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Abstract. We show that a second order sufficient condition for local optimality, along with a
strict complementarity condition, is enough to get the superlinear convergence of the semismooth
Newton method for an optimal control problem governed by a semilinear elliptic equation. The
objective functional may include a sparsity promoting term and we allow for box control constraints.
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1. Introduction. Let us consider a domain \Omega \subset \BbbR n, n \leq 3, with a Lipschitz
boundary \Gamma . We study the following problem:

(P) min
u\in U\mathrm{a}\mathrm{d}

J(u) := F (u) + \gamma j(u),

where

F (u) =

\int 

\Omega 

L(x, yu(x))dx+
\kappa 

2

\int 

\Omega 

u(x)2 dx and j(u) =

\int 

\Omega 

| u(x)| dx.

Here L : \Omega \times \BbbR \rightarrow \BbbR is a given function, \kappa > 0, \gamma \geq 0, and

Uad = \{ u\in L2(\Omega ) : \alpha \leq u(x)\leq \beta for a.a. x\in \Omega \} ,

with  - \infty \leq \alpha < \beta \leq \infty . If \gamma > 0, we will further suppose \alpha < 0<\beta .
Above yu denotes the state associated to the control u related by the following

semilinear elliptic state equation:
\biggl\{ 
Ayu + f(x, yu) = u in \Omega ,

yu = 0 on \Gamma .
(1.1)

Assumptions on the data A, f , L are specified in section 2.
To introduce the main result of the paper and put it in the context of related

results in the literature, we briefly describe the semismooth Newton method; precise
definitions will be introduced in section 3. Let \=u be a solution of the equation \Phi (u) = 0,
where \Phi is a semismooth function. Given uk, at every step we select Mk \in \partial \Phi (uk),
the generalized derivative of \Phi at uk, we compute the solution of the linear system
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ANALYSIS OF THE SEMISMOOTH NEWTON METHOD 3077

Mkvk =  - \Phi (uk), and set uk+1 = uk + vk. We have that uk converges superlinearly
to \=u provided that u0 is close enough to \=u and the inverses of the operators Mk exist
and are uniformly bounded.

In the case of linear equations and convex objective functionals, the uniform
boundedness is obtained assuming the existence of \nu > 0 such that F \prime \prime (\=u)v2 \geq 
\nu \| v\| 2L2(\Omega ) for all v \in L2(\Omega ); see [7, 10, 13]. While this assumption is fully justi-
fied in that case, it is too restrictive if the equation is not linear because it is too
far from the second order necessary condition F \prime \prime (\=u) \geq 0 for all v \in C\=u, the cone of
critical directions. As far as we know, the only papers dealing with the convergence of
the semismooth Newton's method for optimal control problems governed by nonlinear
equations are [1], [8], and [10]. In the last two references, the proof of the convergence
is done assuming the abovementioned condition, while in the first one a condition
implying convexity of the functional is done.

The goal, and the novelty, of our paper is the proof of the superlinear convergence
of the semismooth Newton method toward a local solution \=u of (P) assuming a strict
complementarity condition, to be properly established in Definition 2.11, along with
a sufficient second order condition for local optimality. The sufficient second order
condition is the usual one enjoying a minimal gap with respect to the necessary one.
In Theorem 3.4, we prove that these two hypotheses imply the uniform boundedness
of the inverses of the selected generalized derivatives. A strict complementary as-
sumption together with a second order sufficient condition are the usual hypotheses
to prove the superlinear convergence of numerical algorithms in finite dimensional
constrained optimization problems; cf. [11, 12], and see also [9, Chapters 17 and 18]
and the references therein. We notice (cf. Remark 3.6) that the strict complemen-
tarity condition can be dropped out by assuming the stronger second order sufficient
optimality condition (3.6); cf. [14, equation (3.19)].

The plan of the paper is as follows. In section 2 we introduce the assumptions on
the control problem and carry out the first and second order analysis. The convergence
of the semismooth Newton algorithm is proved in section 3. In the last section, we
describe some computational details and present two numerical examples.

2. Assumptions and first and second order analysis of the control prob-
lem. We make the following assumptions on the data of the control problem.

(A1) Throughout the paper, \Omega is a bounded open subset of \BbbR n, 1 \leq n \leq 3. If
n = 2 or 3 we assume that its boundary \Gamma is Lipschitz. If n = 1, \Omega is a bounded
interval and \Gamma is reduced to the two end points of the interval. The operator A is
defined in \Omega by the expression

Ay= - 
n\sum 

i,j=1

\partial xj [aij\partial xiy] + a0y

with a0, ai,j \in L\infty (\Omega ) for 1\leq i, j \leq n, a0 \geq 0, and there exists \Lambda > 0 such that

n\sum 

i,j=1

ai,j(x)\xi i\xi j \geq \Lambda | \xi | 2 for a.e. x\in \Omega and all \xi \in \BbbR n.

(A2) We assume that f : \Omega \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory function of class C2 with
respect to the second variable satisfying the following conditions for almost all x\in \Omega :
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3078 EDUARDO CASAS AND MARIANO MATEOS

\bullet \exists \=p > n

2
such that f(\cdot ,0)\in L\=p(\Omega ),

\bullet \partial f
\partial y

(x, y)\geq 0 \forall y \in \BbbR ,

\bullet \forall M > 0, \exists CM > 0 such that
\sum 2

j=1
| \partial jf
\partial yj (x, y)| \leq Cf,M \forall | y| \leq M,

\bullet \forall \varepsilon > 0 and \forall M > 0 \exists \delta > 0 such that | \partial 2f
\partial y2 (x, y1) - \partial 2f

\partial y2 (x, y2)| \leq \varepsilon 

\forall | y1| , | y2| \leq M with | y1  - y2| \leq \delta .

(A3) For the cost functional we suppose that L : \Omega \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory
function of class C2 with respect to the second variable satisfying the following con-
ditions for almost all x\in \Omega :

\bullet L(\cdot ,0)\in L1(\Omega ) and \forall M > 0 \exists \Psi L,M \in L\=p(\Omega ) and CL,M > 0 such that\bigm| \bigm| \bigm| \bigm| 
\partial L

\partial y
(x, y)

\bigm| \bigm| \bigm| \bigm| \leq \Psi L,M (x) and

\bigm| \bigm| \bigm| \bigm| 
\partial 2L

\partial y2
(x, y)

\bigm| \bigm| \bigm| \bigm| \leq CL,M \forall | y| \leq M,

\bullet \forall \varepsilon > 0 and \forall M > 0, \exists \delta > 0 such that | \partial 2L
\partial y2 (x, y1) - \partial 2L

\partial y2 (x, y2)| \leq \varepsilon 

\forall | y1| , | y2| \leq M with | y1  - y2| < \delta .

Let us consider the Banach space Y =H1
0 (\Omega ) \cap C(\=\Omega ). Under the above assump-

tions, the following properties are well known; see, for instance, [4, Theorem 1.1.2].

Theorem 2.1. For any u\in Lp(\Omega ) with p > n/2, there exists a unique solution of
(1.1) yu \in Y . Moreover, there exists a constant K > 0 that depends on A, \Omega , p, and
\=p such that

\| yu\| H1
0 (\Omega ) + \| yu\| C(\=\Omega ) \leq K(\| u\| Lp(\Omega ) + \| f(\cdot ,0)\| L\=p(\Omega ))

holds. The mapping S :Lp(\Omega ) - \rightarrow Y given by S(u) = yu is of class C2. Furthermore,
for all u, v \in Lp(\Omega ), zv = S\prime (u)v is the unique solution to

\left\{ 
 
 

Az +
\partial f

\partial y
(x, yu)z = v in \Omega ,

z = 0 on \Gamma ,

and, given v1, v2 \in Lp(\Omega ), zv1,v2 = S\prime \prime (u)(v1, v2) is the unique solution to
\left\{ 
 
 

Az +
\partial f

\partial y
(x, yu)z = - \partial 

2f

\partial y2
(x, yu)zv1zv2 in \Omega ,

w= 0 on \Gamma ,

where zvi = S\prime (u)vi, i= 1,2.

For later reference, it will be useful to define the adjoint state in the following
form. We consider the mapping T : L\infty (\Omega )  - \rightarrow Y such that \varphi = T (y) is the unique
solution to the adjoint state equation:

\left\{ 
 
 

A\ast \varphi +
\partial f

\partial y
(x, y)\varphi =

\partial L

\partial y
(x, y) in \Omega ,

\varphi = 0 on \Gamma .

Setting G= T \circ S, we have that the adjoint state related to u is given by \varphi u =G(u).
From Theorem 2.1 and the chain rule, it is straightforward to deduce the following
two results.
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ANALYSIS OF THE SEMISMOOTH NEWTON METHOD 3079

Theorem 2.2. For every p > n/2, the mapping G :Lp(\Omega )\rightarrow Y is of class C1 and
for every u, v \in Lp(\Omega ), \eta v =G\prime (u)v is the unique solution of

\left\{ 
 
 

A\ast \eta v +
\partial f

\partial y
(x, yu)\eta v =

\biggl( 
\partial 2L

\partial y2
(x, yu) - \varphi u

\partial 2f

\partial y2
(x, yu)

\biggr) 
zv in \Omega ,

\eta v = 0 on \Gamma .
(2.1)

Theorem 2.3. The functional F : L2(\Omega )\rightarrow \BbbR is of class C2. Further, for every
u, v, v1, v2 \in L2(\Omega ) the following identities hold:

F \prime (u)v=
\int 

\Omega 

(\varphi u + \kappa u)v dx,(2.2)

F \prime \prime (u)(v1, v2) =
\int 

\Omega 

\biggl\{ \biggl( 
\partial 2L

\partial y2
(x, yu) - \varphi u

\partial 2f

\partial y2
(x, yu)

\biggr) 
zv1zv2 + \kappa v1v2

\biggr\} 
dx(2.3)

=

\int 

\Omega 

(\eta v1 + \kappa v1)v2 dx=

\int 

\Omega 

(\eta v2 + \kappa v2)v1 dx,(2.4)

where \varphi u =G(u), zvi =G\prime (u)vi, and \eta vi =G\prime (u)vi for i= 1,2.

We will need some results about the adjoint states, which we gather in the next
lemma.

Lemma 2.4. Given R > 0 arbitrary, we denote by \=BR(0) the closed L2(\Omega )-ball
centered at 0 with radius R. There exists a constant KG\prime (R)> 0 such that

\| G\prime (u)v\| Y \leq KG\prime (R)\| v\| L2(\Omega ) \forall u\in \=BR(0) and \forall v \in L2(\Omega ),(2.5)

\| G(u1) - G(u2)\| Y \leq KG\prime (R)\| u1  - u2\| L2(\Omega ) \forall u1, u2 \in \=BR(0).(2.6)

Proof. Let us prove (2.5). From Theorem 2.1, we deduce the existence of a
constant M(R)> 0 such that \| yu\| C(\=\Omega ) \leq M(R) for every u\in \=BR(0). Moreover, from
the monotonicity of f we deduce the existence of a constant C1 such that

\| zv\| Y \leq C1\| v\| L2(\Omega ) \forall u\in \=BR(0) and \forall v \in L2(\Omega ).(2.7)

We also obtain with assumption (A3)

\| \varphi u\| Y \leq C1

\bigm\| \bigm\| \bigm\| \partial L
\partial y

(\cdot , yu)
\bigm\| \bigm\| \bigm\| 
L2(\Omega )

\leq C1\| \Psi L,M(R)\| L2(\Omega ) \leq CR \forall u\in \=BR(0).(2.8)

Once again, from (2.1) and using (2.7) and (2.8) along with the assumptions (A2)
and (A3) we get

\| G\prime (u)v\| Y = \| \eta v\| Y \leq KG\prime (R)\| v\| L2(\Omega ) \forall u\in \=BR(0) and \forall v \in L2(\Omega ).

Thus, (2.5) follows. Estimate (2.6) is readily deduced from (2.5) and the generalized
mean value theorem.

Let us also remark that j(u) = \| u\| L1(\Omega ) is convex and Lipschitz. For every
u, v \in L1(\Omega ), the directional derivative j\prime (u;v) is given by

j\prime (u;v) =
\int 

\Omega +
u

v dx - 
\int 

\Omega  - 
u

v dx+

\int 

\Omega 0
u

| v| dx,(2.9)

where \Omega +
u , \Omega 

 - 
u , and \Omega 0

u are the sets of points where u is respectively positive, neg-
ative, or zero. We denote J \prime (u;v) = F \prime (u)v + \gamma j\prime (u;v) for every v \in L2(\Omega ). The
subdifferential of j at u is given by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3080 EDUARDO CASAS AND MARIANO MATEOS

\partial j(u) =

\left\{ 
 
 \lambda \in L

\infty (\Omega ) : \lambda (x)\in 

\left\{ 
 
 

\{ +1\} if u(x)> 0,
\{  - 1\} if u(x)< 0,
[ - 1,1] if u(x) = 0.

\right\} 
 
 (2.10)

A local solution of (P) is intended in the L2(\Omega )-sense along this paper. In the following
theorem, we summarize necessary and sufficient conditions for local optimality. First,
we define the cone of critical directions by

C\=u = \{ v \in L2(\Omega ) : satisfying (2.11) and J \prime (\=u)v+ \gamma j\prime (\=u;v) = 0\} ,

where
\biggl\{ 
v(x)\geq 0 if \=u(x) = \alpha ,
v(x)\leq 0 if \=u(x) = \beta .

(2.11)

Theorem 2.5. Suppose \=u \in Uad is a local solution of (P). Then, the following
conditions hold:

J \prime (\=u;u - \=u)\geq 0 \forall u\in Uad,(2.12)

\exists \=\lambda \in \partial j(\=u) such that

\int 

\Omega 

( \=\varphi + \kappa \=u+ \gamma \=\lambda )(u - \=u)\geq 0 \forall u\in Uad,(2.13)

F \prime \prime (\=u)v2 \geq 0 \forall v \in C\=u,(2.14)

where \=\varphi =G(\=u). Conversely, suppose that (\=u, \=\lambda )\in Uad \times \partial j(\=u) satisfies (2.13) and

F \prime \prime (\=u)v2 > 0 \forall v \in C\=u \setminus \{ 0\} .(2.15)

Then, there exist \nu > 0 and \delta > 0 such that

J(\=u) +
\nu 

2
\| u - \=u\| 2L2(\Omega ) \leq J(u) \forall u\in Uad with \| u - \=u\| L2(\Omega ) \leq \delta .

The reader is referred to [3, Theorems 3.1, 3.7, and 3.9] for its proof. Notice that
the gap between the sufficient condition (2.15) and the necessary condition (2.14) is
the minimal one, the same as in finite dimensional optimization.

We quote the following result, whose proof can be found in [3, Corollary 3.2].

Corollary 2.6. Let (\=u, \=\varphi , \=\lambda ) \in Uad \times Y \times \partial j(\=u) satisfy (2.13) with \=\varphi = G(\=u).
Then, the following relation holds:

\=u(x) = Proj[\alpha ,\beta ]

\biggl( 
 - 1

\kappa 

\bigl( 
\=\varphi (x) + \gamma \=\lambda (x)

\bigr) \biggr) 
.(2.16)

Moreover, if \gamma > 0 the following properties are fulfilled:

\=u(x) = 0 \Leftarrow \Rightarrow | \=\varphi (x)| \leq \gamma ,(2.17)

\=\lambda (x) = Proj[ - 1,+1]

\biggl( 
 - 1

\gamma 
\varphi (x)

\biggr) 
.(2.18)

Remark 2.7. Notice that if \gamma = 0, the role of \=\lambda in (2.13) and (2.16) is irrelevant.
Since, nevertheless, the notation is consistent, we leave it there in order to make an
exposition as unified as possible of both cases, \gamma = 0 and \gamma > 0.

Remark 2.8. As an immediate consequence of (2.16) we obtain the following:
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ANALYSIS OF THE SEMISMOOTH NEWTON METHOD 3081

If \=u(x) = \alpha then \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)\geq 0.(2.19)

If \=u(x) = \beta then \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)\leq 0.(2.20)

If \alpha < \=u(x)<\beta then \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x) = 0.(2.21)

If \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)> 0 then \=u(x) = \alpha .(2.22)

If \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)< 0 then \=u(x) = \beta .(2.23)

Using (2.2), (2.9), and (2.10) we infer

J \prime (\=u;v) =
\int 

\Omega +
\=u\cup \Omega  - 

\=u

[ \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)]v(x)dx+

\int 

\Omega 0
\=u

[ \=\varphi (x)v(x) + \gamma | v(x)| ] dx.
(2.24)

The next lemma establishes an important property of the elements of the critical
cone.

Lemma 2.9. Let (\=u, \=\varphi , \=\lambda ) be as in Corollary 2.6. Then, the following property
holds for v \in L2(\Omega ) and for almost all x\in \Omega :

[ \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)]v(x)

\biggl\{ 
\geq 0 if v satisfies (2.11),
= 0 if v \in C\=u.

(2.25)

Proof. The inequality of (2.25) is a straightforward consequence of (2.19)--(2.21)
and (2.11). To prove the equality of (2.25) we recall that j\prime (\=u;v) \geq 

\int 
\Omega 
\lambda v dx for all

\lambda \in \partial j(\=u). Then, we get

0 = J \prime (\=u;v)\geq 
\int 

\Omega 

[ \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)]v(x)dx \forall v \in C\=u.

Since the integrand is nonnegative for almost all x \in \Omega , the above inequality yields
[ \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)]v(x) = 0 for almost all x\in \Omega .

Lemma 2.10. Let (\=u, \=\varphi , \=\lambda ) be as in Corollary 2.6. Then, C\=u is the set of elements
v \in L2(\Omega ) satisfying the following conditions:

v(x) = 0 if \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x) \not = 0 or | \=\varphi (x)| <\gamma ,(2.26) \biggl\{ 
v(x)\geq 0 if \=u(x) = \alpha or \=\varphi (x) = - \gamma ,
v(x)\leq 0 if \=u(x) = \beta or \=\varphi (x) =+\gamma ,

(2.27)

where the terms involving \gamma should be removed if \gamma = 0.

Proof. From (2.17) we infer that \=\varphi (x)v(x) + \gamma | v(x)| \geq 0 for almost all x \in \Omega 0
\=u.

Using this, the inequality in (2.25), and (2.24) we deduce that J \prime (\=u;v) = 0 if and only
if [ \=\varphi (x)+\kappa \=u(x)+\gamma \=\lambda (x)]v(x) = 0 a.e. in \Omega +

\=u \cup \Omega  - 
\=u and \=\varphi (x)v(x)+\gamma | v(x)| = 0 a.e. in \Omega 0

\=u.
The last equality holds if and only if (v(x) = 0 if | \=\varphi (x)| <\gamma ), (v(x)\geq 0 if \=\varphi (x) = - \gamma ),
and (v(x) \leq 0 if \=\varphi (x) = +\gamma ). These equivalences prove the characterization of C\=u

given in the statement of the lemma.

Now, we define the closed vector subspace of L2(\Omega )

T\=u = \{ v \in L2(\Omega ) : v(x) = 0 if | \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)| > 0 or | \=\varphi (x)| <\gamma \} 

and the set

\Sigma \=u = \{ x\in \Omega : (\=u(x)\in \{ \alpha ,\beta \} and \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x) = 0) or | \=\varphi (x)| = \gamma \} .

Once again, the terms involving \gamma should be removed in the case \gamma = 0.
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Definition 2.11. We say that the strict complementary condition is satisfied at
\=u if | \Sigma \=u| = 0, where | \cdot | stands for the Lebesgue measure.

Lemma 2.12. Let (\=u, \=\varphi , \=\lambda ) be as in Corollary 2.6 and assume that the strict com-
plementary condition holds at \=u, then C\=u = T\=u.

This lemma is an immediate consequence of Lemma 2.10 and the fact that
| \Sigma \=u| = 0.

Given \tau > 0, where \tau < \gamma if \gamma > 0, we define the extended subspace

T \tau 
\=u = \{ v \in L2(\Omega ) : v(x) = 0 if | \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)| > \tau or | \=\varphi (x)| <\gamma  - \tau \} .

Theorem 2.13. Let (\=u, \=\varphi , \=\lambda ) \in Uad \times Y \times \partial j(\=u) satisfy (2.13) with \=\varphi = G(\=u)
and assume that the strict complementary condition | \Sigma \=u| = 0 and the second order
sufficient condition (2.15) hold at \=u. Then, there exist \nu > 0 and \tau > 0, with \tau < \gamma if
\gamma > 0, such that

F \prime \prime (\=u)v2 \geq \nu \| v\| 2L2(\Omega ) \forall v \in T \tau 
\=u .(2.28)

Proof. We will proceed by contradiction: suppose (2.28) is false. Then, there

exists a sequence \{ vk\} \infty k=1 \subset L2(\Omega ) such that vk \in T
1/k
\=u and F \prime \prime (\=u)v2k <

1
k\| vk\| 2L2(\Omega ).

Of course, we can assume that \| vk\| L2(\Omega ) = 1; otherwise it is enough to divide vk by
its L2(\Omega )-norm to have

vk \in T 1/k
\=u , \| vk\| L2(\Omega ) = 1, and F \prime \prime (\=u)v2k <

1

k
.(2.29)

Then, for a subsequence, denoted in the same way, there exists v \in L2(\Omega ) such that
vk \rightharpoonup v weakly in L2(\Omega ). We observe that v \in T\=u. Indeed, for every \varepsilon > 0 we set

\Theta \varepsilon = \{ x\in \Omega : v(x) \not = 0 and | \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)| > \varepsilon or | \=\varphi (x)| <\gamma  - \varepsilon \} .

Because vk vanishes in \Theta \varepsilon for every k > 1
\varepsilon , its weak limit v vanishes as well in \Theta \varepsilon . As

\varepsilon > 0 is arbitrary, we conclude that v \in T\=u. On the other hand, since the quadratic
form F \prime \prime (\=u) :L2(\Omega )\rightarrow \BbbR is weakly lower semicontinuous, using (2.29) we have that

F \prime \prime (\=u)v2 \leq lim inf
k\rightarrow \infty 

F \prime \prime (\=u)v2k = 0.

The strict complementarity condition implies that C\=u = T\=u. Therefore, as a conse-
quence of (2.15), we deduce that v = 0. Moreover, the weak convergence vk \rightharpoonup 0 in
L2(\Omega ) implies the strong convergence zvk \rightarrow 0 in C(\=\Omega ). Using that \| vk\| L2(\Omega ) = 1 we
obtain

lim
k\rightarrow \infty 

F \prime \prime (\=u)v2k = lim
k\rightarrow \infty 

\int 

\Omega 

\biggl( 
\partial 2L

\partial y2
(x, \=y) - \=\varphi 

\partial 2f

\partial y2
(x, \=y)

\biggr) 
z2vk dx+ \kappa = \kappa ,

which contradicts the fact that \kappa > 0.

Remark 2.14. In [14, equation (3.19)], the author makes an assumption similar
to (2.28) to prove quadratic convergence for a sequential quadratic programming
algorithm. However, (2.28) sounds quite strong as an assumption because it seems
to be very far from the second order necessary condition. Theorem 2.13 shows that
it is satisfied whenever the no gap second order sufficient condition plus the strict
complementarity condition hold.
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3. Semismooth Newton method. Next we use (2.16) and (2.18) to define an
equation \Phi (u) = 0 satisfied by any local solution of (P), where \Phi is semismooth. We
define semismoothness following [15, Definition 3.1]. A slightly different approach
using the concept of slant differentiability can be found in [7].

Definition 3.1. Given two Banach spaces X and Y , an open subset V of X, a
continuous function \Phi : V \rightarrow Y , and a set-valued mapping \partial \Phi : V \rightrightarrows \scrL (X,Y ) such
that \partial \Phi (u) \not = \emptyset for every u\in V , we say that \Phi is \partial \Phi -semismooth at \=u\in V if

lim
v\rightarrow 0

sup
M\in \partial \Phi (\=u+v)

\| \Phi (\=u+ v) - \Phi (\=u) - Mv\| Y
\| v\| X

= 0.(3.1)

The multifunction \partial \Phi is called the generalized derivative of \Phi .

The semismooth Newton method spans a sequence according to Algorithm 1.
The proof of the following convergence theorem can be found in [15, Theorem

3.13]. See also [7, Theorem 1.1].

Theorem 3.2. Suppose that \Phi : V \rightarrow Y is \partial \Phi -semismooth at \=u \in V solution of
\Phi (u) = 0 locally unique. Suppose, furthermore, that the following regularity condition
is satisfied: for every j, the operator Mj \in \partial \Phi (uj) is invertible and there exists C\Phi > 0
such that

\| M - 1
j \| \scrL (Y,X) \leq C\Phi \forall j \geq 0.(3.2)

Then, there exists \delta > 0 such that for all u0 \in V with \| u0  - \=u\| X < \delta the sequence
\{ uj\} j\geq 0 spanned by the semismooth Newton method converges superlinearly to \=u.

Taking into account (2.16) and (2.18), we define \psi :\BbbR \rightarrow \BbbR as

\psi (t) =Proj[\alpha ,\beta ]

\biggl\{ 
 - 1

\kappa 

\Bigl[ 
t+Proj[ - \gamma ,+\gamma ] ( - t)

\Bigr] \biggr\} 

and the superposition operator \Psi G : L2(\Omega ) \rightarrow L2(\Omega ) by \Psi G(u)(x) = \psi (G(u)(x)).
We recall that G(u) = \varphi u. We consider the mapping \Phi : L2(\Omega ) \rightarrow L2(\Omega ) given by
\Phi (u) = u  - \Psi G(u). Corollary 2.6 implies that \=u satisfies the equation \Phi (\=u) = 0.
Next, we study the semismoothness properties of \Phi . Hereafter, \partial CL\psi denotes the
generalized derivative of \psi in the sense of Clarke [6, Definition 3.10]. We observe that
\psi is a Lipschitz function.

Lemma 3.3. The function \Phi : L2(\Omega ) \rightarrow L2(\Omega ) is \partial \Phi -semismooth at every u \in 
L2(\Omega ) for the set-valued mapping

\partial \Phi (u) = \{ M = I  - N : N \in \partial \Psi G(u)\} ,
where

\partial \Psi G(u) = \{ N \in \scrL (L2(\Omega ),L2(\Omega )) : there exists a Lebesgue measurable function h

such that h(x)\in \partial CL\psi (G(u)(x)) a.e. in \Omega and Nv= h \cdot G\prime (u)v \forall v \in L2(\Omega )\} .

Algorithm 1: Semismooth Newton method.

1 Initialize. Choose u0 ∈ V . Set j = 0.
2 repeat
3 Choose Mj ∈ ∂Φ(uj) and solve Mjvj = −Φ(uj).
4 Set uj+1 = uj + vj and j = j + 1.

5 until convergence
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3084 EDUARDO CASAS AND MARIANO MATEOS

Proof. Clearly, \Phi is continuous for being the composition of continuous functions.
It is straightforward to check that the generalized derivative of \psi in the sense of

Clarke (see [6, Theorem 10.27]) is given by the following expression:

\partial CL\psi (t) =

\left\{ 
         
         

\{ 0\} if t\in ( - \infty , - \gamma  - \kappa \beta )\cup ( - \gamma , \gamma )\cup (\gamma  - \kappa \alpha ,+\infty ),

\biggl\{ 
 - 1

\kappa 

\biggr\} 
if t\in ( - \gamma  - \kappa \beta , - \gamma )\cup (\gamma , \gamma  - \kappa \alpha ),

\biggl[ 
 - 1

\kappa 
,0

\biggr] 
if t\in \{  - \gamma  - \kappa \beta , - \gamma , \gamma , \gamma  - \kappa \alpha \} ,

if \gamma > 0,

\partial CL\psi (t) =

\left\{ 
         
         

\{ 0\} if t\in ( - \infty , - \kappa \beta )\cup ( - \kappa \alpha ,+\infty ),

\biggl\{ 
 - 1

\kappa 

\biggr\} 
if t\in ( - \kappa \beta , - \kappa \alpha ),

\biggl[ 
 - 1

\kappa 
,0

\biggr] 
if t\in \{  - \kappa \beta , - \kappa \alpha \} ,

if \gamma = 0.

Since \psi is piecewise C2, it is 1-order semismooth; see [15, Proposition 2.26]. Thanks
to the Lipschitz continuity of G (see (2.6)), we deduce straightforwardly from [15,
Theorem 3.49] that \Psi G is \partial \Psi G-semismooth. Hence, defining \partial \Phi (u) = \{ M = I  - N :
N \in \partial \Psi G(u)\} , we readily obtain that \Phi is \partial \Phi -semismooth.

To perform the step in line 3 of Algorithm 1, we have to choose some element
in \partial \Phi (u). In order to do this selection and obtain a family of uniformly invertible
operators, we define

g(t) =

\left\{ 
  
  

0 if t\in ( - \infty , - \gamma  - \kappa \beta ]\cup [ - \gamma , \gamma ]\cup [\gamma  - \kappa \alpha ,+\infty ),

 - 1

\kappa 
if t\in ( - \gamma  - \kappa \beta , - \gamma )\cup (\gamma , \gamma  - \kappa \alpha ),

if \gamma > 0,

g(t) =

\left\{ 
  
  

0 if t\in ( - \infty , - \kappa \beta ]\cup [ - \kappa \alpha ,+\infty ),

 - 1

\kappa 
if t\in ( - \kappa \beta , - \kappa \alpha ),

if \gamma = 0.

Notice that g(t) = 0 when t\in \{  - \gamma  - \kappa \beta , - \gamma , \gamma , \gamma  - \kappa \alpha \} if \gamma > 0 or when t\in \{  - \kappa \beta , - \kappa \alpha \} 
if \gamma = 0 and hence g(t)\in \partial CL\psi (t). For a given control u\in L2(\Omega ), we selectMu \in \partial \Phi (u)
defined as Muv= v - hu \cdot G\prime (u)v, where hu(x) = g(\varphi u(x)).

Theorem 3.4. Let (\=u, \=\varphi , \=\lambda ) \in Uad \times Y \times \partial j(\=u) satisfy (2.13) with \=\varphi = G(\=u)
and assume that the strict complementary condition | \Sigma \=u| = 0 and the second order
sufficient condition (2.15) hold at \=u. Then, there exist \delta > 0 and C > 0 such that
for all u \in B\delta (\=u) and all w \in L2(\Omega ), the equation Muv = w has a unique solution
v \in L2(\Omega ) and the inequality \| v\| L2(\Omega ) \leq C\| w\| L2(\Omega ) holds.
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ANALYSIS OF THE SEMISMOOTH NEWTON METHOD 3085

Proof. We define the active and inactive sets for u. For \gamma > 0 we define

\BbbA \beta = \{ x\in \Omega : \varphi u(x)\leq  - \gamma  - \kappa \beta \} ,
\BbbJ + = \{ x\in \Omega :  - \gamma  - \kappa \beta <\varphi u(x)< - \gamma \} ,
\BbbA 0 = \{ x\in \Omega : | \varphi u(x)| \leq \gamma \} ,
\BbbJ  - = \{ x\in \Omega : \gamma <\varphi u(x)<\gamma  - \kappa \alpha \} ,
\BbbA \alpha = \{ x\in \Omega : \gamma  - \kappa \alpha \leq \varphi u(x)\} .

Notice that all five sets are disjoint and their union is \Omega . We set \BbbA = \BbbA \alpha \cup \BbbA \beta \cup \BbbA 0

and \BbbJ = \BbbJ  - \cup \BbbJ +. In the case \gamma = 0 we define \BbbA =\BbbA \alpha \cup \BbbA \beta and

\BbbJ =\{ x\in \Omega :  - \kappa \beta <\varphi u(x)< - \kappa \alpha \} .

Using the notation \eta v =G\prime (u)v, we have that

Muv=

\Biggl\{ 
v in \BbbA ,

v+
1

\kappa 
\eta v in \BbbJ ,

and the equation Muv=w is equivalent to the system

\Biggl\{ 
v = w in \BbbA ,

v+
1

\kappa 
\eta v = w in \BbbJ .(3.3)

We write v = \chi \BbbJ v + \chi \BbbA v. The first equation determines v in the active set \BbbA and
we write the second equation as

\chi \BbbJ v+
1

\kappa 
\eta \chi \BbbJ v

=w - 1

\kappa 
\eta \chi \BbbA w

in \BbbJ .(3.4)

From (2.4) we get that this equation is the optimality condition of the unconstrained
quadratic optimization problem

min
v\in L2(\BbbJ )

H(v) :=
1

2
F \prime \prime (u)(\chi \BbbJ v)

2  - 
\int 

\BbbJ 
(\kappa w - \eta \chi \BbbA w

)v dx.(3.5)

Therefore, if we prove that H has a unique local minimizer in L2(\BbbJ ), the existence
and uniqueness of a solution of (3.4) follows. Using the continuity of the functional
u \rightarrow F \prime \prime (u), we deduce the existence of \delta 0 > 0 such that if \| u  - \=u\| L2(\Omega ) < \delta 0, then
| (F \prime \prime (u) - F \prime \prime (\=u))v2| < \nu /2\| v\| 2L2(\Omega ). From Theorem 2.13, we deduce the existence of
\tau > 0, with \tau < \gamma if \gamma > 0, such that

F \prime \prime (u)v2 \geq \nu 

2
\| v\| 2L2(\Omega ) \forall v \in T \tau 

\=u if \| u - \=u\| L2(\Omega ) < \delta 0.(3.6)

Therefore, (3.5) has a unique local minimizer, that is also global, if L2(\BbbJ )\subset T \tau 
\=u . This

embedding follows from the inclusion

\BbbJ \subset \{ x\in \Omega : | \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)| \leq \tau and | \=\varphi (x)| \geq \gamma  - \tau \} ,(3.7)

or equivalently

\{ x\in \Omega : | \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)| > \tau or | \=\varphi (x)| <\gamma  - \tau \} \subset \BbbA .
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Let us check this inclusion. Taking \delta =min\{ \delta 0,1, \tau 
KG\prime ( \=R)

\} with \=R= \| \=u\| L2(\Omega ) + 1, we

deduce from (2.6) that \| \varphi u  - \=\varphi \| C(\=\Omega ) < \tau if \| u - \=u\| L2(\Omega ) < \delta .
Case 1. Suppose \=\varphi (x) + \kappa \=u(x) + \gamma \=\lambda (x)> \tau . From (2.22), we have that \=u(x) = \alpha .

If \gamma > 0, we also deduce from (2.17) and (2.18) that \=\lambda (x) =  - 1. We can write that
\=\varphi (x)> \tau  - \kappa \=u(x) - \gamma \=\lambda (x) = \tau  - \kappa \alpha + \gamma . Since \varphi u(x) - \=\varphi (x)> - \tau , we have that

\varphi u(x) =\varphi u(x) - \=\varphi (x) + \=\varphi (x)> - \tau + \tau  - \kappa \alpha + \gamma = - \kappa \alpha + \gamma 

and, hence, x\in \BbbA \alpha \subset \BbbA .
Case 2. Suppose \=\varphi (x)+\kappa \=u(x)+\gamma \=\lambda (x)< - \tau . From (2.23), we have that \=u(x) = \beta .

If \gamma > 0, we also deduce from (2.17) and (2.18) that \=\lambda (x) = 1. We can write that
\=\varphi (x)< - \tau  - \kappa \=u(x) - \gamma \lambda (x) = - \tau  - \kappa \beta  - \gamma . Since \varphi u(x) - \=\varphi (x)< \tau , we have that

\varphi u(x) =\varphi u(x) - \=\varphi (x) + \=\varphi (x)< \tau  - \tau  - \kappa \beta  - \gamma = - \kappa \beta  - \gamma 

and, consequently, x\in \BbbA \beta \subset \BbbA .
For \gamma = 0, Cases 1 and 2 imply (3.7).
Case 3. Suppose \gamma > 0 and | \=\varphi (x)| <\gamma  - \tau . Then | \varphi u(x)| \leq | \varphi u(x) - \=\varphi (x)| +| \=\varphi (x)| <

\tau + \gamma  - \tau = \gamma , which yields x\in \BbbA 0 \subset \BbbA .
Therefore (3.6) and (3.7) hold and consequently the system (3.3) has a unique

solution v and \chi \BbbJ v \in T \tau 
\=u . It remains to get an estimate for v in terms of w with a

constant independent of u\in B\delta (\=u). Using (3.6), (2.4), and (3.4) we get

\nu 

2
\| \chi \BbbJ v\| 2L2(\Omega ) \leq F \prime \prime (u)(\chi \BbbJ v)

2 =

\int 

\Omega 

(\eta \chi \BbbJ v
+ \kappa \chi \BbbJ v)\chi \BbbJ vdx

=\kappa 

\int 

\Omega 

\biggl( 
w - 1

\kappa 
\eta \chi \BbbA w

\biggr) 
\chi \BbbJ vdx.

From the first equation in (3.3), we have that

\| \chi \BbbA v\| 2L2(\Omega ) =

\int 

\Omega 

w\chi \BbbA vdx.

Multiplying this equality by \kappa and adding it to the previous inequality, we obtain
with the Cauchy--Schwarz inequality and estimate (2.5)

min
\Bigl\{ 
\kappa ,
\nu 

2

\Bigr\} 
\| v\| 2L2(\Omega ) \leq \kappa 

\int 

\Omega 

wvdx - 
\int 

\Omega 

\eta \chi \BbbA w
\chi \BbbJ vdx

\leq 
\Bigl( 
\kappa \| w\| L2(\Omega ) + \| \eta \chi \BbbA w

\| L2(\Omega )

\Bigr) 
\| v\| L2(\Omega )

\leq 
\bigl( 
\kappa +KG\prime ( \=R)

\bigr) 
\| w\| L2(\Omega )\| v\| L2(\Omega ).

This yields \| v\| L2(\Omega ) \leq C\| w\| L2(\Omega ) with C = \kappa +KG\prime ( \=R)
min\{ \kappa , \nu 2 \} 

.

The following result is an immediate consequence of Theorem 3.2, Lemma 3.3,
and Theorem 3.4.

Corollary 3.5. Let (\=u, \=\varphi , \=\lambda ) \in Uad \times Y \times \partial j(\=u) satisfy (2.13) with \=\varphi = G(\=u)
and assume that the strict complementary condition | \Sigma \=u| = 0 and the second order
sufficient condition (2.15) hold at \=u. Then, there exists \delta > 0 such that for all u0 \in 
B\delta (\=u), the sequence spanned by Algorithm 2 converges superlinearly to \=u.

The semismooth Newton's method for problem (P) is detailed in Algorithm 2.

Remark 3.6. Since C\=u \subset T \tau 
\=u , then (3.6) implies the sufficient second order opti-

mality condition (2.15). The proof of Theorem 3.4 uses (3.6), but the strict comple-
mentarity condition | \Sigma \=u| = 0 is not used. Consequently, the statement of Theorem 3.4,
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Algorithm 2: Semismooth Newton method to solve (P).

1 Initialize. Choose u0 ∈ L2(Ω). Set j = 0.
2 repeat
3 Compute yj = S(uj) solving the nonlinear equation

Ayj + f(x, yj) = uj in Ω, yj = 0 in Γ

4 Compute ϕj = G(uj) solving the linear equation

A∗ϕj +
∂f

∂y
(x, yj)ϕj =

∂L

∂y
(x, yj) in Ω, ϕj = 0 in Γ

5 Compute Aβ
j , A0

j , Aα
j , Aj , and J+j , J

−
j , Jj using ϕj .

6 Compute

wj(x) = −Φ(uj)(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−uj(x) + β if x ∈ Aβ
j

−uj(x)− 1
κ (ϕk(x) + γ) if x ∈ J+j

−uj(x) if x ∈ A0
j

−uj(x)− 1
κ (ϕk(x)− γ) if x ∈ J−j

−uj(x) + α if x ∈ Aα
j

7 Compute ηj = ηχ
j
wj
solving the linear equations

Azj +
∂f

∂y
(x, yj)zj =χ

j
wj in Ω, zj = 0 on Γ

A∗ηj +
∂f

∂y
(x, yj)ηj =

∂2L

∂y2
(x, yj)− ϕj

∂2f

∂y2
(x, yj) zj in Ω, ηj = 0 on Γ

8 Solve the quadratic problem

(Qj) min
v∈L2(Jj)

Hj(v) :=
1

2
F (uj)(χ

j
v)2 −

Jj
(κwj − ηj)vdx

Name vJj its solution.
9 Set vj = χ

j
wj + χ

j
vJj

10 Set uj+1 = uj + vj and j = j + 1.

11 until convergence

.

and also that of Corollary 3.5, can be rewritten replacing (2.15) and the strict com-
plementarity condition by (3.6). Obviously, this is a weaker assumption, but it is a
less natural assumption: if the strict complementarity condition is not satisfied, the
gap between (3.6) and the second order necessary condition is too large.
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Algorithm 3: Computation of the product Hessian vector.

1 Solve Az + \partial f
\partial y (x, yj)z = \chi \BbbJ j

v in \Omega , z = 0 in \Gamma 

2 Solve A\ast \eta + \partial f
\partial y (x, yj)\eta =

\Bigl( 
\partial 2L
\partial y2 (x, yj) - \varphi j

\partial 2f
\partial y2 (x, yj)

\Bigr) 
z in \Omega , \eta = 0 in \Gamma 

3 Set Ajv= \chi \BbbJ j
(\eta + \kappa v)

4. Some computational details and numerical examples. Let us com-
ment on how to solve the quadratic problem (Qj) that appears in line 8 of Algo-
rithm 2. Notice that we can write Hj(v) =

1
2 (v,Ajv)L2(\BbbJ j)  - (bj , v)L2(\BbbJ j), where bj =

\chi \BbbJ j
(\kappa wj  - \eta j) and we can compute Ajv using Algorithm 3. Therefore (Qj) can be

solved using, e.g., the conjugate gradient method without need of the explicit com-
putation of the Hessian F \prime \prime (uj).

From the computational point of view, at each step of Algorithm 2 we have to
solve one nonlinear partial differential equation and several linear partial differential
equations: three before solving the quadratic problem and two at each step of the con-
jugate gradient method that we use to solve the quadratic problem. When discretized,
all these linear equations share either the same coefficient matrix (or its transpose in
the case of a nonsymmetric problem; see, e.g., [5]). Therefore, an advantage can be
taken from a single factorization. If the nonlinear equation at iteration j+1 is solved
using Newton's method, the matrix of the linear problem to be solved in the first
iteration in this subproblem is the same as the matrix used for the linear equations
at iteration j.

We present one example posed in a two-dimensional domain and another one
in a three-dimensional domain. To solve the problem we use the finite element
approximation studied in [2]: the state, the adjoint state, and the control are dis-
cretized using continuous piecewise linear elements and the Tikhonov and sparsity
terms are discretized using the composite trapezoid formula. We stop the algorithm

when \delta j =
\| vj\| L2(\Omega )

max\{ 1,\| uj+1\| L2(\Omega )\} 
< 5\times 10 - 14 or when J(uj) and J(uj+1) are equal up to

machine precision. At each iteration, the solution of the quadratic subproblem (Qj)
is obtained with the MATLAB built-in command pcg and the nonlinear equation in
line 3 is solved using Newton's method. The tolerance 5 \times 10 - 14 is used for both
subproblems.

Since we do not have the exact solutions of the problems presented, we cannot
check the assumptions of Corollary 3.5 beforehand. Nevertheless, in both problems
we find numerically a solution of the optimality system (2.13), the fast convergence
of the conjugate gradient method is a good indication that the second order sufficient
condition (2.15) is satisfied, and we check numerically the strict complementarity
condition | \Sigma \=u| = 0.

Example 1. We consider the data of Example 1 in [2], where convergence of the
finite element approximation of (P) is studied and error estimates in terms of the
discretization parameter are obtained: \Omega = B1(0,0) \subset \BbbR 2, Ay =  - \Delta y, f(x, y) = y3,
L(x, y) = 1

2 (y  - yd(x))
2 with yd(x) = 3sin(2\pi x1) sin(\pi x2)e

x1 , \kappa = 0.002, \gamma = 0.03,
\alpha =  - 12, and \beta = 12. It is straightforward to show that assumptions (A1)--(A3) are
satisfied.

As in [2], we solve the problem in a mesh of size h = 2 - 7 (1.3 \times 105 elements,
66049 nodes). In order to get an initial point u0 close enough to \=u, we take as u0 the
solution of the discretized problem with mesh size h= 2 - 6.
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Table 1
Convergence history of the problem in Example 1. \sharp Newton is the number of Newton iterations

to solve the nonlinear PDE in line 3 and \sharp CG is the number of iterations of the conjugate gradient
method used to solve (Qj) in Algorithm 2.

j J(uj) \delta j \sharp Newton \sharp CG

0 11.141742584195615 1.5\times 10 - 2 4 13
1 11.141687025807151 4.5\times 10 - 5 3 12

2 11.141686904484867 1.0\times 10 - 7 3 13

3 11.141686904484866 2.4\times 10 - 14 2 14
4 11.141686904484862 1

Table 2
Convergence history of the problem in Example 2. \sharp Newton is the number of Newton iterations

to solve the nonlinear PDE in line 3 and \sharp CG is the number of iterations of the conjugate gradient
method used to solve (Qj) in Algorithm 2.

j J(uj) \delta j \sharp Newton \sharp CG

0 5.1160436513941248 2.6\times 100 4 4

1 4.8088004565179974 1.0\times 10 - 2 4 4
2 4.8087950298698070 2.7\times 10 - 7 3 4

3 4.8087950298698035 6.6\times 10 - 16 2 5

4 4.8087950298698035 1

We have summarized the convergence history in Table 1. The superlinear order
of convergence can be appreciated in the way the order of magnitude of the error
between iterations \delta j varies in the first steps:  - 2,  - 5,  - 7,  - 14. We find numerically
that | \BbbJ | = 0.678, | \BbbA \beta | = 0.310, | \BbbA \alpha | = 0.310, | \BbbA 0| = 1.844, and | \Sigma \=u| = 0.

Example 2. Consider \Omega = (0,1)3 \subset \BbbR 3, Ay= - \Delta y, f(x, y) = | y| 3y, L(x, y) = 1
2 (y - 

yd(x))
2 with yd =

\prod 3
i=1 8xi(1 - xi), \kappa = 0.1, \gamma = 0.05, \alpha =  - 1, \beta = 1. Assumptions

(A1)--(A3) are clearly satisfied in this setting.
We use a mesh of size h= 2 - 5 (1.97\times 105 elements, 35937 nodes) and start with

u0 = yd.
We have summarized the convergence history in Table 2. The superlinear order

of convergence can be appreciated in the way the order of magnitude of the error
between iterations \delta j varies in the first steps: 0,  - 2,  - 7,  - 16. We find numerically
that | \BbbJ | = 0.323, | \BbbA \beta | = 0.157, | \BbbA \alpha | = 0, | \BbbA 0| = 0.520, and | \Sigma \=u| = 0.
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