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Abstract. In this paper we established three global in time results for two
fourth order nonlinear parabolic equations. The first of such equations involved

the Hessian and appeared in epitaxial growth. For such an equation, we gave

conditions ensuring the global existence of the solution. For certain regime of
the parameters, our size condition involved the norm in a critical space with

respect to the scaling of the equation and improved previous existing results in

the literature for this equation. The second of the equations under study was
a thin film equation with a porous medium nonlinearity. For this equation, we

established conditions leading to the global existence of the solution.

1. Introduction and main results. High order partial differential equations
(PDEs) are a very interesting topic due to their many applications such as beam
dynamics, thin films [17, 18, 19, 20], crystal dynamics [14, 16], and many others.
From a mathematical viewpoint, its study is more challenging that standard second
order PDEs, for instance, due to its lack of maximum principles and some other
features.
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Our main goal is proving existence and decay results in Wiener spaces to the
following problems: ∂tu = K0∆u+ 2K1 detD

2u−K2∆
2u− K3

2
∆ (∆u)

2
in (0, T )× T2,

u(0, x) = u0(x) in T2,

(1.1)
with

K0 ≥ 0, K1 ≥ 0, K2 > 0, K3 ≥ 0,

and {
∂tu = −div (u∇∆u)− χ∆up in (0, T )× T2,

u(0, x) = u0(x) in T2,
(1.2)

with

χ > 0.

Equation in (1.1) models epitaxial growth, and its geometrical derivation can
be found in [9, 10] and [11, Section 2] (where the meaning of the constants Ki is
explained). Roughly speaking, this growth process consists in the superposition
of layers due to deposition of new material, all under high vacuum conditions.
As pointed out in [10], this phenomenon has several applications such as crystal
growth. Crystal surfaces are made up of terraces separated by steps of atomic
height. These steps contain straight parts separated by kinks. On the terraces,
there are surface vacancies resulting from missing surface atoms. Under ultra-high
vacuum conditions, atoms are sent onto the surface, and they diffuse until they are
incorporated.
The authors of this work considered the case K0 = K3 = 0, and they proved the
existence of solutions to

∂tu = detD2u−∆2u+ f(t, x) in (0, T )× Ω, Ω ⊊ R2,

which are global in time under smallness assumptions on the data, or local in time
with arbitrary data. They assumed H2 initial data, and they studied both the
homogeneous case f ≡ 0 and the case f ∈ L2(0, T ;L2(Ω)) with Dirichlet or Navier
boundary conditions. When f ≡ 0 and ∥u0∥H2 is large enough, they also proved
that the W 1,4 norm of the solution blows up in finite time. Later, Escudero [9]
improved the blow up result previously obtained in [10].

Another interesting model of which is linked to (1.2) is contained in [21]. Here, the
authors studied a problem modeling the effect of odd viscosity on the instability of
liquid film along a wavy inclined bottom with linear temperature variation, and they
found that the free boundary evolution equation verifies the following asymptotic
equation:

∂tu = −A(u)∂xu− α∂x
(
B(u)∂xu+ C(u)∂3

xu
)
,

which, for appropriate choice of A,B, and C, is equivalent to (1.2).

There exists a huge literature concerning equations as in (1.2). Equation

∂tu = −div (un∇∆u)− χ∆up, u > 0, χ ∈ R, (1.3)

describes the evolution of the thin-film liquid height u spreading on a solid surface.
The fourth order term takes into account the surface tension, while the porous
medium one is related to the Van der Waals forces.
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The case χ = 0, n = 1 has been deeply studied in [17]. The author also provides
the derivation of the one-dimensional model, and a detailed description of the phys-
ical experiment motivating the interest of the equation itself. The cases with χ = 0
and n ∈ (0, 2) and n ∈ [2, 3) can be found in [6, 15], respectively.

The case χ = −1 in (1.3) has been dealt with in [7], and the relation among the
positive parameters p and n has been investigated.

The blow up of solutions has been proved in the one-dimensional case and for
χ = 1 in [3] when p ≥ n+ 3, and this result has been refined in [20] in the critical
case p = n+ 3.
Always in the case χ = 1, the existence of self-similar solutions to (1.3), as well as
blow up results, are contained in [19] with p = n + 3, [18] with 0 < n < 3, n ≤ p,
and [12] for the case of the first critical exponent p = n + 1 + 2/N , 0 < n < 3/2,
N ≥ 1.

Finally, equations as (1.2) are related also to approximations of nonlocal aggrega-
tion-diffusion models [2, 8] and tumor growth [5, 13].

In this paper, we are going to establish the global existence of weak solutions
and decay assuming Wiener initial data. The main advantage of these spaces when
compared to classical estimates on L2 based Sobolev spaces is that Wiener spaces
usually allow to reach the critical functional space with respect to the scaling invari-
ance of the equation. The technique we are going to apply is contained in [14] (see
also [4, 16, 1]). We present the notions of definitions of weak solutions we consider
below.

Definition 1.1 (Weak solution to (1.1)). We say that a function u is a weak solution
of (1.1) if

u ∈ L∞((0, T )× T2) ∩ L2(0, T ;W 2,4(T2))

and verifies the following weak formulation:ˆ
T2

u0φ(0) dx

+

¨
T2×(0,T )

u∂tφ+

(
K0u+

K3

2
(∆u)2

)
∆φ+2K1φdetD2u−K2u∆

2φdx dt=0

for every

φ ∈ W 1,1(0, T ;L1(T2)) ∩ L1(0, T ;W 4,1(T2)) ∩ L2(0, T ;H2(T2)).

Taking advantage of the fact that the equation (1.2) conserves the mean, we
define the new variable

v(t, x) = u(t, x)− 1

4π2

ˆ
u0(x) dx.

Without loss of generality from this point onward we assume that

1

4π2

ˆ
u0(x) = 1.

Hence, (1.2) becomes{
∂tv = −∆2v − div (v∇∆v)− χ∆(1 + v)p in (0, T )× T2,

v(0, x) = v0(x) = u0(x)− 1 in T2.
(1.4)
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Definition 1.2 (Weak solution to (1.4)). We say that a function v is a weak solution
of (1.4) if

v ∈ L∞((0, T )× T2) ∩ L2(0, T ;H2(T2)),

and verifies the following weak formulation:

−
ˆ
T2

v0φ(0) dx+

¨
T2×(0,T )

−v∂tφ− v∇∆v · ∇φ+ χ(v + 1)p−1∆φdx dt = 0

for every

φ ∈ W 1,1(0, T ;L1(T2)) ∩ Lq′(0, T ;H2(T2)) with 1 ≤ q < 2.

The k-th Fourier coefficients of a 2π-periodic function on Td are

û(k) =
1

(2π)d

ˆ
Td

u(x)e−ik·xdx,

and the Fourier series expansion of u is given by

u(x) =
∑
k∈Zd

û(k)eik·x.

Using this, we define the Wiener spaces for s ≥ 0:

As =

u ∈ L1(Td) : ∥u∥Ȧs =
∑
k∈Zd

|k|s |û(k)| < ∞

 .

We note that A0 is a Banach algebra and, furthermore,

As ⊂ Cs ⊂ Hs.

We will largely make use of the interpolation inequality [4, Lemma 2.1]:

∥u∥Ap ≤ ∥u∥1−θ
A0 ∥u∥θAq for 0 ≤ p ≤ q, θ =

p

q
.

Theorems 1.3 and 1.4 contain two existence results for problem (1.1), and the
main difference concerns the regularity of the initial data.

Theorem 1.3 (Existence result to (1.1) for K3 > 0). Let K3 > 0 in (1.1) and
consider u0 ∈ A2 is a zero mean initial data such that

K2 − 2(K3 +K1) ∥u0∥A2 > 0 if K0 = 0, (1.5)

and

min {K2 − 2K3 ∥u0∥A2 ,K0 − 2K1 ∥u0∥A2} > 0 if K0 > 0.

Then, there exists at least one global weak solution of (1.1) in the sense of Definition
1.1

u ∈ L∞(0, T ;A2) ∩ L1(0, T ;A6) ∀T.
Furthermore, the solution satisfies

∥u(t)∥A2 ≤ e−(K2−2(K3+K1)∥u0∥A2 )t ∥u0∥A2 if K0 = 0,

and

∥u(t)∥A2 ≤ e−min{K2−2K3∥u0∥A2 ,K0−2K1∥u0∥A2}t ∥u0∥A2 if K0 > 0.

Similarly, in the case K3 = 0, we have that:
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Theorem 1.4 (Existence result to (1.1) for K3 = 0). Let K3 = 0 in (1.1) and
consider u0 ∈ A0 is a zero mean initial data such that

K2 − 2K1 ∥u0∥A0 > 0.

Then, there exists at least one global weak solution of (1.1) in the sense of Definition
1.1

u ∈ L∞(0, T ;A0) ∩ L1(0, T ;A4) ∀T.

Furthermore, the solution satisfies

∥u(t)∥A0 ≤ e−(K2−2K1∥u0∥A0 )t ∥u0∥A0 .

This particular result improves the previous global in time result contained in
[10] due to the fact that our size condition is given in A0 instead of H2. In fact, the
space A0 is a critical space with respect to the scaling of the equation

uλ(x, t) = u(λx, λ4t).

We now present our existence result concerning problem (1.4).

Theorem 1.5 (Existence result to (1.4)). Let 0 ≤ u0 ∈ A0 be a an initial data
satisfying

1

4π2

ˆ
u0dx = 1

together with the smallness condition

1− 2 ∥v0∥A0 −
cχp!

2

(
∥v0∥A0 + 2

p−1∑
q=1

∥v0∥qA0

)
> 0.

Then, there exists at least one global weak solution of (1.4) in the sense of Definition
1.2:

v ∈ L∞(0, T ;A0) ∩ L1(0, T ;A4) ∀T.

Furthermore, the solution satisfies

∥v(t)∥A0 ≤ exp

(
−

(
1− 2 ∥v0∥A0 − cχp!

(
∥v0∥A0 + 2

p−1∑
q=1

∥v0∥qA0

))
t

)
∥v0∥A0 .

The above results could be extended to whole R2 considering the Wiener spaces
As defined through the Fourier transform:

As =

{
u ∈ L1(T2) : ∥u∥Ȧs =

ˆ
R2

|ξ|s |û(ξ)| < ∞
}
. (1.6)

For other boundary conditions, a similar approach could possibly be implemented
using Wiener spaces defined via eigenfunctions of the bilaplacian with such bound-
ary conditions.

In the following, we write

f,j = ∂xj
f

for the space derivative in the j−th direction.
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2. Proof of Theorems 1.3 and 1.4. Approximate problem: We explicitly
compute each term of (1.1):

∆u = u,ii ,

2 detD2u = u,ii u,jj −u,ij u,ij ,

∆2u = u,iijj ,

1

2
∆ (∆u)

2
= u,ii u,jjkk .

Hence, (1.1) is equivalent to{
∂tu=K0u,ii +K1 (u,ii u,jj−u,ij u,ij )−K2u,iijj−K3u,ii u,jjkk in (0, T )×T2,

u(0, x) = u0(x) in T2.

We consider the following approximating problem:
∂tu

(n)=K0u
(n),ii +K1Pn

(
u(n),ii u

(n),jj−u(n),ij u
(n),ij

)
−K2u

(n),iijj −K3Pn(u
(n),ii u

(n),jjkk ) in (0, T )×T2,

u(n)(0, x) = Pnu0(x) in T2,

(2.1)
where Pn is the projector on the Fourier modes satisfying

|k| ≤ n.

Using this Galerkin projection approximation, we obtain a (finite dimensional) non-
linear system of ordinary differential equations (ODEs). Indeed, it is enough to
solve for the 2n + 1 Fourier modes of u(n). As this ODE system has a Lipschitz
nonlinearity (it’s merely a number of multiplications), the classical Picard theorem
leads to the local existence of solution up to time Tn. So far, the solution to the
approximate problems may exist locally in time. Furthermore, we have to discard
that lim inf Tn = 0. However, we will show below that there exists a common and
positive time interval of existence.

A priori estimates in Wiener spaces: Let us omit the superscript (n) in the
following computations. We rewrite each term of the right hand side of (2.1) in
Fourier:

u,ii u,jj −u,ij u,ij
∧

(t, k) =
∑
m∈Z2

(
|m|2 |k −m|2 −mimj(ki −mi)(kj −mj)

)
×

× u
∧
(t,m)u

∧
(t, k −m),

u,iijj
∧

(t, k) = |k|4 u
∧
(t, k),

u,ii
∧

(t, k) = |k|2 u
∧
(t, k),

u,ii u,jjkk
∧

(t, k) = −
∑
m∈Z2

|m|4|k −m|2u
∧
(t,m)u

∧
(t, k −m).

Note that the contribution of the term

K0∆u

is always negative in Wiener spaces.
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Assume that K0 = 0. Then, the Fourier coefficient of (2.1) is given by

∂tu
∧
(k, t) = K1

∑
m∈Z2

(
|m|2 |k−m|2 −mimj(ki −mi)(kj −mj)

)
u
∧
(t,m)u

∧
(t, k−m)

−K2|k|4u
∧
(t, k) +K3

∑
m∈Z2

|m|4|k −m|2u
∧
(t, k −m)u

∧
(t,m). (2.2)

In order to estimate the A2 semi-norm of ∂tu, we use the fact that

∂t|u
∧
(t, k)| =

Re
(
u
∧
(t, k)∂tu

∧
(t, k)

)
|u
∧
(t, k)|

, (2.3)

to obtain the estimates∑
k∈Z2

|k|2∂t |u
∧
(k, t)| = d

dt
∥u(t)∥A2 ,

∑
k∈Z2

|k|6 |u
∧
(t, k)| = ∥u(t)∥A6 ,

∑
k∈Z2

|k|2
∣∣∣∣∣ ∑
m∈Z2

(
|m|2 |k −m|2 −mimj(ki −mi)(kj −mj)

)
u
∧
(t,m)u

∧
(t, k −m)

∣∣∣∣∣
≤ 2 ∥u(t)∥A2 ∥u(t)∥A4 ,

and also, by Tonelli’s Theorem,∑
k∈Z2

|k|2
∣∣∣∣∣ ∑
m∈Z2

|m|4|k −m|2u
∧
(t,m)u

∧
(t, k −m)

∣∣∣∣∣
≤
∑
m∈Z2

|m|4 |u
∧
(t,m)|

∑
k∈Z2

|k|2|k −m|2 |u
∧
(t, k −m)|

≤
∑
m∈Z2

|m|4 |u
∧
(t,m)|

∑
k∈Z2

|k −m|4 |u
∧
(t, k −m)|

+
∑
m∈Z2

|m|6 |u
∧
(t,m)|

∑
k∈Z2

|k −m|2 |u
∧
(t, k −m)|

≤ ∥u(t)∥2A4 + ∥u(t)∥A2 ∥u(t)∥A6

≤ 2 ∥u(t)∥A2 ∥u(t)∥A6 ,

where the last inequality follows interpolating.

We gather the previous estimates, obtaining

d

dt
∥u(t)∥A2 ≤ − (K2 − 2K3 ∥u(t)∥A2) ∥u(t)∥A6 + 2K1 ∥u(t)∥A2 ∥u(t)∥A4 . (2.4)

We now estimate the last term in the r.h.s. of (2.4) as below,

2K1 ∥u(t)∥A2 ∥u(t)∥A4 ≤ 2K1 ∥u(t)∥A2 ∥u(t)∥A6 ,

so that
d

dt
∥u(t)∥A2 ≤ − (K2 − 2(K3 +K1) ∥u(t)∥A2) ∥u(t)∥A6 .

Thus, if u0 ∈ A2(T2) is such that

K2 − 2(K3 +K1) ∥u0∥A2 > 0

and using a contradiction argument in time, we obtain that u is uniformly bounded
in

W 1,1(0, T ;A2(T2)) ∩ L1(0, T ;A6(T2)), (2.5)



GLOBAL EXISTENCE FOR CERTAIN FOURTH ORDER EVOLUTION EQUATIONS 1653

and, furthermore, it decays

∥u(t)∥A2 ≤ e−(K2−2(K3+K1)∥u0∥A2 )t ∥u0∥A2 .

If K0 > 0, we can improve the smallness condition (1.5) in the following way.

The term −K0 |k|2 u
∧
(t, k) appears in the r.h.s. of (2.2). Then, reasoning as in

the case K0 = 0, the inequality in (2.4) takes the following form:

d

dt
∥u(t)∥A2 ≤ − (K2 − 2K3 ∥u(t)∥A2) ∥u(t)∥A6 − (K0 − 2K1 ∥u(t)∥A2) ∥u(t)∥A4 .

We can thus avoid to estimate ∥u(t)∥A4 with ∥u(t)∥A6 , requiring u0 ∈ A2 such that

min {K2 −K3 ∥u0∥A2 ,K0 − 2K1 ∥u0∥A2} > 0.

Moreover, in the case where K0 = K3 = 0, we can improve the previous result
and find that

d

dt
∥u(t)∥A0 ≤ +2K1 ∥u(t)∥2A2 −K2 ∥u(t)∥A4 .

Using interpolation, we obtain that

d

dt
∥u(t)∥A0 ≤ (−K2 + 2K1 ∥u(t)∥A0) ∥u(t)∥A4 ,

from where we can conclude the desired estimates as before.

An analogous estimate holds in the case K0 > 0.

Estimates for the approximate problem: Using that∑
k

|Pnf | ≤ ∥f∥A0 ,

we observe that the previous a priori estimates are valid for the approximate problem
∂tu

(n) = K0u
(n),ii +K1Pn

(
u(n),ii u

(n),jj −u(n),ij u
(n),ij

)
−K2u

(n),iijj −K3Pn(u
(n),ii u

(n),jjkk ) in (0, T )× T2,

u(n)(0, x) = Pnu0(x) in T2.

Compactness results: Up to subsequences, we have that

u(n) ! u a.e. (0, T )× T2, (2.6)

u(n) ∗
⇀ u in L∞(0, T ;W 2,∞(T2)), (2.7)

u(n) ∗
⇀ u in M(0, T ;W 6,∞(T2)), (2.8)

u(n) ∗
⇀ u in L

2p
3p−6 (0, T ;W p,∞(T2)) with 2 < p < 6, (2.9)

u(n) ! u in L2(0, T ;H2(T2)). (2.10)

Indeed, the weak-∗ convergences (2.7) and (2.8) follow from the uniform bound in
(2.5) and the Banach-Alaoglu Theorem. We use the interpolation inequality to say
that, ∥∥∥u(n)(t)− u(t)

∥∥∥
Ap

≤
∥∥∥u(n)(t)− u(t)

∥∥∥ 6−p
2p

A2

∥∥∥u(n)(t)− u(t)
∥∥∥ 3p−6

2p

A6
,

and we integrate in timeˆ T

0

∥∥∥u(n)(t)− u(t)
∥∥∥ 2p

3p−6

Ap
dt ≤

∥∥∥u(n) − u
∥∥∥ 6−p

3p−6

L∞(A2)

ˆ T

0

∥∥∥u(n)(t)− u(t)
∥∥∥
A6

dt.
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Then, (2.9) follows recalling (2.5) and observing that ∥f∥Wp,∞ ≤ ∥f∥Ap . Similarly,
the a.e. convergence in (2.6) follows from the previous ones.

We now focus on the strong convergence in (2.10). Interpolation inequality im-
plies that∥∥∥u(n) − u

∥∥∥
L2(H2)

≤
∥∥∥u(n) − u

∥∥∥ 1
3

L2(L2)

∥∥∥u(n) − u
∥∥∥ 2

3

L2(H3)
≤ c

∥∥∥u(n) − u
∥∥∥ 1

3

L2(L2)

by (2.9) with p = 3. Then, we just have to prove the strong convergence

u(n) ! u in L2(0, T ;L2(T2)) (2.11)

to deduce (2.10). We want to apply classical compactness results in order to get
(2.11). Then, we need some spaces X and Y such that

u(n) uniformly bounded L2(0, T ;X),

∂tu
(n) uniformly bounded L1(0, T ;Y ),

verifying

X
compact
↪−→ L2(T2) ↪−→ Y.

We set X = H2(T2), so the boundedness in L2(0, T ;H2(T2)) follows from the one
in L2(0, T ;H3(T2)) and the finiteness of the domain. We choose Y = H−2(T2) and
we prove the uniform boundedness of the time derivative using that

∥∂tu(n)(t)∥H−2 = sup
φ ∈ H2(T)
∥φ∥H2 ≤ 1

∣∣∣∣⟨∂tun(t), φ⟩
∣∣∣∣.

Then, we estimate as∣∣∣∣ˆ
T2

∂tu
(n)φdx

∣∣∣∣ ≤ c

ˆ
T2

(∣∣∣u(n)
∣∣∣+ ∣∣∣∆u(n)

∣∣∣+ (∆u(n))2
)
|∆φ| dx

+ c

ˆ
T2

∣∣∣detD2u(n)
∣∣∣φdx

≤ c
(
1 +

∥∥∥u(n)
∥∥∥
W 2,∞

)∥∥∥u(n)
∥∥∥
H2

∥φ∥H2 .

Then, ∥∥∥∂tu(n)(t)
∥∥∥
H−2

≤ c
(
1 +

∥∥∥u(n)
∥∥∥
W 2,∞

)∥∥∥u(n)
∥∥∥
H2

,

and ∥∥∥∂tu(n)(t)
∥∥∥
L2(H−2)

≤ c

(
1 +

∥∥∥u(n)
∥∥∥
L∞(W 2,∞)

)∥∥∥u(n)
∥∥∥
L2(H2)

< c.

Passing to the limit: We want to take the limit in n inˆ
T2

Pnu0φ(0) dx+

¨
T2×(0,T )

u(n)∂tφ+

(
K0u

(n) +
K3

2
(∆u(n))2

)
∆φdx dt

+

¨
T2×(0,T )

2K1φdetD2u(n) −K2u
(n)∆2φdx dt = 0,

being φ ∈ W 1,1(0, T ;L1(T2)) ∩ L1(0, T ;W 4,1(T2)) ∩ L2(0, T ;H2(T2)).

We only detail the convergence of¨
T2×(0,T )

(∆u(n))2∆φdx dt
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because the one of ¨
T2×(0,T )

φdetD2u(n) dx dt

is similar to the first one, and the others follow from the assumptions on φ and the
weak-∗ convergence (2.7). We have¨

T2×(0,T )

(
(∆u(n))2 − (∆u)2

)
∆φdx dt

=

¨
T2×(0,T )

∆(u(n) − u)∆(u(n) + u)∆φdx dt

≤
∥∥∥u(n) + u

∥∥∥
L∞(W 2,∞)

¨
T2×(0,T )

∣∣∣∆(u(n) − u)
∣∣∣ |∆φ| dx dt

thanks to (2.7). We now apply Hölder‘s inequality, obtaining that¨
T2×(0,T )

(
(∆un)

2 − (∆u)2
)
∆φdx dt

≤ ∥un + u∥L∞(W 2,∞) ∥un − u∥L2(H2) ∥φ∥L2(H2) ,

which converges to zero as n ! ∞ by (2.10).

3. Proof of Theorem 1.5. Approximate problem: We observe that in the new
variable v, problem (1.4) is equivalent to

∂tv = −v,iijj −v,i v,jji −vv,iijj −χp(p− 1)(1 + v)p−2v,i v,i −χp(1 + v)p−1v,ii

in (0, T )× T2,

v(n)(0, x) = u0(x)− 1

in T2.

We define the following approximate problem

∂tv
(n) = −v(n),iijj −v(n),i v

(n),jji −v(n)v(n),iijj

−χp(p− 1)(1 + v(n))p−2v(n),i v
(n),i −χp(1 + v(n))p−1v(n),ii

in (0, T )× T2,

v(0, x) = Pn(u0(x)− 1)

in T2.

(3.1)
Similar comments to (2.1) hold for (3.1).

A priori estimates in Wiener spaces: Let us omit the superscript (n) in the
following computations. We use that

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk

and we rewrite each term of the r.h.s. of (3.1) in Fourier:

v,iijj
∧

(t, k) = |k|4u
∧
(t, k),

v,i v,jji
∧

(t, k) =
∑
m∈Z2

mi(ki −mi)|k −m|2v
∧
(t,m)v

∧
(t, k −m),

vv,iijj
∧

(t, k) =
∑
m∈Z2

|k −m|4v
∧
(t,m)v

∧
(t, k −m),



1656 RAFAEL GRANERO-BELINCHÓN AND MARTINA MAGLIOCCA

(1 + v)p−2v,i v,i

∧

(t, k)

=

p−2∑
q=0

(
p− 2

q

)
vqv,i v,i
∧

(t, k)

= −
p−2∑
q=0

(
p− 2

q

) ∑
m1∈Z2

. . .
∑

mq+1∈Z2

(ki −m1
i )(m

1
i −m2

i )v
∧
(t, k −m1)v

∧
(t,m1 −m2)

×
q∏

ℓ=2

v
∧
(t,mℓ −mℓ+1)v

∧
(t,mq+1)

= −
p−2∑
q=0

(p− 2)!

q!(p− 2− q)!
N (q)

1 (t, k),

(1 + v)p−1v,ii

∧

(k, t)

=

p−1∑
q=0

(
p− 1

q

)
vqv,ii
∧

(t, k)

= −
p−1∑
q=0

(
p− 1

q

) ∑
m1∈Z2

. . .
∑

mq∈Z2

∣∣k−m1
∣∣2 v∧(t, k−m1)

q−1∏
ℓ=1

v
∧
(t,mℓ−mℓ+1)v

∧
(t,mq)

= −
p−1∑
q=0

(p− 1)!

q!(p− 1− q)!
N (q)

2 (t, k).

Then, the Fourier coefficients of (3.1) satisfy

∂tv
∧
(t, k) = −|k|4v

∧
(t, k)−

∑
m∈Z2

mi(ki −mi)|k −m|2v
∧
(t,m)v

∧
(t, k −m)

−
∑
m∈Z2

|k −m|4v
∧
(t,m)v

∧
(t, k −m) + χp!

p−2∑
q=0

N (q)
1 (t, k)

q!(p− 2− q)!

+ χp!

p−1∑
q=1

N (q)
2 (t, k)

q!(p− 1− q)!
.

We recall (2.3) to deduce∑
k∈Z2

∂t |v
∧
(k, t)| = d

dt
∥v(t)∥A0 ,

∑
k∈Z2

|k|4 |v
∧
(k, t)| = ∥v(t)∥A4 ,

∑
k∈Z2

∣∣∣∣∣ ∑
m∈Z2

mi(ki −mi)|k −m|2v
∧
(t,m)v

∧
(t, k −m)

∣∣∣∣∣ ≤ ∥v(t)∥A1 ∥v(t)∥A3

≤ ∥v(t)∥A0 ∥v(t)∥A4 ,∑
k∈Z2

∣∣∣∣∣ ∑
m∈Z2

|k −m|4v
∧
(t,m)v

∧
(t, k −m)

∣∣∣∣∣ ≤ ∥v(t)∥A0 ∥v(t)∥A4 ,

p−2∑
q=0

1

q!(p− 2− q)!

∑
k∈Z2

∣∣∣N (q)
1 (t, k)

∣∣∣ ≤ c

p−2∑
q=0

∥v(t)∥qA0 ∥v(t)∥2A1
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≤ c

p−2∑
q=0

∥v(t)∥q+1
A0 ∥v(t)∥A2 ,

p−1∑
q=0

1

q!(p− 1− q)!

∑
k∈Z2

∣∣∣N (q)
2 (t, k)

∣∣∣ ≤ c

p−1∑
q=0

∥v(t)∥qA0 ∥v(t)∥A2 ,

and we estimate the A0 semi-norm of v as

d

dt
∥v(t)∥A0

≤ − (1− 2 ∥v(t)∥A0) ∥v(t)∥A4 + cχp!

(
p−2∑
q=0

∥v(t)∥q+1
A0 +

p−1∑
q=0

∥v(t)∥qA0

)
∥v(t)∥A2

= − (1− 2 ∥v(t)∥A0) ∥v(t)∥A4 + cχp!

(
∥v(t)∥A0 + 2

p−1∑
q=1

∥v(t)∥qA0

)
∥v(t)∥A2 .

We estimate the ∥v(t)∥A2 as

∥v(t)∥A2 ≤ ∥v(t)∥
1
2

A0 ∥v(t)∥
1
2

A4 ≤ 1

2
∥v(t)∥A0 +

1

2
∥v(t)∥A4 ,

obtaining that

d

dt
∥v(t)∥A0

≤ −

(
1− 2 ∥v(t)∥A0 −

cχp!

2

(
∥v(t)∥A0 + 2

p−1∑
q=1

∥v(t)∥qA0

))
∥v(t)∥A4

+
cχp!

2

(
∥v(t)∥A0 + 2

p−1∑
q=1

∥v(t)∥qA0

)
∥v(t)∥A0 .

The smallness condition

1− 2 ∥v0∥A0 −
cχp!

2

(
∥v0∥A0 + 2

p−1∑
q=1

∥v0∥qA0

)
> 0,

implies that, for small times,

d

dt
∥v(t)∥A0 +

(
1− 2 ∥v0∥A0 −

cχp!

2

(
∥v0∥A0 + 2

p−1∑
q=1

∥v0∥qA0

))
∥v(t)∥A4

≤ cχp!

2

(
∥v(t)∥A0 + 2

p−1∑
q=1

∥v(t)∥qA0

)
∥v(t)∥A0

≤ cχp!

2

(
∥v0∥A0 + 2

p−1∑
q=1

∥v0∥qA0

)
∥v0∥A0 .

We extend this inequality to all times using a contradiction argument in time.
As a consequence, we find the uniform boundedness in the following space:

W 1,1(0, T ;A0(T2)) ∩ L1(0, T ;A4(T2)).
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Invoking a Poincaré inequality in Wiener spaces, we conclude the decay estimate∥∥∥v(n)(t)∥∥∥
A0

≤ exp

(
−

(
1− 2 ∥v0∥A0 − cχp!

(
∥v0∥A0 + 2

p−1∑
q=1

∥v0∥qA0

))
t

)
∥v0∥A0 ,

for χ eventually smaller.

Compactness results: Reasoning as for the previous problem (2.1), we have
that

v(n) ! v a.e. (0, T )× T2,

v(n)
∗
⇀ v in L∞((0, T )× T2),

v(n)
∗
⇀ v in M(0, T ;W 4,∞(T2)),

v(n)
∗
⇀ v in L

4
m (0, T ;Wm,∞(T2)) with 0 < m < 4,

v(n) ⇀ v in L2(0, T ;H2(T2)),

v(n) ! v in L2(0, T ;Hr(T2)) with 0 ≤ r < 2,

v(n) ! v in Lq(0, T ;H2(T2)) with 1 ≤ q < 2

up to subsequences.

Passing to the limit: We want to take the limit in n in

−
ˆ
T2

Pnv0φ(0) dx+

¨
T2×(0,T )

− v(n)∂tφ− v(n)∇∆v(n) · ∇φ+ χ(v(n) + 1)p−1∆φdx dt = 0,

for every φ ∈ W 1,1(0, T ;L1(T2)) ∩ Lq(0, T ;H2(T2)) and 1 ≤ q < 2. Then, using
that, due to interpolation, we have strong convergence in

Lr(0, T ;H3),

and since

(vn + 1)p−1 − (v + 1)p−1 =

p−1∑
q=1

vqn − vq = (vn − v)

p−1∑
q=2

vqnv
p−1−q

we deduce that∣∣∣∣∣
¨

T2×(0,T )

(
(vn + 1)p−1 − (v + 1)p−1

)
∆φdx dt

∣∣∣∣∣
≤

p−1∑
q=2

∥vn∥qL∞(L∞) ∥v∥
p−1−q
L∞(L∞) ∥vn − v∥L2(L2) ∥φ∥L2(H2) ! 0,

and we can pass to the limit.

4. Conclusion. In this paper, we have studied two fourth order nonlinear parabolic
equations. These equations arise in the study of epitaxial growth and in thin films.
Such quasilinear PDEs are mathematically challenging due to the high number of
derivatives in the main part. For these PDEs, we have established a number of
global in time existence results in the nonstandard Wiener spaces. These functional
spaces allow us to take full advantage of the parabolic structure.
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In particular, one of our main contributions has been the improvement of the
previous global in time result contained in [10]. Indeed, the authors in [10] estab-
lish global in time results for initial data with small energy akin to the H2 norm.
However, with our techniques we can prove a global in time result imposing a size
condition in the Wiener algebra A0. The Wiener algebra shares the same scaling
as L∞, and both are critical spaces with respect to the scaling of the equation.

Regarding uniqueness, a possible approach could be the one exploited by J.-G.
Liu and R. Strain in [16]: Here, with medium size assumption on ∥u0∥A2 (see (1.6)),
the authors proved the uniqueness of solutions to

∂tu = ∆e−∆u in (0, T )× RN .

Another possible way to approach this type of problem is the one proposed by D.
M. Ambrose in [1]. Here, the author proves existence and analyticity results for a
fourth order problem, which describes crystal growth surfaces through fixed point
techniques. The equation, in this case, is the same as [16] but in the N dimensional
torus.
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