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Abstract. In this paper, we formulate a semismooth Newton method for an abstract opti-
mization problem and prove its superlinear convergence by assuming that the no-gap second order
sufficient optimality condition and the strict complementarity condition are fulfilled at the local min-
imizer. Many control problems fit this abstract formulation. In particular, we apply this abstract
result to distributed control problems of a semilinear elliptic equation, to boundary bilinear control
problems associated with a semilinear elliptic equation, and to distributed control of a semilinear
parabolic equation.
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1. Introduction. Let (X,\scrS , \mu ) be a measure space with 0<\mu (X)<\infty . In this
paper, we prove the superlinear convergence of a semismooth Newton method to solve
the following abstract optimization problem:

(P) min
\alpha \leq u(x)\leq \beta \mathrm{a}.\mathrm{e}.[\mu ]

\scrJ (u) +
\kappa 

2
\| u\| 2L2(X)

where \kappa > 0,  - \infty \leq \alpha < \beta \leq +\infty , and \scrJ : Lp(X)  - \rightarrow \BbbR is a function of class
C2 for some p \in [2,+\infty ). Many optimal control problems fall within this abstract
formulation: distributed or boundary control problems, and bilinear control problems
associated with nonlinear elliptic or parabolic equations. The analysis of semismooth
Newton methods has a long history, but there are only a few papers in the framework of
optimal control problems of partial differential equations where this method is proved
to converge superlinearly. The reader is referred to [8, 11, 13] and [14, Chapter 8] for
the case of convex control problems. In this case, the well-posedness and superlinear
convergence of the method are established. The situation is more delicate for nonlinear
state equations [1, 9, 11], where a strong second order condition is assumed to prove the
convergence of the algorithm. We also mention [14, Chapter 10] where the semismooth
Newton method is applied to solve a control problem associated with the Navier-Stokes
equations in dimension n= 2. In this chapter, the superlinear convergence is proved
assuming that the second derivative of the cost functional at the local minimizer is
coercive on the tangent space of the strongly active constraints and that the control
constraint is reduced to u\geq 0.

The aim of this paper is to prove the superlinear convergence of the algorithm to
local solutions \=u assuming that the no-gap second order sufficient optimality condi-
tion and the strict complementarity condition are fulfilled at \=u. These are the usual
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3682 EDUARDO CASAS

assumptions required to prove the superlinear convergence of numerical algorithms in
finite-dimensional optimization problems; see, for instance, [10, Chapters 17 and 18].

The plan of this paper is as follows. In section 2, we formulate the hypotheses
on the problem (P), propose a semismooth Newton method and prove its superlin-
ear convergence. In section 3, we formulate and establish superlinear convergence of
this algorithm for three different control problems: distributed control of a semilin-
ear elliptic equation; boundary bilinear control associated with a semilinear elliptic
equation; and distributed control of a semilinear parabolic equation. This selection
of control problems is made only to show the generality of the abstract result. Many
other cases could be included in this abstract formulation.

2. A semismooth Newton method to solve (P). This section is divided
into two parts. In the first part, we establish the assumptions on (P) and carry out
the first and second order analysis of this problem. In the second part, we formu-
late a semismooth Newton method to compute a local solution of (P) and prove its
superlinear convergence.

2.1. Analysis of (P). Let us fix some notation and make the assumptions on
problem (P). We set

\scrU ad = \{ u\in Lp(X) : \alpha \leq u(x)\leq \beta a.e.[\mu ]\} ,

where  - \infty \leq \alpha < \beta \leq +\infty and additionally

if p > 2, then  - \infty <\alpha <\beta <+\infty .(2.1)

Let \scrA be an open subset of Lp(X) such that \scrU ad \subset \scrA . The function \scrJ :\scrA  - \rightarrow \BbbR is of
class C2 and satisfies the following hypotheses:

(H1) There exists a C1 mapping \Phi :\scrA  - \rightarrow L\infty (X) such that

\scrJ \prime (u)v=
\int 

X

\Phi (u)v d\mu \forall u\in \scrA and \forall v \in Lp(X).(2.2)

(H2) For every u \in \scrA the linear mapping \Phi \prime (u) : Lp(X)  - \rightarrow L\infty (X) has an
extension to a compact operator \Phi \prime (u) :L2(X) - \rightarrow Lp(X) satisfying the following: for
all \varepsilon > 0 there exists \rho > 0 with B\rho (u)\subset \scrA such that

\| [\Phi \prime (w) - \Phi \prime (u)]v\| Lp(X) \leq \varepsilon \| v\| L2(X) \forall w \in B\rho (u) and \forall v \in L2(X).(2.3)

Above and along this paper, B\rho (u) denotes the open ball of Lp(X) centered at u
with radius \rho .

Remark 2.1.
i) The assumption (2.1) is used in the second order analysis, where some Taylor

expansions have to be performed in an L2(X) neighborhood of some point \=u.
ii) In the case p = 2, (2.3) is a consequence of (H1), hence hypothesis (H2)

only assumes that the linear mapping \Phi \prime (u) :L2(X) - \rightarrow L2(X) is compact.
iii) As a consequence of hypotheses (H1) and (H2), we infer that for every u\in \scrA 

the bilinear form \scrJ \prime \prime (u) :Lp(X)2  - \rightarrow \BbbR has a continuous extension to L2(X)2

such that the weak convergence (vk,wk)\rightharpoonup (v,w) in L2(X)2 implies

\scrJ \prime \prime (u)(vk,wk) =

\int 

X

[\Phi \prime (u)vk]wk d\mu \rightarrow 
\int 

X

[\Phi \prime (u)v]wd\mu =\scrJ \prime \prime (u)(v,w).(2.4)
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CONVERGENCE OF A SEMISMOOTH NEWTON METHOD 3683

We define the function J :\scrA  - \rightarrow \BbbR by J(u) = \scrJ (u) + \kappa 
2 \| u\| 2L2(X). Then, (P) can

be written as follows:

(P) min
u\in \scrU ad

J(u).

From (2.1) we infer that \=u is a (strict) local minimizer of (P) in the Lp(X)-sense if
and only if it is a (strict) local minimizer in the L2(X) sense. From now on, a local
minimizer will be understood in the L2(X) sense.

Theorem 2.2. If \=u\in \scrU ad is a local minimizer of (P), then the following identity
holds:

\=u(x) = Proj[\alpha ,\beta ]

\Bigl( 
 - 1

\kappa 
\Phi (\=u)(x)

\Bigr) 
a.e. [\mu ].(2.5)

Proof. Using the convexity of \scrU ad and (2.2) we get
\int 

X

(\Phi (\=u) + \kappa \=u)(u - \=u)d\mu = J \prime (\=u)(u - \=u)\geq 0 \forall u\in \scrU ad,

that is equivalent to (2.5).

Associated to a local minimizer \=u we define the cone of critical directions C\=u as
the set of elements v \in L2(X) satisfying

v(x)

\left\{ 
 
 
\geq 0 if \=u(x) = \alpha ,
\leq 0 if \=u(x) = \beta ,
= 0 if \kappa \=u(x) +\Phi (\=u)(x) \not = 0,

a.e. [\mu ].

It is well known that a local minimizer of (P) satisfies the second order necessary
condition: J \prime \prime (\=u)v2 \geq 0 \forall v \in C\=u; see, for instance, [5, Theorem 2.4 and Remark 2.5].
Conversely, if \=u \in \scrU ad satisfies (2.5) and J \prime \prime (\=u)v2 > 0 \forall v \in C\=u \setminus \{ 0\} , then there exist
\varepsilon > 0 and \nu > 0 such that

J(\=u) +
\nu 

2
\| u - \=u\| 2L2(X) \leq J(u) \forall u\in \scrU ad with \| u - \=u\| L2(X) \leq \varepsilon .(2.6)

See [5, Theorem 2.6] for the proof. Furthermore, it was proved in [6, Corollary 2.6] that
\varepsilon > 0 can be selected such that there is no other element u\in \scrA with \| u - \=u\| L2(X) < \varepsilon 
satisfying the optimality condition (2.5).

(H3) In the rest of this section, \=u will denote a local minimizer of (P) satisfying
the following assumptions

J \prime \prime (\=u)v2 > 0 \forall v \in C\=u \setminus \{ 0\} ,(2.7)

\mu 
\bigl( 
\{ x\in X : \=u(x)\in \{ \alpha ,\beta \} and \kappa \=u(x) +\Phi (\=u)(x) = 0\} 

\bigr) 
= 0.(2.8)

We refer to (2.8) as the strict complementarity condition. Now, for \tau \geq 0 we define

E\tau 
\=u = \{ v \in L2(X) : v(x) = 0 if | \kappa \=u(x) +\Phi (\=u)(x)| > \tau \} .(2.9)

The following result is crucial in the proof of the semismooth Newton method defined
later.

Theorem 2.3. Let \=u \in \scrU ad satisfy (2.7) and (2.8). Then, there exist \delta > 0 and
\tau > 0 such that

J \prime \prime (\=u)v2 \geq \delta \| v\| 2L2(X) \forall v \in E\tau 
\=u .(2.10)
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3684 EDUARDO CASAS

Proof. First, we observe that (2.8) implies that C\=u = E0
\=u. Now, we proceed by

contradiction. Assume that for every integer k \geq 1 there exists vk \in E
1
k
\=u such that

J \prime \prime (\=u)v2k <
1
k\| vk\| 2L2(X). Dividing vk by its L2(X)-norm and taking a subsequence we

infer

vk \in E
1
k
\=u and J \prime \prime (\=u)v2k <

1

k
\forall k\geq 1, and vk \rightharpoonup v in L2(X) as k\rightarrow \infty .(2.11)

Let us take \varepsilon > 0 arbitrarily. It is obvious that E\varepsilon 
\=u is a closed subspace of L2(X) and

\{ vk\} k> 1
\varepsilon 
\subset E\varepsilon 

\=u. Therefore, v \in E\varepsilon 
\=u holds. Since E0

\=u = \cap \varepsilon >0E
\varepsilon 
\=u, we infer that v \in E0

\=u.

Hence, (2.7) implies that J \prime \prime (\=u)v2 > 0 unless v= 0. But, (2.11) and (2.4) lead to

J \prime \prime (\=u)v2 \leq lim inf
k\rightarrow \infty 

J \prime \prime (\=u)v2k \leq limsup
k\rightarrow \infty 

J \prime \prime (\=u)v2k \leq 0.

Therefore, we have that v= 0. Using (2.4) again and the above inequalities we get that
\scrJ \prime \prime (\=u)v2k \rightarrow 0 and J \prime \prime (\=u)v2k \rightarrow 0. These convergences and the fact that \| vk\| L2(X) = 1
yield

\kappa = lim
k\rightarrow \infty 

\kappa \| vk\| 2L2(X) = lim
k\rightarrow \infty 

(J \prime \prime (\=u)v2k  - \scrJ \prime \prime (\=u)v2k) = 0.

This contradicts our assumption \kappa > 0.

2.2. A semismooth Newton method. Let \psi :\BbbR  - \rightarrow \BbbR be the function given
by \psi (t) = Proj[\alpha ,\beta ]( - 1

\kappa t). We also define the mappings \Psi : L\infty (X)  - \rightarrow L\infty (X) and
\scrF :\scrA  - \rightarrow Lp(X) by \Psi (y)(x) = \psi (y(x)) and \scrF (u) = u - \Psi (\Phi (u)). From (2.5) we infer
that any local solution of (P) solves the equation \scrF (u) = 0. Moreover, as claimed
after (2.6), if \=u satisfies (2.7), then it is the unique solution of this equation in a
Lp(X) ball around \=u. Unfortunately, \scrF is not Fr\'echet differentiable in \scrA due to the
lack of differentiability of \psi . However, \scrF is semismooth. Let us recall the definition
of semismoothness. To this end, we follow [14, Definition 3.1]. A slightly different
approach using the concept of slant differentiability can be found in [8].

Definition 2.4. Given two Banach spaces \scrX and \scrY , an open subset \scrV of \scrX , a
continuous function \scrH : \scrV  - \rightarrow \scrY , and a set-valued mapping \partial \scrH : \scrV \rightrightarrows \scrL (\scrX ,\scrY ) such
that \partial \scrH (u) \not = \emptyset for every u\in \scrV , we say that \scrH is \partial \scrH -semismooth at \=u\in \scrV if

lim
v\rightarrow 0

sup
M\in \partial \scrH (\=u+v)

\| \scrH (\=u+ v) - \scrH (\=u) - Mv\| \scrY 
\| v\| \scrX 

= 0.(2.12)

The multifunction \partial \scrH is called the generalized derivative of \scrH .

In order to solve the equation\scrH (u) = 0, the semismooth Newton method generates
a sequence according to Algorithm 1.

The proof of the following convergence theorem can be found in [14, Theorem
3.13]. See also [8, Theorem 1.1].

Algorithm 1. Semismooth Newton method.

4 EDUARDO CASAS

Proof. First of all, we observe that (2.8) implies that C\=u = E0
\=u. Now, we proceed

by contradiction. Assume that for every integer k \geq 1 there exists vk \in E
1
k
\=u such that

J \prime \prime (\=u)v2k <
1
k\| vk\| 2L2(X). Dividing vk by its L2(X)-norm and taking a subsequence we

infer

(2.11) vk \in E
1
k
\=u and J \prime \prime (\=u)v2k <

1

k
\forall k \geq 1, and vk \rightharpoonup v in L2(X) as k \rightarrow \infty .

Let us take \varepsilon > 0 arbitrarily. It is obvious that E\varepsilon 
\=u is a closed subspace of L2(X) and

\{ vk\} k> 1
\varepsilon 
\subset E\varepsilon 

\=u. Therefore, v \in E\varepsilon 
\=u holds. Since E0

\=u = \cap \varepsilon >0E
\varepsilon 
\=u, we infer that v \in E0

\=u.

Hence, (2.7) implies that J \prime \prime (\=u)v2 > 0 unless v = 0. But, (2.11) and (2.4) lead to

J \prime \prime (\=u)v2 \leq lim inf
k\rightarrow \infty 

J \prime \prime (\=u)v2k \leq lim sup
k\rightarrow \infty 

J \prime \prime (\=u)v2k \leq 0.

Therefore, we have that v = 0. Using (2.4) again and the above inequalities we
get that \scrJ \prime \prime (\=u)v2k \rightarrow 0 and J \prime \prime (\=u)v2k \rightarrow 0. These convergences and the fact that
\| vk\| L2(X) = 1 yield

\kappa = lim
k\rightarrow \infty 

\kappa \| vk\| 2L2(X) = lim
k\rightarrow \infty 

(J \prime \prime (\=u)v2k  - \scrJ \prime \prime (\=u)v2k) = 0.

This contradicts our assumption \kappa > 0.

2.2. A semismooth Newton method. Let \psi : \BbbR  - \rightarrow \BbbR be the function given
by \psi (t) = Proj[\alpha ,\beta ]( - 1

\kappa t). We also define the mappings \Psi : L\infty (X)  - \rightarrow L\infty (X) and
\scrF : \scrA  - \rightarrow Lp(X) by \Psi (y)(x) = \psi (y(x)) and \scrF (u) = u - \Psi (\Phi (u)). From (2.5) we infer
that any local solution of (P) solves the equation \scrF (u) = 0. Moreover, as claimed
after (2.6), if \=u satisfies (2.7), then it is the unique solution of this equation in a
Lp(X) ball around \=u. Unfortunately \scrF is not Fr\'echet differentiable in \scrA due to the
lack of differentiability of \psi . However, \scrF is semismooth. Let us recall the definition
of semismoothness. To this end, we follow [14, Definition 3.1]. A slightly different
approach using the concept of slant differentiability can be found in [8].

Definition 2.4. Given two Banach spaces \scrX and \scrY , an open subset \scrV of \scrX , a
continuous function \scrH : \scrV  - \rightarrow \scrY , and a set-valued mapping \partial \scrH : \scrV \rightrightarrows \scrL (\scrX ,\scrY ) such
that \partial \scrH (u) \not = \emptyset for every u \in \scrV , we say that \scrH is \partial \scrH -semismooth at \=u \in \scrV if

(2.12) lim
v\rightarrow 0

sup
M\in \partial \scrH (\=u+v)

\| \scrH (\=u+ v) - \scrH (\=u) - Mv\| \scrY 
\| v\| \scrX 

= 0.

The multifunction \partial \scrH is called the generalized derivative of \scrH .

In order to solve the equation \scrH (u) = 0, the semismooth Newton method gener-
ates a sequence according to the Algorithm 1.

Algorithm 1: Semismooth Newton method.

1 Initialize. Choose u0 \in \scrV . Set j = 0.
2 repeat
3 Choose Mj \in \partial \scrH (uj) and solve Mjvj =  - \scrH (uj).
4 Set uj+1 = uj + vj and j = j + 1.

5 until convergence

The proof of the following convergence theorem can be found in [14, Theorem
3.13]. See also [8, Theorem 1.1].
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CONVERGENCE OF A SEMISMOOTH NEWTON METHOD 3685

Theorem 2.5. Suppose that \scrH : \scrV  - \rightarrow \scrY is \partial \scrH -semismooth at \=u \in \scrV solution of
\scrH (u) = 0. Then, there exists \delta > 0 such that for all u0 \in \scrV with \| u0  - \=u\| \scrX < \delta the
sequence \{ uj\} j\geq 0 generated by the semismooth Newton method 1 converges superlin-
early to \=u if the operators Mj \in \partial \scrH (uj) are invertible and there exists C\scrH > 0 such
that

\| M - 1
j \| \scrL (\scrY ,\scrX ) \leq C\scrH \forall j \geq 0.(2.13)

Let us prove that Algorithm 1 can be applied to our equation \scrF (u) = 0 and the
superlinear convergence holds. First, we check that \scrF is semismooth in \scrA with respect
to some generalized derivative that we define below. Foremost, we observe that \psi is
a Lipschitz function with 1

\kappa as Lipschitz constant and its Clarke's subdifferential is
given by

\partial \psi (t) =

\left\{ 
      
      

\{ 0\} if  - 1

\kappa 
t \not \in [\alpha ,\beta ],\biggl\{ 

 - 1

\kappa 

\biggr\} 
if  - 1

\kappa 
t\in (\alpha ,\beta ),

\biggl[ 
 - 1

\kappa 
,0

\biggr] 
if  - 1

\kappa 
t\in \{ \alpha ,\beta \} .

Now, we define

\partial \scrF (u) = \{ M \in \scrL (Lp(X),Lp(X)) : (Mv)(x) = v(x) - h(\Phi (u)(x))[\Phi \prime (u)v](x),

where h :\BbbR  - \rightarrow \BbbR is Lebesgue measurable and h(\Phi (u)(x))\in \partial \psi (\Phi (u)(x))\} .
It is obvious that \partial \scrF (u) is not empty for every u \in \scrA . Since \psi is Lipschitz and
\Phi :\scrA  - \rightarrow L\infty (X) is of class C1 and, hence, locally Lipschitz, we infer from the results
of [14, section 3.3] that \scrF is \partial \scrF -semismooth in \scrA .

Let us define the function g :\BbbR  - \rightarrow \BbbR by

g(t) =

\Biggl\{ 
 - 1

\kappa 
if  - 1

\kappa 
t\in (\alpha ,\beta ),

0 otherwise.

It is obvious that g(t)\in \partial \psi (t) for every t\in \BbbR .
To implement the semismooth Newton method we select for every u \in \scrA the

element Mu \in \partial \scrF (u) defined by Muv= v - hu \cdot \Phi \prime (u)v, where hu(x) = g(\Phi (u)(x)). We
have the following property of these linear operators.

Theorem 2.6. Let \=u satisfy (2.5), (2.7), and (2.8). Then, there exist \rho > 0 and
C > 0 such that Mu : Lp(X)  - \rightarrow Lp(X) is an isomorphism and \| M - 1

u \| \leq C for all
u\in B\rho (\=u)\subset \scrA , where B\rho (\=u) denotes the ball of center \=u and radius \rho in Lp(X).

Proof. We split the proof into two steps. First, we prove that Mu is an isomor-
phism for every u in a certain ball around \=u and then we prove that \| M - 1

u \| \leq C for
all u in such a ball.

Step 1. Mu is an isomorphism. Let u be an element of \scrA . Since hu : X  - \rightarrow \BbbR 
is measurable, \| hu\| L\infty (X) \leq 1

\kappa , and \Phi \prime (u) : Lp(X)  - \rightarrow L\infty (X) is a continuous linear
mapping, we deduce the continuity of Mu :Lp(X) - \rightarrow Lp(X). To prove that Mu is an
isomorphism it is enough to show that Mu is bijective and apply the open mapping
theorem. Given w \in Lp(X) arbitrary we will prove that there exists a unique element
\=v \in Lp(X) such that Mu\=v=w. Let us define the measurable sets

\BbbI u =

\biggl\{ 
x\in X : - 1

\kappa 
\Phi (u)(x)\in (\alpha ,\beta )

\biggr\} 
and \BbbA u =X \setminus \BbbI u.
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3686 EDUARDO CASAS

From the definition of hu we get that Mu\=v=w holds if and only if
\Biggl\{ 
\=v(x) =w(x) if x\in \BbbA u,

\=v(x) +
1

\kappa 
[\Phi \prime (u)\=v](x) =w(x) if x\in \BbbI u.

(2.14)

Denoting by \chi \BbbI u and \chi \BbbA u the characteristic functions of \BbbI u and \BbbA u, respectively, we
have that v = \chi \BbbI u v+ \chi \BbbA u v for every v \in Lp(X). The first equation of (2.14) defines \=v
univocally in \BbbA u. Using this fact we infer that the second equation is equivalent to

[\chi \BbbI u \=v](x) +
1

\kappa 
[\Phi \prime (u)(\chi \BbbI u \=v)](x) = [\chi \BbbI uw](x) - 

1

\kappa 
[\Phi \prime (u)(\chi \BbbA uw)](x) if x\in \BbbI u.(2.15)

For every measurable function v : \BbbI u  - \rightarrow \BbbR , \chi \BbbI u v denotes the extension of v to X by
zero. Now, we define the linear quadratic mapping H :L2(\BbbI u) - \rightarrow \BbbR by

H(v) =
1

2\kappa 
J \prime \prime (u)(\chi \BbbI u v)

2  - 
\int 

\BbbI u

\bigl( 
[\chi \BbbI uw](x) - 

1

\kappa 
[\Phi \prime (u)(\chi \BbbA uw)](x)

\bigr) 
[\chi \BbbI u v](x)d\mu .

From (2.2) we get that \chi \BbbI u \=v satisfies (2.15) if and only if H \prime (\=v) = 0. Let us recall
that hypothesis (H2) yields \Phi \prime (u)v \in Lp(X) for every v \in L2(X). Therefore, since
w \in Lp(X), if \chi \BbbI u \=v \in L2(X) solves the equality (2.15), then \chi \BbbI u \=v \in Lp(X) holds. If
we prove that H is strictly convex and coercive we infer the existence and uniqueness
of a point \chi \BbbI u \=v satisfying (2.15). To this end, it is enough to show the existence of
\nu > 0 such that J \prime \prime (u)(\chi \BbbI u v)

2 \geq \nu \| v\| 2L2(\BbbI u). Let \delta be the constant introduced in (2.10).

From (2.3) with \varepsilon = \delta 

2\mu (X)
p - 2
2p

we deduce the existence of \rho 1 > 0 such that B\rho 1(\=u)\subset \scrA 
and

\| [\Phi \prime (u) - \Phi \prime (\=u)]v\| Lp(X) \leq 
\delta 

2\mu (X)
p - 2
2p

\| v\| L2(X) \forall u\in B\rho 1
(\=u) and \forall v \in L2(X).(2.16)

Now, using (2.10), taking u \in B\rho 1(\=u), and assuming that \chi \BbbI u v \in E\tau 
\=u , the following

inequalities hold:

J \prime \prime (u)(\chi \BbbI u v)
2 \geq J \prime \prime (\=u)(\chi \BbbI u v)

2  - | [J \prime \prime (u) - J \prime \prime (\=u)](\chi \BbbI u v)
2| 

= J \prime \prime (\=u)(\chi \BbbI u v)
2  - 

\bigm| \bigm| \bigm| \bigm| 
\int 

X

\bigl( 
[\Phi \prime (u) - \Phi \prime (\=u)](\chi \BbbI u v)

\bigr) 
\chi \BbbI u v d\mu 

\bigm| \bigm| \bigm| \bigm| 

\geq \delta \| v\| 2L2(\BbbI u)  - \| [\Phi \prime (u) - \Phi \prime (\=u)](\chi \BbbI u v)\| L2(X)\| \chi \BbbI u v\| L2(X) \geq 
\delta 

2
\| v\| 2L2(\BbbI u).

Let us prove that \chi \BbbI u v \in E\tau 
\=u for every v \in L2(\BbbI u) if we take u close enough to \=u.

Since \Phi : \scrA  - \rightarrow L\infty (X) is of class C1, it is locally Lipschitz. Therefore, there exists
\rho 2 \in (0, \rho 1] and a constant L\=u such that B\rho 2(\=u)\subset \scrA and

\| \Phi (u2) - \Phi (u1)\| L\infty (X) \leq L\=u\| u2  - u1\| Lp(X) \forall u1, u2 \in B\rho 2
(\=u).(2.17)

Setting \rho =min\{ \rho 2, \tau 
L\=u

\} we deduce from the above inequality that

B\rho (\=u)\subset \scrA and \| \Phi (u) - \Phi (\=u)\| L\infty (X) < \tau \forall u\in B\rho (\=u).(2.18)

Given x\in X, if \kappa \=u(x)+\Phi (\=u)(x)> \tau holds, then (2.5) implies that \=u(x) = \alpha . Thus we
have

 - 1

\kappa 
\Phi (\=u)(x)<\alpha  - \tau 

\kappa 
.
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CONVERGENCE OF A SEMISMOOTH NEWTON METHOD 3687

This inequality and (2.18) lead to

 - 1

\kappa 
\Phi (u)(x)\leq  - 1

\kappa 
\Phi (\=u)(x) +

1

\kappa 
\| \Phi (u) - \Phi (\=u)\| L\infty (X) <\alpha .

This yields x \in \BbbA u and, consequently, [\chi \BbbI u v](x) = 0. Arguing in a similar way we
deduce that [\chi \BbbI u v](x) = 0 if \kappa \=u(x)+\Phi (\=u)(x)< - \tau . Hence, \chi \BbbI u v \in E\tau 

\=u holds. Therefore,
H is strictly convex and coercive and, consequently, Mu is an isomorphism.

Step 2. \exists C > 0 such that \| M - 1
u \| \leq C \forall u\in B\rho (\=u). Multiplying the identity (2.15)

by \kappa \chi \BbbI u \=v and integrating in X we get

\delta 

2
\| \=v\| 2L2(\BbbI u) \leq J \prime \prime (u)(\chi \BbbI u \=v)

2 = \kappa \| \=v\| 2L2(\BbbI u) +

\int 

X

[\Phi \prime (u)(\chi \BbbI u \=v)]\chi \BbbI u \=v d\mu 

=

\int 

X

\bigl( 
\kappa w - [\Phi \prime (u)(\chi \BbbA uw)]

\bigr) 
\chi \BbbI u \=v d\mu \leq 

\Bigl( 
\kappa \| w\| L2(X) + \| \Phi \prime (u)(\chi \BbbA uw)\| L2(X)

\Bigr) 
\| \=v\| L2(\BbbI u)

\leq 
\Bigl( 
\kappa \mu (X)

p - 2
2p \| w\| Lp(X) + \mu (X)

1
2 \| \Phi \prime (u)\chi \BbbA uw\| L\infty (X)

\Bigr) 
\| \=v\| L2(\BbbI u).

The Lipschitz property (2.17) implies that

\| \Phi \prime (u)v\| L\infty (X) \leq L\=u\| v\| Lp(X) \forall u\in B\rho (\=u) and \forall v \in Lp(X).(2.19)

Inserting this inequality in the above estimate it follows that

\delta 

2
\| \=v\| L2(\BbbI u) \leq 

\Bigl( 
\kappa \mu (X)

p - 2
2p + \mu (X)

1
2L\=u

\Bigr) 
\| w\| Lp(X).

Thus, we get \| \=v\| L2(\BbbI u) \leq C1\| w\| Lp(X) for C1 =
2
\delta (\kappa \mu (X)

p - 2
2p +\mu (X)

1
2L\=u). We use this

inequality to estimate \| \=v\| Lp(\BbbI u). First, we observe that hypothesis (H2) along with
(2.16) implies

\| \Phi \prime (u)(\chi \BbbI u \=v)\| Lp(X) \leq \| \Phi \prime (\=u)(\chi \BbbI u \=v)\| Lp(X) + \| [\Phi \prime (u) - \Phi \prime (\=u)](\chi \BbbI u \=v)\| Lp(X)

\leq 
\Bigl( 
\| \Phi \prime (\=u)\| \scrL (L2(X),Lp(X)) +

\delta 

2\mu (X)
p - 2
2p

\Bigr) 
\| \chi \BbbI u \=v\| L2(X) =C2\| \chi \BbbI u \=v\| L2(X),

where C2 is independent of u. Now, combining (2.15), the above inequality, and (2.19)
we infer that

\| \chi \BbbI u \=v\| Lp(X) \leq 
1

\kappa 
\| \Phi \prime (u)(\chi \BbbI u \=v)\| Lp(X) + \| \chi \BbbI uw\| Lp(X) +

1

\kappa 
\| \Phi \prime (u)(\chi \BbbA uw)\| Lp(X)

\leq C2

\kappa 
\| \chi \BbbI u \=v\| L2(X) +

\biggl( 
1 +

1

\kappa 
\mu (X)

1
pL\=u

\biggr) 
\| w\| Lp(X)

\leq 
\Bigl( C1C2

\kappa 
+ 1+

1

\kappa 
\mu (X)

1
pL\=u

\Bigr) 
\| w\| Lp(X) =C3\| w\| Lp(X).

Finally, setting C = 1+C3 and using the first identity of (2.14) we obtain

\| \=v\| Lp(X) \leq \| \=v\| Lp(\BbbA u) + \| \=v\| Lp(\BbbI u) \leq \| w\| Lp(\BbbA u) +C3\| w\| Lp(X) \leq C\| w\| Lp(X).

This proves that \| M - 1
u w\| Lp(X) \leq C\| w\| Lp(X) for all u \in B\rho (\=u) and all w \in Lp(X),

which concludes the proof.

Semismooth Newton's method for problem (P) is detailed in Algorithm 2. Theo-
rems 2.5 and 2.6 yield the following result on its convergence.
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3688 EDUARDO CASAS

Algorithm 2. Semismooth Newton method for (P).

1 Initialize. Choose u0 ∈ A. Set j = 0.
2 repeat
3 Compute ϕj = Φ(uj).

4 Set Ij = {x ∈ X : α < − 1
κϕj(x) < β}, Aα

j = {x ∈ X : − 1
κϕj(x) ≤ α},

,
,

Aβ
j = {x ∈ X : − 1

κϕj(x) ≥ β}, Aj = Aα
j ∪ Aβ

j .

.

5 Compute

wj(x) = −F(uj)(x) =

⎧
⎨
⎩
−uj(x) + β if x ∈ Aβ

j

−uj(x)− 1
κϕj(x) if x ∈ Ij

−uj(x) + α if x ∈ Aα
j

6 Compute ηj = χIj
wj − 1

κΦ
′(uj)(χAj

wj).

7 Solve the quadratic problem

(Qj) min
v∈L2(Ij)

Hj(v) :=
1

2κ

∫

X

(Φ′(uj)(χIj
v) + κχIj

v)χIj
v dμ−

∫

Ij
ηjv dμ

Name vIj its solution.
8 Set vj = χAj

wj + χIj
vIj

9 Set uj+1 = uj + vj and j = j + 1.

10 until convergence

Corollary 2.7. Let \=u \in \scrU ad satisfy (2.5) and assume that the second order
sufficient condition (2.7) and the strict complementarity condition (2.8) hold at \=u.
Then, there exists \rho > 0 such that for all u0 \in B\rho (\=u) \subset \scrA the sequence generated by
Algorithm 2 converges superlinearly to \=u.

Remark 2.8. Note that the assumptions (2.7) and (2.8) are not used directly in
the proof of Theorem 2.6. We simply use (2.10), which is a consequence of (2.7) and
(2.8); see Theorem 2.3. Therefore, the previous corollary remains valid if we replace
the assumptions (2.7) and (2.8) with (2.10). However, the assumptions (2.7) and (2.8)
seem to be more natural, easier to verify and are the hypotheses formulated for the
analysis of numerical algorithms in finite-dimensional optimization. If (2.8) does not
hold, then (2.10) is very far from the necessary second order conditions.

3. Application of Algorithm 2 to solve some control problems. In this
section, we show how Algorithm 2 can be applied to solve some control problems.
Along this section \Omega will denote an open, connected, and bounded subset of \BbbR n with
1 \leq n \leq 3 and a Lipschitz boundary \Gamma . In case n = 1 we assume that \Omega is a real
interval (a, b) with  - \infty < a < b < +\infty , and \Gamma = \{ a, b\} . In \Omega we consider a partial
differential operator A defined by

Ay= - 
n\sum 

i,j=1

\partial xj
[aij\partial xi

y] + a0y

with a0, aij \in L\infty (\Omega ) for 1\leq i, j \leq n, a0 \geq 0. We also assume that there exists \Lambda > 0
such that
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CONVERGENCE OF A SEMISMOOTH NEWTON METHOD 3689

n\sum 

i,j=1

aij(x)\xi i\xi j \geq \Lambda | \xi | 2 for a.e. x\in \Omega and all \xi \in \BbbR n.

3.1. A semilinear elliptic control problem with distributed control. The
first control problem is formulated as follows:

(P1) min
u\in \scrU ad

J(u) :=\scrJ (u) +
\kappa 

2

\int 

\Omega 

u(x)2 dx,

where \kappa > 0,

\scrJ (u) =

\int 

\Omega 

L(x, yu(x))dx and \scrU ad = \{ u\in L2(\Omega ) : \alpha \leq u(x)\leq \beta for a.a. x\in \Omega \} 

with  - \infty \leq \alpha < \beta \leq +\infty . Above yu denotes the state associated to the control u
related by the following semilinear elliptic state equation:

\biggl\{ 
Ayu + f(x, yu) = u in \Omega ,
yu = 0 on \Gamma .

(3.1)

The following assumptions are made on f and L:
(A1) We assume that f : \Omega \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory function of class C2 with

respect to the second variable satisfying the following conditions for almost all x\in \Omega :

\bullet \exists \=p > n

2
such that f(\cdot ,0)\in L\=p(\Omega ),

\bullet \partial f
\partial y

(x, y)\geq 0 \forall y \in \BbbR ,

\bullet \forall M > 0 \exists CM > 0 such that
\sum 2

j=1
| \partial jf
\partial yj (x, y)| \leq Cf,M for all | y| \leq M,

\bullet \forall \varepsilon > 0 and \forall M > 0 \exists \delta > 0 such that | \partial 2f
\partial y2 (x, y1) - \partial 2f

\partial y2 (x, y2)| \leq \varepsilon 

for all | y1| , | y2| \leq M with | y1  - y2| \leq \delta .

(A2) For the cost functional we suppose that L : \Omega \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory
function of class C2 with respect to the second variable satisfying the following con-
ditions for almost all x\in \Omega :

\bullet L(\cdot ,0)\in L1(\Omega ) and \forall M > 0 \exists \Psi L,M \in L\=p(\Omega ) and CL,M > 0 such that\bigm| \bigm| \bigm| \bigm| 
\partial L

\partial y
(x, y)

\bigm| \bigm| \bigm| \bigm| \leq \Psi L,M (x) and

\bigm| \bigm| \bigm| \bigm| 
\partial 2L

\partial y2
(x, y)

\bigm| \bigm| \bigm| \bigm| \leq CL,M for all | y| \leq M,

\bullet \forall \varepsilon > 0 and \forall M > 0 \exists \delta > 0 such that | \partial 2L
\partial y2 (x, y1) - \partial 2L

\partial y2 (x, y2)| \leq \varepsilon 

for all | y1| , | y2| \leq M with | y1  - y2| < \delta .

Let us consider the Banach space Y =H1
0 (\Omega ) \cap C(\=\Omega ). Under the above assump-

tions, it is known that (3.1) has a unique solution yu \in Y for every u \in L2(\Omega ). The
mapping G : L2(\Omega )  - \rightarrow Y , given by G(u) = yu, is of class C2. Furthermore, for all
u, v \in L2(\Omega ), zu,v =G\prime (u)v is the unique solution to

\left\{ 
 
 
Az +

\partial f

\partial y
(x, yu)z = v in \Omega ,

z = 0 on \Gamma ,
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3690 EDUARDO CASAS

and, given v1, v2 \in L2(\Omega ), zu,(v1,v2) =G\prime \prime (u)(v1, v2) is the unique solution to
\left\{ 
 
 
Az +

\partial f

\partial y
(x, yu)z = - \partial 

2f

\partial y2
(x, yu)zv1zv2 in \Omega ,

z = 0 on \Gamma ,

where zvi =G\prime (u)vi, i= 1,2.
Further, for every u\in L2(\Omega ) the adjoint state equation

\left\{ 
 
 
A\ast \varphi +

\partial f

\partial y
(x, yu)\varphi =

\partial L

\partial y
(x, yu) in \Omega ,

\varphi = 0 on \Gamma 

has a unique solution \varphi u \in Y . The mapping \Phi :L2(\Omega ) - \rightarrow Y defined by \Phi (u) = \varphi u is
of class C1 and \eta v =\Phi \prime (u)v \in Y is the solution of the linear equation

\left\{ 
 
 
A\ast \eta v +

\partial f

\partial y
(x, yu)\eta v =

\biggl( 
\partial 2L

\partial y2
(x, yu) - \varphi u

\partial 2f

\partial y2
(x, yu)

\biggr) 
zv in \Omega ,

\eta v = 0 on \Gamma .

We also have that the functional \scrJ : L2(\Omega )  - \rightarrow \BbbR is of class C2 and for every
u, v, v1, v2 \in L2(\Omega ) the following identities hold:

\scrJ \prime (u)v=
\int 

\Omega 

\varphi uv dx=

\int 

\Omega 

\Phi (u)v dx,

\scrJ \prime \prime (u)(v1, v2) =
\int 

\Omega 

\biggl( 
\partial 2L

\partial y2
(x, yu) - \varphi u

\partial 2f

\partial y2
(x, yu)

\biggr) 
zv1zv2 dx

=

\int 

\Omega 

\eta v1v2 dx=

\int 

\Omega 

\eta v2v1 dx,

where \varphi u =\Phi (u), zvi =G\prime (u)vi, and \eta vi =\Phi \prime (u)vi for i= 1,2.
Any local minimizer \=u of (P1) satisfies the identity

\=u(x) = Proj[\alpha ,\beta ]

\Bigl( 
 - 1

\kappa 
\=\varphi (x)

\Bigr) 
=Proj[\alpha ,\beta ]

\Bigl( 
 - 1

\kappa 
\Phi (\=u)(x)

\Bigr) 
for a.a. x\in \Omega 

or, equivalently, \scrF (\=u) = 0 with \scrF (u) = u - \Psi (\Phi (u)), \Psi as defined at the beginning of
subsection 2.2.

The reader is referred to [4] for the proof of the above statements.
We apply Algorithm 2 to compute a local minimizer \=u. To this end we identify

the following elements: X = \Omega , \mu is the Lebesgue measure, p = 2, \scrA = L2(\Omega ). Since
Y \subset L\infty (\Omega ) and it is compactly embedded in L2(\Omega ), hypotheses (H1) and (H2) hold.
Then, Algorithm 3 is the application of Algorithm 2 to (P1).

Under assumptions (2.7) and (2.8), Corollary 2.7 implies that Algorithm 3 is
locally and superlinearly convergent to the local minimizer \=u.

3.2. A semilinear elliptic bilinear control problem with boundary con-
trol. In this section, we consider the following control problem:

(P2) min
u\in \scrU ad

J(u) :=\scrJ (u) +
\kappa 

2

\int 

\Gamma 

u(x)2 dx,

where \kappa > 0,

\scrJ (u) =

\int 

\Omega 

L(x, yu(x))dx and \scrU ad = \{ u\in L2(\Gamma ) : \alpha \leq u(x)\leq \beta for a.a. x\in \Gamma \} 
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CONVERGENCE OF A SEMISMOOTH NEWTON METHOD 3691

Algorithm 3. Semismooth Newton method for (P1).

1 Initialize. Choose u0 ∈ L2(Ω). Set j = 0.
2 repeat
3 Compute yj = G(uj) solving the nonlinear equation

Ayj + f(x, yj) = uj in Ω, yj = 0 in Γ

4 Compute ϕj = Φ(uj) solving the linear equation

A∗ϕj +
∂f

∂y
(x, yj)ϕj =

∂L

∂y
(x, yj) in Ω, ϕj = 0 in Γ

5 Set Ij = {x ∈ Ω : α < − 1
κϕj(x) < β}, Aα

j = {x ∈ Ω : − 1
κϕj(x) ≤ α},

,

,

,

Aβ
j = {x ∈ Ω : − 1

κϕj(x) ≥ β}, Aj = Aα
j ∪ Aβ

j .

.

.

6 Compute

wj(x) = −F(uj)(x) =

⎧
⎨
⎩
−uj(x) + β if x ∈ Aβ

j

−uj(x)− 1
κϕj(x) if x ∈ Ij

−uj(x) + α if x ∈ Aα
j

7 Compute ηj = ηχAj
wj solving the linear equations

Azj +
∂f

∂y
(x, yj)zj =χAj

wj in Ω, zj = 0 on Γ

A∗ηj +
∂f

∂y
(x, yj)ηj =

(
∂2L

∂y2
(x, yj)− ϕj

∂2f

∂y2
(x, yj)

)
zj in Ω, ηj = 0 on Γ

8 Solve the quadratic problem

(Qj) min
v∈L2(Ij)

Hj(v) :=
1

2κ
J ′′(uj)(χIj

v)2 +

∫

Ij
(
1

2
v − wj +

1

κ
ηj)v dμ

Name vIj its solution.
9 Set vj = χAj

wj + χIj
vIj

10 Set uj+1 = uj + vj and j = j + 1.

11 until convergence

with 0\leq \alpha < \beta \leq \infty . We assume that \beta <\infty if n= 3. Here yu is the solution of the
state equation

\biggl\{ 
Ay+ f(x, y) = 0 in \Omega ,
\partial nA

y+ uy= g on \Gamma .
(3.2)

Regarding this problem, the reader is referred to [2, 3] for all unproven claims set
out below.
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3692 EDUARDO CASAS

We suppose that the functions L and f satisfy the same assumptions (A1) and
(A2) introduced in section 3.1. Additionally we assume that

(A3) n= 2 or 3, a0 \not \equiv 0, g \in Lq(\Gamma ) with q > n - 1 and, without loss of generality,
q\leq n.

We set p= 2 if n= 2 and p= q if n= 3. Under assumptions (A1), (A2), and (A3),
there exists an open set \scrA of Lp(\Gamma ) such that \scrA \supset \{ u \in Lp(\Gamma ) : u \geq 0\} and (3.2) has
a unique solution yu \in Y = H1(\Omega ) \cap C(\=\Omega ) for every u \in \scrA . Moreover, the mapping
G : \scrA  - \rightarrow Y defined by G(u) := yu is of class C2 and \forall u \in \scrA and \forall v, v1, v2 \in Lp(\Gamma )
the functions zu,v = G\prime (u)v and zu,(v1,v2) = G\prime \prime (u)(v1, v2) are the unique solutions of
the equations:

\left\{ 
 
 
Az +

\partial f

\partial y
(x, yu)z = 0 in \Omega ,

\partial nA
z + uz = - vyu on \Gamma ,\left\{ 

 
 
Az +

\partial f

\partial y
(x, yu)z = - \partial 

2f

\partial y2
(x, yu)zu,v1

zu,v2
in \Omega ,

\partial nA
z + uz = - v1zu,v2

 - v2zu,v1
on \Gamma ,

where zu,vi =G\prime (u)vi, i= 1,2.
An application of the chain rule implies that the function \scrJ :\scrA  - \rightarrow \BbbR is of class

C2 and its derivatives are given by the expressions:

\scrJ \prime (u)v= - 
\int 

\Gamma 

yu\varphi uv dx,

\scrJ \prime \prime (u)(v1, v2) =
\int 

\Omega 

\biggl[ 
\partial 2L

\partial y2
(x, yu) - \varphi u

\partial 2f

\partial y2
(x, yu)

\biggr] 
zu,v1

zu,v2
dx

 - 
\int 

\Gamma 

[v1zu,v2 + v2zu,v1 ]\varphi u dx

for all u \in \scrA and all v, v1, v2 \in Lp(\Gamma ), where zu,vi = G\prime (u)vi, i = 1,2, and \varphi u \in Y is
the adjoint state, the unique solution of the equation

\left\{ 
 
 
A\ast \varphi +

\partial f

\partial y
(x, yu)\varphi =

\partial L

\partial y
(x, yu) in \Omega ,

\partial nA\ast \varphi + u\varphi = 0 on \Gamma .

Now, we introduce the mapping S : \scrA  - \rightarrow Y given by S(u) = \varphi u. This mapping is
of class C1 and for all u \in \scrA and v \in Lp(\Gamma ) the function \eta u,v = S\prime (u)v is the unique
solution of \left\{ 

 
 
A\ast \eta +

\partial f

\partial y
(x, yu)\eta =

\Bigl[ \partial 2L
\partial y2

(x, yu) - \varphi u
\partial 2f

\partial y2
(x, yu)

\Bigr] 
zu,v in\Omega ,

\partial nA\ast \eta +u\eta = - v\varphi u on \Gamma ,

where zu,v = G\prime (u)v. Now, we define the mapping \Phi : \scrA  - \rightarrow L\infty (\Gamma ) by \Phi (u) =
 - (yu\varphi u)| \Gamma = - [G(u)S(u)]| \Gamma . We have that \Phi is of class C1 and the following alterna-
tive expressions for the derivatives of \scrJ hold:

\scrJ \prime (u)v=
\int 

\Gamma 

\Phi (u)v dx,

\scrJ \prime \prime (u)(v1, v2) =
\int 

\Gamma 

[\Phi \prime (u)v1]v2 dx=
\int 

\Gamma 

[\Phi \prime (u)v2]v1 dx

= - 
\int 

\Gamma 

(\varphi uzu,v1 + yu\eta u,v1)v2 dx= - 
\int 

\Gamma 

(\varphi uzu,v2 + yu\eta u,v2)v1 dx.
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CONVERGENCE OF A SEMISMOOTH NEWTON METHOD 3693

Looking at the equations satisfied by zu,v and \eta u,v we immediately infer that
G\prime (u) and S\prime (u) are linear and continuous mappings form L2(\Gamma ) to H1(\Omega ). Moreover,
using that yu,\varphi u \in Y for every u\in Lp(\Gamma ), we get that [G\prime (u)v]S(u) +G(u)[S\prime (u)v] =
zu,v\varphi u + yu\eta u,v \in H1(\Omega ). Hence, \Phi \prime (u)v =  - ([G\prime (u)v]S(u) +G(u)[S\prime (u)v])| \Gamma defines

a linear and continuous mapping from L2(\Gamma ) to H
1
2 (\Gamma ). Since p \leq n, then H

1
2 (\Gamma )

is compactly embedded in Lp(\Gamma ) and, consequently, \Phi \prime (u) : L2(\Gamma )  - \rightarrow Lp(\Gamma ) is a
compact linear mapping.

(P2) has at least a global minimizer. Moreover, any local minimizer satisfies the
identity

\=u(x) = Proj[\alpha ,\beta ]

\Bigl( 1

\kappa 
\=y(x) \=\varphi (x)

\Bigr) 
=Proj[\alpha ,\beta ]

\Bigl( 
 - 1

\kappa 
\Phi (\=u)(x)

\Bigr) 
for a.a. x\in \Gamma ,

where \=y=G(\=u) and \=\varphi = S(\=u).
Problem (P2) fits into the abstract framework of (P) by taking X = \Gamma and \mu 

equal to the n - 1-dimensional measure on \Gamma . As a straightforward consequence of the
above statements we get that hypotheses (H1) and (H2) hold. A detailed proof of
inequality (2.3) in the case n= 3 can be found in [3, Lemma A.10]. Under assumptions
(2.7) and (2.8), Corollary 2.7 implies that the semismooth Newton method applied to
(P2) is locally and superlinearly convergent to the local minimizer \=u.

3.3. A semilinear parabolic control problem with distributed control.
Now, we analyze the following control problem:

(P3) min
u\in \scrU ad

J(u) :=\scrJ (u) +
\kappa 

2

\int 

Q

u(x, t)2 dxdt (\kappa > 0),

where \scrU ad = \{ u\in L2(Q) : \alpha \leq u(x, t)\leq \beta for a.a. (x, t)\in Q\} ,  - \infty <\alpha <\beta <+\infty and

\scrJ (u) =

\int 

Q

L(x, t, yu(x, t))dxdt.

Here yu denotes the solution of the state equation

\Biggl\{ 
\partial y

\partial t
+Ay+ f(x, t, y) = u in Q=\Omega \times (0, T ),

y= 0 on \Sigma =\Gamma \times (0, T ), y(0) = y0 in \Omega .
(3.3)

We make the following assumptions on the data of (P3):
(A4) y0 \in L\infty (\Omega ).
(A5) We assume that f : Q \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory function of class C2

with respect to the second variable satisfying the following conditions for almost all
(x, t)\in Q:

\bullet \exists q, r\geq 2 such that
1

r
+
n

2q
< 1 and f(\cdot , \cdot ,0)\in Lr(0, T ;Lq(\Omega )),

\bullet \exists Cf \in \BbbR such that
\partial f

\partial y
(x, t, y)\geq C \forall y \in \BbbR ,

\bullet \forall M > 0, \exists CM > 0 such that
\sum 2

j=1
| \partial jf
\partial yj (x, t, y)| \leq Cf,M for all | y| \leq M,

\bullet \forall \varepsilon > 0 and \forall M > 0 \exists \delta > 0 such that | \partial 2f
\partial y2 (x, t, y1) - \partial 2f

\partial y2 (x, t, y2)| \leq \varepsilon 

for all | y1| , | y2| \leq M with | y1  - y2| \leq \delta .
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3694 EDUARDO CASAS

(A6) For the cost functional we suppose that L :Q\times \BbbR  - \rightarrow \BbbR is a Carath\'eodory
function of class C2 with respect to the second variable satisfying the following con-
ditions for almost all (x, t)\in Q:

\bullet L(\cdot , \cdot ,0)\in L1(Q) and \forall M > 0 \exists \Psi L,M \in Lr(0, T ;Lq(\Omega )) and CL,M > 0 satisfying\bigm| \bigm| \bigm| \bigm| 
\partial L

\partial y
(x, t, y)

\bigm| \bigm| \bigm| \bigm| \leq \Psi L,M (x, t) and

\bigm| \bigm| \bigm| \bigm| 
\partial 2L

\partial y2
(x, t, y)

\bigm| \bigm| \bigm| \bigm| \leq CL,M for all | y| \leq M,

\bullet \forall \varepsilon > 0 and \forall M > 0, \exists \delta > 0 such that | \partial 2L
\partial y2 (x, t, y1) - \partial 2L

\partial y2 (x, t, y2)| \leq \varepsilon 

for all | y1| , | y2| \leq M with | y1  - y2| < \delta .

The reader is referred to [7] for the unproven statements of this section.
Let us consider the Banach space Y = W (0, T ) \cap L\infty (Q), where W (0, T ) =

L2(0, T ;H1
0 (\Omega )) \cap H1(0, T ;H - 1(\Omega )). Under the above assumptions, it is known that

(3.3) has a unique solution yu \in Y for every u \in Lp(Q) with p = 2 if n = 1 and
p > 1+ n

2 if n= 2 or 3. The mapping G :Lp(Q) - \rightarrow Y , given by G(u) = yu, is of class
C2. Furthermore, for all u, v \in Lp(Q), zu,v =G\prime (u)v is the unique solution to

\left\{ 
 
 

\partial z

\partial t
+Az +

\partial f

\partial y
(x, t, yu)z = v in Q,

z = 0 on \Sigma , z(0) = 0 in \Omega ,
(3.4)

and, given v1, v2 \in Lp(Q), zu,(v1,v2) =G\prime \prime (u)(v1, v2) is the unique solution to
\left\{ 
 
 
\partial z

\partial t
+Az +

\partial f

\partial y
(x, t, yu)z = - \partial 

2f

\partial y2
(x, t, yu)zv1zv2 in Q,

z = 0 on \Sigma , z(0) = 0 in \Omega ,
(3.5)

where zvi =G\prime (u)vi, i= 1,2.
From assumption (A5) we infer that \partial f

\partial y (\cdot , \cdot , yu)\in L\infty (Q) for all u\in Lp(Q). Hence,

it is well known that (3.4) has a unique solution zv \in H1(Q) for every v \in L2(Q); see,
for instance, [12, section III.2]. Hence, G\prime (u) : L2(Q)  - \rightarrow H1(Q) is a continuous
linear extension of the mapping G\prime (u) : Lp(Q) - \rightarrow Y . Moreover, taking into account
that H1(Q) \subset L4(Q) for 1 \leq n \leq 3, and using again assumption (A5), we deduce

that \partial 2f
\partial y2 (\cdot , \cdot , yu)zv1zv2 \in L2(Q). Consequently, we have that zu,(v1,v2) \in H1(Q) and

G\prime \prime (u) : L2(Q) \times L2(Q)  - \rightarrow H1(Q) is a bilinear continuous extension of G\prime \prime (u) :
Lp(Q)\times Lp(Q) - \rightarrow Y .

Further, for every u\in Lp(\Omega ) the adjoint state equation
\left\{ 
 
 
 - \partial \varphi 
\partial t

+A\ast \varphi +
\partial f

\partial y
(x, t, yu)\varphi =

\partial L

\partial y
(x, t, yu) in Q,

\varphi = 0 on \Sigma \varphi (T ) = 0 in \Omega ,
(3.6)

has a unique solution \varphi u \in Y . We define the mapping \Phi :Lp(Q) - \rightarrow Y by \Phi (u) =\varphi u.
From the chain rule we infer that the functional \scrJ : Lp(Q)  - \rightarrow \BbbR is of class C2

and for every u, v, v1, v2 \in Lp(Q) the following identities hold:

\scrJ \prime (u)v=
\int 

Q

\varphi uv dxdt=

\int 

Q

\Phi (u)v dxdt,(3.7)

\scrJ \prime \prime (u)(v1, v2) =
\int 

Q

\biggl( 
\partial 2L

\partial y2
(x, t, yu) - \varphi u

\partial 2f

\partial y2
(x, t, yu)

\biggr) 
zv1zv2 dxdt,(3.8)
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CONVERGENCE OF A SEMISMOOTH NEWTON METHOD 3695

where zvi =G\prime (u)vi. From the above comments on the extensions of G\prime (u) and G\prime \prime (u)
we deduce that \scrJ \prime (u) and \scrJ \prime \prime (u) can be extended to continuous linear and bilinear
forms on L2(Q) given by the same integral expressions written above.

The following theorem provides some important properties of \Phi .

Theorem 3.1. The mapping \Phi enjoys the following properties:
(i) \Phi is of class C1 and \eta v =\Phi \prime (u)v \in Y is the solution of the linear equation

\left\{ 
 
 
 - \partial \eta v
\partial t

+A\ast \eta v +
\partial f

\partial y
(x, t, yu)\eta v =

\biggl( 
\partial 2L

\partial y2
(x, t, yu) - \varphi u

\partial 2f

\partial y2
(x, t, yu)

\biggr) 
zv in Q,

\eta v = 0 on \Sigma , \eta v(T ) = 0 in \Omega .

(3.9)

(ii) For 1 + n
2 < p< 4 and u\in Lp(Q) the linear mapping \Phi \prime (u) :Lp(Q) - \rightarrow Y has

a unique extension to a compact operator \Phi \prime (u) :L2(Q) - \rightarrow Y and, for every
v \in L2(Q), \eta v =\Phi \prime (u)v \in H1(Q) solves (3.9).

(iii) Taking p as in (ii) and given u \in Lp(Q), for every \varepsilon > 0 there exists \rho > 0
such that

\| [\Phi \prime (w) - \Phi \prime (u)]v\| Lp(Q) \leq \varepsilon \| v\| L2(Q) \forall w \in B\rho (u) and \forall v \in L2(Q),(3.10)

where B\rho (u) denotes the ball with respect to the Lp(Q)-norm.
(iv) The following identities hold:

\scrJ \prime \prime (u)(v1, v2) =
\int 

Q

\eta v1v2 dxdt=

\int 

Q

\eta v2v1 dxdt,(3.11)

where \eta vi =\Phi \prime (u)vi for i= 1,2.

The proof of this theorem is given in the appendix.
(P3) has at least a global solution. Moreover, any local solution satisfies the

identity

\=u(x, t) = Proj[\alpha ,\beta ]

\Bigl( 
 - 1

\kappa 
\=\varphi (x, t)

\Bigr) 
=Proj[\alpha ,\beta ]

\Bigl( 
 - 1

\kappa 
\Phi (\=u)(x, t)

\Bigr) 
for a.a. (x, t)\in Q.

Problem (P3) falls into the abstract framework for (P). It is enough to set X =Q,
\mu equal to the Lebesgue measure in Q, p = 2 if n = 1 and 1 + n

2 < p < 4 if n = 2 or
3, and \scrA =Lp(Q). Since the continuous embeddings Y \subset L\infty (Q)\subset Lp(Q) hold, then
hypotheses (H1) and (H2) are consequences of Theorem 3.1. Therefore, under the
assumptions (2.7) and (2.8) the superlinear convergence of the semismooth Newton
method follows from Corollary 2.7.

Remark 3.2. Often the control is located in a small region of the domain \Omega or the
boundary \Gamma . Assume that \omega is a measurable subset of \Omega or \Gamma with nonzero measure.
The case of an elliptic control problem with controls located in \omega fits into the abstract
framework by setting X = \omega and \Phi (u) = \varphi u| \omega , or \Phi (u) =  - (yu\varphi u)| \omega in the case of a
boundary bilinear control. For parabolic control problems we set X = \omega \times (0, T ).

Appendix A. Proof of Theorem 3.1.

Proof of (i). We apply the implicit function theorem. To this end we introduce
the space Y\varphi = \{ \varphi \in Y :  - \partial \varphi 

\partial t + A\ast \varphi \in L\infty (Q) and \varphi (T ) = 0\} . Endowed with the
graph norm this is a Banach space. Now, we define the mapping

F : Y\varphi \times Lp(Q) - \rightarrow L\infty (Q),

F (\varphi ,u) = - \partial \varphi 
\partial t

+A\ast \varphi +
\partial f

\partial y
(\cdot , \cdot , yu)\varphi  - \partial L

\partial y
(\cdot , \cdot , yu).
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3696 EDUARDO CASAS

Since the mapping G : Lp(Q)  - \rightarrow L\infty (Q) is of class C1, it is a straightforward ap-
plication of the chain rule and the assumptions (A5) and (A6) that F is of class C1

and

\partial F

\partial \varphi 
(\varphi ,u)\eta = - \partial \eta 

\partial t
+A\ast \eta +

\partial f

\partial y
(\cdot , \cdot , yu)\eta ,

\partial F

\partial u
(\varphi ,u)v=

\partial 2f

\partial y2
(\cdot , \cdot , yu)zv\varphi  - \partial 2L

\partial y2
(\cdot , \cdot , yu)zv,

where zv = G\prime (u)v. It is obvious that \partial F
\partial \varphi (\varphi ,u) : Y\varphi  - \rightarrow L\infty (Q) is an isomorphism.

Moreover, we have that \Phi (u)\in Y\varphi for every u\in Lp(Q) and F (\Phi (u), u) = 0. Then, the
implicit function theorem implies that \Phi is of class C1 and using the expressions for
\partial F
\partial \varphi (\varphi ,u) and

\partial F
\partial u (\varphi ,u) we get that \eta v =\Phi \prime (u)v is the solution of (3.7).

Proof of (ii). Given v \in L2(Q) we know that zv \in H1(Q) and the embedding
H1(Q) \subset Lp(Q) is compact for p < 4. Hence, the operator G\prime (u) : L2(Q)  - \rightarrow Lp(Q)
is compact. From (3.9) and this compactness property we deduce that the linear
mapping \Phi \prime (u) :L2(Q) - \rightarrow Y is compact as well.

Proof of (iii). Since G,\Phi :Lp(Q) - \rightarrow Y are continuous mappings, given u\in Lp(Q)
and \varepsilon 1 > 0 there exists \rho 1 > 0 such that

\| yw  - yu\| Y + \| \varphi w  - \varphi u\| Y < \varepsilon 1 \forall w \in B\rho 1(u)\subset Lp(Q).(A.1)

This leads to the existence of M1 > 0 such that

\| yw\| L\infty (Q) + \| \varphi w\| L\infty (Q) \leq M1 \forall w \in B\rho 1
(u).(A.2)

Using this, we infer from (3.4) and assumption (A5) that

\| zw,v\| Lp(Q) = \| G\prime (w)v\| Lp(Q) \leq C1\| G\prime (w)v\| H1(Q) \leq C2\| v\| L2(Q)(A.3)

for all (w,v)\in B\rho 1
(u)\times L2(Q). Now, for every w \in Lp(Q) we denote

R(w) =
\partial 2L

\partial y2
(\cdot , \cdot , yw) - \varphi w

\partial 2f

\partial y2
(\cdot , \cdot , yw).

With assumptions (A5) and (A6) and (A.2) we deduce for every w \in B\rho 1
(u) and all

v \in L2(Q) that

\| R(w)\| L\infty (Q) \leq M2 =CL,M1
+M1Cf,M1

(A.4)

and with (A.3)

\| R(w)zw,v\| Lp(Q) \leq M2C2\| v\| L2(Q).(A.5)

Then, from (3.9) we get that

\| \eta w,v\| Y = \| \Phi \prime (w)v\| Y \leq C3\| R(w)zw,v\| Lp(Q) \leq C3M2C2\| v\| L2(Q)(A.6)

for every w \in B\rho 1(u) and all v \in L2(Q).
Now, setting z = zu,v  - zw,v = G\prime (u)v  - G\prime (w)v and subtracting the equations

satisfied by zu,v and zw,v we get
\left\{ 
 
 

\partial z

\partial t
+Az +

\partial f

\partial y
(x, t, yu)z =

\Bigl[ \partial f
\partial y

(x, t, yw) - 
\partial f

\partial y
(x, t, yu)

\Bigr] 
zw,v in Q,

z = 0 on \Sigma , z(0) = 0 in \Omega .
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CONVERGENCE OF A SEMISMOOTH NEWTON METHOD 3697

Using assumption (A5), (A.1), (A.3), and (A.4) we get for every w \in B\rho 1(u) and all
v \in L2(Q) that

\| z\| Lp(Q) \leq C1\| z\| H1(Q) \leq C4

\bigm\| \bigm\| \bigm\| \partial f
\partial y

(\cdot , \cdot , yw) - 
\partial f

\partial y
(\cdot , \cdot , yu)

\bigm\| \bigm\| \bigm\| 
L\infty (Q)

\| zw,v\| Lp(Q)

\leq C4Cf,M1\| yw  - yu\| L\infty (Q)C2\| v\| L2(Q) \leq C2C4Cf,M1\varepsilon 1\| v\| L2(Q).

Setting C5 =C2C4Cf,M1 we obtain

\| zu,v  - zw,v\| Lp(Q) \leq C5\varepsilon 1\| v\| L2(Q) \forall w \in B\rho 1
(u) and \forall v \in L2(Q).(A.7)

Finally, we set \eta = \eta u,v  - \eta w,v = [\Phi \prime (u)  - \Phi \prime (w)]v. Subtracting the corresponding
equations we get

 - \partial \eta 
\partial t

+A\ast \eta +
\partial f

\partial y
(x, t, yu)\eta =

\Bigl[ \partial f
\partial y

(\cdot , \cdot , yw) - 
\partial f

\partial y
(\cdot , \cdot , yu)

\Bigr] 
\eta w,v

+ [R(u) - R(w)]zu,v +R(w)(zu,v  - zw,v).

Then, using (A.3), assumption (A5), (A.4), (A.6), and (A.7) we get

\| \eta \| Y \leq C3

\Bigl\{ \bigm\| \bigm\| \bigm\| \partial f
\partial y

(\cdot , \cdot , yw) - 
\partial f

\partial y
(\cdot , \cdot , yu)

\bigm\| \bigm\| \bigm\| 
L\infty (Q)

\| \eta w,v\| Lp(Q)

+ \| R(u) - R(w)\| L\infty (Q)\| zu,v\| Lp(Q) + \| R(w)\| L\infty (Q)\| zu,v  - zw,v\| Lp(Q)

\Bigr\} 

\leq C3

\Bigl\{ 
Cf,M1\varepsilon 1C3M2C2| Q| 1p \| v\| L2(Q)

+ \| R(u) - R(w)\| L\infty (Q)C2\| v\| L2(Q) +M2C5\varepsilon 1\| v\| L2(Q)

\Bigr\} 
.

From assumptions (A5) and (A6) and inequality (A.1) we infer the existence of \rho \in 
(0, \rho 1] such that

\| R(u) - R(w)\| L\infty (Q) \leq \varepsilon 1 \forall w \in B\rho (u).

Inserting this inequality above and selecting \varepsilon 1 small enough we deduce (3.10).
Proof of (iv). Equalities (3.11) are a straightforward consequence of (3.8) and

(3.9).
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