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A B S T R A C T

Although the load sharing between planets of sequentially phased planetary gear transmissions 
has been studied in the past, the required solving techniques based on the Finite Element Method 
result in long time consuming and high computational cost. This limits the possibilities of un
dertaking extensive studies that take into consideration a high number of cases allowing optimal 
solutions to be sought or general conclusions drawn. In addition, the determination of the curves 
of transmission error, time-varying mesh stiffness, and load sharing among tooth pairs in 
simultaneous contact are also complicated. In this work an analytical model has been developed 
for the simulation of the time-varying mesh stiffness, quasi-static transmission error, and load 
sharing ratio between planets and tooth pairs of planetary spur gear transmissions. It is based on 
similar models for external and internal spur gears previously developed and has been validated 
by comparison with a hybrid model based on the Finite Element Method and theoretic- 
experimental correlation.

1. Introduction

Planetary gearboxes are widely used in a variety of mechanical transmission systems, including those found in wind turbines, 
mining equipment, industrial machinery, and automobile vehicles. Using a planetary gear train has several advantages, including 
reduced vibration, compact size, light weight, high output torque, high speed reduction ratio, high transmission efficiency, and stable 
operation [1-4].

The planetary gear mechanism consists of several sets of cylindrical gear pairs with internal and external meshing. The investi
gation of a basic gear pair gives the basis for the study of a more complex planetary gear system. The geometry and design of internal 
and external gears are quite comparable. Similar constraints on teeth pointing, undercut, root interference, etc., should be regarded, as 
well as a specific secondary interference, also named tip interference, in the internal meshes, which may occur when there are a similar 
number of teeth on pinion and ring [5-6].

It is essential to accurately evaluate the mesh stiffness and transmission error when investigating into gear vibrations. The 
transmission error (TE), vibration, and noise characteristics of the planetary gear system are significantly influenced by its time- 
varying mesh stiffness (TVMS). In a gear transmission system, the TVMS is one of the main sources of vibration. Understanding the 

* Corresponding author.
E-mail address: jpedrero@ind.uned.es (J.I. Pedrero). 

Contents lists available at ScienceDirect

Mechanism and Machine Theory

journal homepage: www.elsevier.com/locate/mechmt

https://doi.org/10.1016/j.mechmachtheory.2024.105800
Received 2 July 2024; Received in revised form 25 September 2024; Accepted 25 September 2024  

Mechanism and Machine Theory 203 (2024) 105800 

Available online 5 October 2024 
0094-114X/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

mailto:jpedrero@ind.uned.es
www.sciencedirect.com/science/journal/0094114X
https://www.elsevier.com/locate/mechmt
https://doi.org/10.1016/j.mechmachtheory.2024.105800
https://doi.org/10.1016/j.mechmachtheory.2024.105800
http://creativecommons.org/licenses/by-nc-nd/4.0/


dynamic properties of a planetary gear set requires an effective and efficient method to analyze the TVMS. The most widely used 
techniques for determining and analyzing mesh stiffness of cylindrical gear pair are analytical methods [4,7–19], finite element (FE) 
methods [1,20–26], and analytical-FE hybrid techniques.

The potential energy method [7,10, 17-19] is the most commonly employed analytical technique. It can be extended to 
three-dimensional spaces by using the slicing method [27,28]. The FE method takes time since it needs to simulate every gear pair that 
meshes in order to calculate the mesh stiffness of a variety of gear pairs and contact positions. On the contrary, an analytical method 
could provide an overall solution to the mesh stiffness calculation. Although the accuracy of FE methods is high, the efficiency is lower 
than that of analytical methods. To address this issue, some researchers [29] employed the adaptive local mesh refinement technique 

Nomenclature

Symbols
b Face width, mm
E Young’s modulus, MPa
F Load, N
FT Total load, N
h Depth of the local FEM model, mm
KM Single mesh stiffness, N/mm
K∗

Mmax Amplitude of single mesh stiffness per unit face width, N/mm2

KP Mesh stiffness of the planet, N/mm
KT Time-varying meshing stiffness, N/mm
L Half-length of the load distribution along the flank, mm
NP Number of planets
R Load sharing ratio
rb Base radius, mm
rC Contact point radius, mm
Z Number of teeth
ΔξR Length of modification
ΔR Depth of modification at the tooth tip, μm
δ Tooth pair deflection, transmission error, μm
δG Separation distance, μm
δR Depth of profile modification, μm
εα Transverse contact ratio
υ Poisson’s ratio
ξ Linear coordinate along the path of contact
Tin Input torque, N⋅m

Subscripts
inn Theoretical inner point of contact
ext Extended contact model
max Actual outer point of contact
min Actual inner point of contact
out Theoretical outer point of contact
PR Planet-ring meshing
PS Planet-sun meshing
P Planet gear
R Ring gear
S Sun gear
1 Driving gear (pinion)
2 Driven gear (wheel / ring gear)

Abbreviations
LSR Load sharing ratio
FE(M) Finite element (models)
PPTE Peak-to-peak amplitude of transmission error
QSTE Quasi-static transmission error
SMS Single mesh stiffness
TE Transmission error
TVMS Time-varying mesh stiffness
3D-LTCA Loaded tooth contact analysis
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in contact areas, which resulted in a precise and effective analysis of meshing features. In order to increase the effectiveness of the 
nonlinear FE contact methodology, other researchers [30] presented a point-to-surface contact analysis technique.

There is still a large efficiency difference between analytical and FE methods in spite of these advances. This gap is filled by the 
three-dimensional loaded tooth contact analysis (3D-LTCA), a representative analytical-FE method that combines the best features of 
both analytical and FE techniques. By doing away with the requirement for dense meshes and nonlinear contact algorithms, 3D-LTCA 
considerably improves computational efficiency when compared to FE methods. 3D-LTCA conveniently examines the problem of 
three-dimensional simulation without considering slice coupling effect into account, unlike analytical methods. Recent studies in this 
field related to planetary gears can be found in [31-34]. Nevertheless, requirements in processing time and computational cost of 
analytical-FE methods are noticeably stronger than analytical methods based on the potential energy method.

Numerous investigations have been conducted on transmission errors, meshing stiffness, and load distribution in planetary gears. 
Qin [35] proposed a dynamics modeling of faulty planetary gearboxes by TVMS excitation of spherical overlapping pittings and 
established a new TVMS model considering time-varying friction to characterize the spherical overlapping pittings, and a piecewise 
integration method was proposed for calculating multiple tooth meshing contact lines. Parker [36] investigated the vibration prop
erties of planetary/epicyclic gears that arose from their cyclic symmetry, and derived results for spur and helical gear systems, two- and 
three-dimensional models, systems modeled with FE or analytically, systems with any combination of elastically deformable and 
rigid-body components, and systems with and without high-speed gyroscopic effects, without use of a specific mathematical model.

Tian et al. [37] presented a method for calculating TVMS by developing a stiffness model for elastohydrodynamic lubrication and 
integrating it into 3D-LTCA. In [38] a new efficient and accurate FE-analytical slice model for load distribution analysis and opti
mization of planetary gear transmission in wind turbine is proposed, which is explicitly formulated by the geometry slice model of 
external/internal gear contact, original FE-analytical slice model for local contact deformation, and efficient FE model for global 
structural deformation.

In [39] the authors proposed an analytical model that can clarify the dynamic behaviors of the modified gear pair affected by 
multiple manufacturing errors, specifically pitch deviation and geometric eccentricity. To fill this gap, a comprehensive analytical gear 
mesh model is proposed considering tooth profile modification, pitch deviation, and geometric eccentricity. The calculation formulas 
for the TVMS and load sharing ratio (LSR) are derived considering the iterative change of gear pair meshing parameters with phase 
under the influence of multiple manufacturing errors.

In previous works, Del Rincon et al. [40] described an advanced model for the analysis of contact forces and deformations in spur 
gear transmissions using FE and analytical methods to calculate the TVMS, loaded transmission error, and LSR. In [41], Fernández 
et al. incorporated tooth tip relief and manufacturing defects for various transmitted torques. In order to examine the impact of 
manufacturing errors on the quasi-static behavior of a 3-planet planetary gear transmission, Iglesias et al. [42] used a model that 
combines analytical solutions with finite element models for contact force analyses. In [43], Sánchez-Espiga et al. examined how the 
occurrence of several parameters, including mesh phasing and various faults like tooth thickness and pinhole position errors, affects 
the behavior of planetary transmissions regarding load sharing. In [44] Sanchez-Espiga et al. proposed a numerical approach to the 
problem of the calculation of the load sharing in planetary gear transmissions by measuring the strains in the root of the sun gear teeth.

Viadero et al. in [45] assessed the possibility of using the orbits described by the sun gear in order to analyze the load sharing ratio 
in planetary gear transmissions. Furthermore, the study was extended to observe the impact of the floatability and different tangential 
pinhole position errors in the load borne in a single contact between a pair of teeth in comparison to the load per planet. A novel 
quasi-static model of a two-stage compound planetary gear train with eccentricity error was published recently [46], and the orbit 
result of a healthy gear was used to confirm the accuracy of the established model. Moreover, the impact of the eccentricity error on the 
time-domain response under different error combinations was examined and discussed.

In previous works [47-49] Pedrero, Sánchez, et al. developed an analytical model for the calculation of the TVMS and LSR of 
external spur gears based on the principle of minimum energy. This method was later extended to internal gears [50-51] and applied to 
the determination of the critical contact and tooth-root stresses. From both models and the hypothesis of equal relative displacement of 
the driving and driven teeth for all the tooth pairs in simultaneous contact (which can also be obtained from the principle of minimum 
energy [52]) models for the loaded transmission error (quasi-static transmission error, QSTE) for external and internal spur gears were 
presented [52-54].

Concerning the planetary gears, a model of mesh stiffness for the complete planetary gear stage was developed [55] based on the 
combination of the models for external [52-53] and internal [54] gears. The distribution of the input torque between the planets and 
the load sharing between all the tooth pairs in contact (considering sun-planet and planet-ring tooth pairs of all the planets) were 
studied and the critical load conditions were calculated. In this paper, the extension of this model to simulate the QSTE of planetary 
gears and its relationship with the TVMS and the LSR between planets and teeth is presented.

Accordingly, the objectives of the present research can be summarized as follows:

1. Develop an analytical model, simple and efficient, for the simulation of the time-varying meshing stiffness, load sharing between 
planets and teeth, and loaded transmission error for planetary spur gears.

2. Validate the proposed model with a hybrid model based on the FE models (FEM) and analytical formulations [40,42].
3. Study the influence of the profile modification on the load sharing, mesh stiffness and transmission error.

2. Background: models for external and internal spur gears

The model for planetary gears presented in this paper is based on the models previously presented for external [52-53] and internal 
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[54] spur gears. In this section, these previous models are briefly outlined to facilitate a better understanding of the more complex 
model presented herein. As these contains are not original, equations and diagrams have been reduced to strictly necessary. More 
detailed developments and explanations can be found in [47-55].

The formulation of the model of QSTE, δ(ξ), LSR, R(ξ), and TVMS, KT(ξ), for both internal and external spur gears can be expressed 
as follows: 

δ(ξ) =
FT +

∑
jKM(ξ + j)(δG(ξ + j) + δR(ξ + j))

∑
jKM(ξ + j)

(1) 

R(ξ) =
F(ξ)
FT

=
KM(ξ)

FT
(δ(ξ) − (δG(ξ)+ δR(ξ))) (2) 

KT(ξ) =
FT

δ(ξ)
(3) 

in which F(ξ) is the load at the tooth pair, FT is the total load transmitted by the gear pair, KM(ξ) is the single mesh stiffness (SMS) which 
is the mesh stiffness of the tooth pair, δG(ξ) is the separation distance between driving and driven tooth profiles outside the theoretical 
contact interval (the separation distance is null inside), and δR(ξ) is the depth of profile modification. Sums in Eqn. (1) are extended to 
all the tooth pairs simultaneously in contact. ξ is a linear coordinate along the path of contact which describes the contact position of 
the tooth pair and is expressed as a function of the pinion tooth number Z1, the radius of the pinion contact point rc1, and the pinion 
base radius rb1 [47-53], as follows: 

ξ =
Z1

2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2

c1

r2
b1
− 1

√

(4) 

The curve of SMS can be accurately approximated by the equation: 

KM(ξ) = K∗
Mmaxbcos(b0(ξinn − ξm)) for ξmin ≤ ξ ≤ ξinn

KM(ξ) = K∗
Mmaxbcos(b0(ξ − ξm)) for ξinn ≤ ξ ≤ ξout

KM(ξ) = K∗
Mmaxbcos(b0(ξout − ξm)) for ξout ≤ ξ ≤ ξmax

(5) 

which is valid both for external and internal spur gears, although the coefficients K∗
Mmax, b0, and ξm should be calculated separately, as 

described in [47-49] for external gears and [50-51] for internal gears. In this equation, b is the face width, ξinn and ξout are the inner and 
outer limits of the theoretical contact interval, corresponding to the intersection points of the line of action with both addendum 
circumferences, and ξmin and ξmax are the inner and outer limits of the actual contact interval, which includes the additional contact 
intervals due to the loaded teeth deflections. KM(ξ) is uniform throughout the additional contact intervals because contact is not 
conjugate but occurs outside the pressure line, between the tip of one tooth and a very small interval of the mating tooth profile at the 
root, and therefore the variation of KM(ξ) is neglectable [52]. Fig. 1 presents the curve of single mesh stiffness for external and internal 
spur gears. It is observed that both curves are very similar, although the length of the additional contact intervals are almost identical 
for external gears, and quite different for internal gears, as highlighted in the figure. The symbol KMmax in the diagrams describes the 
local maximum of the SMS curve, but the specific value is not equal for external and internal gear. However, it should be pointed out 

that the ratio KMmax to KM

(
ξmin/max

)
are the same in both cases, as shown in Fig. 1.

The separation distance is the distance in the pressure line corresponding to the rotation of the pinion tooth required to get contact 
with the wheel profile before reaching the theoretical inner point of contact, of after leaving the theoretical outer point of contact. The 
separation distance (also named approach distance) is null inside the theoretical contact interval and can be calculated from 

Fig. 1. Typical curves of single mesh stiffness of external (left) and internal (right) spur gears.
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Fig. 2. LSR, QSTE, and TVMS for external spur gear with adjusted profile modification at the beginning of the contact and non-adjusted at the end of contact (left) and internal spur gear with adjusted 
profile modification at the beginning of the contact and no modification at the end of contact (right).
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geometrical considerations. However, the resulting equation is complicated and can be accurately approximated by the following 
equation [52-54]: 

δG(ξ) =
(

2π
Z1

)2

Cp− inn rb1(ξinn − ξ)2 for ξmin ≤ ξ ≤ ξinn

δG(ξ) = 0 for ξinn ≤ ξ ≤ ξout

δG(ξ) =
(

2π
Z1

)2

Cp− out rb1(ξ − ξout)
2 for ξout ≤ ξ ≤ ξmax

(6) 

The coefficients Cp− inn and Cp− out are different for external and internal gears. Their values can be computed as described in [52] and 
[54].

The profile modification is used to avoid the earlier start of contact produced by the teeth deflections, which induces the so-called 
mesh-in impact. The mesh-in impact is undesirable because it is a source of noise, vibrations, and dynamic load. The elimination of 
some amount of material at the tip of the driven teeth delays the start of contact, which can be moved to the theoretical point if the 
amount of eliminated material is suitable. In addition, the shape of modification allows to control the curve of QSTE. For linear or 
parabolic reliefs, the depth of modification is expressed as: 

δR(ξ) = ΔR− inn for ξmin ≤ ξ ≤ ξinn

δR(ξ) = ΔR− inn

(

1 −
ξ − ξinn

ΔξR− inn

)n

for ξinn ≤ ξ ≤ ξinn + ΔξR− inn

δR(ξ) = 0 for ξinn + ΔξR− inn ≤ ξ ≤ ξout − ΔξR− out

δR(ξ) = ΔR− out

(

1 −
ξ0 − ξ
ΔξR− out

)n

for ξout − ΔξR− out ≤ ξ ≤ ξout

δR(ξ) = ΔR− out for ξout ≤ ξ ≤ ξmax

(7) 

where ΔξR is the length of modification, ΔR is the amount of modification, and the exponent n takes the values 1 and 2 for considering 
linear or parabolic reliefs, respectively. δR(ξ) is uniform outside the theoretical contact interval because, throughout the extended 
contact intervals, contact occurs between the tip of one tooth and the root of the mating tooth.

Finally, the limits of the effective contact interval, ξmin and ξmax, can be calculated from the condition of null load, and therefore, 
according to Eqn. 2, by solving the equation: 

δ
(

ξmin/max

)
= δG

(
ξmin/max

)
+ δR

(
ξmin/max

)
(8) 

Fig. 2 show the curves of LSR, QSTE, and TVMS obtained from Eqns. (1) to (8). Solid lines in diagrams (r lines) correspond to an 
external spur gear with tip relief at both meshing teeth (which is called symmetric profile modification, left diagrams), and an internal 
spur gear with profile modification at the ring tooth tip only (asymmetric profile modification, right diagrams). In both cases, the 
amount of modification has been adjusted to shift the actual start of contact to the theorical inner point of contact. On the contrary, the 
amount of relief at the pinion tip of the external gear is not enough to avoid contact beyond the theoretical outer point of contact, and 
mesh-out push still occurs at the end of meshing. This can be appreciated in the LSR diagram by the parabolic unloading process at the 
upper limit of the contact interval. Dashed lines correspond to gears with no profile modification and can be obtained from the above 
equations by doing δR(ξ) = 0 (and therefore ΔR− inn = ΔR− out = 0). The effective interval of contact [ξmin, ξmax] is in this case longer, for 
which it is called extended model (ext). Dotted lines correspond to the theoretical model (th), in which tooth deflections are neglected 
and is therefore suitable for very weakly loaded teeth. Theoretical curves can be obtained from the equations above by considering 
δG(ξ) = 0, except the limits of the contact interval, which are coincident with the theoretical ones and cannot be computed from Eqn. 
(8).

The above analytical model is suitable for non-standard teeth geometries or operating conditions, as non-standard center distance, 
non-standard tooth height -even different height on both meshing teeth-, undercut on pinion root, thinning for backlash allowance, or 
non-nominal load [53].

These models for external and internal gears can be combined to simulate planetary spur gears. In this case, there will be a lot of 
couple of teeth in simultaneous contact (up to four couples per planet, two at the planet-ring meshing and two at the planet-sun 
meshing), but the minimum elastic potential energy can be applied in the same way.

3. Model of meshing stiffness, load sharing and transmission error for planetary gears

The model of LSR, QSTE, and TVMS for planetary gears is based on the hypothesis of minimum elastic potential energy, as those for 
external and internal gears. From this hypothesis, the distance the meshing teeth approach each other can be demonstrated to be equal 
for all the tooth pairs in contact, including external and internal tooth pairs of all the planets. This relative distance is identified with 
the QSTE, and the TVMS is calculated as the ratio between the total load (which is equal to the torque at the planet carrier divided by 
the planet base radius) and the QSTE. The formulation is similar to the previous ones, but many tooth pairs in simultaneous contact 
should be considered (up to four times the number of planets), and a specific contact position for each one should be calculated.
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In this section, the transmission error will be obtained and demonstrated to be equal for all the tooth pairs in simultaneous contact. 
Next, the corresponding contact points of the planet-ring meshing and the planet-sun meshing of each planet are calculated, and the 
corresponding meshing positions of the different planets are calculated as well. Finally, from these contact point parameters, the 
stiffness of each planet and the input torque distribution between planets are obtained.

The deformation δ∗ of two meshing teeth which without load are separated a distance δ is given by: 

δ∗ = δ − (δG + δR) = δ − δGR (9) 

in which (δG +δR) is denoted by δGR to simplify the notation. Accordingly, the load at a specific tooth pair is given by: 

Fi = KMi(δi − δGRi) (10) 

The contribution of the tooth pair to the potential energy is: 

Ui =

∫δi

0

Fidδ =

∫δi

δGRi

KMiδdδ =
1
2
KMi
(
δ2

i − δ2
GRi
)
=

1
2
Fi(δi + δGRi) (11) 

and the total potential energy will therefore be: 

UT =
∑

i

1
2
Fi(δi + δGRi) =

∑

i

1
2
Fi

(
Fi

KMi
+2δGRi

)

(12) 

The condition of minimum elastic potential energy can be obtained by means of the Lagrange’s multipliers, as follows: 

G =
∑

i

1
2
Fi

(
Fi

KMi
+2δGRi

)

+ λ

(

FT −
∑

i
Fi

)

∂G
∂Fi

= 0 ⇒
Fi

KMi
+ δGRi − λ = 0 ⇒ Fi = KMiλ − KMiδGRi 

FT = λ
∑

j
KMj −

∑

j
KMjδGRj ⇒ λ =

FT +
∑

jKMjδGRj
∑

jKMj
(13) 

resulting in: 

Fi = KMi

(
FT +

∑
jKMjδGRj

∑
jKMj

− δGRi

)

(14) 

Comparing Eqns. (10) and (14) it can be concluded that the distance the meshing teeth should approach each other is: 

δi =
FT +

∑
jKMjδGRj

∑
jKMj

= δ (15) 

which does not depend on i, and consequently is equal for all the tooth pairs in contact at this moment. δ describes the delay of the 
driven gear with respect to the driving gear and is therefore the QSTE. Finally, the TVMS is expressed as: 

KT =
FT

δ
(16) 

Eqs. (14) to (16) are very similar to Eqns. (1) to (3), and constitute the model of LSR, QSTE, and TVMS for planetary spur gears. The 
total load FT is the equivalent load tangent to the planet base circumference, which induces a torque equal to that at the planet carrier 
TPC: 

FT =
TPC

rbP
(17) 

where rbP is the planet base radius. Sums in Eqns. (14) and (15) are extended to all the tooth pairs in contact at the specific contact 
position. Functions KM(ξ), δG(ξ), and δR(ξ) are all known, although expressions are different for external and internal teeth. The 
problem is to express the contact parameter ξ of all the tooth pairs as a function of that for one of them. If ξPR is the contact parameter of 
the reference pinion-ring tooth pair, it can be demonstrated that the corresponding parameter of the planet-sun tooth pair ξPS is given 
by [55]: 

ξPS = ξPR −

{
ZP

2

(
1 −

αʹ
t− PS − αʹ

t− PR

π

)}

(18) 

where ZP is the number of teeth of the planet, subscripts PS and PR denote the planet-sun and the planet-ring meshing, and {x} function 
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Fig. 3. Planet mesh stiffness (up-left), LSR between planets (up-right), TVMS (down-left), and QSTE (down-right) of four-planets planetary gear.
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denotes the fractional part of x. For sequentially phased planetary gear transmissions, the planet-ring contact parameter of the planet k 
can be expressed as a function of that of the reference planet, k = 0, as follows: 

ξ(k)PR = ξ(0)PR +
k

NP
(19) 

NP being the number of planets. Of course, the tooth pairs in contact at a specific meshing position are all that verify: 

ξmin− PR/PS ≤ ξ(k)PR/PS ≤ ξmax− PR/PS (20) 

Finaly, the mesh stiffness of the planets KP can be calculated by: 

K(k)
P
(
ξ(0)PR
)
=
∑

i
KM− PR

(
ξ(k)PR + i

)
+
∑

j
KM− PS

(
ξ(k)PS + j

)
(21) 

and the LSR (or torque sharing ratio) between planets is expressed as: 

R(k)
P
(
ξ(0)PR
)
=

K(k)
P
(
ξ(0)PR
)

∑
nK

(n)
P
(
ξ(0)PR
) (22) 

Fig. 3 shows the planet mesh stiffness, the LSR between planets, the TVMS of the planetary stage, and the QSTE of a planetary spur 
gear with four planets, described in Table 1, obtained from Eqns. (22), (16), and (15), respectively. Parabolic relief of 15 μm depth and 
150 μm length has been applied to all the teeth of the planets, sun, and ring. The curves have been represented in the diagrams by solid 
lines (and denoted by r).

Curves corresponding to the theoretical model (th) and extended model (ext) have also been represented (dotted and dashed lines, 
respectively).

Fig. 4 shows the load at the planet-ring tooth-pairs, at the planet-sun ones, and at the most heavily loaded tooth-pair at any 
moment, all obtained from the combination of Eqns. (22) and (2). These curves can be applied to the assessment of bending and contact 
stresses and friction power losses.

4. Validation by hybrid approach

To validate the analytical formulation presented in Section 3, it is compared with the behavior obtained from the use of a hybrid 
model developed by some of the authors, presented in [40]. To explain this step in detail, it is necessary to set the focus on some of the 
specifics of this model. Thus, in Section 4.1 these details regarding the hybrid model are provided. In this case, the focus is set specially 
in the solution of the contact problem, which is the main difference between both approaches. Afterwards, in Section 4.2. the authors 
compare the results provided by using both different modelling approaches.

4.1. Description of the hybrid model

In this section, the authors provide the necessary details to understand the differences in both approaches to the modelling of 
planetary gear sets analyzed in this work. Firstly, this hybrid model combines analytical formulations and the use of FEM. As far as FEM 
are concerned, this model is based on the proposal presented by Vedmar and Henriksson [56]. This approach overcomes the problem of 
obtaining the meshing stiffness in the contact between active flanks by using the superposition principle to combine a series of FEM. 
More precisely, these models involve a global model, that represents a number of teeth Z and the body of the gear; and a local model, 
that only represents the geometry of the active flank up to a depth of h. Thus, by applying the same unitary load in the same point and 
opposite directions, the combination of the results of these two models provides the deformations supported by the gear, excluding the 
local distortion due to the use of point forces in the tooth flank. Those models are developed by using the Partial Differential Equation 

Table 1 
Data of planetary stage.

Sun Planets Ring

Module (mm) 4.00 4.00 4.00
Normal pressure angle (º) 20.00 20.00 20.00
Tooth addendum coefficient 1.00 1.00 1.00
Tooth dedendum coefficient 1.25 1.25 1.25
Tool tip radius coefficient 0.05 0.05 0.05
Number of teeth 37 23 83
Rack shift coefficient 0.00 − 0.10 0.00
Outside radius (mm) 78.00 50.00 162.00
Operating center distance (mm) ​ 120.00 ​
Face width (mm) 25.00 25.00 25.00
Input torque (N⋅m) 2000.00 ​ ​
Number of planets ​ 4 ​
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Fig. 4. Fraction of the total load at the planet-ring tooth pairs (up-left), at the planet-sun tooth pairs (up-right), and at the most heavily loaded tooth pair (down) of four-planets planetary gear.

J.I. Pedrero et al.                                                                                                                                                                                                      
Mechanism

 and Machine Theory 203 (2024) 105800 

10 



Toolbox in MATLAB. These models are shaped using triangular elements with nodes in every vertex. Furthermore, in those models, the 
areas that belong to the interface between tooth flank and the rest of the tooth, in the local model, and the shaft mounting in the global 
one, are where the boundary conditions are applied. More precisely, these areas are modelled by considering them embedded.

For the calculation of the Z number of teeth, which involves the number of teeth affected by a given contact as seen in [40], the 
following equation is employed: 

Z = 2 ⋅ ceil(εα +1) (23) 

where εα corresponds to the contact ratio and ceil is the function that rounds this number to the next integer.
As a result of the mentioned process, the linear part of the contact between active flanks in gears is solved. However, the non-linear 

local contact is not solved yet. To this aim, the Weber-Banaschek formulation, presented in [40], is employed to solve the local contact 
between involute profiles of external gears. These formulations were also adapted and developed for internal gears in [40], more 
precisely, for the calculation of the length of the area along the flank in which the pressure is distributed. These formulas, gathered 
below, provide the deformation of a point at a h depth in relation to a point in the flank, for plane strain as in this case Eq. (24) is 
applied: 

ulocal(F) =
2(1 − υ2)

πE
F
b

⎡

⎣ln

⎛

⎝h
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+
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1 +
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(
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h

)2
√

− 1

⎞

⎠

⎤

⎦ (24) 

A relevant parameter in (24) is L that refers to the half of length of the pressure distribution along the flank, h refers to the depth of 
the point in which the deformations are calculated, E the Young’s Modulus, and υ the Poisson’s ratio.

Apart from all the calculations related to the solution of the meshing stiffness, in parallel this model solves the analytical problem to 
determine the distances between active flanks. The possible contact considered by the model are equal to Z, as shown in Fig. 5. This 
model calculates both the distances between direct and inverse flanks, giving the chance to consider the effect of the backlash. These 
distances provide the information to know which flanks are in contact. Thus, by considering that the flanks are infinitely rigid and 
allowing them to overlap, those pairs of teeth in which the overlap is positive are in contact. In those the algorithm explained above for 
contact solving is triggered. Moreover, in this calculation of the overlaps in successive steps the influence of the tip relief or other 
profile modification factors such as errors are included. These modify the overlaps, and even make some contact appear or disappear.

Once the meshing stiffness is determined and the overlaps between flanks too, there is a linear relationship between the stiffness 
obtained from the FEM and the overlaps, expressed in (25). Moreover, the effect of the non-linear local contact is added. By this 
combination the contact forces are extracted for each pair of teeth in contact. 

δj({rP
→
, θP}, {rS

→
, θS}) = uTj({rP

→
, θP}, {rS

→
, θS}, {F}) for Fi ≥ 0; i, j = 1,…, n (25) 

where δj is the overlap between profiles, {F} is the unknown force vector, uTj are the elastic deflections, while r and θ represent the 
position with respect to the center of the wheel and its angular position, respectively, for the sun (S) or the planet (P) in this specific 
case. The procedure for planets and ring would be the same.

Once the contacts are located and the contact forces are determined, for a planetary transmission the balance must be established. 
This refers to the balance between input and output torque, Eq. (26), and the balance in each planet due to the contact with the sun and 
ring gears, respectively, Eq. (27). Once the iterative procedure employed to establish the balance in the transmission converges, not 
only the contact forces are known, but also are the angular position of all the elements and the deflections borne by every gear. With 
those data, the results are extracted. 

∑N

i=1
Fi PS
̅̅→

× rbS
̅→

= Tin
̅→ (26) 

Fig. 5. Detail of the contacts consider for a given meshing position, positive overlaps (points 5–6) and negative overlaps (points 1–4).
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Fi PS
̅̅→

× rbPi
̅→

= Fi Pr
̅̅→

× rbPi
̅→ (27) 

where Fi PS
̅̅→ corresponds with the contact force in the sun due to its contact with the ith-planet or between planet and ring for (PR), rbS

̅→ is 
the base radius in either the sun (S) or the planet (P), and Tin

̅→ is the input torque.

4.2. Comparison between analytic and hybrid models

Once the fundamentals of the models are clear, the next step, focus of this section, consists in the comparison of the results obtained 
from both approaches. In this specific case, the load distribution between planets, or more precisely the input torque distribution 
between planets, of three sequentially phased planetary gear transmissions have been studied from both analytic and hybrid models, 
described in Sections 2 and 3 and Section 4.1, respectively. A planetary gear as described in Table 1 but with 3, 4, and 5 planets has 
been considered. A schematic representation of three planetary gears is shown in Fig. 6.

To avoid edge contact, which may induce convergence problems in FE calculations, a small rounding has been applied to the teeth 
tip in the hybrid model; however, it has not been considered in the analytic model and the extended model has been used. The small 
rounding is equivalent to a profile modification with small depth and very small length, which has insignificant influence on the TVMS 
and consequently on the LSR. Even if the differences in the torque distribution between planets were not negligible, the trends of the 
curves will not be affected, so it should be sufficient to validate the model. Results can be seen in Fig. 7.

Although the numerical results of both models are not exactly the same, it is observed that the trends of the curves are very similar 
in all the cases, which ensures that analytic model is accurate enough for the simulation of planetary gears.

5. Influence of profile modification on TVMS and QSTE of planetary gears

The analytical model of TVMS and QSTE presented in Section 3 and validated in Section 4 can be applied to the analysis of the 
influence of profile modification on the dynamic behavior of the planetary gear. In fact, it is not easy to predict the influence of the 
relief geometry due to the large number of teeth in simultaneous contact and the continuously changing meshing conditions. Simu
lation using FEM-based techniques is time-consuming due to the relatively high computational cost and the large number of simu
lations required. However, the analytic method may provide approximate results with low computational cost and time consumption, 
and sufficient accuracy, at least for preliminary calculations. As an example, in this section the influence of the depth and length of the 
tip relief on the QSTE, planet mesh stiffness and LSR between planets will be analyzed.

5.1. Influence of the depth of modification

Tip relief should be deep enough to avoid mesh-in impact at the beginning of the contact. Clearly, the smaller the depth of relief the 
more similar the dynamic behavior of the modified teeth to that of unmodified teeth, including the existence of mesh-in impact, but too 
deep modifications result in smaller contact ratio and consequently greater loads at the teeth. The depth of modification is adjusted 
when the actual inner point of contact moves to its theoretical location. This occurs when the depth of modification is equal to the 
tooth-pair deflection (i.e., the QSTE) at the theoretical inner point of contact [52].

The adjusted depth of modification of the teeth of planetary gear presented in Table 1 is 3 μm for all the gears, sun, planets, and 
ring. This value is noticeably smaller than 15 μm considered in Fig. 3. Fig. 8 presents the curves of planet mesh stiffness, LSR between 
planets, TVMS of the planetary stage, and QSTE of the four-planets planetary spur gear described in Table 1, with adjusted depth of 
relief, ΔR− S = ΔR− P = ΔR− R = 3░μm. The length of modification remains equal to 150 μm.

It is observed that the curve of planet mesh stiffness with adjusted modification is almost identical to the theoretical one. The 
adjusted depth of modification in all the teeth moves the limits of the interval of contact to their theoretical locations, and the small 

Fig. 6. Schematic representation of planetary gears considered in the validation study.
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Fig. 7. LSR (torque distribution) between planets of planetary gear with three (up), four (middle), and five (down) planets, according to the hybrid model (left) and analytical model (right).
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Fig. 8. Planet mesh stiffness (up-left), LSR between planets (up-right), TVMS (down-left), and QSTE (down-right) of four-planets planetary gear with adjusted depth of modification.

J.I. Pedrero et al.                                                                                                                                                                                                      
Mechanism

 and Machine Theory 203 (2024) 105800 

14 



Fig. 9. Planet mesh stiffness (up), LSR between planets (middle), and QSTE (down) of four-planets planetary gear with deep (left) and adjusted (right) depth of modification.
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length of modification influences very small sub-intervals along the contact interval, and therefore both curves are superimposed. This 
does not occur for non-adjusted depth of modification, as clearly observed in Fig. 3.

Similar effect can be observed in the curves of LSR between planets: the curve for adjusted depth of modification of Fig. 8 is much 
closer to the theoretical one than that for over relieved teeth of Fig. 3. However, differences between them are not great due once again 
to the small length of modification.

Similarly, the curves of TVMS and QSTE with adjusted depth of modification are closer to the theoretical ones than those for non- 
adjusted depth. Due to the small length of modification the differences between them are small, although the intervals of maximum 
TVMS and minimum QSTE (in which curves are coincident with theoretical and extended ones) are slightly wider for adjusted 
modification.

5.2. Influence of the length of modification

Longer modifications have stronger influence on the dynamic behavior of the planetary gear allowing to control important pa
rameters as the load at the critical points or the peak-to-peak amplitude of transmission error (PPTE). The load at the critical points has 
obvious influence on the critical stresses and consequently on the load carrying capacity. The PPTE is related with the induced dynamic 
load (due to the variation of the output shaft velocity), noise, and vibrations.

The influence of the length of modification is quite different depending on the depth of modification. For a specific length of 
modification, the deeper the profile modification the stronger the influence on the dynamic behavior, because the depth of relief along 
the modification interval is greater. The length of modification considered in Figs. 3 and 8, namely 150 μm, is quite small. The interval 
of modification corresponds to a rotation of the planets of 0.006 rad and a value of the length of modification parameter ΔξR = 0.022.

Fig. 9 shows the curves of planet mesh stiffness, LSR between planets, and QSTE of the four-planets planetary spur gear considered 
above, with profile modification of ΔξR = 0.15 (corresponding to 900 μm length) and two different depths of modification, as 
considered in Figs. 3 and 8: 15 μm (left diagrams) and 3 μm (right diagrams, adjusted depth).

Diagrams of Fig. 9 present big differences with ones in Figs. 3 and 8, and between left and right diagrams of Fig. 9 as well. Below is a 
brief discussion on these results.

Regarding the planet mesh stiffness, for small length and/or depth of modification (Figs. 3, 8, and 9-right), the influence of the 
profile relief is very small, because contact conditions are identical along the entire contact interval except a very short portion (if small 
length), or except a longer portion but more similar conditions (if small depth). In addition, in each diagram the curves of the 
theoretical model (dotted line) and the model with profile modification (solid line) are almost identical because the influence of such a 
small modification on the effective contact ratio is quite insignificant. On the contrary, the curves of the extended modes (dashed 
lines), which do not consider profile modification, present some differences due to a stronger influence on the extended contact ratio. 
First, the intervals of maximum stiffness are wider, as corresponds to a greater contact ratio. Second, a peak arises around the point ξPR 
= 1.2. This is because the increase in the contact ratio induces a sooner start of contact and delayed end of contact of the tooth-pairs, 
and accordingly it is possible for a specific tooth pair to get contact before the end of contact of any other, resulting in one more tooth 
pair in simultaneous contact.

For greater length and depth of modification, the curve of planet mesh stiffness may be noticeably different. As seen in Fig. 9-left, 
the interval of maximum tooth pairs in simultaneous contact is clearly shorter than the previous ones due to the reduction in the 
effective contact ratio. In addition, around the point ξPR = 1.05 occurs just the opposite than before with the extended model: the 
smaller effective contact ratio results in one less tooth pair in contact, which induces a sudden reduction on the mesh stiffness. 
Consequently, along a small interval there are only two contacting tooth pairs, one of the planet-sun meshing and other of the planet- 
ring meshing.

Regarding LSR between planets, for small length of modification the curves corresponding to the theoretical and modified-profile 
models are quite similar, while the curve of the extended model is a little smoother but not very different from the previous two, as can 
be observed in Figs. 3 and 8. Specifically for adjusted depth of modification, the contact conditions are almost identical to the 
theoretical ones, and therefore corresponding LSR curves are almost identical too, as shown in Fig. 8. Extended curve is a little different 
due to the non-neglectable variation of the contact ratio.

Greater differences between three models are found for longer profile modifications, presented in Fig. 9. In this case, the curves of 
LSR between planets with profile modification are different from those of the other models, even for adjusted depth of modification. 
The contact conditions are different along the interval of modification, which influences the load sharing along a considerable part of 
the contact interval. For large length of modification and depth of modification, as in Fig. 9-left, the variation in the effective contact 
ratio may result in different number of teeth in simultaneous contact, and therefore the trend of the planets LSR curve is just the 
opposite to that of the theoretical and extended models along a long portion of the contact interval.

The greatest influence of the length of modification occurs on the QSTE. For small length of modification (Figs. 3 and 8) the curve of 
QSTE is almost identical to the theoretical one, and quite similar to the extended one, regardless of the depth of modification. However, 
for longer intervals of modification the curves of QSTE are entirely different, as shown in Fig. 9. It is observed that, for large depth of 
modification, the PPTE increases significantly. This is due to the reduction in the number of tooth pairs in contact, and subsequent 
reduction in the mesh stiffness. On the contrary, for adjusted depth of modification, the PPTE decreases significantly respect to that for 
small length of modification (Figs. 3 and 8) or no modification (extended model). This suggests the possibility to find an optimal length 
of modification for minimum PPTE.

Fig. 10 presents the curves of QSTE for the same four-planets planetary gear studied above, with adjusted depth of modification 
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Fig. 10. QSTE of four-planets planetary gear with adjusted depth of modification, and length of modification 0.10 (up-left), 0.15 (up-right), 0.20 (down-left), and 0.27 (down-right).
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ΔR− S = ΔR− P = ΔR− R = 3░μm, and four different lengths of modification ΔξR: 0.10, 0.15, 0.20, and 0.27.
It is observed that the QSTE increases as the length of modification increases. This result is obvious because the longer the interval 

of modification the smaller the mesh stiffness, and therefore the greater the QSTE. Nevertheless, the PPTE, which is the critical 
parameter to control the induced dynamic load and vibration, decreases. From Fig. 8, for small length of modification the PPTE is equal 
to the theoretical one, and the maximum and minimum values are equal in both cases. This theoretical PPTE for the considered four- 
planets planetary gear is 0.29 μm. As seen in the upper diagrams of Fig. 10, as the length of modification increases, the minimum QSTE 
increases, but the maximum remains unchanged, resulting in lower PPTE. For ΔξR = 0.10 (upper-left diagram) the PPTE is 0.25 μm; for 
ΔξR = 0.15 (upper-right diagram) the PPTE is 0.14 μm. If the length of modification continues to increase, the minimum QSTE 
continues to increase as well, but the maximum QSTE begins to increase slightly, as shown in the lower-left diagram of Fig. 10. 
Depending on the increases of the maximum and the minimum, the PPTE increases or decreases. If there is at least one point of the 
interval of maximum theoretical QSTE in which both curves, theoretical and modified profile QSTE, are tangent, it can be proved that 
the PPTE decreases. Lower-left diagram of Fig. 10 shows the curves of QSTE for a length of modification ΔξR = 0.20, for which the 
PPTE is 0.08 μm. If the length of modification continues to increase, there comes a time when the maximum QSTE grows more quickly 
than the minimum, so the PPTE begins to increase. For the considered planetary gear, the minimum PPTE is obtained for a length of 
modification ΔξR = 0.27, for which the PPTE is 0.05 μm, around 80% smaller than that with small (or without) modification.

6. Conclusions

An analytical model, simple and efficient, for the simulation of the time-varying meshing stiffness, load sharing, and quasi-static 
transmission error for planetary spur gears, which considers the influence of profile modification, has been developed. The uneven 
distribution of the torque between planets of sequentially phased planetary gears has been also studied. It is based on the application of 
the hypothesis of minimum potential energy to the simulation of the quasi-static transmission error, which has been demonstrated to 
be equal for all the tooth pairs in simultaneous contact, and its relationship with the time varying meshing stiffness and the load 
sharing ratio.

The model has been validated by comparison with a hybrid model based on finite element models and analytical formulation. The 
torque distribution between planets of three planetary gear sets with three, four, and five planets, respectively, has been considered, 
and very good fit between curves has been obtained in all the cases.

With the analytical model, the influence of the depth and length of profile modification has been analyzed. The following con
clusions can be drawn:

1. For large depth of modification, for which contact does not occur at the outside points of the teeth profiles, the length of modi
fication has small influence on the time-varying mesh stiffness, load sharing ratio and quasi-static transmission error.

2. For small depth of modification, for which contact occurs at the outside points of the profiles, the length of modification has strong 
influence on the time-varying mesh stiffness, load sharing ratio and quasi-static transmission error.

3. For adjusted depth of modification, for which the actual inner point of contact coincides with the theoretical one, the length of relief 
has strong influence on the peak-to-peak amplitude of transmission error, and an optimal length to minimize the amplitude, and 
consequently the induced dynamic loads, noise, and vibrations, can be found.

The analytical model requires much lower processing time and computational cost than other existing models based on the finite 
element method or similar computational techniques. This allows the influence of the gear parameters, geometrical and operational, 
on the behavior of the planetary gear to be studied almost instantaneously, even considering wide ranges, with not usual values, of 
these gear parameters, which allows the analysis to be extended to unexplored domains, with very low cost.
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