys to some
cheduling policy. Fig. 4 represents a simple e2e flow with just one step.

This step is executed each time a periodic workload event is generated
(period T=100 ms in this case). As a result of its execution, the step
generates an output internal event, on which a deadline can be imposed
D=80 ms in this case).

The supported scheduling policies are mainly fixed priorities and
DF. In this paper, we focus on fixed priorities. This implies that the

threads have a priority assigned offline as a scheduling parameter.
It should be noted that, although the MAST-2 model supports parti-
tioning, the used analysis and priority assignment tools do not work
with this version of the model. However, techniques addressing these
limitations have been proposed [33].

The MAST model also supports complex e2e flows in which each
step can trigger the execution of another step. It is also possible to
specify delays between a pair of such steps, as is shown in Fig. 5, where
the execution of step 3 is initiated after a time interval between 2 and
3 ms elapses since the finalization of step 2.

The delay element specifies a time interval relative to the finaliza-
tion of the previous step. However, it is also possible to specify a similar
offset element, which represents a waiting time relative to the arrival
of the external periodic event. Maximum and minimum values can be
specified for both model elements.

The MAST model, and some of its analysis tools, also supports
multipath e2e flows, which are built using fork, branch, join and merge
elements. Fig. 6 shows an e2e flow with a fork and a join element.
At the fork element, when the input event is received it is replicated
through each of its outputs. The join element waits for the arrival of
each of its input events, before it generates its output event.

4.2. Response-time analysis techniques

MAST includes different schedulability analysis tools that imple-
ent various analysis techniques for fixed priority scheduling that

an handle distributed systems with arbitrary deadlines and linear e2e
lows. All these techniques are approximate, and provide upper bounds
n the response times, to various degrees of precision. The first such
echnique, called the holistic analysis [34], is available as a reference.
owever, it is quite pessimistic because it considers that all the steps in

I. Gomez et al.

i

w

i
t
p

c

d
t
h

m

t
t
i

t

t
t
t
t
p
t
p
t
t

s

M
t
G
b

f

o

c
e
e

v
h
a
w

P
c

Journal of Systems Architecture 157 (2024) 103300
an e2e flow are independent, leading to scenarios that are not possible
n practice, given that the steps are executed one after the other.

The offset-based techniques improve the holistic analysis by intro-
ducing offsets for the different steps in linear e2e flows. These offsets
are time intervals measured from the arrival of the period and represent
a minimum activation time for the steps. This activation time allows
the e2e flow to be analyzed as a whole. A difficulty appears when the
offset-based analysis is applied, because it is not known how to create
the combination of steps of the different e2e flows initiating the worst
possible case for the analysis. Different solutions apply for solving this
difficulty:

• Offset-Based Brute Force [35]: This technique applies the offset-
based analysis exploring all the possible combinations of steps
initiating the analysis case. Since the number of combinations is
combinatorially explosive, this technique can only be applied to
small systems.

• Offset-Based Approximate [36]: This technique makes upper-
bound approximations to avoid covering all the possible combina-
tions of steps initiating the analysis case. The results are therefore
not as precise as with the brute force technique, but the technique
can be applied to large systems.

• Offset-Based Slanted [37]: This technique makes a similar ap-
proximation as the previous one, but using a slightly improved
analysis. It can also be applied to large systems.

The techniques mentioned above do not take into account the prece-
dence relations among the steps in an e2e flow. A more precise analysis
can be obtained with the Offset-Based with Precedences technique [38],
which further optimizes the Offset-Based Approximate analysis to take
into account these precedence relations.

All the aforementioned techniques apply to linear e2e flows. The
ork in [17] has extended all but the Offset-Based with Precedences

technique to support multipath flows with fork, join and merge ele-
ments.

Although the MAST-1 model does not support partitioned schedul-
ng, the MAST-2 version [15] supports the specification of time par-
itioning. In any case, the work in [16] shows how to analyze time-
artitioned systems with the available analysis techniques implemented

in MAST-1. When analyzing a particular partition, the time windows
are taken into account by introducing a highest-priority flow that
ontains tasks that model the complement of the time windows, i.e., the

time intervals during which the processing resource is not available.
This is called the unavailability flow. In addition, the work in [16]
escribes improvements to the Offset-Based Approximate technique
hat optimize the treatment of this unavailable flow. It also describes
ow to analyze a mixture of tasks that are synchronized, or not, with

the major frame (MAF). Finally, the work in [17] extends this work to
ultipath flows.

4.3. Modeling systems with GPUs

MAST does not directly support GPUs. It is possible to model
coprocessors as additional processors and allocate threads to them,
allowing us to calculate the contention caused by the different threads
competing for the coprocessor. However, the GPU is not a conventional
coprocessor because it contains multiple processing resources that are
capable of executing their allocated work in parallel. A detailed analysis
of this contention is extremely difficult, given that we usually do not
have accurate models of the internal structure and scheduling policies
on the GPUs. The detailed analysis would have to include the effects of
the interactions between the GPU and the regular CPUs caused by the
use of shared memory. In this work, we use time partitioning to ease
he calculation of these interactions, which can only occur at specific
ime intervals. Given this property, these interactions can be included

n the measured response times. e

5
Given the framework described above, we analyze the execution on
he GPUs as a black box by working with estimations on the overall

response times of the GPUs when working on a particular task. We will
model these response times through delay elements with a minimum
and maximum interval. If the GPU’s work is synchronized with the e2e
flow period it would also be possible to model the GPU’s response times
using offset elements. Fig. 5 shows an example of a linear e2e flow with
a delay element which could represent the execution of a particular
workload in a GPU.

4.4. Controlling GPU access through time partitioning

While GPUs support the execution of multiple Kernels at the same
ime, their poorly documented internal scheduling policies can lead
o difficult to predict behavior under real-time scenarios. Thus, ex-
ernal control mechanisms to avoid concurrent Kernels are necessary
o achieve a predictable execution suitable for such scenarios. In this
aper, we propose employing time-partitioning as a way to control
he workload sent to the GPU. The main idea of this proposal is that
artition plans can be designed in order to guarantee, by construction,
hat at most only one Kernel will be executing in the GPU at any given
ime.

To illustrate our proposal, Fig. 7 represents the workload of a simple
ystem, composed of two e2e flows, each accessing the same GPU once

per period. Each e2e flow is mapped to a different partition (P1 and
P2). Fig. 8 depicts two possible time partition plans that guarantee a
predictable access to the GPU by preventing Kernel co-existence, with

AF equal to 20 and 40 ms respectively. The blue areas represent
he partition windows for P1 and P2, and the green areas depict the
PU time slots in which a Kernel from the respective partition can
e executed. The gray areas represent CPU time slots available for

other partitions. Notice that the proposed time partition plans do not
ollow a typical design used in high-integrity systems, where functions

are allocated in partition windows by taking into account the least
common multiple (LCM) and the greatest common divisor (GCD) of the
activation periods. Our modeling and analysis proposal does not depend
n any particular plan configuration. Its goal is to address general

mixed-criticality systems, where some partitions may have multiple
tasks scheduled by fixed priorities that may access the GPU. Thus, plan
onfiguration is considered an optimization issue, and in this simple
xample, the proposed plans are only focused on meeting the GPU
xecution requirements.

The main characteristic of these plans is that the minimum time
span between slots of different partitions is long enough to fit the
execution of the GPU Kernel. For instance, in Plan 1 (Fig. 8(a)), the
minimum time span after a window of P1 and another of P2 is 6 ms,
which is long enough to fit the GPU Kernel mapped to P1 in the
worst case (6 ms). Similarly, the minimum distance between P2 and
a subsequent window of P1 is 10 ms, which fits the Kernel mapped to
P2 (10 ms). Consequently, Plan 1 guarantees, by construction, that the
Kernels of different e2e flows are not going to execute concurrently in
the GPU. A similar rationale is used to build Plan 2 for a longer MAF
of 40 ms (Fig. 8(b)). In this case, a second window for P1 is added.
Nevertheless, the minimum time span between windows of different
partitions still allows for the execution of the GPU Kernels with no risk
of overlapping.

It should be noted that through time partitioning, an implicit reser-
ation of GPU usage is established for each partition. Thus, Plan 1
as 100% of the GPU reserved, while Plan 2 still has 30% (12/40)
vailable to other partitions that may require the GPU. In this paper,
e focus on providing and validating the mathematical framework to

analyze systems with GPU employing time partitioning as a technique
to achieve predictability. It is also important to highlight that both
lan 1 and Plan 2 remain valid only if the estimations of the worst-
ase execution times of the GPU Kernels are accurate. Should these

stimations be exceeded at runtime, the partitions will fail to ensure

I. Gomez et al.

b

t

t
p
f
t
t
t
i
e
M

I
f
s
o
t
a

a
h
a

w
f
a
l

s
t
s

e
a

a
g

w

f

Journal of Systems Architecture 157 (2024) 103300
Fig. 7. Simple example with two e2e flows using the GPU.

Fig. 8. Examples of time partition plans that ensure non-concurrent access to the GPU
y construction, with (a) MAF=20 ms, and (b) MAF=40 ms.

that the Kernels do not execute concurrently. Therefore, an accurate
estimation of the WCETs in the GPU is crucial for a safe deployment of
the time partitions. Both the actual configuration and optimization of
the time partition plans and WCETs estimations are out of the scope of
his work.

4.5. Limitations and workarounds

Taking into account the above considerations, using delays to model
he GPU workload works well for e2e flows with deadlines within the
eriods. In this scenario, it may even be possible to use the same thread
or all CPU steps in the e2e flow. However, if the deadline exceeds
he period, only e2e flows where each step is executed by a different
hread can be considered, because the original MAST-1 model on which
he used analysis techniques are based handles steps as if they were
ndependent. The analysis or the interference between steps of different
2e flow instances executed by the same thread is not supported in
AST-1.

Exceeding the activation period may result in overlapping among
steps from different activations of the same e2e flow. Under these
situations, time partitioning can be unable to avoid concurrent accesses
to the GPU, and additional GPU serialization mechanisms should be
considered, such as the FIFO queue proposed in [11]. This additional
serialization mechanism can be analyzed by modeling the GPU as
an independent processing resource (instead of a delay), where steps
are dispatched using a FIFO scheduling policy. For this purpose, it is
necessary to model the GPU in MAST as a processing resource based
on fixed priorities, where each thread assigned to the GPU schedules
steps at the same priority. This approach emulates the FIFO policy.
n the case of assigning more than one thread (e.g., for different e2e
lows located in different partitions), isolation between these activities
hould be ensured through partitioning. In this work, we have focused
n analyzing the effects of time partitioning, and thus we have limited
he evaluation to e2e flows where the response times do not exceed the
ctivation periods.

The decision to model the GPU as a delay element instead of
an independent processing resource resides mainly on modeling con-
straints. Modeling the GPU as a processing resource would require
incorporating several artificial modeling elements (such as processing
 w

6
Fig. 9. Simple example of a GPU-based application with an e2e flow.

Table 1
Description of different plans for time partitioning (times in ms).

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
Partition window 12 6 2 1 0.5
MAF 30 15 5 2.5 1.25

resources, schedulers, threads or steps) for the GPU. Moreover, the
nalysis execution process also becomes more efficient as it does not
ave to analyze additional steps. Therefore, using a delay element offers
 more simple and easier to analyze alternative.

Finally, this work is focused on studying a use case based on a linear
e2e flow, but the proposed methodology could also be potentially valid
for analyzing DAGs. To achieve this, a proper design of the partition

indows would be necessary in order to isolate the GPU workload
rom the different branches of a same DAG, in addition to using the
ppropriate analysis techniques designed for multipath. This study is
eft for future work.

5. Characterization of response-time analysis

This section presents a characterization of the applicability of
response-time analysis to applications using GPUs which have been
modeled with the method proposed in Section 4. For this purpose, we
design the example of a simple application shown in Fig. 9, which is
imple enough to be manually analyzed, while keeping an architecture
hat is relevant and has similar elements as the industrial example
hown in Section 3.

The example consists of an e2e flow composed of alternating com-
putations in CPU and GPU. It contains four steps 𝜏𝑖 executed on a CPU
and characterized by their worst-case execution times 𝐶𝑖, as shown in
Fig. 9. Similarly, there is a GPU operation between each step, which
will be modeled as a delay as described in Section 4.3. In this simple
example and for the sake of simplicity, we assume that execution time
and delay values are fixed, i.e., their minimum values are equal to their
maximum values.

The proposed e2e flow can represent, for example, a simplified ver-
sion of the PO algorithm of the industrial use case, with three iterations
in the GPU, or one iteration with two memory copies. Step 𝜏1 in the
2e flow, colored in blue, could represent the initial processing of the
lgorithm and the launch of the first GPU operation. GPU operations

are represented in green indicating their maximum interval delay. In
yellow, steps 𝜏2 and 𝜏3 could represent the processing of the results of
a GPU operation and launching of the next one. Finally, in magenta,
step 𝜏4 processes the last GPU operation and terminates the e2e flow.

The objective of this section is to compare the worst-case response
times (WCRT) of the e2e flow obtained by analytical means, with
the exact values obtained by inspection. We consider 5 different time
partitioning plans, defined in Table 1. We want to check how the
ccuracy of the proposed methodology depends on the unavailability
ap between two partition windows. Accordingly, partitions with a

single time window and the same available utilization are proposed
hile the MAF is varied.

Figs. 10 to 14 depict the worst-case scenarios found for the e2e flow,
or each plan defined in Table 1. Each diagram contains two time axis:

the first one represents the execution on the GPU, and the other one is
the execution in the partition windows on the CPU. The steps within the
e2e flow are represented according to the color scheme shown in Fig. 9.
The gray space represents the idle time inside the partition window

hile the blank parts represent the unavailable gaps.

I. Gomez et al.

t
i
F

t
W
P
w
W
q
F
h
t

t

s
s
t

Journal of Systems Architecture 157 (2024) 103300
Fig. 10. Worst-case scenario for the simple example over Plan 1.

Fig. 11. Worst-case scenario for the simple example over Plan 2.

Fig. 12. Worst-case scenario for the simple example over Plan 3.

Fig. 13. Worst-case scenario for the simple example over Plan 4.

Fig. 14. Worst-case scenario for the simple example over Plan 5.

For each plan, we searched for the release instant of the e2e flow
hat produces its worst-case response time. For this purpose, the sign (+)
s used to indicate a slightly delayed activation after a specific instant.
or example, in Fig. 10, the e2e flow is activated at 𝑡 = 9+, indicating

that 𝜏1 is released a very small time after 𝑡 = 9, causing the start of the
execution of step 𝜏2 to be delayed until the following temporal window,
at 𝑡 = 40+.

Table 2 collects the observed WCRTs of the e2e flow for each of
the plans. Additionally, the table also includes the WCRTs analytically
7
Table 2
Comparison between analysis in MAST and observed behavior for different plans (times
in ms).

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
Holistic 155 137 122 117.5 117.5
Offset W Pr 116 80 68 65 65
Observed 114 60 65 65 65

computed by the Holistic and Offset-Based with Precedences response-
time analysis techniques. From these results we can clearly note the
effect of the unavailability gap (i.e, the MAF length for this case)
on the WCRTs, for both observed and analytically obtained results:
increasing the MAF length tends to enlarge the response times. This
is expected, as higher MAFs also introduce longer unavailability time
windows in which the partition is not permitted to execute, and thus
more opportunities to further delaying the execution of the steps in the
worst-case scenarios.

The results in Table 2 also show that reducing the MAF length
ends to produce less pessimistic analytical WCRTs, that is, analytical

CRTs that are closer to the observed exact values. For instance, for
lan 4 and Plan 5, which have the lowest MAF values, the Offset-Based
ith Precedences analysis technique was able to match the observed
CRTs. We can also identify that, as expected, the Holistic analysis is

uite more pessimist than the Offset-Based with Precedences analysis.
inally, it can also be observed that Plan 2 would be the best one, as it
as the lowest observed WCRT, but it is Plan 3 onward where the best
rade-off between the exact and the analytical values is achieved.

6. Modeling the profile optimizer

The previous section illustrated how to apply our methodology to
a simple example that could be manually analyzed. In this section, we
will apply this methodology to a realistic industrial use case, the Profile
Optimizer (PO), which was presented in Section 3. Two variants of
the PO algorithm for GPUs were proposed, taking into account how
memory is managed: Zero-Copy (ZC) and Standard Copy (SC). The
high-level description of the PO algorithm with Zero-Copy (PO-ZC)
is depicted in Fig. 2. The main characteristic of this variant is that
he CPU and GPU share a common memory space, thus no explicit

memory copies are needed to transfer data. Additionally, the high-level
description of the PO algorithm with Standard Copy (PO-SC) is depicted
in Fig. 3. Here, CPU and GPU operate on private and independent
memory spaces, and need memory copy operations before and after
every GPU computation is performed.

The first challenge to tackle when modeling the PO algorithm is its
iterative nature, with an unknown number of iterations. Thus, the first
step to model the PO algorithm with MAST is its transformation into
a linear e2e flow, considering a fixed maximum number of iterations.
From an empirical evaluation of the PO algorithm, we have determined
that it generally requires between 15 and 30 iterations to reach a suit-
able solution. We exploit this knowledge to linearize the PO algorithm
by assuming that this fixed number can be set, and then unroll the loop
accordingly. We define this maximum number of iterations as a system
parameter to be studied. Functionally, the more iterations, the more
accurate the result is. However, there is a number of iterations from
which the results converge and no significant further improvement is
reported.

In the linearization process of the PO algorithm, contiguous CPU
ections have been grouped together to form a single step. In this way,
teps are always interleaved with GPU operations. When measuring
he execution times for each step (see Section 7.2), we have observed

that the execution times in the first iteration are significantly higher
than in the rest of iterations. This is due to a warm-up on the GPU
that needs some initialization processes, e.g., loading the Kernel in
the GPU or configuring memory spaces. To reduce the pessimism of

I. Gomez et al.

m

t

a
t
G
(
a
i
e
f
s
t
P
i

n

p
h
b

G

h
T
i

d
y

p
5
c

a

a

a
t

m
m

c

Journal of Systems Architecture 157 (2024) 103300
Fig. 15. Model for PO’s linear e2e flow, with Zero-Copy and Standard Copy memory
anagements.

over-provisioning the computing resources, the WCETs (Worst-Case
Execution Times) assigned to the first iteration include these warm-
up overheads, while subsequent iterations are assigned the WCETs
observed after the warm-up process has completed.

Applying these considerations, the linear e2e flows corresponding
o the MAST models for PO-ZC and PO-SC can be built as shown in

Figs. 15(a) and 15(b) respectively. Elements shaded in blue and labeled
s 𝜏𝑖 represent steps, i.e. sections of code executed on the CPU. On
he other hand, elements in green represent sections executed on the
PU, which are modeled as delays and can be of two sub-types: 𝐸 𝐸𝑖

Execution Engine) represents the computations performed by the GPU,
nd 𝐶 𝐸𝑖 (Copy Engine) models the memory copy operations needed
n the Standard Copy memory management scheme. Additionally, the
lements encircled in a red box represent one iteration loop (except the
irst one), which should be repeated to complete the maximum number
et. These elements are annotated with a prime symbol. In summary,
he result of modeling the PO algorithm is a linear e2e flow (one for
O-ZC, another one for PO-SC), where the number of steps and delays
s determined by the number of iterations.

As mentioned in Section 4.2, the MAST model (version 1) does
ot support partitioned scheduling, so the steps of the e2e flows built

for the PO algorithm are executed on a CPU modeled as a regular
processor, which is scheduled by a fixed-priority preemptive scheduling
policy. The real industrial application is executed by a single thread
with a single priority, but steps in the e2e flow are assigned a priority
in a descending order, with the first step in the e2e flow having the
highest priority. This assignment, for modeling purpose only, allows
the response-time analysis to obtain more accurate results [33], and can
support the execution of other tasks in the same partition by assigning
riority bands. For example, if an e2e flow with these characteristics
as up to 100 steps, we can model real priorities by multiplying them
y 100, so a band of 100 different priorities will be available for
 i

8
the e2e flow. The unavailability flow is also modeled as described in
Section 4.2.

7. Evaluation

In this section, we evaluate the proposed methodology for modeling
PU-based real-time applications. For this purpose, different configu-

rations of the Profile Optimizer (PO) industrial application, described
in Section 3, are evaluated both analytically and via measurements on
a testing platform.

This section is organized as follows. First, Section 7.1 describes the
ardware and software platform in which the evaluation is performed.
hen, Section 7.2 presents a characterization of the WCETs of the

ndustrial use case via extensive measurements in a controlled and
isolated environment. Next, in Section 7.3, the proposed modeling and
analysis methodology is put to test, by analytically obtaining WCRTs
of the PO algorithm modeled as described in Section 6. In this study,
ifferent configurations of the PO algorithm and response-time anal-
sis techniques are tested. In Section 7.4, the full PO algorithm with

emulated time partitioning is deployed on the testing platform, and
the response times are measured for different configurations. Finally,
Section 7.5 provides a comparison between the analytical WCRTs and
the response times measured on the testing platform.

7.1. Test platform

We have used an NVIDIA Jetson AGX Xavier [39] as our test
latform, which includes an 8-core Carmel ARM CPU, and an integrated
12-core NVIDIA Volta GPU. The Volta GPU architecture contains two
ache levels: a first level cache per SM (Stream Multiprocessor) of 128

KB, and a shared second level cache of 512 KB. The CPU operates at
2.26 GHz and the GPU at 1.37 GHz. This board represents a low cost
nd low power platform that is commonly deployed in industrial and

safety-critical settings that require the computing benefits of GPUs [40].
As its Operating System, a Yocto Linux [41] image with minimal

services necessary for its operation has been built. The configuration is
imed to minimize Linux system’s processes that could interfere with

the measurements. Additionally, the Linux Kernel has been patched
with the PREEMPT_RT patch [42] to enable real-time capabilities.

The frequency scaling functionalities of the test platform were dis-
bled to obtain consistent results. By default, the system is configured
o scale the CPU and GPU frequencies when very high energy consump-

tion or device overheating are detected. This is a protection mechanism,
as an intense use of the GPU or CPU can rapidly increase the platform’s
temperature and produce physical damage to the platform. Keeping all
the frequencies constant ensures that the system runs under consistent
conditions throughout all the measurements. Both the CPU and GPU
were set to their standard operating frequencies for the whole evalua-
tion process, with no indication of overheating. The External Memory
Controller (EMC) has been also configured to its maximum frequency
of 2.13 MHz.

Firstly, a measurement of the overheads that the operating system
ay incur is made in order to estimate their impact on response time
easurements. We performed this evaluation using the cyclictest [42]

evaluation tool, which measures system’s latencies by comparing the
difference between a thread’s planned activation time and its actual
activation time. The results of this evaluation are shown in Fig. 16. A
total of 100 million samples were collected for each CPU, providing a
omprehensive view of platform’s performance. The figure shows a dis-

tribution of the obtained results and includes the minimum, maximum
and average latency values in microseconds. These results demonstrate
very low latencies (average of 6.75 microseconds) that are orders of
magnitude lower than the expected execution times, and should not
nterfere with the validity of the results of the complete evaluation.

I. Gomez et al.

w
(

c

o
W

p

s
t
O
(

Journal of Systems Architecture 157 (2024) 103300
Fig. 16. Test platform’s latency benchmark.

Table 3
WCETs and BCETs measured for PO-ZC, in
milliseconds.

𝐶𝑖 𝐶𝑏
𝑖

𝜏1 34.6 29.9
𝐸 𝐸1 83.5 67.8
𝜏2 0.9 0.5
𝐸 𝐸2 135.6 105.6
𝜏′2 0.5 0.3
𝐸 𝐸′

2 83.7 31.8
𝜏3 1 0.1

7.2. Execution time measurements

In order to perform the response-time analysis, measurements of
orst-case execution times (WCETs) and best-case execution times

BCETs) for every task in the system have been done. This section
describes the process followed to provide safe estimations of the WCETs
and BCETs of the tasks that conform the PO algorithm.

The main challenge of estimating WCETs and BCETs of the PO
algorithm lies on the heterogeneity of the computing platform, as some
tasks execute on CPU, while others are offloaded into GPU. In this
paper, we follow an empirical approach, by executing the tasks on the
real testing platform in isolation, thus minimizing possible scheduling
interferences.

The internal CPU clock has been used to measure the execution
times of the CPU tasks, while to accurately measure the response times
on the GPU, a different technique has been employed. In order to avoid
synchronization latencies, CUDA provides a functionality called CUDA
events, which allows capturing timestamps on the GPU by launching an
event before and after the execution of a GPU operation [43,44].

Tables 3 and 4 show the worst and best cases for the measured exe-
ution times, for PO-ZC and PO-SC respectively. For each measurement

the PO algorithm has been run 1000 times. From this results, it can
be observed that the GPU operations consume the largest proportion of
time. This is the expected result, as the main computational workload is
executed on the GPU, while the CPU mainly performs results collection
and basic processing. This makes the CPU utilization of the algorithm
to be very low. We can also see how the measurements of the first
execution of a GPU operation are, in most cases, significantly higher
than in the subsequent iterations. This phenomenon also affects the
CPU tasks when requesting a computation from the GPU for the first
time, impacting the execution time on the CPU. An example of this
phenomena can be seen, for example, in Table 3 with the execution
f the second Kernel, where in the first iteration (𝐸 𝐸2) the observed
CET is 135.6 ms and in the subsequent iterations (𝐸 𝐸′

2) it is 83.5 ms.
9
Table 4
WCETs and BCETs measured for PO-SC, in
milliseconds.

𝐶𝑖 𝐶𝑏
𝑖

𝜏1 33.6 29.9
𝐶 𝐸1 0.2 0.1
𝜏2 0.2 0.2
𝐸 𝐸1 82 69.7
𝜏3 0.2 0.1
𝐶 𝐸2 0.2 0.1
𝜏4 0.6 0.3
𝐶 𝐸3 0.1 0.1
𝜏5 0.1 0.1
𝐶 𝐸4 0.1 0.1
𝜏6 0.3 0.3
𝐸 𝐸2 240.6 199.2
𝜏7 0.1 0.1
𝐶 𝐸5 0.2 0.2
𝜏8 1.6 1.4
𝐶 𝐸6 4.5 3.9
𝜏9 1.6 0.4
𝐶 𝐸′

3 0.4 0.1
𝜏′5 0.1 0.1
𝐶 𝐸′

4 0.1 0.1
𝜏′6 0.1 0.1
𝐸 𝐸′

2 82.6 36
𝜏′7 0.1 0.1
𝐶 𝐸′

5 0.2 0.1
𝜏′8 0.6 0.2
𝐶 𝐸′

6 0.7 0.4
𝜏10 0.9 0.1

7.3. Response-time analysis results

In this section, we explore the analytical worst-case response times
obtained by different analysis techniques available in MAST for dif-
ferent configurations of the PO algorithm modeled, as described in
Section 6.

The analyses executions have been carried out on a Windows com-
uter, with an Intel Core i7 vPro 9th Generation processor, which has

a 12-core CPU that operates at a frequency of 3 GHz. Each analysis
is single threaded, therefore several analyses where run in parallel
to leverage the host’s multi-core capabilities. In total, the analytical
evaluation carried out required less than one hour of computation time
for the PO-ZC and about 21 days for the PO-SC.

To facilitate an extensive evaluation with different configurations of
the PO algorithm, a tool to automatically generate models was created.
Different number of iterations of the PO algorithm are considered
(15, 20, 25 and 30 iterations). Additionally, a MAF with a single
partition window is swept from 2.5 to 100 ms with a step of 2.5 ms.
Different values of the Available Utilization (AU) are generated (10%,
20%, 40%, and 80%). The execution times of the steps and the delays
of the GPU operations in these generated examples are taken from
the measurements performed on the testing platform, presented in
Section 7.2.

As described in Section 4, MAST implements several techniques that
upport the response-time analysis of the PO algorithm that we study in
his paper, namely: Holistic, Offset-Based Approximate (Offset-Approx),
ffset-Based Slanted (Offset-Slanted), Offset-Based with Precedences

Offset-W-Pr), and Offset-Based Brute Force (Offset Brute Force).
We performed an initial evaluation to determine which response-

time analysis technique generally obtains the lowest WCRTs, that is,
the results with less over-provisioning or less pessimistic. This initial
evaluation consists of obtaining the WCRTs of the PO algorithm with
Zero Copy (PO-ZC), configured to perform 30 optimization iterations,
and 10% of Available Utilization (90% of the CPU time is reserved to
other partitions). The MAF is swept from 2.5 to 100 ms with a step of
2.5 ms.

For this particular initial evaluation we have allowed response times
to exceed the activation periods (5 s in this evaluation). This allows

I. Gomez et al.

m
t

s
a
I
S

m
e
o
a
D

i
P

s
i
o
s
a
t

w
H
i
s
a
(A

Journal of Systems Architecture 157 (2024) 103300
Fig. 17. Comparative of different analysis techniques in MAST for the PO with ZC
emory management, 30 iterations and 10% AU, allowing response times higher than

he activation period (5 s).

to study the behavior of the analysis techniques under two different
ituations: (1) when no overlapping occurs (WCRTs of less than 5 s),
nd (2) overlapping of the same step occurs (WCRTs higher than 5 s).
n the latter, the analysis is performed on a model built as indicated in
ection 4.5, i.e., considering the GPU as a different processing resource

scheduled under a FIFO policy.
The results of this initial evaluation are shown in Fig. 17. It is ob-

served that the Holistic technique presents a very pessimistic approach
compared to the other techniques. Although it cannot be precisely ap-
preciated in the figure, the results of Offset-Based Approx, Offset-Based
Slanted and Offset-Based Brute Force techniques, overlap throughout
the whole MAF range. Overall, the least pessimistic technique according
to this study is the Offset-Based with Precedence relations technique,
as can be observed particularly when the WCRTs exceed the periods.

In conclusion, if greater precision is required, the most recom-
ended technique is the Offset-Based with Precedence relations. How-

ver, since this technique currently only supports linear e2e flows, any
f the other three offset-based techniques will be suitable for obtaining
 precise response-time estimation for multipath e2e flows (including
AGs).

The results obtained with any of these techniques do not incur
n a significant penalty in pessimism compared to Offset-Based with
recedence, since the differences are minimal as shown in the figure,

or non-existent if only e2e flows with response times lower than the
periods are considered. In any case, the Holistic technique is con-
sidered unsuitable due to its high pessimism. Based on this results,
and considering that the PO algorithm consists of a linear e2e flow,
the Offset-Based with Precedence technique has been chosen for all
subsequent experiments.

The analytical WCRTs obtained by the Offset-Based with Prece-
dences technique for PO-ZC and PO-SC are shown in Figs. 18 and 19
respectively. Four diagrams are shown for each memory management
cheme, corresponding to 4 different number of optimization iterations
n the PO algorithm (15, 20, 25 and 30 iterations). Different values
f the AU are represented (10%, 20%, 40%, and 80%), and the MAF is
wept from 2.5 to 100 ms with a step of 2.5 ms. For evaluation purposes
nd in order to meet the requirement that response times cannot exceed
he e2e flow’s activation period, as described in Section 4.5, a period

of 50 s has been set for the PO algorithm.
In both figures, despite some small peaks, the obtained estimated

orst-case response times increase linearly with higher MAF lengths.
owever, a steeper slope can be observed in the results of PO-SC. This

s due to the fact that PO-SC has a significantly higher number of
teps compared to PO-ZC, due to the copy operations. Therefore, the
ccumulated pessimism is multiplied, specially for higher MAF lengths
see Section 7.5). Furthermore, in can be observed that the WCRTs

increase when the AU decreases. This is an expected result, as a lower
 W

10
Fig. 18. Analysis results for the PO with ZC memory management.

AU results in a higher unavailable gap suffered by steps in the e2e flow.
dditionally, the analysis confirms that there are no cases where the
CRT of any e2e flow exceed its activation period.

I. Gomez et al.

a
(
U
i
t
1
r
c
l

h
i
a
l
a

w
m
e
l

d
r

d
m
t
S
m
h

Journal of Systems Architecture 157 (2024) 103300
Fig. 19. Analysis results for the PO with SC memory management.

7.4. Measuring response times on the real platform

In this section we present the measured response times of the
PO algorithm on the real testing platform, whose characteristics were
 a

11
described in Section 7.1. We test the same configurations as those an-
lyzed in the previous section (except for the MAF lengths): Zero-Copy
PO-ZC) and Standard-Copy (PO-SC) memory managements; Available
tilizations of 10%, 20%, 40% and 80%; 15, 20, 25 and 30 optimization

terations; and MAF lengths of 20, 40, 60, 80 and 100 ms. This makes a
otal of 160 different test cases. For each specific testing configuration,
000 measurements of the response times of the PO algorithm were
egistered. Each set of 1000 measurements takes about one hour to
omplete for PO-ZC and one and a half hours for PO-SC, due to its
onger activation period.

To configure the time partitioning required by our proposal, we had
to face the problem of not finding any readily available hypervisor
that supported our testing platform. As a solution to this problem,
we relied on emulating the time partitioning mechanism with an ad-
oc approach, consisting on deploying two periodic threads running
n the same CPU: a high priority thread which consumes a certain
mount of time, that emulates the unavailability flow, and another
ower priority thread that executes the PO algorithm with the defined
ctivation period.

The measured response times are shown in Fig. 20 and Fig. 21 for
PO-ZC and PO-SC respectively. These results are represented by box and
whisker diagrams. Each box encompasses 90% of the measurements,

hile the upper and lower whiskers represent the maximum and mini-
um measured response times, respectively. The horizontal line inside

ach box indicates the average of the measurements. For each MAF
ength value (x axis), 4 boxes are shown, one for each evaluated AU.

For both PO-ZC and PO-SC, the general trend of the measured
response times is to increase as the MAF increases, as was predicted
in Section 5. However, at a MAF length of 80 ms, there is a drop in the
measurements. An explanation for this is that at this MAF length, the
response time of the Kernel on the GPU (which represents the majority
of the workload of the PO), becomes synchronized with the activation
of the partition window. The execution on the GPU in almost all cases,
at least in the ones that we have measured, terminates before the
next activation of the partition window executing one iteration of the
algorithm per MAF activation. It is never activated in the same partition
window (except for AU of 80%). Additionally, this synchronization
effect also produces a remarkable decrease in the variability of the
results.

When comparing the different AU tested, the results show that a
higher AU gives lower response times. In some cases, especially for
MAF length of 80 ms and beyond, the difference of the response-
times between 10, 20 and 40% of AU is minimal. This is because
the CPU utilization inside the partition is very low compared to the
workload on the GPU and to the window size. As the delay caused
by the GPU workload is almost always bigger than the window size
at these AU percentages, the next step’s activation occurs in the next
partition window. For an AU of 80%, the partition window takes most
of the MAF length, resulting on measured response times that are
barely impacted by the MAF length, with just a slight increase reported
for MAF=100 ms. At this high AU value of 80%, there is a lower
probability that the activation of a step arrives in an unavailability gap.
Furthermore, this gap has a much smaller length, which prevents any
step from being blocked for a long period.

Comparing the partitioning plans with respect to different number
of iterations, similar results are obtained across all graphs. The primary
istinction is that, with the addition of more iterations, the measured
esponse times increase proportionally.

With the exception of a few minor variations, there is no substantial
ifference between the results obtained between PO-ZC and PO-SC
emory management. This can be explained with the occurrence of

he following phenomena. The works [45,46] have shown that using
C achieves better performance than ZC, because with ZC the GPU
ust access the global memory every time it needs data. On the other
and, using SC, the GPU’s data can be located in its local cache levels,
llowing faster data accesses. In the case of the PO algorithm, different

I. Gomez et al.

A
n

u
a

Journal of Systems Architecture 157 (2024) 103300
Fig. 20. Measured response times for the PO with ZC memory management.

amounts or data are moved between the CPU and the GPU, up to 3.2
MB. This amount of data exceeds the capacity of the GPU cache levels.

s a result, the GPU is forced to access global memory to find the
ecessary data as in the ZC case.
12
Fig. 21. Measured response times for the PO with SC memory management.

The measurements presented provide us with valuable data to help
nderstanding the behavior of our modeling framework on GPU-based
pplications. The next step is to compare these results with the analyt-

ical worst-case response-time estimations.

I. Gomez et al.

r

m
h
e
b
u
p
n

o
d
a
T
c
m

Journal of Systems Architecture 157 (2024) 103300
Fig. 22. Measured to Analytical response times Ratio for PO-ZC.
b

13
7.5. Comparing analytical and measured response times

In this section, we compare the analytical WCRTs obtained in
Section 7.3 with the measured response times obtained in Section 7.4.
Usually, the response-time analysis techniques for distributed real-time
systems rely on approximations to obtain safe upper bounds for the
response times. The objective of this section is to determine how precise
the proposed modeling and analysis methodology is, compared to real
executions.

For this purpose, we employ the Measured to Analytical response-
times Ratio (MAR) as a metric, which is the ratio between the largest
response-time measured divided by the analytical WCRT. Therefore, a
ratio of 1 indicates that the largest measured response time and the
analytical WCRT are the same. A ratio lower than 1 indicates that the
analytical value is larger than the measurement. Finally, a ratio higher
than 1 signals that the measurement is larger than the analytical WCRT,
which would imply that the methodology is incorrect, as the result
would not represent a safe upper bound of the response time.

Figs. 22 and 23 show the MARs for PO-ZC and PO-SC, respectively.
We can observe that no ratio above 1 is reported, indicating that
the analysis technique never underestimated the response time. The
difference between the observed and analytical response times is due
to two factors: the analysis pessimism and the fact that the measured
esults do not guarantee reaching the worst case.

From these results, we can determine two main general trends:

1. The analysis provides significantly more pessimistic results for
larger e2e flows due to an accumulative effect among the in-
creasing number of modeling elements. This degradation in the
accuracy increases with PO-SC, as it requires more steps to
model the copy operations.

2. Increasing the unavailability gap between partition windows
(i.e. increasing the MAF in our experiments or reducing the
Available Utilization (AU)), increases the pessimism.

These observations could be exploited in future optimization tech-
niques, in which scheduling plans could be built with the objective of
producing less pessimistic analytical results.

In more detail, the results for PO-ZC (Fig. 22), show a high overall
accuracy of the analysis, especially for smaller MAF lengths. For a
constant MAF length, higher AU percentages yield a better accuracy.
Specifically, for PO-ZC, the accuracy ranged from 51.2% to 87.2%. The
synchronization effect observed in the measurements for a MAF length
of 80 ms and 100 ms (see Section 7.4), had a negative impact in the
obtained results as can be observed in the presented diagrams. As the
measured WCRTs have decreased due to this effect (in contrast to the
analysis), the MAR shows a decrease in the accuracy.

Focusing on PO-SC (Fig. 23), the obtained results are significantly
ore pessimistic compared to PO-ZC. Despite both PO-SC and PO-ZC
aving similar measured response times, the analysis obtained higher
stimations for PO-SC. From this evaluation we can report an accuracy
etween 18.9% and 71.2%. In this case, both the MAF and the AU val-
es had a higher effect on the accuracy of the analysis. This increased
essimism compared to PO-ZC can be explained by the additional steps
eeded to model the copy operations.

8. Conclusions and future work

In this paper, we have presented a methodology for modeling and
analyzing real-time systems that accelerate parts of their workload
n GPUs. The proposal is based on leveraging the existing and vali-
ated MAST suite of tools, which includes an advanced system model
nd a selection of state-of-the-art response-time analysis techniques.
ime partitioning is used as the first scheduling layer, as it enables
ontrolling concurrent accesses to the GPU. With this approach, the
easurement of the execution times on the GPU is simplified, and can
e modeled as a delay by using the MAST set of tools. This allows

I. Gomez et al.

t
p
e

r
s
t
o

t
A
A
A
t
f
a
c

t
A
G
t
r
i

m
s

Journal of Systems Architecture 157 (2024) 103300
Fig. 23. Measured to Analytical response times Ratio for PO-SC.
14
modeling and analyzing applications using GPUs in the context of a
complex distributed real-time system.

We have presented an industrial use case from the railway sec-
or on which the proposed techniques were evaluated. Multiple time
artitioning configurations were tested, involving a range of differ-
nt MAF lengths and AU proportions. Additionally, the configurations

included two different memory management setups for CPU–GPU com-
munication (Zero-Copy and Standard Copy). The evaluation obtained
both analytical results, by applying an Offset-Based with Precedences
esponse-time analysis, and experimental results, by performing mea-
urements on a real platform. From this evaluation, it was reported that
he analytical results can match the measurements with an accuracy
f up to 87.2% for the Zero-Copy memory management. On the other

hand, we have found that the Standard Copy memory management
requires more elements for modeling that produce higher pessimism
in the analytical results.

Different aspects have been studied that can either benefit or ad-
versely affect the accuracy of the analysis. Regarding the partitioning
configuration, the gap between partition windows directly influences
the analysis accuracy. A MAF where a partition has more windows with
lower unavailability gaps, not only achieves better overall response
imes but also yields more accurate estimations of response times.
lthough it was expected, it has also been observed that a higher
vailable Utilization for a partition resulted in lower response times.
nother important aspect that influences the accuracy is the length of

he modeled e2e flow. As demonstrated in this work, very large e2e
lows can lead to significant pessimism. Additionally, besides impacting
ccuracy, large e2e flows also increase the model’s complexity and,
onsequently, the overall computation time for performing the analysis.

An important aspect, that is left for future work, is the effect of
memory interference due to concurrent access to global memory by
CPU–GPU or CPU–CPU. Memory interference can increase the execu-
tion times, so it should be estimated depending on the configuration
of the partitions for the different applications that can coexist in the
system. In our work, as the industrial case has been analyzed in
isolation, the memory interference does not have effects, but it could be
a determining factor in other applications. Based on the methodology
presented in this work, we will explore the development of optimization
techniques that include all these effects.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
ll the authors reports financial support was provided by Spanish
overnment and FEDER funds. If there are other authors, they declare

hat they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported
n this paper.

Acknowledgments

The authors want to thank the anonymous reviewers for their
any detailed comments which have allowed enhancing the paper

ignificantly.
This work was partially supported by MCIN/ AEI / 10.13039/

501100011033/ FEDER ‘‘Una manera de hacer Europa’’ under grants
PID2021-124502OB-C42 and PID2021-124502OB-C44 (PRESECREL).

References

[1] A. Hamann, D. Dasari, F. Wurst, I. Sañudo, N. Capodieci, P. Burgio, WATERS
industrial challenge 2019 final, 2019.

[2] F. Boniol, S. Mohan, IEEE RTSS 2022 industry challenge, 2022, URL: http:
//2022.rtss.org/industry-session.

http://refhub.elsevier.com/S1383-7621(24)00237-6/sb1
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb1
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb1
http://2022.rtss.org/industry-session
http://2022.rtss.org/industry-session
http://2022.rtss.org/industry-session

I. Gomez et al. Journal of Systems Architecture 157 (2024) 103300
[3] M. Andreozzi, G. Gabrielli, B. Venu, G. Travaglini, Industrial challenge 2022:
A high-performance real-time case study on arm, in: Leibniz International
Proceedings in Informatics, LIPIcs, vol. 231, Schloss Dagstuhl- Leibniz-Zentrum
fur Informatik GmbH, Dagstuhl Publishing, 2022, http://dx.doi.org/10.4230/
LIPIcs.ECRTS.2022.1.

[4] J. Perez-Cerrolaza, J. Abella, L. Kosmidis, A.J. Calderon, F. Cazorla, J.L. Flores,
GPU devices for safety-critical systems: A survey, ACM Comput. Surv. 55 (2022)
http://dx.doi.org/10.1145/3549526.

[5] I. Gomez, U.D. de Cerio, J. Parra, J.M. Rivas, J.J. Gutiérrez, Using GPUs in
real-time applications - A review of techniques for analyzing and optimizing the
timing parameters, Rev. Iberoamericana Autom. Inform. Ind. 21 (1) (2023) 1–16,
http://dx.doi.org/10.4995/riai.2023.20321.

[6] Airlines Electronic Engineering Committee, Avionics application software
standard interface (ARINC-653), 2010.

[7] E. Cittadini, M. Marinoni, A. Biondi, G. Cicero, G. Buttazzo, Supporting
AI-powered real-time cyber-physical systems on heterogeneous platforms via
hypervisor technology, Real-Time Syst. 59 (2023) 609–635, http://dx.doi.org/
10.1007/s11241-023-09402-4.

[8] R. Cavicchioli, N. Capodieci, M. Bertogna, Memory interference characteriza-
tion between CPU cores and integrated GPUs in mixed-criticality platforms,
in: 2017 22nd IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA, 2017, pp. 1–10, http://dx.doi.org/10.1109/ETFA.
2017.8247615.

[9] R. Cavicchioli, N. Capodieci, M. Bertogna, Contending memory in heterogeneous
SoCs:Evolution in NVIDIA tegra embedded platforms, in: 2020 IEEE 26th
International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA, 2020, pp. 1–10, http://dx.doi.org/10.1109/RTCSA50079.
2020.9203722.

[10] T. Lugo, S. Lozano, J. Fernández, J. Carretero, A survey of techniques for reduc-
ing interference in real-time applications on multicore platforms, IEEE Access 10
(2022) 21853–21882, http://dx.doi.org/10.1109/ACCESS.2022.3151891.

[11] T. Amert, Z. Tong, S. Voronov, J. Bakita, F.D. Smith, J.H. Anderson, TimeWall:
Enabling time partitioning for real-time multicore+accelerator platforms, in:
2021 IEEE Real-Time Systems Symposium, RTSS, 2021, pp. 455–468, http:
//dx.doi.org/10.1109/RTSS52674.2021.00048.

[12] G. Gilman, R.J. Walls, Characterizing concurrency mechanisms for NVIDIA GPUs
under deep learning workloads, Perform. Eval. 151 (2021) 102234, http://dx.
doi.org/10.1016/j.peva.2021.102234.

[13] M.G. Harbour, J.J. Gutiérrez, J.C. Palencia, J.M. Drake, MAST: Modeling and
analysis suite for real time applications, in: Proceedings of 13th Euromicro Con-
ference on Real-Time Systems, IEEE Computer Society Press, Delft, Netherlands,
2001, pp. 125–134.

[14] OMG, An OMG UML profile for MARTE TM publication UML profile for MARTE
TM : Modeling and analysis of real-time embedded systems. Version 1.2., 2019.

[15] M.G. Harbour, J.J. Gutiérrez, J.M. Drake, P.L. Martínez, J.C. Palencia, Modeling
distributed real-time systems with MAST 2, J. Syst. Archit. 59 (2013) 331–340,
http://dx.doi.org/10.1016/j.sysarc.2012.02.001.

[16] J.C. Palencia, M.G. Harbour, J.J. Gutiérrez, J.M. Rivas, Response-time analysis
in hierarchically-scheduled time-partitioned distributed systems, IEEE Trans.
Parallel Distrib. Syst. 28 (2017) 2017–2030, http://dx.doi.org/10.1109/TPDS.
2016.2642960.

[17] A. Amurrio, E. Azketa, J.J. Gutierrez, M. Aldea, M.G. Harbour, Response-
time analysis of multipath flows in hierarchically-scheduled time-partitioned
distributed real-time systems, IEEE Access 8 (2020) 196700–196711, http://dx.
doi.org/10.1109/ACCESS.2020.3033461.

[18] NVIDIA Corporation, CUDA for Tegra, 2024, (Last updated Apr 2024), URL:
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/.

[19] A.J. Calderón, L. Kosmidis, C.F. Nicolas, F.J. Cazorla, P. Onaindia, Understanding
and exploiting the internals of GPU resource allocation for critical systems, in:
IEEE/ACM International Conference on Computer-Aided Design, Digest of Tech-
nical Papers, ICCAD, vol. 2019-November, Institute of Electrical and Electronics
Engineers Inc., 2019, http://dx.doi.org/10.1109/ICCAD45719.2019.8942170.

[20] I.S. Olmedo, N. Capodieci, J.L. Martinez, A. Marongiu, M. Bertogna, Dissecting
the CUDA scheduling hierarchy: A performance and predictability perspective, in:
IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS,
vol. 2020-April, Institute of Electrical and Electronics Engineers Inc., 2020, pp.
213–225, http://dx.doi.org/10.1109/RTAS48715.2020.000-5.

[21] J. Singh, I.S. Olmedo, N. Capodieci, A. Marongiu, M. Caccamo, Reconciling
QoS and concurrency in NVIDIA GPUs via warp-level scheduling, in: 2022
Design, Automation and Test in Europe Conference and Exhibition, Institute of
Electrical and Electronics Engineers Inc., 2022, pp. 1275–1280, http://dx.doi.
org/10.23919/DATE54114.2022.9774761.

[22] A. Amurrio, J.J. Gutiérrez, M. Aldea, E. Azketa, Partition window assignment
in hierarchically scheduled time-partitioned distributed real-time systems with
multipath flows, J. Syst. Archit. 130 (2022) http://dx.doi.org/10.1016/j.sysarc.
2022.102671.

[23] R. Höttger, J. Ki, T.B. Bui, B. Igel, O. Spinczyk, CPU-GPU response time and
mapping analysis for high-performance automotive systems, in: Proceedings
Euromicro Conference on Real-Time System, ECRTS, 2019, pp. 1–7.
15
[24] L. Krawczyk, C. Wolff, M. Bazzal, R.P. Govindarajan, An analytical approach for
calculating end-to-end response times in autonomous driving applications, in:
Proceedings Euromicro Conference on Real-Time System, ECRTS, 2019, pp. 1–7.

[25] D. Casini, P. Pazzaglia, A. Biondi, M.D. Natale, Optimized partitioning and
priority assignment of real-time applications on heterogeneous platforms with
hardware acceleration, J. Syst. Archit. 124 (2022) http://dx.doi.org/10.1016/j.
sysarc.2022.102416.

[26] M.A. Serrano, E. Quiñones, Response-time analysis of DAG tasks supporting
heterogeneous computing, in: Design Automation & Test in Europe Conference
& Exhibition (DATE), vol. Part F137710, Institute of Electrical and Electronics
Engineers Inc., 2018, http://dx.doi.org/10.1145/3195970.3196104.

[27] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, G. Lipari, M. Bertogna, The
HPC-DAG task model for heterogeneous real-time systems, IEEE Trans. Comput.
70 (2021) 1747–1761, http://dx.doi.org/10.1109/TC.2020.3023169.

[28] ERTMS/ECTS: system requirements specification - subset 026 1 - version 4, 2023.

[29] ERTMS/ATO: system requirements specification - subset 125 - version 4, 2023.

[30] CAF signalling - railway signaling solutions, 2024, (Last update Jan 2024), URL:
https://www.cafsignalling.com.

[31] NVIDIA Corporation, CUDA toolkit documentation, 2024, (Last updated Jan
2024), URL: https://docs.nvidia.com/cuda/.

[32] J.C. Palencia, J.J. Gutiérrez, M.G. Harbour, Best-case analysis for improving
the worst-case schedulability test for distributed hard real-time systems, in:
Proceedings 10th EUROMICRO Workshop on Real-Time Systems, 1998, pp.
35–44, http://dx.doi.org/10.1109/EMWRTS.1998.684945.

[33] A. Amurrio, J.J. Gutiérrez, M. Aldea, E. Azketa, Priority assignment in hierar-
chically scheduled time-partitioned distributed real-time systems with multipath
flows, J. Syst. Archit. 122 (2022) 102339, http://dx.doi.org/10.1016/j.sysarc.
2021.102339.

[34] K. Tindell, J. Clark, Holistic schedulability analysis for distributed hard real-time
systems, Microprocess. Microprogramm. 40 (2) (1994) 117–134, http://dx.doi.
org/10.1016/0165-6074(94)90080-9, Parallel Processing in Embedded Real-time
Systems.

[35] K. Tindell, Adding Time-Offsets to Schedulability Analysis, Tech. Rep. YCS-221,
Department of Computer Science, University of York, 1994.

[36] J.C. Palencia, M.G. Harbour, Schedulability analysis for tasks with static and
dynamic offsets, in: Proceedings of 19th IEEE Real-Time Systems Symposium,
IEEE, Madrid, Spain, 1998, pp. 26–37, http://dx.doi.org/10.1109/REAL.1998.
739728.

[37] J. Mäki-Turja, M. Nolin, Efficient implementation of tight response-times for
tasks with offsets, Real-Time Syst. 40 (2008) 77–116, http://dx.doi.org/10.1007/
s11241-008-9050-9.

[38] J.C. Palencia, M.G. Harbour, Exploiting precedence relations in the schedulability
analysis of distributed real-time systems, in: Proceedings of 20th IEEE Real-Time
Systems Symposium, Phoenix, AZ, USA, 1999, pp. 328–339, http://dx.doi.org/
10.1109/REAL.1999.818860.

[39] NVIDIA Corporation, Jetson AGX Xavier series, 2023, (Last updated Dec 2023),
URL: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-xavier-series/.

[40] B. Mullins, NVIDIA Unveils Jetson AGX Xavier industrial module, 2021, URL:
https://blogs.nvidia.com/blog/jetson-agx-xavier-industrial-use-ai/.

[41] The Linux Foundation, Yocto project documentation, 2023, (Last updated Dec
2023), URL: https://docs.yoctoproject.org/.

[42] The Linux Foundation, Real-time Linux, 2023, (Last updated Oct 2023), URL:
https://wiki.linuxfoundation.org/realtime/start.

[43] A. Asaduzzaman, A. Martinez, A. Sepehri, A time-efficient image processing
algorithm for multicore/manycore parallel computing, in: Proceedings of the
IEEE SoutheastCon 2015, 2015, pp. 1–5, http://dx.doi.org/10.1109/SECON.
2015.7132924.

[44] M. Ji, S. Yi, S. Ahn, D. Seo, N. Dutt, J.-C. Kim, Demand layering for real-time
DNN inference with minimized memory usage, in: Proceedings of 2022 IEEE
Real-Time Systems Symposium, 2022, pp. 291–304, http://dx.doi.org/10.1109/
RTSS55097.2022.00033.

[45] N. Otterness, M. Yang, S. Rust, E. Park, J.H. Anderson, F.D. Smith, A. Berg, S.
Wang, An evaluation of the NVIDIA TX1 for supporting real-time computer-vision
workloads, in: Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS, Institute of Electrical and Electronics Engineers
Inc., 2017, pp. 353–363, http://dx.doi.org/10.1109/RTAS.2017.3.

[46] F. Lumpp, H.D. Patel, N. Bombieri, A framework for optimizing CPU-iGPU
communication on embedded platforms, in: Proceedings of the 58th ACM/IEEE
Design Automation Conference, DAC, vol. 2021-December, Institute of Electrical
and Electronics Engineers Inc., 2021, pp. 685–690, http://dx.doi.org/10.1109/
DAC18074.2021.9586304.

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2022.1
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2022.1
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2022.1
http://dx.doi.org/10.1145/3549526
http://dx.doi.org/10.4995/riai.2023.20321
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb6
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb6
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb6
http://dx.doi.org/10.1007/s11241-023-09402-4
http://dx.doi.org/10.1007/s11241-023-09402-4
http://dx.doi.org/10.1007/s11241-023-09402-4
http://dx.doi.org/10.1109/ETFA.2017.8247615
http://dx.doi.org/10.1109/ETFA.2017.8247615
http://dx.doi.org/10.1109/ETFA.2017.8247615
http://dx.doi.org/10.1109/RTCSA50079.2020.9203722
http://dx.doi.org/10.1109/RTCSA50079.2020.9203722
http://dx.doi.org/10.1109/RTCSA50079.2020.9203722
http://dx.doi.org/10.1109/ACCESS.2022.3151891
http://dx.doi.org/10.1109/RTSS52674.2021.00048
http://dx.doi.org/10.1109/RTSS52674.2021.00048
http://dx.doi.org/10.1109/RTSS52674.2021.00048
http://dx.doi.org/10.1016/j.peva.2021.102234
http://dx.doi.org/10.1016/j.peva.2021.102234
http://dx.doi.org/10.1016/j.peva.2021.102234
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb13
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb13
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb13
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb13
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb13
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb13
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb13
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb14
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb14
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb14
http://dx.doi.org/10.1016/j.sysarc.2012.02.001
http://dx.doi.org/10.1109/TPDS.2016.2642960
http://dx.doi.org/10.1109/TPDS.2016.2642960
http://dx.doi.org/10.1109/TPDS.2016.2642960
http://dx.doi.org/10.1109/ACCESS.2020.3033461
http://dx.doi.org/10.1109/ACCESS.2020.3033461
http://dx.doi.org/10.1109/ACCESS.2020.3033461
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/
http://dx.doi.org/10.1109/ICCAD45719.2019.8942170
http://dx.doi.org/10.1109/RTAS48715.2020.000-5
http://dx.doi.org/10.23919/DATE54114.2022.9774761
http://dx.doi.org/10.23919/DATE54114.2022.9774761
http://dx.doi.org/10.23919/DATE54114.2022.9774761
http://dx.doi.org/10.1016/j.sysarc.2022.102671
http://dx.doi.org/10.1016/j.sysarc.2022.102671
http://dx.doi.org/10.1016/j.sysarc.2022.102671
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb23
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb23
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb23
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb23
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb23
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb24
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb24
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb24
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb24
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb24
http://dx.doi.org/10.1016/j.sysarc.2022.102416
http://dx.doi.org/10.1016/j.sysarc.2022.102416
http://dx.doi.org/10.1016/j.sysarc.2022.102416
http://dx.doi.org/10.1145/3195970.3196104
http://dx.doi.org/10.1109/TC.2020.3023169
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb28
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb29
https://www.cafsignalling.com
https://docs.nvidia.com/cuda/
http://dx.doi.org/10.1109/EMWRTS.1998.684945
http://dx.doi.org/10.1016/j.sysarc.2021.102339
http://dx.doi.org/10.1016/j.sysarc.2021.102339
http://dx.doi.org/10.1016/j.sysarc.2021.102339
http://dx.doi.org/10.1016/0165-6074(94)90080-9
http://dx.doi.org/10.1016/0165-6074(94)90080-9
http://dx.doi.org/10.1016/0165-6074(94)90080-9
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb35
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb35
http://refhub.elsevier.com/S1383-7621(24)00237-6/sb35
http://dx.doi.org/10.1109/REAL.1998.739728
http://dx.doi.org/10.1109/REAL.1998.739728
http://dx.doi.org/10.1109/REAL.1998.739728
http://dx.doi.org/10.1007/s11241-008-9050-9
http://dx.doi.org/10.1007/s11241-008-9050-9
http://dx.doi.org/10.1007/s11241-008-9050-9
http://dx.doi.org/10.1109/REAL.1999.818860
http://dx.doi.org/10.1109/REAL.1999.818860
http://dx.doi.org/10.1109/REAL.1999.818860
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://blogs.nvidia.com/blog/jetson-agx-xavier-industrial-use-ai/
https://docs.yoctoproject.org/
https://wiki.linuxfoundation.org/realtime/start
http://dx.doi.org/10.1109/SECON.2015.7132924
http://dx.doi.org/10.1109/SECON.2015.7132924
http://dx.doi.org/10.1109/SECON.2015.7132924
http://dx.doi.org/10.1109/RTSS55097.2022.00033
http://dx.doi.org/10.1109/RTSS55097.2022.00033
http://dx.doi.org/10.1109/RTSS55097.2022.00033
http://dx.doi.org/10.1109/RTAS.2017.3
http://dx.doi.org/10.1109/DAC18074.2021.9586304
http://dx.doi.org/10.1109/DAC18074.2021.9586304
http://dx.doi.org/10.1109/DAC18074.2021.9586304

I. Gomez et al. Journal of Systems Architecture 157 (2024) 103300
Iosu Gomez received the B.S. degree in industrial elec-
tronics and automation engineering in 2020, and the M.S.
degree in embedded systems engineering in 2022, both from
the University of the Basque Country, Donostia-San Sebas-
tian. He is currently pursuing the Ph.D. degree in science
and technology in a collaboration framework between the
Ikerlan Research Center and the University of Cantabria.
During the period from 2020 to 2022, he was involved in
research activities as a student at Ikerlan within the Reliable
Software team.

Unai Díaz de Cerio received his Bachelor in Computer
Engineering from the University of Mondragon, Spain, and
his M.Sc in Computation from the University of Cantabria,
Spain, in 2010 and 2012 respectively. He pursued his Ph.D.
degree in the Department of Computer Science and Electron-
ics at the University of Cantabria. He is working in Ikerlan
Research Center as a researcher in the Distributed and
Connected Intelligence area. His current research interests
are focused on schedulability analysis in distributed hard
real-time systems.

Jorge Parra joined Ikerlan Research Centre in 1999, and
currently works as full time researcher within the Dis-
tributed and Connected Intelligence department. His main
activity includes the design and development of smart en-
vironments and embedded safety-critical systems, focusing
on dependable software aspects. In recent years, he has
been actively involved in the design and development of
railway systems such as an onboard ERTMS/ETCS system
(SIL4) and power loading for tramways (SIL2). Holding
an M.Sc. in industrial engineering from the University of
Basque Country, he received his Ph.D. degree in telecom-
munication engineering from the same university. He is a
certified TOV Functional Safety Engineer for the design of
hardware and software based on the IEC-61508. standard
(Fs/Eng.5280/12) since 2009.
16
Juan M. Rivas is an Assistant Professor in the Software
Engineering and Real-Time Group at the University of
Cantabria (Spain). He received his B.Sc. degree in Telecom-
munications Engineering and M.Sc. in Computer Science
from the University of Cantabria in 2008 and 2009 respec-
tively. He obtained his Ph.D. degree in Computer Science
from the same institution in 2015. He has been involved in
several national and European research projects, including
industrial collaborations, focusing on topics such as the op-
timization of distributed hard-real-time systems, modeling,
and scheduling in novel platforms such as GPUs.

J. Javier Gutiérrez received his B.S. and Ph.D. Degrees
from the University of Cantabria (Spain) in 1989 and 1995
respectively. He is a Professor in the Software Engineering
and Real-Time Group at the University of Cantabria, which
he joined in the early 90s. His research activity deals
with the scheduling, analysis and optimization of embedded
real-time distributed systems (including communication net-
works and distribution middleware). He has been involved
in several research projects building real-time controllers for
robots, evaluating Ada for real-time applications, developing
middleware for real-time distributed systems, and proposing
models along with the analysis and optimization techniques
for distributed real-time applications.

Michael González Harbour is a Professor in the Depart-
ment of Computer Science and Electronics at the University
of Cantabria. He works in software engineering for real-time
systems, and particularly in modeling and schedulability
analysis of distributed real-time systems, real-time operating
systems, and real-time languages. He is a co-author of ‘‘A
Practitioner’s Handbook on Real-Time Analysis’’. He has
been involved in several industrial projects using Ada to
build real-time controllers for robots. Michael has partici-
pated in the real-time working group of the POSIX standard
for portable operating system interfaces. He is one of the
principal authors of the MAST suite for modeling and
analyzing real-time systems.

	Using MAST for modeling and response-time analysis of real-time applications with GPUs
	Introduction
	Overview and related work
	Overview on GPUs
	Overview on time partitioning
	Related Work

	Motivating industrial use case
	Modeling and analysis
	MAST model overview
	Response-time analysis techniques
	Modeling systems with GPUs
	Controlling GPU access through time partitioning
	Limitations and workarounds

	Characterization of response-time analysis
	Modeling the Profile Optimizer
	Evaluation
	Test platform
	Execution time measurements
	Response-time analysis results
	Measuring response times on the real platform
	Comparing analytical and measured response times

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

