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A Polyhedral Method for Sparse Systems with Many Positive Solutions\ast 
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Abstract. We investigate a version of Viro's method for constructing polynomial systems with many positive
solutions, based on regular triangulations of the Newton polytope of the system. The number
of positive solutions obtained with our method is governed by the size of the largest positively
decorable subcomplex of the triangulation. Here, positive decorability is a property that we introduce
and which is dual to being a subcomplex of some regular triangulation. Using this duality, we
produce large positively decorable subcomplexes of the boundary complexes of cyclic polytopes.
As a byproduct, we get new lower bounds, some of them being the best currently known, for the
maximal number of positive solutions of polynomial systems with prescribed numbers of monomials
and variables. We also study the asymptotics of these numbers and observe a log-concavity property.
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1. Introduction. Positive solutions of multivariate polynomial systems are central objects
in many applications of mathematics, as they often contain meaningful information, e.g., in
robotics, optimization, algebraic statistics, the study of multistationarity in chemical reaction
networks, etc. In the 1970s, foundational results by Kushnirenko [15], Khovanskii [14], and
Bernstein [2] laid the theoretical ground for the study of the algebraic structure of polynomial
systems with prescribed conditions on the set of monomials appearing with nonzero coeffi-
cients. As a particular case of more general bounds, Khovanskii [14] obtained an upper bound
on the number of nondegenerate positive solutions which depends only on the dimension of
the problem and on the number of monomials.

More precisely, our main object of interest in this paper is the function \Xi d,k, defined
as the maximal possible number of nondegenerate solutions in \BbbR d

>0 of a polynomial system
f1 = \cdot \cdot \cdot = fd = 0, where f1, . . . , fd \in \BbbR [X1, . . . , Xd] involve at most d+ k+1 monomials with
nonzero coefficients. Here, nondegenerate means that the Jacobian matrix of the system is
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SPARSE SYSTEMS WITH MANY POSITIVE SOLUTIONS 621

invertible at the solution. Finding sharp bounds for \Xi d,k is a notably hard problem; see [21].
The current knowledge can be briefly summarized as follows (see [5, 6]):

\forall d, k > 0, max((\lfloor k/d\rfloor + 1)d, (\lfloor d/k\rfloor + 1)k) \leq \Xi d,k \leq (e2 + 3)2(
k
2)dk/4.

Another important and recent lower bound is \Xi 2,2 \geq 7 [8].
In this paper, we introduce a new technique to construct fewnomial systems with many

positive roots, based on the notion of positively decorable subcomplexes in a regular trian-
gulation of the point configuration given by the exponent vectors of the monomials. Using
this method, we obtain new lower bounds for \Xi d,k. Combining it with a log-concavity prop-
erty, we obtain systems which admit asymptotically more positive solutions than previous
constructions for a large range of parameters.

Main results. Consider a regular full-dimensional pure simplicial complex \Gamma supported
on a point configuration \scrA = \{ w1, . . . , wn\} \subset \BbbZ d, by which we mean that \Gamma is a pure
d-dimensional subcomplex of a regular triangulation of \scrA (see Definition 4.2 and Proposi-
tion 4.3). Consider also a map \phi : \scrA \rightarrow \BbbR d. This map will be used to construct a polynomial
system where the coefficients of the monomial wi will be obtained from \phi (wi). We call a facet
\tau = conv(wi1 , . . . , wid+1

) of \Gamma positively decorated by \phi if \phi (\{ wi1 , . . . , wid+1
\} ) positively spans

\BbbR d. We are interested in sparse polynomial systems

(1.1) f1(X1, . . . , Xd) = \cdot \cdot \cdot = fd(X1, . . . , Xd) = 0

with real coefficients and support contained in \scrA : this means that all exponent vectors w \in \BbbZ d

of the monomials Xw appearing with a nonzero coefficient in at least one equation are in \scrA .
Our starting point is the following result.

Theorem A (Theorem 3.4). There is a choice of coefficients---which can be constructed
from the map \phi ---which produces a sparse system supported on \scrA such that the number of
nondegenerate positive solutions of (1.1) is bounded below by the number of facets in \Gamma which
are positively decorated by \phi .

This theorem is a version of Viro's method which was used by Sturmfels [23] to construct
sparse polynomial systems, all solutions of which are real. Viro's method ([25]; see also
[3, 19, 24]) is one of the roots of tropical geometry, and it has been used for constructing real
algebraic varieties with interesting topological and combinatorial properties.

We then apply this theorem to the problem of constructing fewnomial systems with many
positive solutions. For this we construct large simplicial complexes that are regular and
positively decorable (that is, all their facets can be positively decorated with a certain \phi ),
obtained as subcomplexes of the boundary of cyclic polytopes. Combinatorial techniques
allow us to count the simplices of these complexes, which gives us new explicit lower bounds
on \Xi d,k. More precisely, for all i, j \in \BbbZ >0, set

Fi,j = Di,j +Di - 1,j - 1,

where Di,j is the (i, j)th Delannoy number [1], defined as

(1.2) Di,j :=

\mathrm{m}\mathrm{i}\mathrm{n}\{ i,j\} \sum 
\ell =0

(i+ j  - \ell )!

(i - \ell )!(j  - \ell )!\ell !
=

\mathrm{m}\mathrm{i}\mathrm{n}\{ i,j\} \sum 
\ell =0

2\ell 
\biggl( 
i

\ell 

\biggr) \biggl( 
j

\ell 

\biggr) 
.
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622 F. BIHAN, F. SANTOS, AND P.-J. SPAENLEHAUER

Theorem B (Corollary 6.9, Remark 6.10). For every i, j \in \BbbZ >0, we have

\Xi 2i - 1,2j \geq Fi,j , \Xi 2i - 1,2j - 1 \geq 
j

i+ j
Fi,j , \Xi 2i,2j \geq 

i+ 1

i+ j + 1
Fi+1,j , \Xi 2i,2j - 1 \geq 2Fi,j - 1.

We are then interested in the asymptotics of \Xi d,k for big d and k. One way to make sense
of this is the following.

Theorem C (Theorem 2.4). For all k, d \in \BbbZ >0 the limit \xi d,k := limn\rightarrow \infty (\Xi dn,kn)
1/(dn+kn) \in 

[1,\infty ] exists. Moreover, this limit depends only on the ratio d/k and it is bounded from below
by \Xi d,k

1/(d+k).

Analyzing the asymptotics of Delannoy numbers leads to the following new lower bound,
which also depends only on d/k.

Theorem D (Theorem 7.2, Corollary 7.3). For all k, d \in \BbbZ >0, we have

\xi d,k \geq 

\Biggl( \surd 
d2 + k2 + k

d

\Biggr) d
2(d+k)

\Biggl( \surd 
d2 + k2 + d

k

\Biggr) k
2(d+k)

.

This statement allows us to improve the lower bounds on \xi d,k for 0.2434 < d/(d + k) <
0.3659 and for 0.6342 < d/(d + k) < 0.7565; see Figure 4. In fact, Theorem 2.4 implies that
the limit \xi \alpha ,\beta := limn\rightarrow \infty (\Xi \alpha n,\beta n)

1/(\alpha n+\beta n) exists for any positive rational numbers \alpha , \beta . It
is convenient to look at \xi along the segment \alpha + \beta = 1. This is no loss of generality since
\xi d,k = \xi \alpha ,1 - \alpha for \alpha = d/(d+ k) and it has the nice property that the function \xi : \alpha \mapsto \rightarrow \xi \alpha ,1 - \alpha ,
\alpha \in (0, 1) \cap \BbbQ , is log-concave (Proposition 2.5). Therefore, convex hulls of lower bounds for
log \xi \alpha ,1 - \alpha also produce lower bounds for this function. With this observation, the methods in
this paper improve the previously known lower bounds for \xi d,k for all d, k with d/(d + k) \in 
(0.2, 0.5) \cup (0.5, 0.8); see Figure 5.

Our bounds also raise some important questions about \xi d,k. Notice that log-concavity
implies that if \xi is infinite somewhere, then it is infinite everywhere (Corollary 2.6). In light
of this, we pose the following question.

Question 1.1. Is \xi d,k finite for some (equivalently, for every) d, k > 0? That is to say, is
there a global constant c such that \Xi d,k \leq ck+d for all k, d \in \BbbZ >0?

In fact, we do not know whether \Xi d,k admits a singly exponential upper bound since the

best known general upper bound (see (2.1)) is only of type 2O(k2+k \mathrm{l}\mathrm{o}\mathrm{g} d). Compare this to
Problem 2.8 in Sturmfels [23] (still open), which asks whether \Xi d,k is polynomial for fixed d.
In a sense, Sturmfels' formulation is related to the behavior of \xi \alpha ,\beta when \alpha /\beta \approx 0, although
the answer to it might be positive even if \xi is infinite. (Think, e.g., of \Xi d,k growing as
min\{ dk, kd\} ). Our formulation looks at \Xi globally and gives the same role to d and k, which
is consistent with Proposition 2.1.

Another intriguing question is whether \xi d,k = \xi k,d or, more strongly, whether \Xi d,k = \Xi k,d.
This symmetry between d and k holds true for all known lower bounds and exact values,
including the lower bounds for \xi d,k obtained with our construction where the symmetry is a
consequence of a Gale-type duality between regular and positively decorable complexes (see
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SPARSE SYSTEMS WITH MANY POSITIVE SOLUTIONS 623

Corollary 4.7 and Theorem 4.10). This duality is also instrumental in our proof that the
complexes used for Theorem B are positively decorable.

Although not needed for the rest of the paper, we also show that positive decorability is
related to two classical properties in topological combinatorics.

Theorem E (Theorem 5.5). For every pure orientable simplicial complex, one has

balanced =\Rightarrow positively decorable =\Rightarrow bipartite.

Under certain hypotheses (e.g., for complexes that are simply connected manifolds with
or without boundary), the reverse implications also hold (Corollary 5.8).

Organization of the paper. In section 2, we present classical bounds for \Xi d,k, introduce
the quantity \xi d,k, and prove Theorem C, plus the log-concavity property. Section 3 describes
the Viro construction used throughout the paper and proves Theorem A. In section 4, we show
the duality between positively decorable and regular complexes, and section 5 relates positive
decorability to balancedness and bipartiteness. Section 6 contains our main construction,
based on cyclic polytopes, and shows the lower bounds stated in Theorem B. This bound
is analyzed and compared to previous ones in section 7, where we prove Theorem D. In
section 8, we investigate the potential of the proposed method and show that the number of
positive solutions that can be produced by this method is inherently limited by the upper
bound theorem for polytopes.

2. Preliminaries on \Xi \bfitd ,\bfitk . Here, we review what is known about the function \Xi d,k, defined
as the maximum possible number of positive nondegenerate solutions of d-dimensional systems
with d + k + 1 monomials. The finiteness of \Xi d,k follows from the work of Khovanskii [14].
The currently best known general upper bound for \Xi d,k for arbitrary d and k is proved by
Bihan and Sottile [6]:

(2.1) \Xi d,k \leq e2 + 3

4
2(

k
2)dk \forall k, d \in \BbbZ >0.

The following proposition summarizes what is known about lower bounds of \Xi d,k.

Proposition 2.1.
1. \Xi d+d\prime ,k+k\prime \geq \Xi d,k \Xi d\prime ,k\prime for all d, d\prime , k, k\prime \in \BbbZ >0.
2. \Xi 1,k = k + 1 for all k \in \BbbZ >0 (Descartes).
3. \Xi d,1 = d+ 1 for all d \in \BbbZ >0 (Bihan [4]).
4. \Xi 2,2 \geq 7 (El Hilany [8]).

Proof. Let A \subset \BbbZ d and A\prime \subset \BbbZ d\prime be supports of systems in d and d\prime variables with
d + k + 1 and d\prime + k\prime + 1 monomials achieving the bounds \Xi d,k and \Xi d\prime ,k\prime . Without loss
of generality, we can assume that both A and A\prime contain the origin; indeed, translating the
supports amounts to multiplying the whole system by a monomial, which does not affect the
number of positive roots. Then (A\times \{ 0\} )\cup (\{ 0\} \times A\prime ) \subset \BbbZ d+d\prime has (d+d\prime )+(k+k\prime )+1 points and
supports a system (the union of the original systems) with \Xi d,k\Xi d\prime ,k\prime nondegenerate positive
solutions (the Cartesian product of the solutions sets of the original systems). Therefore,
\Xi d+d\prime ,k+k\prime \geq \Xi d,k\Xi d\prime ,k\prime .
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624 F. BIHAN, F. SANTOS, AND P.-J. SPAENLEHAUER

The equality \Xi 1,k = k + 1 comes from the fact that a univariate polynomial with k + 2
monomials cannot have more than k+1 positive solutions by Descartes' rule of signs (and the
polynomial

\prod k+1
i=1 (x - i) reaches this bound).

Finally, \Xi d,1 = d+ 1 was proved in [4, Thm. A] and \Xi 2,2 \geq 7 has recently been shown by
El Hilany [8, Thm. 1.2] using tropical geometry.

Remark 2.2. It is known that \Xi d,0 = 1 (see Proposition 3.3). Moreover, \Xi d,k+1 \geq \Xi d,k is
obvious (adding one monomial with a very small coefficient does not decrease the number of
nondegenerate positive solutions). Then, by setting \Xi 0,k = 1, part 1 of Proposition 2.1 can be
extended to allow zero values for d and k. Consequently, \Xi d\prime ,k\prime \geq \Xi d,k if d\prime \geq d and k\prime \geq k.

The following consequences of Proposition 2.1 have been observed before. Part 1 comes
from a system of univariate polynomials in independent variables, and part 2 was proved by
Bihan, Rojas, and Sottile in [5].

Corollary 2.3.
1. If k1 + \cdot \cdot \cdot + kd = k is an integer partition of k, then we have \Xi d,k \geq 

\prod 
1\leq i\leq d(ki + 1).

In particular,

(2.2) \Xi d,k \geq (\lfloor k/d\rfloor + 1)d.

2. If d1 + \cdot \cdot \cdot + dk = d is an integer partition of d, then \Xi d,k \geq 
\prod 

1\leq i\leq d(di + 1). In
particular,

\Xi d,k \geq (\lfloor d/k\rfloor + 1)k.(2.3)

Observe that both bounds specialize to

(2.4) \Xi d,d \geq 2d

for k = d, but a better bound of \Xi 2d,2d \geq 7d follows from parts 1 and 4 of Proposition 2.1.
In section 7, we will be interested in the asymptotics of \Xi d,k for big d and k.

Theorem 2.4. Let d, k \in \BbbZ >0. Then the following limit exists:

lim
n\rightarrow \infty 

(\Xi dn,kn)
1/(dn+kn) \in [1,\infty ].

Moreover, the limit depends only on the ratio d/k and it is bounded from below by (\Xi d,k)
1/(d+k).

Proof. For each n, let an := log(\Xi dn,kn), so that the limit that we want to compute
is limn\rightarrow \infty ean/(d+k)n and we can instead look at limn\rightarrow \infty (an/(d + k)n). Since (an)n\in \BbbZ >0 is
increasing (Remark 2.2) and apn0 \geq pan0 for every positive integer p (Proposition 2.1), we
have an \geq \lfloor n

n0
\rfloor an0 for all n, n0 \in \BbbZ >0. Thus,

lim inf
n\rightarrow \infty 

an
n

\geq lim inf
n\rightarrow \infty 

\biggl\lfloor 
n

n0

\biggr\rfloor 
an0

n
=

an0

n0
\forall n0 \in \BbbZ >0.

Consequently,

lim inf
n\rightarrow \infty 

an
(d+ k)n

=
1

d+ k
lim inf
n\rightarrow \infty 

an
n

\geq 1

d+ k

an0

n0
\forall n0 \in \BbbZ >0.
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SPARSE SYSTEMS WITH MANY POSITIVE SOLUTIONS 625

In particular,

lim inf
n\rightarrow \infty 

an
(d+ k)n

\geq sup
n\in \BbbZ >0

an
(d+ k)n

\geq lim sup
n\rightarrow \infty 

an
(d+ k)n

,

which implies that the limit exists and equals the supremum. To show that the limit depends
only on the ratio d/k, observe that if (d, k) and (d\prime , k\prime ) are proportional vectors, then the
sequences (an/(d + k)n)n\in \BbbZ >0 and (a\prime n/(d

\prime + k\prime )n)n\in \BbbZ >0 (where a\prime n := log(\Xi d\prime n,k\prime n)) have a
common subsequence.

Note that the statement implies the existence of the limit

\xi \alpha ,\beta = lim
n\rightarrow \infty 

\alpha n,\beta n\in \BbbZ 
(\Xi \alpha n,\beta n)

1/(\alpha n+\beta n) \in [1,\infty ]

for any positive rational numbers \alpha , \beta \in \BbbQ >0 and that for \alpha = d
d+k (where d, k \in \BbbZ >0) we have

\xi \alpha ,1 - \alpha = limn\rightarrow \infty (\Xi dn,kn)
1/(dn+kn). Also, since the limit in Theorem 2.4 depends only on d/k,

we only need to consider the function \xi for one point along each ray in the positive orthant.
We choose the segment defined by \alpha + \beta = 1 because along this segment \xi is log-concave.

Proposition 2.5. The function \alpha \mapsto \rightarrow \xi \alpha ,1 - \alpha is log-concave over (0, 1) \cap \BbbQ .

Proof. For any integer n and any (\alpha , \beta ) \in \BbbQ 2
>0 with \alpha n, \beta n \in \BbbZ , let an(\alpha , \beta ) = log(\Xi \alpha n,\beta n).

The statement is that for any (\alpha , \beta ), (\alpha \prime , \beta \prime ) in \BbbQ 2
>0 and any \theta \in [0, 1] \cap \BbbQ , we have

(2.5) lim
n\rightarrow \infty 

1

n
an(\theta (\alpha , \beta ) + (1 - \theta )(\alpha \prime , \beta \prime )) \geq \theta lim

n\rightarrow \infty 

1

n
an(\alpha , \beta ) + (1 - \theta ) lim

n\rightarrow \infty 

1

n
an(\alpha 

\prime , \beta \prime ).

Here and in what follows, only values of n where \alpha n, \theta \alpha n, etc., are integers are considered.
This is enough since they form an infinite sequence and the limit \xi is independent of the
subsequence considered.

Using Proposition 2.1, together with Remark 2.2, we get

an(\theta (\alpha , \beta ) + (1 - \theta )(\alpha \prime , \beta \prime )) = log(\Xi \theta \alpha n+(1 - \theta )\alpha \prime n,\theta \beta n+(1 - \theta )\beta \prime n)

\geq log(\Xi \theta \alpha n,\theta \beta n) + log(\Xi (1 - \theta )\alpha \prime n,(1 - \theta )\beta \prime n)

= an(\theta \alpha , \theta \beta ) + an((1 - \theta )\alpha \prime , (1 - \theta )\beta \prime ).

It remains to note that limn\rightarrow \infty 
1
nan(\theta \alpha , \theta \beta ) = \theta limn\rightarrow \infty 

1
nan(\alpha , \beta ) for any (\alpha , \beta ) in \BbbQ 2

>0 and
any \theta \in [0, 1] \cap \BbbQ .

One interesting consequence of log-concavity is the following.

Corollary 2.6. The function \xi \alpha ,\beta is either finite for all (\alpha , \beta ) \in \BbbQ 2
>0 or infinite for all

(\alpha , \beta ) \in \BbbQ 2
>0.

Proof. Since \xi \alpha ,\beta depends only on \alpha /\beta , there is no loss of generality in assuming \beta = 1 - \alpha 
and \alpha \in (0, 1) \cap \BbbQ . Suppose \xi \alpha ,1 - \alpha = \infty for some \alpha \in (0, 1) \cap \BbbQ , and let us show that
\xi \beta ,1 - \beta = \infty for every other \beta \in (0, 1) \cap \BbbQ . For this, let \gamma = (1 + \epsilon )\beta  - \epsilon \alpha for a sufficiently
small \epsilon \in \BbbQ >0, so that \gamma \in (0, 1) \cap \BbbQ . Then \beta = 1

1+\epsilon \gamma + \epsilon 
1+\epsilon \alpha . By log-concavity,

\xi \beta ,1 - \beta \geq \xi \gamma ,1 - \gamma 

1
1+\epsilon \xi \alpha ,1 - \alpha 

\epsilon 
1+\epsilon = \infty .
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Remark 2.7. Although we have defined \xi only for rational values in order to avoid tech-
nicalities, log-concavity and Proposition 2.1 easily imply that \xi admits a unique continuous
extension to \alpha , \beta \in \BbbR >0 and that this extension satisfies

\xi \alpha ,\beta = lim
n\rightarrow \infty 

(\Xi \lfloor \alpha n\rfloor ,\lfloor \beta n\rfloor )
1/(\alpha n+\beta n) = lim

n\rightarrow \infty 
(\Xi \lceil \alpha n\rceil ,\lceil \beta n\rceil )

1/(\alpha n+\beta n).

3. Positively decorated simplices and Viro polynomial systems. We start by considering
systems of d equations in d variables whose support \scrA = \{ w1, . . . , wd+1\} \subset \BbbZ d is the set of
vertices of a d-simplex. This case is a basic building block in our construction.

Definition 3.1. A d \times (d + 1) matrix M with real entries is called positively spanning if
all the values ( - 1)iminor(M, i) are nonzero and have the same sign, where minor(M, i) is the
determinant of the square matrix obtained by removing the ith column.

The terminology ``positively spanning"" comes from the fact that if \scrA = \{ w1, . . . , wd+1\} is
the set of columns of M , then saying that M is positively spanning is equivalent to saying
that any vector in \BbbR d is a linear combination with positive coefficients of w1, . . . , wd+1.

Proposition 3.2. Let M be a full rank d\times (d+1) matrix with real coefficients. The following
statements are equivalent:

1. the matrix M is positively spanning;
2. for any L \in GLd(\BbbR ), L \cdot M is a positively spanning matrix;
3. for any permutation matrix P \in Sd+1, M \cdot P is a positively spanning matrix;
4. all the coordinates of any nonzero vector in the kernel of the matrix are nonzero and

have the same sign;
5. the origin belongs to the interior of the convex hull of the column vectors of M ;
6. every vector in \BbbR d is a nonnegative linear combination of the columns of M ;
7. there is no w \in \BbbR d \setminus \{ 0\} such that w \cdot M \geq 0.

Proof. The equivalence (1) \leftrightarrow (4) follows from Cramer's rule, while (2) \Rightarrow (1) and (3) \Rightarrow 
(1) are proved directly by instantiating L and P to the identity matrix. The implication
(1) \Rightarrow (2) follows from

sign(( - 1)iminor(L \cdot M, i)) = sign(det(L)) \cdot sign(( - 1)iminor(M, i)),

while (3) \leftrightarrow (4) is a consequence of the fact that permuting the columns of M is equivalent to
permuting the coordinates of the kernel vectors. The equivalence between (4) and (5) follows
from the definition of convex hull: the origin is in the interior of the convex hull of the column
vectors if and only if it can be written as a positive linear combination of these vectors. The
equivalence between (5) and (6) is obvious, and the equivalence between (5) and (7) follows
from Farkas' lemma.

Proposition 3.3. Assume that \scrA = \{ w1, . . . , wd+1\} is the set of vertices of a d-simplex in
\BbbR d, and consider the polynomial system with real coefficients

fi(X) =

d+1\sum 
j=1

CijX
wj , 1 \leq i \leq d.
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SPARSE SYSTEMS WITH MANY POSITIVE SOLUTIONS 627

The system f1(X) = \cdot \cdot \cdot = fd(X) = 0 has at most one nondegenerate positive solution and
it has one nondegenerate positive solution if and only if the d \times (d + 1) matrix C = (Cij) is
positively spanning.

Proof. Multiplying the system by X - wd+1 (which does not change the set of positive
solutions), we can assume without loss of generality that wd+1 = 0. Consider the monomial
map (X1, . . . , Xd) \rightarrow (Xw1 , . . . , Xwd) which bijects the positive orthant to itself. The map is
invertible since \scrA is affinely independent, and the inverse map transforms the system f1(X) =
\cdot \cdot \cdot = fd(X) = 0 into a linear system with C as its coefficient matrix. Then the statement
follows from Proposition 3.2: by part 4 of the proposition, the unique solution of the linear
system lies in the positive orthant if and only if C is positively spanning.

Consider now a set \scrA = \{ w1, . . . , wn\} \subset \BbbZ d, and assume that its convex hull is a full-
dimensional polytope Q. Let \Gamma be a triangulation of Q with vertices in \scrA . Assume that \Gamma 
is a regular triangulation, which means that there exists a convex function \nu : Q \rightarrow \BbbR which
is affine on each simplex of \Gamma but not affine on the union of two different facets of \Gamma (such
triangulations are sometimes called coherent or convex in the literature; see [7] for extensive
information on regular triangulations). We say that \nu , which is sometimes called the lifting
function, certifies the regularity of \Gamma . Let C be a d\times n matrix with real entries. This matrix
defines a map \phi : \scrA \rightarrow \BbbR d as in Theorem A by setting \phi (wi) to the ith column of C. We say
that C positively decorates a facet \tau = conv(wi1 , . . . , wid+1

) \in \Gamma if the d \times (d + 1) submatrix
of C given by the columns numbered by \{ i1, . . . , id+1\} is positively spanning. The associated
Viro polynomial system is

(3.1) f1,t(X) = \cdot \cdot \cdot = fd,t(X) = 0,

where t is a positive parameter and

fi,t(X) =

n\sum 
j=1

Cijt
\nu (wj)Xwj \in \BbbR [X1, . . . , Xd], i = 1, . . . , d.

The following result is a variation of the main theorem in [23]. There the number of real
roots of the system (3.1) is bounded below by the number of odd facets in \Gamma (facets with odd
normalized volume). Proposition 3.3 allows us to change that to a lower bound for positive
roots in terms of positively decorated simplices.

Theorem 3.4. Let \Gamma be a regular triangulation of \scrA = \{ w1, . . . , wn\} \subset \BbbZ d, and let C \in 
\BbbR d\times n. Then there exists t0 \in \BbbR + such that for all 0 < t < t0 the number of nondegenerate
positive solutions of the system (3.1) is bounded from below by the number of facets in \Gamma which
are positively decorated by C.

Proof. Let \tau 1, . . . , \tau m be the facets of \Gamma which are positively decorated by C. For all
\ell \in \{ 1, . . . ,m\} , the function \nu is affine on \tau \ell , and thus there exist \alpha \ell = (\alpha 1\ell , . . . , \alpha d\ell ) \in \BbbR d

and \beta \ell \in \BbbR such that \nu (x) = \langle \alpha \ell , x\rangle + \beta \ell for any x = (x1, . . . , xd) in the simplex \tau \ell . Set
Xt - \alpha \ell = (X1t

 - \alpha 1\ell , . . . , Xdt
 - \alpha d\ell ). Since \nu is convex and not affine on the union of two distinct

facets of \Gamma , we get

(3.2)
fi,t(Xt - \alpha \ell )

t\beta \ell 
= f

(\ell )
i (X) + r

(\ell )
i,t (X), i = 1, . . . , d,
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where f
(\ell )
i (X) =

\sum 
wj\in \tau \ell CijX

wj and r
(\ell )
i,t (X) is a polynomial, each of whose coefficients is

equal to a positive power of t multiplied by a coefficient of C. Since \tau \ell is positively decorated

by C, the system f
(\ell )
1 (X) = \cdot \cdot \cdot = f

(\ell )
d (X) = 0 has one nondegenerate positive solution z\ell by

Proposition 3.3. It follows that the system f
(\ell )
1 (X) + r

(\ell )
1,t(X) = \cdot \cdot \cdot = f

(\ell )
d (X) + r

(\ell )
d,t(X) = 0

has a nondegenerate solution close to z\ell for t > 0 small enough. More precisely, for all \varepsilon > 0,
there exists t\varepsilon ,\ell > 0 such that for all 0 < t < t\varepsilon ,\ell there exists a nondegenerate solution

z\ell ,t of f
(\ell )
1 (X) + r

(\ell )
1,t(X) = \cdot \cdot \cdot = f

(\ell )
d (X) + r

(\ell )
d,t(X) = 0 such that \| z\ell ,t  - z\ell \| < \varepsilon . Then

using (3.2) we get f1,t(z\ell ,tt
 - \alpha \ell ) = \cdot \cdot \cdot = fd,t(z\ell ,tt

 - \alpha \ell ) = 0. Now choose \varepsilon small enough so
that the balls of radius \varepsilon centered at z1, . . . , zm are contained in a compact set K \subset \BbbR d

>0.
Since the vectors \alpha \ell are distinct, there exists \tau > 0 such that for all 0 < t < \tau the sets
K \cdot t - \alpha \ell = \{ (X1t

 - \alpha 1\ell , . . . , Xdt
 - \alpha d\ell ) | (X1, . . . , Xd) \in K\} , \ell = 1, . . . ,m, are pairwise disjoint.

Set t0 = min(\tau , t\varepsilon ,1, . . . , t\varepsilon ,m). Then, for 0 < t < t0, each of these sets K \cdot t - \alpha \ell contains a
nondegenerate positive solution z\ell ,tt

 - \alpha \ell of the system (3.1).

4. Duality between regular and positively decorable complexes. In this section, we
study the two combinatorial properties on \Gamma that are needed in order to apply Theorem 3.4:
being (part of) a regular triangulation and having (many, hopefully all) positively decorated
simplices. As we will see, these properties turn out to be dual to one another. Our combina-
torial framework is that of pure, abstract simplicial complexes.

Definition 4.1. A pure abstract simplicial complex of dimension d on n vertices (abbrevi-
ated (n, d)-complex) is a finite set \Gamma = \{ \tau 1, . . . , \tau \ell \} , where for any i \in \{ 1, . . . , \ell \} , \tau i is a subset
of cardinality d+1 of [n] := \{ 1, . . . , n\} . The elements of \Gamma are called facets, and their number
(the number \ell in our notation) is the size of \Gamma . A subset of cardinality 2 of a facet is called
an edge of \Gamma .

Let \scrA = \{ w1, . . . , wn\} be a configuration of n points in \BbbR d (by which we mean an ordered
set; that is, we implicitly have a bijection between \scrA and [n]). An (n, d)-complex \Gamma is said
to be supported on \scrA if the simplices with vertices in \scrA indicated by \Gamma , together with all
their faces, form a geometric simplicial complex; see [17, Def. 2.3.5]. Typical examples of
(n, d)-complexes supported on point configurations are the boundary complexes of simplicial
(d + 1)-polytopes, or triangulations of point sets. The following definition and proposition
relate these two notions.

Definition 4.2. An (n, d)-complex \Gamma is said to be regular if it is isomorphic to a (perhaps
nonproper) subcomplex of a regular triangulation of some point configuration \scrA \subset \BbbR d.

Proposition 4.3. For a pure abstract simplicial complex \Gamma of dimension d, the following
properties are equivalent: (1) \Gamma is regular. (2) \Gamma is (isomorphic to) a proper subcomplex of
the boundary complex of a simplicial (d+ 1)-polytope P .

Proof. This is a well-known fact, the proof of which appears, e.g., in [10, sect. 2.3]. The
main tool to show the backwards statement (which is the harder direction) is as follows: let F
be a facet of P that does not belong to \Gamma , and let o be a point outside P but very close to the
relative interior of F . Project \Gamma towards o into F to obtain (part of) a regular triangulation of
a d-dimensional configuration in the hyperplane containing F . (This construction is usually
called a Schlegel diagram of P in F ).
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For \tau \in \Gamma a facet and C a coefficient matrix associated to the point configuration \scrA , we
let C\tau denote the d\times (d+ 1) submatrix of C whose columns correspond to the d+ 1 vertices
in \tau .

Definition 4.4. An (n, d)-complex \Gamma is positively decorable if there is a d\times n matrix C that
positively decorates every facet of \Gamma , that is, such that every submatrix C\tau corresponding to a
facet \tau \in \Gamma is positively spanning.

In this language, Theorem 3.4 says that if there is a regular and positively decorable
(n, d)-complex of size \ell , then \Xi d,n - d - 1 \geq \ell .

We now introduce a notion of complementarity for pure complexes. This notion is closely
related to matroid duality, and, in fact, our result that regularity and positive decorability are
exchanged by complementarity is an expression of that duality via its geometric (and oriented)
version: Gale duality.

Definition 4.5. Let \Gamma be an (n, d)-complex with facets \{ \tau 1, . . . , \tau | \Gamma | \} . We call it a comple-

ment complex of \Gamma and denote \Gamma the (n, n  - d  - 2)-complex with facets \{ \tau 1, . . . , \tau | \Gamma | \} , where
\tau i := [n] \setminus \tau i.

Lemma 4.6. An (n, d)-complex \Gamma is positively decorable if and only if its complement \Gamma is
a subcomplex of the boundary complex of an (n - d - 1)-polytope.

Proof. Recall that an (ordered) set of points \scrA = \{ w1, . . . , wn\} \in \BbbR n - d - 1 and an (ordered)
set of vectors \{ b1, . . . , bn\} \subset \BbbR d are Gale transforms of one another if the following (n - d)\times n
and d\times n matrices have orthogonally complementary row-spaces (that is, if the kernel of one
equals the row-space of the other):

\widetilde A =

\biggl( 
1 . . . 1
w1 . . . wn

\biggr) 
, C =

\bigl( 
b1 . . . bn

\bigr) 
.

Every set of points affinely spanning \BbbR n - d - 1 has a Gale transform (construct C by using as
rows a basis for the kernel of \widetilde A), and every set of vectors with

\sum 
bi = 0 has a Gale transform

(extend the vector (1, 1, . . . , 1) to a basis of the kernel of C).
By construction, Gale transforms have the property that a vector \lambda \in \BbbR n is the vector of

coefficients of a linear dependence of \{ b1, . . . , bn\} (kernel of C) if and only if it is the vector of
values of some affine functional on \{ w1, . . . , wn\} (row-space of \widetilde A). This implies the following
(see, e.g., [9, Thm. 1, p. 88]): a subset \tau \subset [n] of size d + 1 indexes a positively spanning
submatrix of C if and only if the polytope conv(w1, . . . , wn) has a facet containing exactly the
points \{ wi : i \not \in \tau \} (by a dimensionality argument, these points must then be vertices and the
facet be a d-simplex). Indeed, both things are equivalent to the existence of a unique (modulo
scalar) nonnegative \lambda with support equal to \tau in the kernel of C and the row-space of \widetilde A.

Now let \Gamma be an (n, d)-complex. If \Gamma is realized as a subcomplex of the boundary complex
of an (n - d - 1)-polytope P \subset \BbbR n - d - 1, there is no loss of generality in assuming P to be the
convex hull of the vertices of \Gamma . Let w1, . . . , wn be those vertices (together with wi arbitrarily
chosen in the interior of P if i \in [n] happens to not be used as a vertex in \Gamma ). Any matrix C
constructed as above positively decorates \Gamma .

Conversely, if a matrix C positively decorates \Gamma , then there is a nonnegative vector u\tau in
the kernel of C with support \tau for each facet \tau of \Gamma . Thus, \lambda =

\sum 
\tau \in \Gamma u\tau is also in the kernel
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of C and all its entries are strictly positive. Rescaling the columns of C by the entries of \lambda , we
get a new matrix that has (1, . . . , 1) in the kernel and still positively decorates \Gamma . The Gale
transform described above can then be applied and results in a set of points whose convex
hull P contains \Gamma as a subcomplex.

Corollary 4.7. Let \Gamma be an (n, d)-complex. Then the following hold:
1. If \Gamma is regular, then \Gamma is positively decorable.
2. If \Gamma is positively decorable, then \Gamma is either regular or the boundary complex of a

simplicial polytope. If the latter happens, then \Gamma minus a facet is regular.

The following examples illustrate the need to perhaps remove a facet in part 2 of the
corollary. A regular and positively decorable complex may not have a regular complement.

Example 4.8. Let \Gamma be the (2d, d)-complex formed by the boundary of a cross-polytope of
dimension d+1. Observe that \Gamma = \Gamma , which, by Lemma 4.6, implies \Gamma is positively decorable.
Yet, \Gamma is not regular since it is not a proper subcomplex of the boundary of a (d+1)-polytope.

Example 4.9. The complex \Gamma = \{ \{ 1, 2, 3, 4\} , \{ 2, 3, 4, 5\} , \{ 3, 4, 5, 6\} , \{ 1, 4, 5, 6\} , \{ 1, 2, 5, 6\} ,
\{ 1, 2, 3, 6\} \} is a proper subcomplex of the boundary of a cyclic 4-polytope. Its complement is
a cycle of length six, so \Gamma is regular and positively decorable, but \Gamma is not regular.

The following is the main consequence of Lemma 4.6.

Theorem 4.10. Let \Gamma be an (n, d)-complex.
1. If \Gamma is regular and positively decorable, then \Xi d,n - d - 1 \geq | \Gamma | and \Xi n - d - 2,d+1 \geq | \Gamma |  - 1.
2. If both \Gamma and \Gamma are regular, then \Xi d,n - d - 1 \geq | \Gamma | and \Xi n - d - 2,d+1 \geq | \Gamma | .
Proof. The fact that if \Gamma is regular and positively decorable then \Xi d,n - d - 1 \geq | \Gamma | is merely

a rephrasing of Theorem 3.4. The rest follows from Lemma 4.6.

Example 4.11. The inequality \Xi 1,k \geq k + 1 from Proposition 2.1 is a special case of The-
orem 4.10 since a path with k + 1 edges is regular and positively decorable (the decorating
matrix alternates 1's and  - 1's).

5. Relation to bipartite and balanced complexes. In this section, we relate regularity
and positive decorability to the following two familiar notions for pure simplicial complexes.

Definition 5.1. The adjacency graph of a pure simplicial complex \Gamma of dimension d is the
graph whose vertices are the facets of \Gamma , with two facets adjacent if they share d vertices. We
say \Gamma is bipartite if its adjacency graph is bipartite.

Definition 5.2 (see [22, sect. III.4]). A (d + 1)-coloring of an (n, d)-complex \Gamma is a map
\gamma : [n] \rightarrow [d + 1] such that \gamma (w1) \not = \gamma (w2) for every edge \{ w1, w2\} of \Gamma . If such a coloring
exists, \Gamma is called balanced.

Observe that two complement complexes \Gamma and \Gamma have the same adjacency graph. Thus, if
one is bipartite, then so is the other. The same is not true for balancedness: a cycle of length
six is balanced, but its complement (the complex \Gamma of Example 4.9) is not. For instance, the
simplices \{ 1, 2, 3, 4\} and \{ 2, 3, 4, 5\} are adjacent, which implies that 1 and 5 should get the
same color. But this does not work since \{ 1, 5\} is an edge.

Colorings are sometimes called foldings since they can be extended to a map from \Gamma to
the d-dimensional standard simplex which is linear and bijective on each facet of \Gamma . Similarly,
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balanced triangulations are sometimes called foldable triangulations; see, e.g., [13].
It is easy to show that orientable balanced complexes are bipartite. (For nonorientable

ones, the same is not true, as shown by the (9, 2)-complex \{ 123, 234, 345, 456, 567, 678,
789, 189, 129\} ). We here show that being positively decorable is an intermediate property.

Recall that an orientation of an abstract d-simplex \tau = \{ w1, . . . , wd+1\} is a choice of calling
``positive"" one of the two classes, modulo even permutations, of orderings of its vertices and
``negative"" the other class. For example, every embedding \varphi : \tau \rightarrow \BbbR d of \tau into d + 1 points
not lying in an affine hyperplane induces a canonical orientation of \tau by calling an ordering
w\sigma 1 , . . . , w\sigma d+1

positive or negative according to the sign of the determinant:\bigm| \bigm| \bigm| \bigm| \varphi (w\sigma 1) . . . \varphi (w\sigma d+1)

1 . . . 1

\bigm| \bigm| \bigm| \bigm| .
If \tau and \tau \prime are two d-simplices with d common vertices, then respective orientations of them

are called consistent (along their common (d - 1)-face) if replacing in a positive ordering of \tau 
the vertex of \tau \setminus \tau \prime by the vertex of \tau \prime \setminus \tau results in a negative ordering of \tau \prime . A pure simplicial
complex is called orientable if one can orient all facets in a manner that makes orientations
of all neighboring pairs of them consistent. In particular, every geometric simplicial complex
is orientable since its embedding in \BbbR d induces consistent orientations.

Observe that if we decorate a (geometric or abstract) d-complex \Gamma on n vertices with
a d \times n matrix C as we have been doing in the previous sections, then each facet inherits
a canonical orientation from C. When C positively decorates \Gamma , these orientations are ``as
inconsistent as can be.""

Proposition 5.3. Let (\Gamma , C) be a positively decorated pure simplicial complex. Then the
canonical orientations given by C to the facets of \Gamma are inconsistent along every common face
of two neighboring facets. In particular, if \Gamma is orientable (e.g., if \Gamma can be geometrically
embedded in \BbbR \mathrm{d}\mathrm{i}\mathrm{m}(\Gamma )) and positively decorable, then its adjacency graph is bipartite.

Proof. We need to check that the submatrices of C corresponding to two adjacent facets
\tau and \tau \prime , extended with a row of ones, have determinants of the same sign. Without loss of
generality, assume the matrices (without the row of ones) to be

M\tau =
\bigl( 
c1 . . . cd cd+1

\bigr) 
and M\tau \prime =

\bigl( 
c1 . . . cd c\prime d+1

\bigr) 
.

Since C positively decorates \tau and \tau \prime , and since minor(M\tau , d + 1) = minor(M\tau \prime , d + 1) =\bigm| \bigm| c1 . . . cd
\bigm| \bigm| , we get that all the signed minors ( - 1)iminor(M\tau , i) and ( - 1)iminor(M\tau \prime , i)

have one and the same sign. In particular, the determinants\bigm| \bigm| \bigm| \bigm| c1 . . . cd cd+1

1 . . . 1 1

\bigm| \bigm| \bigm| \bigm| and

\bigm| \bigm| \bigm| \bigm| c1 . . . cd c\prime d+1

1 . . . 1 1

\bigm| \bigm| \bigm| \bigm| 
have the same sign, so the orientations given to \tau and \tau \prime by C are inconsistent.

The last assertion is obvious: the positive decoration gives us orientations for the facets
that alternate along the adjacency graph, while orientability gives us one that is preserved
along the adjacency graph. This can only happen if every cycle in the graph has even length,
that is, if the graph is bipartite.
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1
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5
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1=6
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4

5

Figure 1. A two-dimensional simplicial complex whose adjacency graph is bipartite (left) and which is
positively decorable (right) but not balanced. The white triangle 134 is not part of the complex.

Proposition 5.4. Let ei be the ith canonical basis vector of \BbbR d, and let ed+1 = ( - 1, . . . , - 1).
Let \Gamma be a balanced (n, d)-complex with (d+ 1)-coloring \gamma : [n] \rightarrow [d+ 1]. Then the matrix C
with column vectors e\gamma (1), . . . , e\gamma (n) in this order positively decorates \Gamma .

Proof. By construction, every d\times (d+ 1) submatrix of C corresponding to a facet of \Gamma is
a column permutation of the d\times (d+1) matrix with column vectors e1, . . . , ed+1 in this order.
This latter matrix is positively spanning, so the statement follows from Proposition 3.2.

Propositions 5.3 and 5.4 imply the following.

Theorem 5.5. For orientable pure complexes (in particular, for geometric d-complexes in
\BbbR d), one has

balanced =\Rightarrow positively decorable =\Rightarrow bipartite.

None of the reverse implications is true, as the following two examples respectively show.

Example 5.6. The (7, 2)-complex of Figure 1 has a bipartite adjacency graph but is not
balanced. The right-hand side of the figure describes a positive decoration of the simplex.
Therefore, positively decorable simplicial complexes are not necessarily balanced.

Example 5.7. Let \Gamma be a graph consisting of two disjoint cycles of length four, and let \Gamma 
be its complement, which is an (8, 5)-complex. The adjacency graph of \Gamma , and hence that of
\Gamma , is bipartite, again consisting of two cycles of length four. On the other hand, since \Gamma is
positively decorable but not part of the boundary of a convex polygon, Lemma 4.6 tells us
that \Gamma is regular but not positively decorable (remark that \Gamma cannot be the whole boundary
of a simplicial 6-polytope since for that its adjacency graph would need to have degree six at
every vertex).

However, the relationship between balancedness and bipartiteness can be made an equiva-
lence under certain additional hypotheses. A pure simplicial complex \Gamma is called locally strongly
connected if the adjacency graph of the star of any face is connected. Locally strongly con-
nected complexes are sometimes called normal, and they include, for example, all triangulated
manifolds, with or without boundary. See, e.g., the paragraph after Theorem A in [16] for
more information on them. By results of Joswig [12, Prop. 6] and [12, Cor. 11], a locally
strongly connected and simply connected complex \Gamma on a finite set \scrA is balanced if and only
if its adjacency graph is bipartite; see also [11, Thm. 5]. In particular, we have the following.
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1

2

3

4

5
6

7

Figure 2. The balanced simplicial complex from Example 5.10.

Corollary 5.8. For simply connected triangulated manifolds (in particular, for triangula-
tions of point configurations), one has

balanced \Leftarrow \Rightarrow positively decorable \Leftarrow \Rightarrow bipartite.

We close this section by illustrating two concrete applications of Theorem 5.5.

Corollary 5.9. Assume that a finite full-dimensional point configuration \scrA in \BbbZ d admits a
regular triangulation, and let \Gamma be a balanced simplicial subcomplex of this triangulation. Let
\nu : \scrA \rightarrow \BbbR be a function certifying the regularity of the triangulation, and let \gamma : Vertices(\Gamma ) \rightarrow 
[d + 1] be a (d + 1)-coloring of \Gamma . Then, for t > 0 sufficiently small, the number of positive
solutions of the Viro polynomial system

(5.1)
\sum 

w\in \mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}(\Gamma )

t\nu (w)e\gamma (w)X
w = 0

is not smaller than the number of facets of \Gamma .

Example 5.10. Let d = 2, \scrA = \{ w1, . . . , w7\} , where w1 = (1, - 1), w2 = ( - 4, - 6), w3 =
( - 4, 4), w4 = (6, 0), w5 = (3, 6), w6 = (10, 5), and w7 = (6, - 6), Choosing heights \nu (w1) =
\nu (w2) = \nu (w3) = 0, \nu (w4) = 3, \nu (w5) = 5, \nu (w6) = 10, and \nu (w7) = 2 provides a regular
triangulation of \scrA which has the balanced simplicial subcomplex described in Figure 2. By
Corollary 5.9, the Viro polynomial system

X1X
 - 1
2  - X - 4

1 X4
2 + t5X3

1X
6
2  - t10X10

1 X5
2  - t2X6

1X
 - 6
2 = 0,

X - 4
1 X - 6

2  - X - 4
1 X4

2 + t3X6
1  - t10X10

1 X5
2  - t2X6

1X
 - 6
2 = 0

has at least six solutions in the positive orthant for t > 0 sufficiently small.

In particular, we recover the following result, contained implicitly in [20, Lem. 3.9] con-
cerning maximally positive systems.

We use the notation Vol( \cdot ) for the normalized volume, that is, d! times the Euclidean
volume in \BbbR d. A triangulation \Gamma of \scrA is called unimodular if for any facet \tau \in \Gamma we have
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Vol(\Gamma ) = 1. A polynomial system with support \scrA is called maximally positive if it has Vol(Q)
nondegenerate positive solutions, where Q is the convex hull of \scrA . By the Kushnirenko
theorem [15], if a system is maximally positive, then all its solutions in the complex torus
(\BbbC \setminus \{ 0\} )d lie in the positive orthant (0,\infty )d.

Corollary 5.11 (see [20]). Assume that \Gamma is a regular unimodular triangulation of a finite
set \scrA \subset \BbbZ d. Assume, furthermore, that \Gamma is balanced or, equivalently, that its adjacency
graph is bipartite. Let \nu : \scrA \rightarrow \BbbR be a function certifying the regularity of \Gamma , and let \gamma :
Vertices(\Gamma ) \rightarrow [d + 1] be a (d + 1)-coloring of \Gamma . Then, for t > 0 sufficiently small, the Viro
polynomial system (5.1) is maximally positive.

Proof. By Corollary 5.9, system (5.1) has at least Vol(Q) nondegenerate solutions in the
positive orthant for t > 0 small enough. On the other hand, it has at most Vol(Q) nondegen-
erate solutions with nonzero complex coordinates by the Kushnirenko theorem [15].

This result is also a variant of [23, Cor. 2.4], which, with the same hypotheses except
that of \Gamma being balanced, concludes that system (3.1) is ``maximally real"": it has Vol(Q)
nondegenerate solutions in (\BbbR \setminus \{ 0\} )d (and no other solution in (\BbbC \setminus \{ 0\} )d by the Kushnirenko
theorem).

6. A lower bound based on cyclic polytopes. This section is devoted to the construction
and analysis of a family of regular and positively decorable complexes obtained as subcom-
plexes of cyclic polytopes.

Definition 6.1. Let d and n > d+1 be two positive integers and a1 < a2 < \cdot \cdot \cdot < an be real
numbers. The cyclic polytope C(n, d+ 1) associated to (a1, . . . , an) is the convex hull in \BbbR d+1

of the points (ai, a
2
i , . . . , a

d+1
i ), i = 1, . . . , n.

The cyclic polytope C(n, d+1) is a simplicial (d+1)-polytope whose combinatorial struc-
ture does not depend on the choice of the real numbers a1, . . . , an. In particular, let us denote
by Cn,d the d-dimensional abstract simplicial complex on the vertex set [n] that forms the
boundary of C(n, d+ 1). One of the reasons why cyclic polytopes are important is that they
maximize the number of faces of every dimension among polytopes with a given dimension
and number of vertices. We are especially interested in the case of d odd, in which case the
complex is as follows.

Proposition 6.2 (see [7]). If d is odd, the facets in the boundary of the cyclic polytope
C(n, d+ 1) are of the form

\{ i1, i1 + 1, i2, i2 + 1, . . . , i d+1
2
, i d+1

2
+ 1\} 

with 1 \leq i1, i d+1
2

\leq n, and ij+1 > ij + 1 for all j. (If i d+1
2

= n, then i1 > 1 is required, and

vertex 1 plays the role of i d+1
2

+ 1). The number of them equals\biggl( 
n - (d+ 1)/2 - 1

(d+ 1)/2 - 1

\biggr) 
+

\biggl( 
n - (d+ 1)/2

(d+ 1)/2

\biggr) 
.

Unfortunately, not every proper subcomplex of Cn,d can be positively decorated (except
in trivial cases) since its adjacency graph is not bipartite.
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Example 6.3. The tetrahedra \{ 1, 2, 3, 4\} , \{ 1, 2, 4, 5\} , and \{ 2, 3, 4, 5\} form a 3-cycle in the
adjacency graph of C6,3.

We now introduce the bipartite subcomplexes of Cn,d in which we are interested. For the
time being, we assume both d + 1 = 2k and n = 2m to be even. If we represent any facet
\{ i1, i1+1, i2, i2+1, . . . , ik, ik+1\} of C2m,2k - 1 by the sequence \{ i1, . . . , ik\} (where the vertex 1
plays the role of ik+1 if ik = n, as happened in Proposition 6.2), we have a bijection between
facets of C2m,2k - 1 and stable sets of size k in a cycle of length 2m (recall that a stable set in
a graph is a set of vertices, no two of which are adjacent). Consider the (2k - 1)-dimensional
subcomplex S2m,2k - 1 of C2m,2k - 1 whose facets are the (2k - 1)-simplices \{ i1, . . . , ik\} such that
for all j \in [k - 1] either ij is odd or ij+1  - ij > 2, and such that either i1 \not = 2 or ik \not = n. That
is, we are allowed to take two consecutive pairs to build a simplex if both their ij 's are odd
but not if they are even. The adjacency graph of the subcomplex S2m,2k - 1 is bipartite since
the parity of i1 + \cdot \cdot \cdot + ik alternates between adjacent simplices.

Example 6.4. For n = 6 and d+ 1 = 4, we have

S6,3 = \{ \{ 1, 2, 3, 4\} , \{ 1, 2, 4, 5\} , \{ 1, 2, 5, 6\} , \{ 2, 3, 5, 6\} , \{ 3, 4, 5, 6\} , \{ 1, 3, 4, 6\} \} .

The tetrahedra are written so as to show that the adjacency graph is a cycle: each is adjacent
with the previous and next ones in the list.

In order to find out and analyze the number of facets in the simplicial complexes S2m,2k - 1,
we introduce the following graphs.

Definition 6.5. The comb graph on 2m vertices is the graph consisting of a path with m
vertices together with an edge attached to each vertex in the path. The corona graph with 2m
vertices is the graph consisting of a cycle of length m together with an edge attached to each
vertex in the cycle. Figure 3 shows the case m = 6 of both.

1 3 5 7 9 11

2 4 6 8 10 12
1

3

5
7

9

11

2

4

6

8

10

12

Figure 3. The comb graph (left) and the corona graph (right) on 12 vertices.

We denote by Dh,k (respectively, Fh,k) the number of matchings of size k in the comb
graph (respectively, the corona graph) with 2(h+ k) vertices. They form sequences A008288
and A102413 in the Online Encyclopedia of Integer Sequences [18]. The following table shows
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the first terms.

Dh,k Fh,k

k = 0 1 2 3 4 5 6 0 1 2 3 4 5 6

h = 0 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1
h = 1 : 1 3 5 7 9 11 13 1 4 6 8 10 12 14
h = 2 : 1 5 13 25 41 61 85 1 6 16 30 48 70 96
h = 3 : 1 7 25 63 129 231 377 1 8 30 76 154 272 438
h = 4 : 1 9 41 129 321 681 1289 1 10 48 154 384 810 1520
h = 5 : 1 11 61 231 681 1683 3653 1 12 70 272 810 2004 4334
h = 6 : 1 13 85 377 1289 3653 8989 1 14 96 438 1520 4334 10672

The numbers Dh,k are the well-known Delannoy numbers, which have been thoroughly
studied [1]. Besides matchings in the comb graph, Dh,k equals the number of paths from (0, 0)
to (h, k) with steps (1, 0), (0, 1), and (1, 1). The equivalence of the two definitions follows from
the fact that both satisfy the following recurrence, which can also be taken as a definition of
Dh,k:

Dh,0 = D0,k = 1 and Dh,k = Dh,k - 1 +Dh - 1,k +Dh - 1,k - 1 \forall i, j \geq 1.

The Delannoy numbers can also be defined by either of the formulas in (1.2).

Proposition 6.6.
| S2(h+k),2k - 1| = Fh,k = Dh,k +Dh - 1,k - 1.

In particular, Dh,k < | S2(h+k),2k - 1| < 2Dh,k.

Proof. To show that Fh,k = Dh,k +Dh - 1,k - 1, observe that the corona graph is obtained
from the comb graph by adding an edge between the first and last vertices of the path. We
call that edge the reference edge of the corona graph (the edge 1 --- 11 in Figure 3). Matchings
in the corona graph that do not use the reference edge are the same as matchings in the comb
graph and are counted by Dh,k. Matchings of size i using the reference edge are the same
as matchings of size i  - 1 in the comb graph obtained from the corona by deleting the two
end-points of the reference edge; this graph happens to be a comb graph with 2(h + k  - 2)
edges, so these matchings are counted by Dh - 1,k - 1.

To show that | S2(h+k),2k - 1| = Fh,k, let m = h+ k. Observe that each simplex in S2m,2k - 1

consists of k pairs (ij , ij + 1), j = 1, . . . , k, with the restriction that when ij is even, the
elements ij  - 1 and ij + 2 cannot be used. In the corona graph, pairs with ij odd correspond
to the spikes and pairs with ij even correspond to the cycle edge between two spikes, which
``uses up"" the four vertices of two spikes. This correspondence is clearly a bijection.

The last part follows from the previous two since

Dh,k < Dh,k +Dh - 1,k - 1 < 2Dh,k.

Example 6.7. Proposition 6.6 says that

| S10,5| = F2,3 = D2,3 +D1,2 = 25 + 5 = 30.

The following is the whole list of 30 simplices in S10,5. Each row is a cyclic orbit, obtained
from the first element of the row by even numbers of cyclic shifts. The first two rows, the
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next three rows, and the last row, respectively, correspond to matchings using 0, 1, or 2 edges
from the cycle in the pentagonal corona, respectively:

S10,5 = \{ \{ 1, 2, 3, 4, 5, 6\} , \{ 3, 4, 5, 6, 7, 8\} , \{ 5, 6, 7, 8, 9, 10\} , \{ 1, 2, 7, 8, 9, 10\} , \{ 1, 2, 3, 4, 9, 10\} ,
\{ 1, 2, 3, 4, 7, 8\} , \{ 3, 4, 5, 6, 9, 10\} , \{ 1, 2, 5, 6, 7, 8\} , \{ 3, 4, 7, 8, 9, 10\} , \{ 1, 2, 5, 6, 9, 10\} ,
\{ 1, 2, 3, 4, 6, 7\} , \{ 3, 4, 5, 6, 8, 9\} , \{ 1, 5, 6, 7, 8, 10\} , \{ 2, 3, 7, 8, 9, 10\} , \{ 1, 2, 4, 5, 9, 10\} ,
\{ 1, 2, 3, 4, 8, 9\} , \{ 1, 3, 4, 5, 6, 10\} , \{ 2, 3, 5, 6, 7, 8\} , \{ 4, 5, 7, 8, 9, 10\} , \{ 1, 2, 6, 7, 9, 10\} ,
\{ 1, 2, 4, 5, 7, 8\} , \{ 3, 4, 6, 7, 9, 10\} , \{ 1, 2, 5, 6, 8, 9\} , \{ 1, 3, 4, 7, 8, 10\} , \{ 2, 3, 5, 6, 9, 10\} ,
\{ 1, 2, 4, 5, 8, 9\} , \{ 1, 3, 4, 6, 7, 10\} , \{ 2, 3, 5, 6, 8, 9\} , \{ 1, 4, 5, 7, 8, 10\} , \{ 2, 3, 6, 7, 9, 10\} \} .

The symmetry Fh,k = Fk,h (apparent in the table and which follows from the symmetry
in the Delannoy numbers) implies that S2m,2k - 1 and S2m,2m - 2k - 1 have the same size. In fact,
they turn out to be complementary.

Theorem 6.8. Let S\prime 
2m,2k - 1 denote the image of S2m,2k - 1 under the following relabeling

of vertices: (1, 2, 3, 4, . . . , 2m  - 1, 2m) \mapsto \rightarrow (2, 1, 4, 3, . . . , 2m, 2m  - 1). (That is, we swap the
labels of i and i + 1 for every odd i.) Then S\prime 

2m,2k - 1 is the complement of S2m,2m - 2k - 1. In
particular, S2m,2k - 1 is positively decorable for all k and regular for k \geq 2.

Proof. Consider the following obvious involutive bijection \rho between matchings of size k
and matchings of size m - k in the corona graph: for a given matching M , let \rho (M) have the
same edges of the cycle as M and the complementary set of (available) spikes. Remember
that once a matching has decided to use i edges of the cycle, there are m - 2i spikes available,
of which M uses k - i and \rho (M) uses the other m - k - i. The relabeling of the vertices makes
that, for each odd i, if the facet of S2m,2k - 1 corresponding to M uses the pair of vertices i+1
and i+2, then in the facet corresponding to \rho (M) we are using the complement set from the
four-tuple \{ i, i+ 1, i+ 2, i+ 3\} (except they have been relabeled to i+ 1 and i+ 2 again).

Since the complex S2m,2k - 1 is a subset of the boundary of the cyclic polytope and a proper
subset for k \geq 2, it is regular and positively decorable.

Corollary 6.9. For every h, k \in \BbbZ with h > 0, k > 1, one has

\Xi 2k,2h \geq \Xi 2k - 1,2h \geq Fh,k \geq Dh,k.

Proof. The first inequality follows from Remark 2.2. The middle inequality is a direct
consequence of Theorems 6.8 and 4.10 since S2(k+h),2k - 1 is regular and positively decorable.
The last inequality follows from Proposition 6.6.

Remark 6.10. The above result is our tightest bound for \Xi d,k when d is odd and k even.
For other parities, we can proceed as follows:

\bullet We define S2m - 1,2k - 1 to be the deletion of vertex 2m in S2m,2k - 1. That is, we remove
all facets that use vertex 2m.

\bullet We define S2m - 1,2k - 2 to be the link of vertex 2m in S2m,2k - 1. That is, we keep facets
that use vertex 2m but remove vertex 2m in them.

Clearly, | S2m,2k - 1| = | S2m - 1,2k - 1| + | S2m - 1,2k - 2| . Also, since deletion in the complement
complex is the complement of the link, we still have that S2m - 1,2k - 1 and S2m - 1,2m - 2k - 2

are complements to one another. Moreover, since S2m,2k - 1 has a dihedral symmetry acting
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transitively on vertices and since each facet has a fraction of k/m of the vertices, we have that

| S2m - 1,2k - 1| =
m - k

m
| S2m,2k - 1| and | S2m - 1,2k - 2| =

k

m
| S2m,2k - 1| .

This, along with Corollary 6.9, implies

\Xi 2i - 1,2j - 1 \geq 
j

i+ j
Fi,j and \Xi 2i,2j \geq 

i+ 1

i+ j + 1
Fi+1,j .

For \Xi 2i,2j - 1, we can say that

\Xi 2i,2j - 1 \geq \Xi 1,1 \cdot \Xi 2i - 1,2(j - 1) \geq 2Fi,j - 1.

For example, we have that

(6.1) \Xi d,d \geq | S2d+1,d| =

\left\{     
1
2 | S2d+2,d| if d is odd,

d/2+1
d+1 | S2d+2,d+1| if d is even.

The following table shows the lower bounds for \Xi d,d obtained from this formula, which form
sequence A110110 in the Online Encyclopedia of Integer Sequences [18].

d 1
2 | S2d+2,d| d/2+1

d+1 | S2d+2,d+1| | S2d+1,d| 
1 1

24 = 2

2 2
36 = 4

3 1
216 = 8

4 3
530 = 18

5 1
276 = 38

6 4
7154 = 88

7 1
2384 = 192

8 5
9810 = 450

9 1
22004 = 1002

7. Comparison of our bounds with previous ones. In order to derive asymptotic lower
bounds on \Xi d,k, we now look at the asymptotics of Delannoy numbers.

Proposition 7.1. For every i, j \in \BbbZ >0, we have

lim
n\rightarrow \infty 

(Fin,jn)
1/n = lim

n\rightarrow \infty 
(Din,jn)

1/n =

\Biggl( \sqrt{} 
i2 + j2 + j

i

\Biggr) i\Biggl( \sqrt{} 
i2 + j2 + i

j

\Biggr) j

.

Proof. The first equality follows from Proposition 6.6. For the second one, since we have

Di,j =

\mathrm{m}\mathrm{i}\mathrm{n}\{ i,j\} \sum 
\ell =0

2\ell 
\biggl( 
i

\ell 

\biggr) \biggl( 
j

\ell 

\biggr) 
,
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we conclude that

lim
n\rightarrow \infty 

(Din,jn)
1/n = lim

n\rightarrow \infty 

\biggl( 
2\ell 
\biggl( 
in

\ell 

\biggr) \biggl( 
jn

\ell 

\biggr) \biggr) 1/n

,

where \ell = \ell (n) \in [0,min\{ in, jn\} ] is the integer that maximizes f(\ell ) := 2\ell 
\bigl( 
in
\ell 

\bigr) \bigl( 
jn
\ell 

\bigr) 
. To find \ell ,

we observe that
f(\ell )

f(\ell  - 1)
=

2(in - \ell )(jn - \ell )

\ell 2
=

2(i - \alpha )(j  - \alpha )

\alpha 2
,

where \alpha := \ell /n. Since this quotient is a strictly decreasing function of \alpha and since we can
think of \alpha \in [0,min\{ i, j\} ] as a continuous parameter (because we are interested in the limit
n \rightarrow \infty ), the maximum we are looking for is attained when this quotient equals 1. This
happens when

(7.1) \alpha 2 = 2(i - \alpha )(j  - \alpha ),

which implies that

(7.2) \alpha = i+ j  - 
\sqrt{} 

i2 + j2.

(We here take a negative sign for the square root since \alpha = i + j +
\sqrt{} 
i2 + j2 > min\{ i, j\} 

is not a valid solution.) We then just need to plug \ell = \alpha n in 2\ell 
\bigl( 
in
\ell 

\bigr) \bigl( 
jn
\ell 

\bigr) 
and use Stirling's

approximation:\biggl( 
2\alpha n
\biggl( 
in

\alpha n

\biggr) \biggl( 
jn

\alpha n

\biggr) \biggr) 1/n

\sim 
\biggl( 

2\alpha n(in)in(jn)jn

(\alpha n)\alpha n((i - \alpha )n)(i - \alpha )n(\alpha n)\alpha n((j  - \alpha )n)(j - \alpha )n

\biggr) 1/n

=
2\alpha iijj

\alpha 2\alpha (i - \alpha )i - \alpha (j  - \alpha )j - \alpha 

(\ast )
=

2\alpha iijj

(2(i - \alpha )(j  - \alpha ))\alpha (i - \alpha )i - \alpha (j  - \alpha )j - \alpha 

=

\biggl( 
i

i - \alpha 

\biggr) i\biggl( j

j  - \alpha 

\biggr) j

(\ast \ast )
=

\Biggl( 
i\sqrt{} 

i2 + j2  - j

\Biggr) i\Biggl( 
j\sqrt{} 

i2 + j2  - i

\Biggr) j

=

\Biggl( \sqrt{} 
i2 + j2 + j

i

\Biggr) i\Biggl( \sqrt{} 
i2 + j2 + i

j

\Biggr) j

.

In equalities (*) and (**), we have used (7.1) and (7.2), respectively.

Theorem 7.2. For every d, k \in \BbbZ >0,

lim
n\rightarrow \infty 

(\Xi dn,kn)
1/n \geq 

\Biggl( \surd 
d2 + k2 + k

d

\Biggr) d
2
\Biggl( \surd 

d2 + k2 + d

k

\Biggr) k
2

.
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Proof. By Corollary 6.9 and Proposition 7.1,

lim
n\rightarrow \infty 

(\Xi dn,kn)
1/n \geq lim

n\rightarrow \infty 

\Bigl( 
D kn

2
, dn
2

\Bigr) 1/n
\geq 

\Biggl( \surd 
d2 + k2 + k

d

\Biggr) d
2
\Biggl( \surd 

d2 + k2 + d

k

\Biggr) k
2

.

Recall from Theorem 2.4 that for every pair (d, k) the limit limn\rightarrow \infty \Xi dn,kn
1/(dn+kn) exists

and depends only on the ratio d/k. Moreover, this limit coincides with the value at d
d+k of the

function \alpha \mapsto \rightarrow \xi \alpha ,1 - \alpha = limn\rightarrow \infty (\Xi \lfloor \alpha n\rfloor ,\lfloor (1 - \alpha )n\rfloor )
1/n \in [1,\infty ] defined over (0, 1) (see section 2).

Theorem 7.2 translates to the following.

Corollary 7.3. For every \alpha , \beta > 0,

\xi \alpha ,\beta \geq 

\Biggl( \sqrt{} 
\alpha 2 + \beta 2 + \beta 

\alpha 

\Biggr) \alpha 
2(\alpha +\beta )

\Biggl( \sqrt{} 
\alpha 2 + \beta 2 + \alpha 

\beta 

\Biggr) \beta 
2(\alpha +\beta )

.

For example, taking d = k, the statement above gives

\xi 1/2,1/2 = lim
d\rightarrow \infty 

(\Xi d,d)
1/2d \geq (

\surd 
2 + 1)1/2 \approx 1.5538 . . . .

This bound is worse than the one coming from \Xi 2,2 \geq 7 (see Proposition 2.1), which
implies that (\Xi d,d)

1/2d \geq 71/4 \approx 1.6266. But Corollary 7.3 gives meaningful (and new) bounds
for a large choice of d/k or, equivalently, of \alpha \in (0, 1). For example, taking k = 2d, the
statement above gives

\xi 1/3,2/3 = lim
d\rightarrow \infty 

(\Xi d,2d)
1/3d \geq 

\Biggl( \sqrt{} 
22 + 10

\surd 
5

2

\Biggr) 1/3

\approx 1.4933 . . .

and the same bound is obtained for \xi 2/3,1/3 = limd\rightarrow \infty (\Xi 2d,d)
1/3d.

For better comparison, Figure 4 graphs the lower bound for \xi \alpha ,1 - \alpha given by Corollary 7.3.
The red dots are the lower bounds obtained from the previously known values \Xi 2,2 \geq 7 and
\Xi d,1 = \Xi 1,d = d+ 1.

Since the function \alpha \mapsto \rightarrow \xi \alpha ,1 - \alpha is log-concave (Proposition 2.5), it is a bit more convenient
to plot the logarithm of \xi \alpha ,1 - \alpha ; in such a plot, we can take the upper convex envelope of
all known lower bounds for \xi and get a new lower bound. This is done in Figure 5, where
the black dashed segments show that the use of Corollary 7.3 produces new lower bounds for
\xi \alpha ,1 - \alpha whenever \alpha \in (0.2, 0.8).

Remark 7.4. Our results are stated asymptotically, but one can also compute explicit
examples where the bound of Corollary 6.9 gives systems with more solutions than was pre-
viously achievable. For example, for d = 115 and k = 264, the maximum number of roots
obtainable combining the results in Proposition 2.1 is 2.008 \cdot 1062, while Corollary 6.9 gives
4.073 \cdot 1062.
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Figure 4. The lower bound for \xi \alpha ,1 - \alpha coming from Theorem 7.2 (blue curve) versus the ones coming from
\Xi 2,2 \geq 7 and \Xi d,1 = \Xi 1,d = d+ 1 (red dots).

Figure 5. The different lower bounds for log \xi \alpha ,1 - \alpha , \alpha \in (0, 1). The red line is the best previously known
lower bound using Proposition 2.1 and log-concavity. Our lower bound (blue curve) is above the previously
known ones for \alpha \in [0.2434, 0.3659]. This range can be extended to \alpha \in [0.2, 0.8] using log-concavity (dashed
lines).
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8. Limitations of the polyhedral method. We finish the paper with an analysis of how
far our methods could possibly be taken. For this, let us denote by Rd,k the maximum size
(i.e., the maximum number of facets) of a regular (d - 1)-complex on d+ k vertices such that
its complement is also regular. Part 2 of Theorem 4.10 says that

\Xi d,k \geq Rd+1,k,

and our main result in section 6 was the use of this inequality to provide new lower bounds
for \Xi d,k. Observe that either Rd,k or Rd,k  - 1 equals the maximum size of a regular positively
decorable complex (Corollary 4.7).

Remark 8.1. Our shift on parameters for Rd,k is chosen to make it symmetric in k and d:
Rd,k = Rk,d.

The inequality \Xi d,k \geq Rd+1,k is certainly not an equality, as the following table of small
values shows:

Rd+1,k \Xi d,k

d\setminus k 1 2 3 4

0 1 1 1 1
1 1 3 4 5
2 1 4 7 8
3 1 5 8 \geq 16

d\setminus k 1 2 3 4

0
1 2 3 4 5
2 3 \geq 7
3 4

The values of \Xi come from Proposition 2.1 and those of R come from the following:
\bullet R1,k = Rk,1 = 1 is obvious: a regular 0-dimensional complex can only have one point.
\bullet R2,k = Rk,2 = k + 1 since the largest regular 1-complex with 2 + k vertices is a path

of k + 1 edges, and its complement is regular too (Example 4.11).
\bullet R3,k \leq 2k+1 follows from the fact that a triangulated 2-ball with k+3 vertices has at

most 2k + 1 triangles (with equality if and only if its boundary is a 3-cycle). On the
other hand, it is easy to construct a balanced 3-polytope with k+ 3 vertices for every
k \not \in \{ 1, 2, 4\} : for odd k, consider the bipyramid over a (k + 1)-gon; for even k, glue
an octahedron into a facet of the latter. This shows that R3,k = 2k + 1 for all such k
(but R3,4 = 8 instead of 9 since no balanced 3-polytope on 7 vertices exists; the best
we can do is a double pyramid over a path of length four).

\bullet R4,4 \geq 16 follows from the complex S8,3 of size F2,2 = 16.
It is easy to prove analogues of (2.2) and (2.3) for R. Assume for simplicity that both d

and k are even and that d \leq k. Then, by Proposition 6.6,

Rd,k \geq | Sd+k,d - 1| = Fd/2,k/2 \geq Dd/2,k/2 \geq 
\biggl( d+k

2
d
2

\biggr) 
,

where the last inequality comes from taking the summand \ell = 0 in (1.2). For k = d, this
recovers (2.4) (modulo a sublinear factor) since

\bigl( 
d

d/2

\bigr) 
\in \Theta (2d/

\surd 
d). More generally, using

Stirling's approximation, we get

Rd,k \geq 
\biggl( d+k

2
d
2

\biggr) 
\sim 

d,k\rightarrow \infty 

\biggl( 
d+ k

k

\biggr) k/2\biggl( d+ k

d

\biggr) d/2
\sqrt{} 

d+ k

\pi kd
.
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Figure 6. The lower bound for \xi \alpha ,1 - \alpha coming from Theorem 7.2 (blue curve) versus the ones coming from
\Xi 2,2 \geq 7 and \Xi d,1 = \Xi 1,d = d + 1 (red dots). The green curve, coming from the upper bound theorem for
polytopes, is the limit of the lower bounds that could possibly be produced with our method.

For constant d and big k, we can approximate
\bigl( 
d+k
k

\bigr) k/2 \simeq ed/2 so that

Rd,k \geq ed/2\surd 
\pi d

\biggl( 
k

d
+ 1

\biggr) d/2

.

This, except for the constant factor and for the exponent d/2 instead of d, is close to (2.2).
Doing the same for constant k and big d gives the analogue of (2.3).

Similarly, one has
Rd+d\prime ,k+k\prime \geq Rd,kRd\prime ,k\prime 

(the analogue of part 1 in Proposition 2.1) since the join of regular complexes is regular and
the complement of a join is the join of the complements.

Regarding upper bounds, since the number of facets of a regular complex cannot exceed
that of a cyclic polytope, we have that

R2d,2k \leq | C2d+2k,2d - 1| =
\biggl( 
2k + d

d

\biggr) 
+

\biggl( 
2k + d - 1

d - 1

\biggr) 
,

so that, by using Stirling's formula, we get

lim
n\rightarrow \infty 

R2dn,2kn
1/(2dn+2kn) \leq 

\biggl( 
d+ 2k

2k

\biggr) k
d+k
\biggl( 
d+ 2k

d

\biggr) d
2(d+k)

.

Figure 6 shows this upper bound (green line) together with the lower bounds from Figure 4
(blue line and red dots). There are many red dots above the green line, meaning that the
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upper bound for R is smaller than the lower bound for \Xi . For example, for the case d = k,
we have that

(Rd,d)
1/d \leq 3

\surd 
3/2 \approx 2.598 < 2.6458 \approx 71/2 \leq (\Xi d,d)

1/d.
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