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Deep learning-based computer vision systems have become powerful tools for automated and cost-
effective pavement distress detection, essential for efficient road maintenance. Current methods 
focus primarily on developing supervised learning architectures, which are limited by the scarcity of 
annotated image datasets. The use of data augmentation with synthetic images created by generative 
models to improve these supervised systems is not widely explored. The few studies that do focus on 
generative architectures are mostly non-conditional, requiring extra labeling, and typically address 
only road crack defects while aiming to improve classification models rather than object detection. 
This study introduces AsphaltGAN, a novel class-conditional Generative Adversarial Network with 
attention mechanisms, designed to augment datasets with various rare road defects to enhance object 
detection. An in-depth analysis evaluates the impact of different loss functions and hyperparameter 
tuning. The optimized AsphaltGAN outperforms state-of-the-art generative architectures on public 
datasets. Additionally, a new workflow is proposed to improve object detection models using synthetic 
road images. The augmented datasets significantly improve the object detection metrics of You Only 
Look Once version 8 by 33.0%, 3.8%, 46.3%, and 51.8% on the Road Damage Detection 2022 dataset, 
Crack Dataset, Asphalt Pavement Detection Dataset, and Crack Surface Dataset, respectively.

Keywords  Conditional generative model, Minor asphalt defect recognition, Data augmentation, Object 
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As essential elements of civil infrastructure, asphalt pavements undergo degradation over time due to heavy 
traffic, unpredictable weather, poor construction practices, sub-optimal material quality, and inadequate 
maintenance1. The degradation of road conditions leads to the emergence of surface defects like cracks or 
potholes that worsen over time. Then, regular pavement inspection and proactive maintenance are crucial for 
ensuring driving safety and serviceability2. In fact, effective identification of asphalt pavement defects and timely 
maintenance measures at an early stage can significantly reduce economic expenditure and carbon emissions3.

In recent years, the advancement of deep learning algorithms applied to computer vision tasks has attracted 
great attention in civil engineering, specifically in the field of automatic asphalt pavement distress recognition4. 
The advent of modern, cost-effective vehicle-mounted cameras and advancements in technological infrastructure 
have spurred research into computer-aided visual inspection techniques. The investigation focuses on three 
computer vision applications mainly using deep convolutional neural networks-based models: classification, 
segmentation, and object detection. Classification assigns a single label to the entire image, segmentation 
provides pixel-level classification, and object detection combines location of multiple defects (bounding boxes) 
and their categories (distress types).

Computer vision-based studies primarily concentrate on identifying common or most encountered types 
of asphalt road surface cracks (e.g., longitudinal, transverse, block, or alligator). However, the performance of 
deep learning-based algorithms is constrained by the limited ability to detect minor defects, which are also 
significant for road maintenance5. Concerning asphalt road damage detection, the more serious the distress, the 
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more difficult to collect the data. For instance, potholes, a prominent and severe road distress, are challenging to 
collect as they tend to be promptly repaired6. Also, sealed cracks are not usually analysed, and their recognition 
is crucial because they prevent water infiltration, which, when left unattended, can lead to structural damage and 
and a reduction in road service life7. There are also less common cracks, such as isolated cracks with diagonal/
oblique and irregular geometry, often overlooked in research but are essential to address before their severity 
escalates. The initial challenge lies in identifying these minor defects to improve the robustness of detection 
models.

In real-world civil engineering scenarios, obtaining high-quality annotated large-scale data for long-tail 
defects is often challenging8. Deep learning-based classification, segmentation, and object detection algorithms 
are inherently data-driven, requiring balanced and sufficient data for optimal performance. Most studies 
propose complex architectures for pavement crack recognition, such as OUR-Net9 or RHACrackNet10, but they 
do not consider the importance of having a large volume of diverse, high-quality data. These limitations pose 
challenges in engineering practice, particularly in reducing overfitting and enhancing recognition11. A potential 
solution to these challenges is data augmentation, which can amplify the representation of rare asphalt pavement 
distresses. Traditional methods, such as affine transformations12 (e.g., rotation or translation), are effective for 
datasets with balanced distributions but may only add minor artifacts to existing images without introducing 
new perspectives or content, thereby limiting intra-class diversity for tail images13. In contrast, generative 
models offer the capability to generate entirely new data that closely resembles the probability distribution of real 
images, surpassing traditional methods14. However, there is limited research focusing on applying generative 
models for synthetic data augmentation to improve supervised models, particularly in the context of object 
detection. In the following, an analysis of the current state-of-the-art will be conducted.

The most widely used generative architectures in the field of asphalt defect synthesis are Variational 
Autoencoders (VAE)15 and Generative Adversarial Networks (GAN)16. The VAE uses an encoder network to 
map data to a latent space and a decoder to generate data from the latent space. A GAN consists of a generator 
network that produces fake data and a discriminator that distinguishes between real and generated data. Multiple 
enhanced GAN variants have been investigated such as Deep Convolutional GAN (DCGAN)17, Wasserstein 
GAN (WGAN)18, WGAN with Gradient Penalty (WGAN-GP)19, Progressive GAN (PG-GAN)20, super-
resolution GAN (SRGAN)21, conditional GAN (cGAN)22, and cycle-consistent GAN (CycleGAN)23.

Mazzini et al.24 addressed the challenge of obtaining costly semantic segmentation ground truths by proposing 
a WGAN-GP-based method for augmenting datasets in semantic segmentation. Also, an iterative image retrieval 
system was proposed to match real images. Similarly, a method called ConnCrack25 was proposed by exploring 
a WGAN. The generator of WGAN was designed to produce crack connectivity maps, while the discriminator 
checked if the maps and the original patch, were a real or a fake pair. Zhang et al.26 proposed CrackGAN, a 
DCGAN trained with crack ground truth patches. The augmented dataset proved to improve the segmentation 
performance of an asymmetrical U-Net. Gao et al.27 implemented a DCGAN with Leaf-Bootstrapping to 
generate synthetic frames to enhance a classification system. The LB method improves GAN performance by 
minimizing intra-class variation, allowing the generation of higher-quality images and ensuring better training 
stability. Pei et al.28 trained a VAE encoder and utilized its pre-trained encoder to generate a feature map, which 
was then connected with DCGAN. DCGAN was employed to generate localized crack images. The effectiveness 
of the augmented dataset was validated through an image classification task. Maeda et al.6 examined a PG-GAN 
to generate local synthetic images of potholes. Subsequently, larger defect-free road images were merged with the 
generated potholes, manually using Poisson blending, to improve object detection algorithm. Sim et al.29 utilized 
an SRGAN for upscaling smaller images and implemented a semi-supervised learning approach based on an 
encoder-decoder architecture to enhance crack segmentation. Salaudeen et al.30 proposed an enhanced SRGAN, 
trained with bounding-box pothole croppings to enlarge the dataset and improve pothole detection. The 
synthetic samples were hand-labelled and then, validated using YOLOv5 and EfficientDet. Chen et al.31 and Hou 
et al.32 suggested augmenting high-texture asphalt pavement using WGAN-GP architectures and expanded data 
for binary pavement texture image classification. Xu et al.33 introduced a DCGAN to generate synthetic crack 
images from cropped drone frames and augmented the dataset for crack classification using a VGG16-based 
network. Analogously, Que et al.3 developed a DCGAN to augment a crack-based dataset to enhance pavement 
distress classification. Song et al.34 proposed a CycleGAN to create shadowed images of pavement cracks. The 
approach was validated with U-Net trained with enlarged dataset, in terms of binary segmentation. Liu et al.35 
explored a lightweight DCGAN incorporating squeeze-and-expand, multi-scale, and depth-wise modules 
for augmenting cracks and other defect types (pothole, patch, background). The effectiveness was validated 
through a classification task. Xu et al.5 trained DCGAN to generate segmentation masks for various distress 
types (pothole, sealed crack, crack, distress-free). These masks and distress-free images were used to train a 
VAE concatenated with a discriminator to produce merged images. Zhang et al.13 developed a DCGAN to create 
synthetic images, enhancing binary crack segmentation performance with a self-attention U-Net. Likewise, Pan 
et al.36 introduced CrackSegAN, employing a U-Net-based generator and convolutional neural network-based 
discriminator for binary crack segmentation. Shim et al.37 proposed CrackGen, a cGAN that generates synthetic 
images from semantic masks to enhance crack segmentation systems. However, it is limited by the manual 
creation of these masks for image generation. In38, Gao et al. introduce a balanced semi-supervised GAN (BSS-
GAN). The BSS-GAN combines the strengths of semi-supervised learning, which allows the model to learn from 
both labeled and unlabeled data, and a balanced-batch sampling technique, ensuring that each training batch 
includes an equal representation of all classes.

As a result of this literature review, several gaps emerge. Current generative model-based research has 
primarily focused on variants of GANs, enhancing segmentation and classification models, neglecting object 
detection. Classification methods may overlook multiple defects and lose context when applied to cropped 
patches. Segmentation techniques, while capable of identifying multiple defects, are computationally intensive 
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and require extensive manual annotation. Binary segmentation, the most explored approach, fails to provide 
detailed distress class information critical for effective road maintenance strategies. Moreover, non-conditional 
generative systems dominate, posing challenges due to labor-intensive labeling of synthetic samples limiting 
their applicability in road maintenance. Additionally, as mentioned earlier, while typical cracks have received 
significant research attention, less prevalent defects that still cause significant damage remain relatively 
unexplored.

To tackle these challenges, this research introduces a novel attention-guided, class-conditional Generative 
Adversarial Network named AsphaltGAN. This enhanced generative system incorporates multiple attention 
mechanisms to synthesize minor defects such as potholes, sealed cracks, diagonal, and irregular cracks from 
labels (minor distress types). The synthetic images are generated without requiring additional labeling efforts 
and are utilized to improve an object detection system. The main contributions are as follows: 

	1.	� This study designs and optimizes a novel generative model, AsphaltGAN, which is class-conditioned and en-
hanced with multiple attention mechanisms, capable of generating high-quality images of rare road defects 
that are underrepresented in the current state-of-the-art. Additionally, this model alleviates the challenges 
associated with image collection and addresses the costly relabeling issues commonly encountered with syn-
thetic images in existing architectures.

	2.	� AsphaltGAN improves upon state-of-the-art generative models by enhancing visual inspection quality, in-
creasing image quality assessment (IQA) metrics, and strengthening class-conditioning capabilities for gen-
erating images of rare road defects.

	3.	� Developed an end-to-end, label-efficient workflow for augmenting object detection datasets, specifically ad-
dressing object detection tasks that are less commonly studied compared to classification or segmentation. 
This approach demonstrates validated improvements in detection efficiency across multiple benchmark da-
tasets.The rest of the paper is organized as follows. “Methods” introduces AsphaltGAN and the improved 
object detection workflow. “Datasets” briefly presents the benchmark datasets, and “Performance metrics” 
introduces the used IQA and object detection metrics. “Experimental results and analysis” depicts the main 
outcomes. The paper is concluded in “Conclusions & future scope”.

Methods
Attention-guided class-conditional generative adversarial networks
The GAN architecture consists of two primary networks: the generator and the discriminator16. The generator, 
which usually employs a noise vector sampled from a Gaussian distribution, creates synthetic images. The 
discriminator, acting as a binary classifier, evaluates these synthetic images alongside real ones to determine their 
authenticity. Both the generator and the discriminator are commonly implemented using convolutional neural 
networks. Key challenges in training GANs include maintaining stability, preventing mode collapse (which leads 
to a lack of sample diversity), managing sensitivity to hyperparameters, and addressing issues related to an 
unconditioned workflow. The proposed generative model will be compared with the following state-of-the-art 
models: cGAN22, DCGAN17, and WGAN-GP19.

cGANs are an advanced form of GANs that incorporate additional information, such as specific types of 
asphalt distress, into both the generator and discriminator models. This conditional data helps to direct the 
generation process, thereby eliminating the need to label the generated images. However, while addressing one 
of the limitations of traditional GANs, cGANs present a new challenge known as label leakage. This occurs when 
information from the conditioning data unintentionally influences the generated samples, which can result in 
the model overfitting to the training data or limiting its ability to generalize to new, unseen data.

The WGAN is a GAN variant that uses the Wasserstein-1 distance as its loss function, resulting in more stable 
and efficient training. WGANs converge faster and are less sensitive to hyperparameters, making them easier 
to train. WGANs do not require careful balancing between the generator and discriminator, nor a meticulous 
architectural design, and they reduces mode collapse. WGAN employs weight clipping to maintain the Lipschitz 
constraint in the discriminator, preventing overfitting. In WGAN-GP, weight clipping is replaced by a Gradient 
Penalty (GP), further enhancing quality and stability. However, these networks lack class-conditioning, 
necessitating additional annotation after data augmentation.

DCGAN is an enhanced version of GAN with specific architectural improvements to address issues like 
noisy image generation and training instability. Key features of DCGAN include: (a) replacing pooling layers 
with strided convolutions in the discriminator and fractional-strided convolutions in the generator, (b) applying 
batch normalization in both the generator and discriminator, (c) eliminating fully connected hidden layers, 
(d) using Rectified Linear Unit (ReLU) activations in all generator layers except for the output, which uses 
hyperbolic tangent (Tanh), and (e) employing Leaky ReLU activations in all discriminator layers. DCGAN does 
not support class-conditioning, so additional labeling is required after data augmentation.

The architecture of AsphaltGAN, illustrated in Fig. 1, introduces a novel symmetric design incorporating 
distinct attention mechanisms and defect-type conditionality. The generator accepts two inputs: fake labels and 
a noise/latent vector. Fake labels, sampled from a uniform distribution with values between 0 and 3, correspond 
to four types of minor defects. These labels are converted to dense vectors via an embedding layer and reshaped 
to the desired size. The noise vector, generated from a Gaussian distribution, is also passed through dense and 
reshaping layers. Both vectors, dimensions 8 × 8 × 1 for labels and 8 × 8 × 128 for noise, are concatenated 
into a tensor of 8 × 8 × 129, which then undergoes a self-attention mechanism to preserve feature integrity. 
The concatenated tensor passes through four identical blocks, each containing a convolutional module and 
spatial and channel attention mechanisms. Each convolutional module consists of four layers: 2D convolution 
for feature extraction, batch normalization for stability, Leaky ReLU for non-linearity, and dropout to prevent 
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overfitting. The final layer uses a similar block with Tanh activation to constrain pixel values within −1 to 1, 
producing a synthetic image of 128 × 128 × 3.

The self-attention mechanism39 processes the concatenated tensor by applying 2D Global Average Pooling 
(2D-GAP) to flatten it into a vector, capturing channel significance. This vector is transformed through dense, 
SoftMax, and reshaping layers to generate attention weights, which scale the tensor to enhance important 
features (Fig. 2). Spatial and channel attention mechanisms follow each convolutional module. Self-attention 
is crucial because it allows the model to weigh different parts of the input tensor, thus helping it focus on the 
most relevant areas of the image. This leads to better feature learning by promoting long-range dependencies 
across the input. In AsphaltGAN, it helps refine the features extracted from minor defects, ensuring that subtle 
and fine details are captured effectively. The spatial attention module uses 2D-GAP, reshaping, dense layers, and 
sigmoid function to generate weights that highlight significant spatial features. The spatial attention mechanism 
enhances feature detection by selectively focusing on regions in the image that contain crucial spatial patterns, 
like the distribution and shape of road defects. This localized feature enhancement improves the model’s capacity 
to recognize important pavement details, which is critical for generating realistic synthetic frames. The channel 
attention module applies 2D-GAP, dense layers, and ReLU activation, followed by a sigmoid function to generate 
weights that emphasize important channels. Channel attention prioritizes the most relevant channels (or feature 
maps), enabling the model to amplify specific characteristics like texture, depth, or edges, which are essential 

Fig. 2.  Self-attention, spatial, and channel attention mechanisms included in the AsphaltGAN architecture.

 

Fig. 1.  Architectural design of AsphaltGAN. The symmetrical model highlights the introduction of 
conditionality through embedding layers to avoid relabeling synthetic samples, along with the inclusion of self-
attention, channel, and spatial attention mechanisms to enhance feature learning and image generation.

 

Scientific Reports |        (2024) 14:28904 4| https://doi.org/10.1038/s41598-024-80199-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


in identifying fine-grained distress patterns. By integrating this with spatial attention, AsphaltGAN boosts its 
ability to enhance both spatial structure and channel-specific features progressively throughout the network.

The discriminator has four inputs: real/fake labels and real/fake images. Labels are embedded, passed through 
a dense layer, and reshaped to 128 × 128 × 1, then concatenated with images into a tensor of 128 × 128 × 4. The 
discriminator mirrors the generator’s architecture with self-attention and convolutional blocks, but it reduces 
spatial dimensions and increases color dimensions using transposed convolutions. The output tensor is flattened 
and passed through a dense layer with dropout, yielding values for each input image.

Loss functions
Due to the complexity of GAN training, various loss functions will be used to assess the proposed model’s 
performance (Table 1). Each discriminator’s loss function will include a GP to penalize large gradients, reducing 
overfitting and promoting stability. The optimal loss function will be selected based on empirical results. The 
labels yr , yf , yr

p , and yf
p  denote real, fake, predicted real, and predicted fake images, respectively. These labels 

indicate image authenticity rather than defect classes, with zeros for fake images and ones for real ones.

Improved object detection pipeline
The objective of this study is to propose an end-to-end methodology to enhance deep learning-based object 
detection systems for identifying minor pavement defects. This includes addressing issues such as the system’s 
ability to handle imbalanced defect classes and lower detection rates. Additionally, the process should be fully 
automated, eliminating the need for human intervention, such as the relabeling of synthetic images, to ensure a 
truly end-to-end solution for engineering applications.

The pipeline of this study, depicted in Fig. 3, involved labeling an asphalt pavement distress image dataset 
(Mosquitonet42) for enhancing an object detection system. Observations showed that less common defects 
(potholes, sealed cracks, diagonal cracks, and irregular cracks) had lower detection rates, these defects were 
cropped and resized to 128x128x3 from the bounding box annotations. The pictures extracted from the dataset 
exhibit multiple defects of various types per image. Minor defects identified through annotated labels in an 
object detection framework, were programmatically cropped to produce smaller images containing a single 
defect instance per image. These images and their labels trained AsphaltGAN to generate synthetic images of 
minority defects. The synthetic images were resized to match the original dataset dimensions (640 × 640 × 3), 
with bounding boxes centered and scaled to 90% of the original size. This process aimed to validate improved 
detection performance and model robustness across various scales. The object detection system was trained 

Fig. 3.  Improved end-to-end object detection methodology. The diagram highlights two processes: (1) 
training AsphaltGAN using labeled images with a single defect extracted from multi-defect annotations, and 
(2) resizing synthetic images from AsphaltGAN and including them in the training set with programmatically 
generated ground truth for YOLOv8 training.

 

Generator Discriminator

BCE-GP BCE(yr, yr
p) + BCE(yf , yf

p ) + GP BCE(yr, yf
p )

MSE-GP MSE(yr, yr
p) + MSE(yf , yf

p ) + GP MSE(yr, yf
p )

H-GP H(yr, yr
p) + H(yf , yf

p ) + GP H(yr, yf
p )

Table 1.  Loss functions: binary cross entropy with GP (BCE-GP), mean squared error with GP (MSE-GP), 
and hinge with GP (H-GP). The analytical expressions are in16,40,41, respectively.
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using both original and synthetic images to enhance detection automatically without human involvement, 
thereby addressing the limitation of needing more image data.

Datasets
The dataset used to train and validate the various generative models is an open-source image repository called 
Mosquitonet42. To validate our data augmentation system’s robustness, we selected various public object detection 
datasets that include minor asphalt pavement defects: Road Damage Dataset 2022 (RDD2022)43, CrackDLHY44, 
APDD45, and CrackSC28. This approach avoids potential data contamination from Mosquitonet and assesses the 
generalization of our pre-processing technique. Since not all datasets cover every minority defect, the evaluation 
will focus on detection performance for the specific augmented defects. Each benchmark dataset will use an 
80/20 train/test split, with class distributions shown in Table 2.

Mosquitonet
It is a top-down-view benchmark dataset collected with low-cost vehicle-mounted camera. There are 7099 
images of 13 asphalt pavement defects of 640 × 640 × 3, annotated by pavement experts in several object 
detection formats. For our study, leveraging the annotations (bounding boxes and categories), patches of the 
minor defects (sealed, diagonal, irregular crack, and pothole) along with the distress type were programmatically 
extracted, resized to 128 × 128 × 3 (average patch dimensions), and normalized. Thus, a sub-dataset of 1966 
instances (local defect images) with 4 classes was constructed, with a train split of 80% and a 20% test split. The 
distribution per distress type is shown in Table 3.

RDD2022
RDD2022 comprises 47420 road images with 55000 instances object detection annotations. It contains four road 
damages: longitudinal, transverse, alligator crack, and pothole. The sub-dataset that most closely approximates 
the top-down view configuration (selected to prevent network confusion, e.g., diagonal cracks that may appear 
longitudinal in a wide-view perspective) is China-Motorbike. It was collected with motorbike-mounted 
smartphone camera moving at an average speed of 30 km/h. This sub-dataset contains 1977 images of 512 × 
512 × 3.

CrackDLHY
CrackDLHY contains a box-based image dataset with four distress types: alligator, sealed, transverse and 
longitudinal crack. The collection combines manual smart phone photography and vehicle-mounted camera. 
The frames are captured with different light intensities and shooting angles. The image size is 1280 × 960 × 3.

APDD
APDD includes 3150 images of 512 × 512 × 3 with alligator, block, longitudinal, diagonal, transverse crack, 
repair, and pothole.

CrackSC
CrackSC is annotated for segmentation, but it contains multiple isolated irregular cracks (without defined 
geometry). Hence, they have been labelled in object detection format. The images were captured using a 
smartphone on local roads, where heavy shadows and artefacts (e.g., leaves) were present. There are 53 images 
with dimensions of 320 × 480 × 3.

Performance metrics
IQA metrics
The image quality of the sampled images generated by the proposed generative architectures was assessed 
both visually and quantitatively using standard IQA metrics. These metrics, including Peak Signal-to-Noise 
Ratio (PSNR), Structural Similarity Index (SSIM), and Fréchet Inception Distance (FID), were used in the 
optimization of AsphaltGAN and to compare its optimum design with state-of-the-art generative models. 

Sealed crack Diagonal crack Irregular crack Pothole

Train 350 394 232 596

Test 88 98 59 149

Table 3.  Distribution of less-represented superficial road defects in the Mosquitonet subdataset.

 

Dataset (defect) RDD2022 (pothole) APDD (diagonal crack) CrackSC (irregular crack) CrackDLHY (sealed crack)

Train 188 138 42 400

Test 47 34 11 101

Table 2.  Distribution of train/test images by object detection benchmark dataset and minor distress class.
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The IQA metrics were computed for both the test set and an equivalent number of images produced by the 
corresponding generative model.

PSNR measures image quality by comparing the maximum possible pixel value to the MSE between the real 
and the synthetic image. A higher PSNR indicates a better quality. While PSNR is commonly used, it may not 
fully capture perceptual differences. SSIM evaluates image quality based on luminance, contrast, and structure 
providing a more perceptual assessment. The closer the SSIM is to one, the better the image quality. FID measures 
the dissimilarity between feature distributions of real and generated images using a pretrained neural network, 
with lower FID indicating higher similarity and better quality. The analytical expressions for PSNR, SSIM, and 
FID are found in46.

Object detection metrics
To validate object detection model improvements, several metrics are employed. Precision measures the ratio 
of correctly identified relevant instances to the total predicted positives, reflecting accuracy but potentially 
missing some true positives. Recall indicates the ratio of correctly identified instances to all actual positives, 
highlighting the model’s ability to capture relevant instances while risking more false positives. Mean Average 
Precision (mAP) averages the area under the precision-recall curve across confidence thresholds, with higher 
scores denoting better performance. mAP50 evaluates at an Intersection over the Union (IoU) threshold of 0.5, 
while mAP50−95 extends the assessment to IoU thresholds from 0.5 to 0.95, offering insights into performance 
across various object sizes and poses. The mathematical formulas are detailed in47.

Experimental results and analysis
In the results section, AsphaltGAN is first analyzed in terms of various loss functions and hyperparameter 
tuning. The optimal configuration is then compared with state-of-the-art generative models. Finally, results are 
presented for the object detection models following the application of synthetic data augmentation.

For AsphaltGAN, the LeakyReLU activation functions use a value of α = 0.2, and dropout rates of 0.3 and 
0.4 are applied in the generator (G) and discriminator (D) layers, respectively. Hyperparameter tuning included 
sensitivity analysis on the balance between G and D training steps per epoch (k) and learning rate schedules 
(linear decay, cosine annealing, and constant). The designs of WGAN-GP, DCGAN, and cGAN were based 
on convolutional layers, aiming to maintain a similar complexity (number of parameters) to AsphaltGAN. 
Common hyperparameters for all generative models are: learning rates of 1e−4 for both G and D, a batch size 
of 128, Adam optimizers, a latent dimension of 512, a GP weight of 10, and 3000 training epochs. YOLOv848 
was used as the validation model, trained on real and synthetic images. The code is implemented in Python with 
TensorFlow 2.8.0 for generative models and OpenCV 4.7.0 for image processing. YOLOv8 is implemented in 
PyTorch 2.0.1. The setup includes a Dell Alienware Aurora R13 with 64 GiB of memory, CUDA 11.4, and an 
NVIDIA GeForce RTX 3080 Ti GPU, with development conducted in Visual Studio Code.

Optimizing AsphaltGAN: loss functions & hyperparameters
The analysis starts with BCE-GP (Fig. 4), where early training (up to epoch 500) shows a slight rise in both train 
and test losses due to the model’s adaptation process. Following this, the test loss slightly increases while train 
loss decreases, indicating that D might be overfitting on known images but performing well on training data. D 
stabilizes with minor fluctuations around 2.36 ± 0.01 (test loss) and 0.70 ± 0.02 (train loss) from epoch 2500 
onward. Meanwhile, G consistently improves, stabilizing at 1.43 ± 0.01 for both losses. The synthetic images 
generated are realistic and diverse (Fig. 5). In contrast, MSE-GP exhibits a faster learning rate but suffers from 
artifacts and noise after epoch 2250, leading to instability in loss functions. G’s performance degrades with 
increased artifacts. Figure 5 shows synthetic images before instability, demonstrating the model’s proficiency 
in creating diverse and realistic potholes and sealed cracks, though it struggles with granular textures and 
introduces artifacts in diagonal and irregular cracks. For H-GP, D shows low training loss but high test loss 
fluctuations, indicating overfitting and poor generalization. G’s loss plateaus, reflecting mode collapse and 
limited texture diversity. H-GP fails to capture detailed defect features effectively, making it less suitable. W-GP 
loss faced convergence issues and was thus excluded. IQA metrics (Table 4) further show H-GP’s lower PSNR 
and SSIM, and higher FID compared to BCE-GP and MSE-GP, confirming the trends observed in loss function 
dynamics. BCE-GP achieves the best IQA metrics.

In GAN training, D is often trained more than G to ensure stability, prevent mode collapse, and improve 
gradient flow. The following sub-analysis (Fig. 6) explores various additional epochs (k) for D in AsphaltGAN, 
showing that k = 5 achieves the best IQA metrics, albeit at the cost of higher computational demand. Lower k 
values did not consistently improve PSNR, SSIM, or FID, blueindicating that longer training of D is necessary 
for optimal performance. Monitoring loss functions revealed that for k = 1, both D and G losses stabilized by 
epoch 2000, whereas for k = 3, instability occurred from epoch 1200 onward. This suggests that higher k values 
contribute to a more stable convergence but require careful tuning to avoid instability. Additionally, different 
learning rate (LR) schedules were tested (Fig. 6), with linear decay providing the best FID results, while the 
constant LR produced the highest SSIM. Cosine annealing exhibited instability throughout the training process, 
especially at later epochs. Thus, the optimal AsphaltGAN configuration is BCE-GP/BCE, k = 5, and a constant 
LR of 1e − 4, which demonstrated significant improvements in IQA metrics, training stability, and convergence.

Figure 7 presents synthetic images generated by AsphaltGAN with and without the inclusion of attention 
mechanisms, illustrating their positive impact as outlined in the previous section. For instances of diagonal 
and irregular cracks, the addition of attention mechanisms not only yields more precisely defined cracks but 
also achieves a more granular, textured background that resembles the coarse texture of asphalt pavements due 
to aggregate presence. In the case of potholes, where the defect occupies a substantial portion of the image, the 
attention mechanisms enhance edge resolution and create a depth effect by projecting shadows, improving the 
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realism of the synthetic defects. For sealed cracks, the model without attention mechanisms struggles to generate 
large-scale sealed cracks, often producing backgrounds with minimal texture and occasionally introducing 
random artifacts along the edges. However, with attention mechanisms, AsphaltGAN successfully generates 
extensive sealed cracks, enhances background texture, and even introduces road markings in certain images. 

Fig. 5.  Synthetic minor asphalt road images generated by AsphaltGAN using various loss functions.

 

Fig. 4.  Loss functions for the generator and discriminator of AsphaltGAN.
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These attention mechanisms enable AsphaltGAN to progressively refine both spatial and channel-specific 
features, yielding synthetic images that capture critical pavement details with enhanced realism.

Comparison with state-of-the-art generative architectures
cGAN and AsphaltGAN exhibit similar loss function curves, demonstrating clear convergence and high learning 
stability (Fig. 8). WGAN-GP, despite higher oscillations due to its unbounded nature, also shows convergence 
and stability. In contrast, DCGAN’s loss functions indicate inadequate convergence, with discriminator loss 
hovering around zero and oscillating significantly, suggesting overfitting and hindering generator performance. 
Oscillating generator losses reinforce this observation, highlighting the generator’s struggle to deceive the 
discriminator. DCGAN’s conspicuous oscillations in the FID curves highlight poor convergence, while WGAN-
GP and AsphaltGAN demonstrate smoother FID curves and lower average values, indicating better convergence 

Fig. 7.  Synthetic images generated by AsphaltGAN under optimal settings for each type of minor defect, 
with and without the inclusion of attention mechanisms, demonstrating the positive impact of attention 
mechanisms on the results.

 

Fig. 6.  (Top) Fine-tuning additional training steps of D in terms of computational cost and IQA metrics. 
(Bottom) IQA metric curves for different learning rate schedules.

 

PSNR SSIM FID

BCE-GP 25.93 ± 0.03 0.81 ± 0.01 9.58 ± 0.04
MSE-GP 21.83 ± 0.03 0.56 ± 0.02 11.43 ± 0.13
H-GP 10.96 ± 0.04 0.11 ± 0.01 49.02 ± 0.48

Table 4.  IQA metrics for AsphaltGAN using different loss functions.
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and image quality. AsphaltGAN achieves superior PSNR and SSIM values, with WGAN-GP and AsphaltGAN 
excelling in FID (Table 5).

Figure 9 visualizes synthetic images generated during training. In Fig. 10, synthetic frames are presented by 
defect type for each of the pre-trained generative models. DCGAN only produces noisy pothole-type defects, 
consistent with its poor loss function and image quality metrics. The remaining defects are poorly defined and 
appear unrealistic with the results aligning with the previously analyzed lack of convergence in the loss functions. 
Generative models first learn to generate potholes, the most common asphalt defect. Learning order varies by 
model, with sealed cracks and diagonal cracks being learned differently. Irregular or undefined geometries are 
the most challenging, likely due to their geometric complexity and underrepresentation in the training dataset 
compared to other minor defects. WGAN-GP performs well on most defects but struggles with textures of 
irregular and wide-perspective diagonal cracks. In fact, irregular cracks exhibit poorly defined geometries and 
struggle to connect the various branches of the crack network. cGAN faces challenges with large sealed cracks 
and those in low-light conditions. Additionally, for diagonal and irregular cracks, streaked artifacts often appear 
along the edges in many images, confirming the poorer results in image quality metrics. AsphaltGAN generates 
a diverse range of defects but struggles with irregular cracks. The generative architectures have comparable 
complexity and similar training and inference times, differing only in convergence time, with WGAN-GP being 
slightly faster. In contrast, AsphaltGAN’s conditionality advantage simplifies synthetic image labeling, reducing 
manual effort.

Additionally, a human visual inspection experiment was conducted, generating 100 synthetic images per 
model to evaluate the effectiveness of conditionality. Conditional models used defect-specific vectors, while 
non-conditional models generated 100 general images. Ideally, each defect type should have 25 images. DCGAN 
failed to produce diagonal cracks, whereas other models generated around 15 images of this type. AsphaltGAN 
performed best for irregular cracks, while WGAN-GP showed a bias towards potholes, producing over 30 images 
of this defect. AsphaltGAN achieved more balanced results overall. For sealed cracks, WGAN-GP performed 
best, followed by AsphaltGAN. AsphaltGAN’s conditionality reduces the need for manual labeling. In summary, 
DCGAN has convergence and stability issues, limiting it to producing noisy pothole defects. Conversely, WGAN-
GP, AsphaltGAN, and cGAN demonstrate sound convergence and stability, with AsphaltGAN achieving the best 

Generative model PSNR SSIM FID

DCGAN 12.20 ± 0.04 0.22 ± 0.01 28.47 ± 0.60
cGAN 12.87 ± 0.02 0.36 ± 0.01 26.70 ± 0.09
WGAN-GP 17.49 ± 0.03 0.67 ± 0.11 10.16 ± 0.07
AsphaltGAN 25.93 ± 0.03 0.81 ± 0.01 9.58 ± 0.04

Table 5.  IQA metrics for several generative architectures.

 

Fig. 8.  Comparison of loss and image quality metrics for generative architectures using the test split of the 
public Mosquitonet dataset.
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IQA metrics and consistently generating all defect types. AsphaltGAN’s conditionality is advantageous, making 
it the most suitable model for generating realistic asphalt defect images. The proposed generator will be used to 
enhance public datasets, improving YOLOv8 detection efficiency.

Improved object detection system with synthetic images
To determine the number of synthetic images to add per dataset, a histogram categorized by defect type and the 
mean value was displayed. The minority defects, targeted for augmentation through AsphaltGAN-generated 
synthetic samples, were adjusted to approach the mean value to promote class balance. Object detection metrics, 
detailed in Table 6, are provided before and after augmentation. It is important to note that only results for 
the minority defects, the focus of this study, are presented. Increasing the representation of minority defects 

Fig. 9.  Synthetic images generated by various algorithms during the training stages.
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to enhance their detection metrics may impact the metrics for majority defects, which are not analyzed here. 
Therefore, the mAP all

50  metric, reflecting the mAP50 averaged across all defect types, is included. The results 
show a significant improvement in precision, indicating fewer false-positive predictions by YOLOv8. Recall 
also improved, showing more true positive detections. Consequently, there is a notable increase in mAP50 
and mAP50−95 metrics, contributing to an average enhancement across all defect categories. Importantly, the 
improved detection metrics for minority defects do not negatively impact the performance on majority defects. 
This is evidenced by the improvement in mAP all

50  across all datasets: RDD2022 (↑33.0%), CrackDLHY (↑3.1%
), APDD (↑46.7%), and CrackSC (↑51.2%).

The improved defect detection system using AsphaltGAN images has certain limitations (Fig.  11). First, the 
enhancement in detecting sealed cracks is minimal. This is likely due to the CrackDLHY dataset being captured 
with a perpendicular angle to the pavement, while the Mosquitonet dataset, used for training AsphaltGAN to 
generate images, incorporates a slight incidence angle to capture all lane defects. As a result, the model struggles 
to improve detection of sealed cracks, which often appear with a diagonal geometry due to perspective. Another 
limitation arises in detecting minor defects with highly variable dimensions. During AsphaltGAN training, 
an average resize was applied to adapt to convolutional operations, which may not affect image generation 
significantly, as smaller defects typically occupy a reduced portion of the image. However, sealed cracks, which 
can span large areas, are unrealistically scaled down due to this resizing, as their average size is skewed by smaller 
defects like potholes or irregular cracks. This highlights potential challenges when transferring AsphaltGAN 
to datasets with different image perspectives or object size distributions, suggesting that future improvements 
should consider dataset-specific geometry and defect size variability to further enhance detection performance.

Conclusions & future scope
This study presents AsphaltGAN, a class-conditional Generative Adversarial Network incorporating self-
attention, spatial, and channel attention mechanisms, designed to generate synthetic images of infrequent 
asphalt pavement defects. These synthetic images augment public datasets, enhancing the deep learning-based 
object detection performance of YOLOv8. The main conclusions are as follows:

Dataset Distress Configuration Precision Recall mAP50 mAP50−95 mAP all
50

RD2022 Pothole YOLOv8 0.489 0.167 0.201 0.102 0.524

YOLOv8+AsphaltGAN 0.837 0.267 0.304 0.214 0.697

CrackDLHY Sealed crack YOLOv8 0.463 0.640 0.494 0.269 0.418

YOLOv8+AsphaltGAN 0.497 0.651 0.506 0.288 0.431

APDD Diagonal crack YOLOv8 0.100 0.258 0.100 0.029 0.353

YOLOv8+AsphaltGAN 0.380 0.310 0.293 0.183 0.518

CrackSC Irregular crack YOLOv8 0.367 0.636 0.479 0.240 0.479

YOLOv8+AsphaltGAN 0.702 0.727 0.724 0.342 0.724

Table 6.  Object detection results with several benchmark asphalt defect.

 

Fig. 10.  Fake frames produced by multiple pre-trained generative architectures.
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•	 AsphaltGAN was trained and tested using various loss functions: BCE-GP, MSE-GP, and H-GP, all with gradi-
ent penalty. The BCE-GP configuration demonstrated the most stable convergence and superior IQA metrics.

•	 Hyperparameter tuning identified the optimal configuration with an additional five discriminator training 
epochs and a constant learning rate of 1 × 10−4.

•	 AsphaltGAN outperforms state-of-the-art models, including WGAN-GP, DCGAN, and cGAN, with superior 
image quality metrics on the public Mosquitonet dataset (PSNR: 25.93, SSIM: 0.81, FID: 9.58) and effectively 
generates diverse minority defects without the need for synthetic image labeling.

•	 The YOLOv8-AsphaltGAN architecture significantly improved the detection of minority defects in public da-
tasets (RDD2022, CrackDLHY, APDD, CrackSC), reducing the need for manual data collection and labeling.
Future research will focus on addressing the identified limitations of AsphaltGAN, with particular emphasis 
on designing generative models capable of blending defect-free images with cropped images of minor defects, 
extracted from bounding boxes, to avoid rescaling issues with defects of varying sizes. Additionally, the imple-
mentation of semantic synthesis generative architectures will be explored to overcome the challenges posed 
by the angle of incidence between datasets, ensuring better control over the geometries of minor defects.

Data availability
The datasets can be accessed via the following URLs: Mosquitonet at ​h​t​t​p​s​:​​/​/​r​e​p​o​​s​i​t​o​r​i​​o​.​u​n​i​​c​a​n​.​e​s​/​x​m​l​u​i​/​h​a​n​d​
l​e​/​1​0​9​0​2​/​2​6​6​1​5​​​​​, RDD2022 at https://github.com/sekilab/RoadDamageDetector, CrackDLHY at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​
.​c​o​m​/​j​u​h​u​y​a​n​/​C​r​a​c​k​D​a​t​a​s​e​t​_​D​L​_​H​Y​​​​​, APDD at ​h​t​t​p​s​:​​/​/​u​n​i​v​​e​r​s​e​.​r​​o​b​o​f​l​​o​w​.​c​o​m​/​p​a​v​e​m​e​n​t​-​d​i​s​t​r​e​s​s​e​s​-​d​e​t​e​c​t​i​o​n​/​
a​s​p​h​a​l​t​_​d​i​s​t​r​e​s​s​_​d​e​t​e​c​t​i​o​n​​​​​, and CrackSC ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​u​​b​.​c​​o​m​/​K​​a​​n​​g​c​h​e​n​g​​L​i​u​​/​C​​r​​a​c​k​-​D​e​t​e​c​t​i​o​n​-​a​n​d​-​S​e​g​m​e​n​t​a​t​i​o​
n​-​D​a​t​a​s​e​t​-​f​o​r​-​U​A​V​-​I​n​s​p​e​c​t​i​o​n​​​​​.​​
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