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Abstract —We present a near-field wireless power transfer 

system based on an injection-locked oscillator coupled to two 

external resonators, one used as a relay element. We demonstrate 

that injection locking mitigates the instability problems observed 

in free-running conditions and provides a more regular behavior 

versus the coupling conditions. The system is investigated with a 

semi-analytical formulation based on a nonlinear oscillator model 

extracted from harmonic balance (HB) in the presence of the input 

source. This model is combined with the input admittance of the 

coupled network, accounting for the two external resonators. We 

analyze the output power of the locked solution and its 

dependencies on the coupling factors and load resistance. A 

versatile design methodology is derived, which is validated with 

full HB simulations and measurements.  
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I. INTRODUCTION 

Near-field wireless power transfer, achieved through 

inductive coupling between two resonators, finds practical 

applications in recharging electric vehicles, sensor networks, 

and biomedical implants [1]-[2]. However, the efficiency of the 

power transfer diminishes with the distance and misalignment 

between the coils, due to the associated reduction of the 

coupling factor. The use of an intermediate (relay) resonator 

proves beneficial in overcoming obstacles or achieving 

extended distances [3]-[4]. To excite this coupled system, an 

independent source, followed by a driver and a power amplifier, 

is typically used. Alternatively, a free-running oscillator can be 

employed, which integrates the three functions in a single 

circuit. Besides a more compact implementation, the oscillator-

based system will typically reduce the total power consumption, 

as demonstrated in [5]. A drawback is the variation of the 

oscillation frequency with the coupling conditions [6], which 

may lead the system to operate out of the allowed frequency 

bands. When using a relay resonator, the resulting additional 

resonances may also give rise to undesired oscillation modes, 

as shown in [7]. These undesired modes can be eliminated with 

the aid of a trap resonator [7], but a careful tuning is required to 

avoid the reduction of the transfer efficiency.  

As an alternative solution, here we will investigate the 

injection locking of the oscillator coupled to two external 

resonators, one of them acting as a relay element. Note that 

injection locking had been previously considered in the single 

resonator system of [8] to prevent the variation of the oscillation 

frequency. Instead, here we deal with two external resonators, 

both having an impact on the locked operation. By means of a 

harmonic-balance (HB) method [8], we will initially 

demonstrate that injection locking mitigates the instability 

problems and gives rise to a more regular behavior. An in-depth 

investigation of the locked operation will also be carried out 

through a semi-analytical formulation based on a realistic 

oscillator model. This will provide insight into the dependence 

of the locked solution on the coupling factors and the load 

resistance. It will also enable the derivation of a versatile design 

methodology, which will be validated with full HB simulations 

and measurements. 

II. INJECTION LOCKED OPERATION 

We will consider the system shown in Fig. 1, in which a 

Class-E oscillator is coupled to a relay resonator (L2, C2) that is, 

in turn, coupled to a receiver resonator (L3, C3). Note that, as 

demonstrated in [9], the coupling between the coils L1 and L3 

can be neglected when the distance between them is relatively 

larger than their radii. The oscillator is expected to operate at 

13.56 MHz. For comparison, we will initially suppress the input 

source (Eg = 0), that is, we will consider the system in free-

running conditions [7]. Fig. 2(a) shows the variation of the 

oscillation power and frequency versus the coupling factor k1 

when k2 = 0.25. Note that k1 is limited to k1 = 0.3 since we target 

operation at relatively long distances. Besides the variation of 

the oscillation frequency, the system exhibits two oscillation 

modes. Mode 1 is the one corresponding to the core oscillation, 

since it starts from k1 = 0, (uncoupled conditions). However, it 

is extinguished at a relatively low k1, whereas an undesired 

mode (Mode 2) arises at k1 = 0.29. In [9], the above problems 

were circumvented using a trap. Here we will introduce a 

locking source with amplitude Eg at the frequency ω.  

For the analysis of the injection-locked oscillator, we will 

apply the method in [8], briefly summarized for completeness. 

We introduce a current-type auxiliary generator (AG) at ω [Fig. 

1(b)], connected in series at the gate port. This AG is used to 

calculate the oscillator impedance function ZAG as the ratio 

between the AG voltage and current. This is combined with 

Thevenin’s equivalent of the input network, obtained through 

the linear analysis of the input network [Fig. 1(b)]. The aim is 

to obtain the function Fth that relates Thevenin’s voltage Vth to 

Eg. Assuming periodic behavior at the frequency ω, we have the 

following outer-tier system: 

1 2( , , , )      (a)

( )                         (b)

=

=

AG AG AG th
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Note that ZAG in (1)(a), obtained with HB, is nonlinear, whereas 

(1)(b) is nonlinear. Combining the two equations, we get:  

        1 2( , , , ) / ( ) =AG AG th AG gZ I k k F I Eω ω .   (2) 
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Initially, we will perform an analysis versus Eg at the 

frequency f =ω/(2π) =13.56 MHz under k1 = 0.1 and k2 = 0.25. 

For a direct comparison with the free-running behavior [Fig. 

2(a)] no retuning for the oscillator core or external resonators is 

carried out. To obtain the periodic solution curve versus Eg, we 

sweep IAG and calculate Eg through (2). The output power Pout 

is traced in blue in Fig. 2(b). It is multivalued with two turning 

points: T1 and T2. The results obtained with (2) have been 

validated with default HB, which jumps from the lower to the 

upper section. For Eg below T2 the system is unlocked and 

exhibits an undesired quasi-periodic solution (not represented). 

The oscillation gets locked at T2 and the upper section of the 

multivalued curve is the only stable one. This is verified with 

pole-zero identification [9] in Fig. 2(c), which shows the 

variation of the real part of the dominant poles versus Eg when 

ω/(2π) =13.56 MHz. The point T2 is obtained at a lower Eg as 

ω approaches the free-running frequency. See the curve 

corresponding to f =13.88 MHz, traced in red in Fig. 2(b). Thus, 

high output power can be obtained with much lower input level 

than in the case of a power amplifier. 

 

Fig. 1. Injection-locked oscillator coupled to two external-resonators. (a) 
Schematic. (b) Setup for the full HB analysis (2). The oscillator is simulated in 

the absence of the input source, using a current AG to obtain ZAG(IAG,ω,k1,k2). 

The input network (with Eg = 1 V) is analyzed to calculate Fth. (c) Setup to 

extract the admittance function Y(V,φ,ω) considered in (3).  

To obtain the solution curves versus any of the two coupling 

factors (k1 or k2) for a given ω and Ego, we perform a double 

sweep in k1 or k2 and the AG current IAG, and we trace the 

constant amplitude contour (2) (with Eg = Ego) in the plane 

defined by IAG and k1 or k2. The output power and drain 

efficiency are calculated through interpolation of VL and IDC 

[Fig. 2(a)]. Fig. 2(d) shows the solution curve versus k1 for 

k2 = 0.25, at f = 13.56 MHz and Eg = 0.63 V. For the lower k1 

we obtain the same three sections observed in Fig. 2(b). The 

upper section is the only stable one. In comparison with the 

free-running case [Fig. 2(a)], a more regular behavior is 

obtained, with no variation of the oscillation frequency.  

 

Fig. 2. (a) Free-running solution versus k1 for k2 = 0.25 [9], used as a reference. 

(b) Injection-locked curve versus Eg for k1 = 0.1 and k2 = 0.25 and two input 
frequencies. (c) Stability analysis. Real part of the dominant poles versus k1. (d) 

Injection-locked curve versus k1 for k2 = 0.25 and Eg = 0.63 V.  

III. SEMI-ANALYTICAL STUDY 

The goal will be to investigate the impact of the coupled 

network, depending on k1 and k2, on the locked behavior. Thus, 

the observation node will be the one at which the coupled 

inductor L1 is connected. We will describe the oscillator core 

with a nonlinear admittance function Y, extracted with the aid 

of a voltage AG [8], introduced in parallel at the L1 node [Fig. 

1(c)]. The extraction is carried out in HB (with NH harmonic 

terms), in the presence of the input source, with a given 

amplitude Eg and frequency ω. We perform a double sweep in 

the AG phase φ and amplitude V and calculate the admittance 

function Y(V,φ,ω) as the ratio between the AG current and 

voltage. Assuming periodic operation at ω and applying 

Kirchoff’s laws at the analysis node, we obtain: 

1 1 2( , , ) / ( ) ( , , ) 0cY V j L Y k kφ ω ω ω+ + =   (3) 

where Yc is the admittance exhibited by the coupled network 

(Fig. 1). Note that Y(V,φ,ω) was extracted in the presence of L1, 

so it is necessary to subtract the L1 admittance from Y. Though 

Y is extracted with NH harmonics, the coupling to the external 

resonators is considered at ω only. This is a reasonably 

approximation due to the filtering effects of the oscillator 

output. Note that the phase φ of the solutions of (3) should 

ideally agree with the phase of 1 2( , , , ) / ( )AG AG thZ I k k Fω ω  in 
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(1). We will make use of the conventional assumption of 

identical resonance frequencies of the two external resonators 

[5], agreeing with the input frequency: 

2 2 3 31/ 1/ .L C L C ω= =  In these conditions, Yc becomes: 

( )

2 2

2 2 2 3

1 2 2 2 2 2

1 2 2 2 3 1 1 2

( , )
p L

c

p L L

R R k L L
Y k k

jL R R k L L k L L R

ω

ω ω ω

+
=

+ +
   (4) 

where Rp2 is the loss resistance in the intermediate resonator. 

Note that the loss resistance of L1 (Rp1) can be introduced in Y 

and that of L3 (Rp3) can be absorbed in RL. However, for the 

moment we will assume Rp1 = Rp3 = 0 since their effect will be 

analyzed in detail later in this section. As gathered from (4), Rp2 

will have a higher impact for a smaller k2. Thus, we will avoid 

too small values of k2, with no limitation in k1. In these 

conditions, we may neglect Rp2, which leads to:  

( )

1 2

3 1 2
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where 1

3 3 LQ C Rω− = . The ratio 2 2

1 2/x k k=  and  
1

3Q −
 can be 

compacted in a single parameter �� = ��
���, which provides: 
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Replacing the above expression in (3) and splitting into real 

and imaginary parts, we obtain: 
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  (7) 

where the superscripts r and i indicate real and imaginary parts. 

As observed in (7) the locked solutions only depend on 

Y(V,φ, ω)  and the parameter rq. For rq = 0 we have k1 = 0, so 

the external resonators become uncoupled from the oscillator. 

Thus, system (7) particularizes to Y(V,φ, ω) = 0, which 
provides the periodic solutions of the standalone locked 

oscillator. For each rq, the solutions of (7) are given by the 

intersections of the two zero-value contours Hr(V,φ,rq) = 0 and 

Hr(V,φ,rq) = 0 in the plane defined by V and φ, calculated in in-
house software. The output power Pout and drain efficiency Eeff 

vary versus rq as shown in Fig. 3. There is a narrow rq interval 

for which (7) only has a low-amplitude solution and the system 

is unlocked. The maximum output power and efficiency are 

obtained in the curve C2, existing for a larger rq interval. Note 
that the drain efficiency is quite high, owing to the near-ideal 

MOSFET switching. The k1 and k2 leading to a same pair of 

values Pout(rq), Eeff(rq) are related as: 

  
2

3

1
 

q

L

r

R
k

C
k

ω
=   (8) 

If we wish to obtain Pout(rq), Eeff(rq) for a smaller k1 (larger 

distance d1 between the oscillator and first resonator), we 

should increase RL. This is convenient since it reduces the 
impact of Rp2 [see (4)]. The predictions of (7) have been 

validated with HB considering five values of rq (indicated in 

Fig. 3) and three RL values for each rq, given by RL = 25 Ω, 

50 Ω, 100 Ω. Note that each RL is associated to a ratio k1/k2 
through the relationship (8). As seen in Fig. 3, under a same 

choice of rq, we obtain the same values of output power and 

efficiency (overlapped HB points). As an additional validation, 
we have expressed k1 as in (8) and performed a sweep of k2, 

under a constant rq = 0.456, which provides Pout = 1.2 W. We 

have also considered RL = 50 Ω and three values of the loss 

resistance Rp2 = 0 Ω, 1 Ω and 2 Ω. In the lossless case, Pout 
keeps constant for all k2. When considering losses, Pout 

decreases with Rp2 in the lower k2 interval, as predicted by (4). 

For k2 > 0.15, the impact of Rp2 is negligible.  

 
Fig. 3. Solution curves of the injection-locked oscillator obtained by solving (7) 
versus rq. Validation with independent HB for five rq values and three load 

resistance RL = 25 Ω, 50 Ω, 100 Ω for each rq. (a) Output power. (b) Efficiency.  

Next, we will analyze the impact of the loss resistances Rp1 

and Rp3. We will assume k2 = 0.2 (in the order of previous works 
[11]), so the impact of Rp2 will initially be neglected. As easily 

derived, in the presence of Rp1, the total impedance in series 

with C1 [Fig. 1(a)] is 	

�  =  Rp1+�


� (k1/k2)2, where �

�  = RL+Rp3. 

Thus, for a given k2, the power delivered to �

�  will increase 

with ��
�  and �


�  For k2 = 0.2 and �

�  = 52 Ω, the power 

delivered to the coupled network will be dominant provided that 

k1 > 0.04. To calculate the output power, we can use the same 

function Y(V,φ, ω) and introduce Rp1 and Rp3 in Yc:  
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where Yc(rq’) is the admittance in (6), evaluated at 
'

3

'
.q LC Rr xω= The output power is given by: 
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where V is obtained from (3), after introducing (9). The above 

results have been verified with full HB, considering 

Rp1 = Rp2 = Rp3 = 2 Ω (Fig. 4) and the three load resistances 

RL = 25 Ω, 50 Ω, 100 Ω (Fig. 5). Even in the presence of losses, 
the maximum (marked with a black circle) shifts to lower k1 as 

RL increases, in agreement with the analytical predictions.  

The circuit has been experimentally characterized with the 

setup of Fig. 6(a), by means of a high-impedance probe 

connected to a Digital Sampling Oscilloscope DSO6034A. The 
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coils are implemented with AWG18 copper wound on 

machined acrylic sheets to provide the approximate inductance 

L = 2.68 µH. The variation of the coupling factor with the 

distance has been determined from the measurement of the 

scattering parameters [11]. Fig. 6(b) presents the voltage 

waveform at RL = 100 Ω, obtained at the total distance 

d1+d2 = 13 cm. Measurements are superimposed in Fig. 5, with 

very good qualitative agreement. Discrepancies are due to 

inaccuracies/tolerances in the component models, as well as the 

limitations of the lumped equivalent model of the coupled coils. 

in the models of the active device and coupled coils. We have 

achieved an efficiency of 80% at 13 cm, which significantly 

exceeds the one in [9]. 

 
Fig. 4. Solution curves versus k2 when expressing k1 as in (8), under rq = 0.456, 

RL = 50 Ω and three values of the loss resistance: Rp2 = 0 Ω, 1 Ω and 2 Ω.  

 
Fig. 5. Injection-locked oscillator analyzed with the full HB method of Section 

II. Experimental points superimposed. As RL increases the output power 
maximum shifts to lower k1. (a) Output power. (b) Efficiency.  

IV. CONCLUSION 

The behavior of an injection-locked oscillator coupled to 

two external resonators has been investigated. We have derived 

a semi-analytical formulation, which, under negligible losses in 

the intermediate resonator, provides the solutions of the locked 

oscillator in terms of a single non-dimensional parameter. The 

formulation, validated with HB and measurements, enables an 

insightful understanding of the solution dependence on the 

coupling factors and load and parasitic resistances.  
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Fig. 6. Experimental characterization. (a) Measurement setup. (a) Voltage 

waveform at RL = 100 Ω, obtained for the total distance d1+d2  = 13 cm. 
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