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Abstract: This paper presents a comparative analysis of deep learning techniques for anomaly
detection and failure prediction. We explore various deep learning architectures on an IoT dataset,
including recurrent neural networks (RNNs, LSTMs and GRUs), convolutional neural networks
(CNNs) and transformers, to assess their effectiveness in anomaly detection and failure prediction. It
was found that the hybrid transformer-GRU configuration delivers the highest accuracy, albeit at the
cost of requiring the longest computational time for training. Furthermore, we employ explainability
techniques to elucidate the decision-making processes of these black box models and evaluate their
behaviour. By analysing the inner workings of the models, we aim at providing insights into the
factors influencing failure predictions. Through comprehensive experimentation and analysis on
sensor data collected from a water pump, this study contributes to the understanding of deep learning
methodologies for anomaly detection and failure prediction and underscores the importance of model
interpretability in critical applications such as prognostics and health management. Additionally, we
specify the architecture for deploying these models in a real environment using the RAI4.0 metamodel,
meant for designing, configuring and automatically deploying distributed stream-based industrial
applications. Our findings will offer valuable guidance for practitioners seeking to deploy deep
learning techniques effectively in predictive maintenance systems, facilitating informed decision-
making and enhancing reliability and efficiency in industrial operations.

Keywords: predictive maintenance; deep learning; explainability; model-based deployment

1. Introduction

Over the past five years, the integration of artificial intelligence (AI) into predictive
maintenance has profoundly transformed the industrial sector. The synergy between
advanced technologies, such as real-time data analytics and low-cost sensors, combined
with machine learning models, has enabled the unprecedented precision in anticipating
failures in complex systems. This approach not only optimises maintenance intervals but
also enhances reliability and reduces operational costs [1]. Even more, developments in
sophisticated algorithms, alongside human expertise, have enabled the creation of models
that not only predict failures but also suggest specific corrective actions, thereby minimising
downtime and repair costs [2].

There are many different strategies to build predictors but the ones that are currently
producing the best results are those supported by deep learning techniques [3]. Therefore,
we will focus on the analysis and comparison of different algorithms applied to a case study
of anomaly detection and failure prediction. In addition, we will work with explainability
techniques, known by the acronym XAI (explainable AI), [4] to determine the factors or
variables that most influence the prediction of failure. These AI models work well because
the volume of data available is huge and computation power is high thanks to the lower
cost of hiring cloud nodes.
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However, it should not be forgotten that not only is it necessary to build the model,
but also to deploy and monitor it in order to detect when the model becomes less accurate
and needs to be updated. This is absolutely essential when working with continuous
data streams that may be affected by concept drift [5]. This term means that the statistical
relationships between input variables and model output variables change over time, which
can deteriorate model performance if not properly detected and managed. This leads us to
think not only about the model but also about the technological platform needed to ensure
that the model’s life cycle is fully automated [6].

In this regard, having tools that facilitate the design and deployment of the predictive
system as well as its monitoring to update the model when it is underperforming is very
practical and essential for companies. In this sense, we describe our use case using the
RAI4.0 metamodel [7] which allows us to specify the different elements that make up the
digital platform that will host the prediction service along with their deployment parame-
ters. Working with models (model-based engineering) provides considerable advantages,
not only in terms of reasoning on and documenting our digital platform, as well as in terms
of time saved when deploying and re-deploying with different configurations. Likewise,
the time required for the integration of new applications or services is reduced since parts
of the model can be reused.

In short, this paper has two main objectives. Firstly, it conducts a comparative study
of deep learning techniques for constructing failure predictors in sensorised devices and
uses explainable AI (XAI) algorithms to better understand their behaviour. Secondly, it
seeks to present an automated strategy for the deployment and performance monitoring of
these predictors, utilising a MLOps architecture framework [6].

The outline of the paper is as follows: Section 2 provides an overview of the predictive
maintenance arena, including its aim, problem types and techniques to address them,
making a special focus on anomaly detection and failure prediction. Section 3 presents our
case study, detailing the data description, the preprocessed tasks performed and the setting
of different deep learning algorithms to build an anomaly predictor service discussing its
performance. Next, Section 4 explains the most effective XAI techniques that are applied
for different purposes, such as understanding false positives or identifying components
causing the failures. Section 5 discusses the findings of this study regarding deep learning
and XAI. Section 6 describes the platform deployed to support the predictive maintenance
service and its monitoring. Finally, Section 7 draws the conclusions of the paper and the
next steps in our research.

2. Data-Driven Predictive Maintenance

According to the European standard EN 13306:2010, maintenance is defined as “the
combination of all technical, administrative and managerial actions during the life cycle of
an item intended to retain it in or restore it to a state, in which it can perform the required
function” [8]). Further, maintenance can be divided into three main categories: corrective,
preventive and predictive maintenance.

Predictive maintenance (PdM) is an evolution of the previous two maintenance proto-
cols. Unlike simpler forms of maintenance such as corrective maintenance, which performs
no tasks until a failure occurs, or preventive maintenance, which relies on mean time
between failures to establish a maintenance schedule, predictive maintenance utilises mon-
itoring data to infer the actual condition of a system. This last approach allows for the
detection or prediction of failures, enabling more effective scheduling of maintenance tasks.
Consequently, it reduces downtimes, improves the health status management of industrial
equipment and maximizes their useful life [1,9].

The term “data-driven” enhances PdM by incorporating historical data to build mod-
els that guide decision-making. In essence, it involves identifying patterns, correlations,
and anomalies to provide insights into equipment health and performance. This approach
requires, on the one hand, datasets that include representative and effective observations of
degradation, failures, and even complete failure performance data, which can be challeng-
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ing to achieve [3]; and on the other hand, advanced computational techniques, such as those
from deep learning arenas, to build these models, which require qualified professionals [10].

Before briefly describing these techniques, we mention the usual maintenance strate-
gies under which data driven predictive maintenance problems are classified [11]:
(1) anomaly detection, (2) failure diagnosis, (3) remaining useful life prediction (RUL)
and (4) mitigation. The first one involves detecting potential failures that have just occurred
or are about to take place. Failure diagnosis aims to identify the true cause of a problem
and is usually addressed by applying root cause analysis (RCA) techniques. Next, the
estimation of the remaining time or, in other words, cycles until a failure occurs should be
carried out. Finally, all this information would be communicated to industrial engineers in
order to implement a mitigation plan.

We can find many applications and use cases representative of each stage in the
literature. For instance, ref. [12] introduces an innovative framework that harnesses a
hybrid approach, uniting convolutional neural networks (CNN) and long short-term
memory networks (LSTM), referred to as CNN-LSTM, to predict component failures in
air production units (APUs) installed in metro vehicles. Lei et al. [13] present a novel
fault diagnosis framework for wind turbines using an end-to-end long short-term memory
(LSTM) model. Its results demonstrate that this method effectively classifies faults from
raw time-series signals collected by single or multiple sensors, outperforming state-of-
the-art approaches. Li et al. [14] focus on the importance of accurately predicting the
remaining useful life (RUL) of lithium-ion batteries using machine learning (ML) algorithms,
discussing the general process of RUL prediction and comparing the top ten algorithms
based on accuracy and characteristics. Taşcı et al. [15] proposed a hybrid model for
predicting the remaining useful lifetime before production lines stop. They used real-world
high-dimensional data from IoT sensors and among all the proposed methods, RF (random
forests), an ensemble bagging method, turned out to perform best. They did not use deep
learning algorithms. On the other hand, autoencoder-based methods have been also tested
successfully for novelty detection, another major challenge in industrial plants, where both
operational conditions change over time and a large number of unknown modes occur [16].
The number of works is very extensive—the interested reader can find more case studies in
current surveys written by different authors [1,2,17–19].

Another recent and interesting paper that guides scientists to select a suitable deep
learning architecture is [3]. This classifies techniques according to four dimensions:
(1) target of the task, such as degradation assessment, RUL prediction, health estima-
tion and damage identification; (2) the features that may need to be extracted, including
time dependency features, complex representations, discriminatory features and hierar-
chical representations; (3) the input data, including coupled or disordered levels, data
types, and relationships between neighbouring variables; and (4) special demands on
analysis capability, including the capabilities to deal with temporal information, complex
environments, and complex imagery scenes. Following its roadmap, we included RNN,
LSTM and CNN in our benchmark.

Recently, researchers from Milano University [20] investigated the failure prediction
task in industrial datasets considering the impact of both the reading window length
and the prediction window length. For this purpose, they compared different machine
learning and deep learning algorithms and concluded that deep learning outperforms
machine learning when the complexity of the dataset increases as measured by the average
spectral entropy.

Next, we overview deep learning techniques used for anomaly detection and
failure prediction.

Anomaly Detection and Failure Prediction

This section focuses on the study of anomaly detection using deep learning techniques,
specially recurrent neural networks and convolutional neural networks. According to [11]
the most employed and better performing models in PdM tasks are:
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• Recurrent neural networks (RNNs) [21], a type of artificial neural network designed
to recognise patterns in sequences of data. Unlike traditional neural networks, RNNs
have loops that allow information to persist, making them well-suited for sequential
data processing.
RNNs have a unique architecture where connections between nodes form a directed
cycle. This allows the network to maintain a ’memory’ of previous inputs. The
simplest form of RNN can struggle with long-term dependencies due to issues like the
vanishing gradient problem, therefore architectures such as long short-term memory
(LSTM) and gated recurrent unit (GRU) were created with gate mechanisms to regulate
the flow of information and to capture long-term dependencies efficiently. These are
used for time-series forecasting, natural language processing (NLP) or recommender
systems. Figure 1 shows the structures of the different RNN cells. The simpler RNN
cell receives the current time-step and the output from the previous time-step as input,
so several time-steps are taken into account for each model prediction. However,
these simpler cells face two main problems that affect their ability to capture long-
term relationships in the data: vanishing gradient and exploding gradient. The
former is caused by gradients rapidly approximating to zero and thus stopping the
training process. Whereas the latter is the opposite, gradients grow towards infinity
making the training process highly unstable and provoking the appearance of NaN
values. To solve these problems, LSTM cells introduce cell states to mitigate the
vanishing gradient problem and a three gate system to manage the state. The input
gate determines how much of the new information is incorporated into the cell state,
the forget gate determines which information is discarded from the cell state and,
finally, the output gate determines what information is forwarded. Moreover, GRU
cells follow the same principle as LSTM, keeping an internal state or memory, but they
are designed using only two gates to improve efficiency. The update gate controls how
much from the previous state should be kept and how much of the new information
should be included and the reset gate determines how much of the hidden state has to
be forgotten.

Figure 1. RNN, LSTM and GRU cells architecture [22].

• Convolutional neural networks [19], a class of deep learning models particularly well-
suited for computer vision and natural language processing. They are fully connected
feedforward neural networks with convolutional and pooling layers. The former
applies a set of filters (or kernels) to the input image, generating feature maps that
highlight various characteristics such as edges, textures, and patterns, and the latter
reduce the spatial dimensions of the feature maps, typically using operations like
max pooling or average pooling, which helps to reduce computational load and to
achieve spatial invariance. For time series forecasting and classification, a special type
of CNN called a one-dimensional convolutional neural network (1D CNN) is usually
employed. This kind of CNN uses one-dimensional filters that convolute only over
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the time axis (as shown in Figure 2), allowing the identification of temporal patterns
in the data.

Figure 2. Simple 1D convolutional neural network (CNN) architecture with two convolutional
layers [23].

• Generative models, a class of machine learning models that learn to generate new data
samples that resemble a given dataset. Unlike discriminative models, which learn the
boundary between classes, generative models learn the underlying distribution of the
data. There are different types, some of the most relevant are the following: (1) Deep
belief networks (DBN) which are hierarchical generative models composed of multiple
layers of RBMs (restricted Boltzmann machines) and generally used for unsupervised
learning tasks and as feature extractors. (2) Generative adversarial networks (GANs)
that consist of two neural networks, the generator and the discriminator, which are
trained simultaneously in such way that the generator tries to fool the discriminator,
while the discriminator aims to correctly identify the real and generated data. The
objective of the generator is to maximise the discriminator’s error rate. (3) Variational
autoencoders (VAEs) encode data into a latent space and then decode it back to
reconstruct the data. VAEs are particularly popular for tasks like image generation,
data representation, and generating new samples that resemble the training data.
Finally, (4) transformers, presented in [24], are composed of an encoder and a decoder,
each of which is made up of several multi-head self-attention layers and feedforward
layers (see Figure 3). These have recently become extremely popular for its use in
machine translation and for being the base of well-known large language models
(LLMs) such as GPT. However, with some adjustments they can also be applied to
temporal and spatial data.
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Figure 3. Transformer architecture [24].

Additionally, it is remarkable to point out that anomaly detection techniques also
have the potential to improve prognostics models in two ways: by removing noisy or
erroneous data; and by detecting relevant events that can be used as new input features for
the prognostics models, making it possible to have more generalised models [25].

3. Deep Learning Algorithm Comparison: Case Study

The purpose of this section is to apply different deep learning algorithms on a free avail-
able time series dataset from the Kaggle repository (https://www.kaggle.com/datasets/
nphantawee/pump-sensor-data (accessed on 2 September 2024)) in order to compare their
performance and suitability for anomaly detection.

This dataset is comprised of a set of measurements taken by the 52 sensors installed
in a water pump responsible for supplying water to a small village. The owner of the
system published the data with the purpose of being able to understand or detect failures
as quickly and as accurately as possible in order to improve the service given to the village
population. In the previous year, there were seven system failures that caused severe
problems to the families living there. We did not have access to the real machine, so we
simulated the behaviour of the system streaming a sample of the dataset at a constant rate.

https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
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Firstly, we set our goal to know when the water pump can fail with the aim of
avoiding serious living problems that water outages involve. Briefly, to develop a pre-
dictive model capable of processing data in real time and determine if the water pump
is operating normally or if, on the contrary, it has a malfunction that could lead to a
pump failure.

3.1. Feature Selection

The dataset contains 220,320 records, made up of 52 numeric variables correspond-
ing to different sensors collected every minute and the target variable which gathers the
machine status. These are enumerated in Appendix A. The latter is a categorical vari-
able which takes three possible values: NORMAL, BROKEN and RECOVERING. As a
consequence of the low number of failures—only seven instances reported in the whole
dataset—where a failure begins with a BROKEN status and is followed by a RECOVERY
status before returning to NORMAL, instances with either BROKEN or RECOVERING
statuses were both categorised as MALFUNCTION. Therefore, we approached the problem
as a binary classification so the predictor could generalise better and become more useful.
The remaining values received from sensors are supposed to be in a fixed range which
should be stable and does not vary over the time. Thus, we consider that the dataset is not
affected by concept drift (i.e., the value changes over time in unforeseen ways).

Next, for the feature selection step we took a simple approach, splitting the training
data into run-to-failure experiments and eliminating the features that remained constant
during the observation and showed no degradation trends overtime. We also removed
the faulty sensor (sensor_15) that only reported null values. After that, we worked with
27 variables which were scaled using the MixMaxScaler algorithm offered by the scikit-
learn library so all the variables fell within the same range. Then, as the percentage of data
rows containing null values was only a 0.06% of the total, the replacement of missing values
was addressed using a forward fill approach, i.e., applying the last observed value. Finally,
as the algorithms to be employed require sequences as input, the data were rearranged
using a sliding window approach with a window size equal to 60 time-steps and a step
equal to 1 (each temporal instant).

3.2. Modelling

Next, five deep learning models capable of detecting water pump failures were built.
We used the following algorithms: RNN, LSTM, GRU, 1-D CNN and a hybrid model based
on a transformer encoder and a GRU (see Section 2). This last model uses the encoder
part of a transformer architecture followed by a GRU neural network. This approach is
proposed because it leverages the feature extraction and generation capabilities of the
multi-head attention layers in the transformer’s encoder, while also harnessing the strength
of recurrent neural networks in capturing temporal dependencies within the data. The
sklearn 1.5.0 and Keras 3.5.0 software libraries were used for this purpose (Resources
can be found in https://scikit-learn.org (accessed on 2 September 2024), https://keras.io
(accessed on 2 September 2024) and https://www.tensorflow.org (accessed on 2 September
2024), respectively).

The parameter initialisation was performed by means of a grid search method, which
consists of defining a matrix containing a list of possible options for each parameter and
training the model with each different combination to find the best one.

The evaluation of the models was carried out using a 70/30 train/test split and
applying k-fold cross-validation on the training set. This technique outperforms others
such as leave-one-out or hold-out when the dataset has a number limited of instances
(malfunction state in this case study) as empirically demonstrated by [26]. K-folds works
as follows: the training set is split in k equal-sized subsets, then the model is trained using
one of them as validation set and the rest as training set, repeating this k times until each
subset has been used as a validation set.

https://scikit-learn.org
https://keras.io
https://www.tensorflow.org
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The preprocessing pipelines and the models were built following traditional offline
techniques, i.e., by means of a data sampling and training model from an historical dataset.

Table 1 shows the configuration and training parameters chosen after performing
the grid search. The network configuration parameters include: the size of the input and
output data, the number of layers and cells of each type, the activation function (AF) (also
known as transfer function) and the dropout rate (rate of ignored links between cells of
different layers) used in the intermediate dropout layers to reduce over-fitting. The training
parameters include the following: the number of data instances used in each training
iteration known as batch size, the number of times that the training dataset is shown to the
model or epochs, the model optimisation algorithm, the learning rate that controls how
much the weights of the model are updated after processing each batch of data and the loss
metric that the optimiser tries to minimise.

Table 1. Model configurations and training parameters obtained through grid search optimisation.

RNN LSTM GRU CNN Transformer

Input size (27, 60)
Output size (2)
No of RNN layers 2 2 2 - 1
No of RNN cells 20/20 20/12 16/16 - 10
AF of RNN cells tanh tanh tanh - tanh
No of CNN layers - - - 1 -
AF of CNN layers None None None - None
No of Filters - - - 16 -
No of MHA layers - - - - 1
AF of MHA layers None None None - None
No of Heads - - - - 5
No of FC layers 1 1 1 1 2
AF of FC layers Softmax Softmax Softmax Softmax RELU/Softmax
No of Cells 2 2 2 2 10/2
Dropout rate 0.2
Batch size 32
Epochs 1000
Optimiser Adam
Learning rate 0.001
Loss metrics Binary Crossentropy

3.3. Evaluation Metrics

As a consequence of the imbalanced nature of machine failure data, we cannot rely on
the accuracy of model as a quality measurement of the prediction. Thus, we used F1-score
(see Equation (2)) which is computed based on recall and precision (see Equation (1)).
These are computed using true positives (TP), i.e., positive cases correctly identified by the
model; false positives (FP), i.e., negative cases mistakenly predicted as positives; and false
negatives, i.e., positive cases mistakenly predicted as negatives. This takes into account
the ratio of positive to negative test cases, making it a more suitable option for imbalanced
datasets. In addition, we have included the training and inference time for each of the
models built which can be determinant in soft real-time scenarios like this where we are
trying to identify the failures as soon as possible.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(1)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(2)
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3.4. Results

Table 2 contains the F1-score achieved by each model after performing a three-fold
stratified cross-validation as well as the training and inference times. We chose three-fold
cross-validations due to the fact that the dataset contains highly imbalance data and this
ensures that the proportion of normal and broken values is preserved while keeping enough
broken cases in each subset.

Table 2. Performance metrics.

Model F1-Score Training Time (s) Inference Time (s)

RNN 0.566 191.5 0.036195
LSTM 0.947 439.7 0.036543
GRU 0.829 294.5 0.037423
CNN 0.915 79.87 0.035027
Transformer 0.964 602.6 0.037204

The results confirm that LSTM is the most accurate recurrent architecture, as stated
in [3], and that GRU is the most time-efficient, as explained in Section 2. However, our
hybrid transformer-GRU model managed to outperform the LSTM model by 5%, achieving
an F1-score of 0.964. The main downside of the transformer models is the low time-
efficiency. Although training times may seem low in absolute terms, this is due to the fact
that the dataset is small (48 MB after feature selection) for a big data environment where
datasets can grow up to several GBs or even TBs. However, if we analyse it from a relative
point of view, the training time of the transformer-based model is between 1.5 and 3 times
higher than training times of recurrent networks alternatives and as much as 6 times
higher than training times of the CNN. Regarding inference times, there are no significant
differences between the tested architectures.

4. Explaining Water Pump Failures

Deep learning models can offer a huge capacity for representing complex non-linear
relationships in the data, which results in a complete lack of interpretability. Unlike other
traditional machine learning models such as decision trees or association rules that can
be interpreted by humans, neural networks behave like a black box. That means that
there is no straightforward way to understand why the models generates a certain output
given a set of input data. In short, the purpose of XAI is to make AI models’ behaviour
more understandable to humans by providing clear explanations, enabling end-users to
comprehend and trust the outputs generated by machine learning (ML) and deep learning
(DL) algorithms.

Black box models such as RNN, CNN and so on must be explained after it has been
trained and thus require post-hoc explainability to try and generate explanations. Post-
hoc explainability techniques can be classified into model-agnostic and model-specific.
Methods that can be applied to any model, regardless of its architecture, are known
as model-agnostic. Examples of these include explanation vectors (EV) [27], Shapley
additive explanations (SHAP) [28] and local interpretable model-agnostic explanations
(LIME) [29]. Conversely, model-specific methods are tailored to particular model architec-
tures. For instance, class activation mapping (CAM) [30] is one technique that you can use
to obtain visual explanations of the predictions of convolutional neural networks (CNNs)
or integrated gradients [31] that aims to explain the relationship between the predictions
of a model in terms of its features. It has many use cases, including understanding the
significance of features, identifying data biases and debugging model performance.

These explanations generally are simpler models (e.g., rule-based learner, decision
trees, . . . ) used to rebuild the trained system or scores about the influence of each input
variable in the prediction. The latter are often divided into global and local interpretability
techniques, referring to whether the technique explains the model as a whole or only the
results on a subset of observations or data.



Information 2024, 15, 557 10 of 22

LIME and SHAP are considered to be the most effective in identifying important
features [32]. LIME explains individual predictions by creating a local surrogate model that
approximates the behaviour of the black-box model around the specific instance of interest.
This allows users to gain insights into the model’s decision-making process without needing
to understand the complexities of the original model.

LIME performs the following four steps: (i) It generates synthetic data around the
input data instance, i.e., it takes as a starting point a single prediction and the input data
that generated it, and produces new input data by perturbing this observation, obtaining
the corresponding predictions by the AI model. (ii) It trains a simple and explainable model
with the synthetic data (e.g., linear models, decision trees). (iii) It explains the predictions
of the simple model in terms of the original data, i.e., the importance of each variable in the
prediction is obtained, e.g., in terms of its regression coefficients and their corresponding
sign. (iv) LIME calculates the percentage of explainability which is equivalent to the
coefficient of determination of the linear model (e.g., R2 ). Therefore, this model gives a
good approximation of the predictions locally.

SHAP values explain the output of any machine learning model using a Shapley’s
game theory approach [33], i.e., it measures the contribution of each player (feature) to
the final prediction. In this method, the input variables are interpreted as players who
collaborate to receive the payout. The Shapley values correspond to the contribution of
each variable to the model’s prediction and the payout is the actual prediction made by the
model minus the average value of all predictions. The players ‘share’ this payout according
to their contribution, reflecting the importance of each variable. SHAP also allows for
global interpretations by obtaining the average of the contributions of each variable for
each prediction of the model.

According to [34], SHAP provides more theoretically robust and consistent explana-
tions but at the cost of higher computational complexity. On the contrary, LIME offers
greater flexibility and simplicity, making it a good choice for quick, local explanations,
though it may be less stable and theoretically grounded than SHAP.

Model-specific techniques, CAM and its variants, such as Grad-CAM [35], provide
visual explanations by highlighting the regions of the input (such as areas in an image) that
are significant for predictions in CNNs. This mechanism is particularly useful for tasks
involving visual data, helping to pinpoint what the model observes as relevant as well as
identifies whether a specific part of an input image “misled” the network, resulting in an
incorrect prediction.

In our case study, we found that CAM was not particularly suitable for our proposal
as the input data was time series (not matrices) and CNN was not the most accurate model.
Instead, we opted to use a model-agnostic technique. Unfortunately SHAP also had to
be discarded due to the current incompatibility with the Tensorflow 2 library (the most
up-to-date one). As we did not want to sacrifice the potential benefits of having the latest
version of Tensorflow, we decided to rely on explanations offered by LIME.

Model Explanations

XAI techniques highlight their importance in enhancing model transparency, trust,
and overall performance. These techniques not only aid in understanding and explaining
model decisions but also contribute to model improvement and efficiency. In this work, we
applied XAI for three main reasons: understanding false positives, establishing a feature
importance ranking that could be used for dimensionality reduction and identifying the
components causing the water pump outages. To do this, we selected the best performing
model overall, i.e., the transformer model, and retrained it using the whole training set this
time. Then we applied the XAI techniques to the final model.

Figure 4 represents the predictions of the hybrid transformer-GRU model vs. the real
data for the test set. As one can see, there is some discrepancy between model predictions
and reality in the form of false positives in the right part of the graph. Due to the black-box
nature of deep learning algorithms, we cannot understand which could be the cause. It is in
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this kind of situation where XAI becomes useful by helping machine learning practitioners
identify possible pitfalls in the design of the models. In this case, we preformed a LIME
analysis of a true positive case and compared its value with a false positive to identify
which of the variables could be perturbing model predictions.

Figure 4. Comparison between model predictions (blue) and real failure data in the test set (orange).

In Figure 5, we can see that in the true positive scenario (see Figure 5a) the model
was influenced by the readings from sensor_04, sensor_44, and sensor_11 whereas in
the false positive scenario (see Figure 5b) the model took into account the readings from
sensor_29, sensor_48, and sensor_42. This means that, despite classifying both as a failure,
in the case of the false positive the reasons motivating the model’s decision are different.
Moreover, it is noticeable how little difference exists between the most relevant features
and the least relevant features in the false positive case, where every variable is regarded as
almost equally important. These factors can help AI engineers and maintenance managers
distinguish between true positives and false positives.

(a) (b)

Figure 5. Feature importance comparison between true positives and false positives. (a) True positive
prediction. (b) False positive prediction.
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For the explanations aimed at reducing the dimensionality of the model, we applied
the LIME technique to 1000 examples of the class MALFUNCTION to analyse the mean
importance value for each of the features. In Figure 6, we can see the top 10 most relevant
features for the model to predict machine failures. These, by themselves, contributed more
than 60% to the decision of the model. That means that the model could probably work well
enough using fewer features while reducing training times. Table 3 shows how training
times have been reduced up to 5 times in the case of transformers. At the same time, most
models have achieved a similar F1-score or, in the case of RNN and GRU, even a better one.
This means that some of the features selected the first time were affecting negatively to the
decisions taken by the models.

Table 3. Performance metrics using the 10 most relevant features according to LIME explanations.

Model F1-Score Training Time (s)

RNN 0.985 107.2
LSTM 0.995 282
GRU 0.992 191.1
CNN 0.958 21.67
Transformer 0.988 161.5

Figure 6. Feature importance in model decision for machine failures.

Finally, XAI data allows us to identify which component might be causing the failure.
As an example, we are going to apply this to the three failures present in the test set. For
this purpose, we compute the mean feature importance for each failure case, obtaining the
results shown in Figure 7.

In the three cases, sensor_04 (which, according to the list of sensors provided in
the Appendix A, corresponds to motor speed) is the most relevant. This indicates that,
whatever the failure is, it has an impact on the performance of the motor driving the water
pump, making motor speed a reliable indicator of the health status of the water pump. If
we continue to analyse feature importance, we can notice that the model is paying attention
to the sensor_44 for the first failure (see Figure 7a), which measures the temperature of
Pump Drive End Radial Bearing Temp 1, and this can inform engineers about be lack of
lubrication or the need of replacement. For the second failure (see Figure 7b), the model
paid attention to sensor_48 which measures Inlet Pressure, and sensor_42 which measures
the temperature of the Non Drive End Radial Bearing, which might be the cause of the
failure. Finally, the third failure prediction (see Figure 7c) is triggered by sensor_28, which
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measures the stage 2 impeller speed, another part of the machine that seems to be moving
at an unusual speed, and might need to be adjusted or replaced.

(a)

(b)

(c)
Figure 7. Feature importance for the three test set real failures detected. (a) Failure #1. (b) Failure #2.
(c) Failure #3.
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5. Discussion

This study proposes a performance comparison of commonly used deep leaning archi-
tectures for the anomaly detection task in the area of predictive maintenance. We employed
a real dataset from Kaggle with monitoring data from a water pump. Additionally, we
apply explainability techniques to address the black box problem commonly associated
with deep neural networks. By doing that, we aim to evaluate the effectiveness of our
hybrid transformer approach using real-world data to not only detect failures but also help
with diagnostics.

The first step was to determine how to deal with the problem. In our case, as the dataset
was labelled, we approached the problem as a binary classification using multivariate time
series data. This led us to search the most commonly used algorithms and architectures
in the field of supervised anomaly detection to use them as a baseline. As a result of the
search process, we chose the algorithms described in Section 2.

In an industrial environment where data are being generated constantly and shorter
reaction times can dramatically reduce maintenance costs, we need to take into consid-
eration both performance in terms of reliability of the models and temporal behaviour.
That means that we need accurate and efficient architectures. To measure both dimensions,
we chose F1-score, training time and inference time. Although all the models apart from
simple RNN performed well, achieving F1-scores above 0.8, our approach had the highest
score outperforming the LSTM by 5%.

The transformer hybrid network outperforms the rest of the models because the
multi-head attention mechanism allows the model to pay attention to different semantic
representation subspaces at the same time. These semantic representations are then for-
warded to a GRU network to compute temporal relationships for each of the semantic
representations identified by the attention mechanism, taking advantage of the strengths
of the two network architectures. A similar result using hybrid models was also achieved
in [36] where the authors combined MCNN and transformer architectures for a failure
detection problem in a mud pump water sealing system. This outperformed six other
machine learning models.

Regarding the temporal dimension, inference times were almost identical and the
difference in training times was just a few minutes due to the small size of the dataset.
That means that, for this case study in particular, the improvement in the accuracy of
predictions comes at no cost, making the transformer-based model the most appropriate
model architecture for the task. However, it is worth to highlight that the training of
our proposal is relatively much slower (between 2 and 10 times slower) than the training
of its contenders, due to the higher amount of parameters (8.090 in the LSTM model vs.
34.358 in the transformer-based model). These results are in line with those presented by
Canziani et al. [37]. They discovered a clear correlation between the number of parameters,
the accuracy of the models, the memory usage and the throughput where higher accuracy
often means high number of parameters and operations that lead to increased memory
usage and processing times. In big data scenarios, where the volume and dimensions of
data are huge, this can become a problem, making training times extremely long.

Concerning explainability experiments, we applied LIME to extract local explanations
for the failures in a test set, as well as for some of the false positives predicted by the model.
By doing this, we managed to identify some critical sensors for failure detection tasks,
some sensors that have little to no impact on the model decisions and which components
are potentially causing the failures. As a result, we could improve our initial feature
selection. When retraining the model using just the most relevant features according to the
explainability analysis, the results obtained were better in both F1-score and training times.
This was especially true for the simple RNN model, which improved the F1-score from 0.58
to 0.80. This improvement after reducing the number of features indicates that an excessive
amount of irrelevant data might have led to over-fit the models during the training process.

However, due to technical limitations, we could only apply LIME and not SHAP,
meaning we are lacking global explanations of the predictive models that could have given
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information about how the model processes the data in general and not only in a few
particular cases. Additionally, although these techniques give us some explanations about
how the model behaves as a whole, the model is still a black box and the intermediate
layers are almost impossible to interpret.

Before concluding this section, we would like to emphasize that the methodology
used and results obtained on this dataset are a step forward in achieving better models for
anomaly detection. In order to make fair comparisons, we searched experiments carried
out on the water pump dataset and only found two journal articles [38,39] and three
Jupyter Notebooks published on Kaggle [40–42] where the authors share the predictors
built with different mining algorithms and the performance metrics achieved. In [38],
the authors only show the accuracy score, which as previously said is not an appropriate
performance metric for an imbalanced dataset like this; thus, we cannot compare their work
to ours. In [41,42], the data scientists obtained F1-scores ranging from 0.1 to 0.80 for a set
of different machine learning models (KNN, stochastic outlier selection, histogram-based
outlier detection, local outlier factor, k-means, and isolation forest), which are lower than
the scores we obtained. Moreover, these models were built using the whole dataset for
training which means that there were no unseen data left to perform a proper evaluation of
the models’ performance. Conversely, the works [39,40] achieved remarkable F1-scores of
1.0 and 0.936 by using an artificial neural network (multilayer perceptron) and a random
forest, respectively. However, both of them show some irregularities during the data
preparation and model evaluation stages, which may be the reason for their impressive
scores. In [40], the authors performed the data standardisation and feature selection on the
whole dataset, i.e., before creating a train/test split, which can cause data leakage. In [39],
Dankwa et al., performed 10-fold cross-validation when this dataset only contains seven
failures, which leads us to believe that some subsets were created without failure events.
This means that F1-score values might favour models that are biased toward predicting
normal operation. Furthermore, it is also worth to add that none of the aforementioned
works employed complex deep learning architectures nor provided model explanations to
complement the predictions of the models. Thus, both are valuable contributions that our
article makes in this arena.

Lastly, it is important to note that the development of this project was limited by a lack
of expert knowledge, which posed challenges in selecting the most relevant features and
accurately interpreting the results. As we had no communication with the business owner
nor the engineers responsible for the water pump, we took a simple data-driven approach
for data preprocessing and feature selection. As seen in Section 4, our initial selection of
features was not optimal and, as a consequence, the models were over-fitted. Moreover,
our explanations about the possible components causing the different failures could not
be confirmed.

6. Deployment of the Predictive Service

Once the predictor has been created and trained, it should be deployed in a produc-
tion environment. For that purpose we have designed a platform based on the RAI4.0
architecture [7], a data-centric distributed and scalable environment addressed to intensive
data applications compliant to RAMI4.0 [43]. An additional advantage of this architecture
is that it provides a model-based tool for the automated deployment of applications.

The RAI4.0 metamodel defines the elements needed to build a data-intensive appli-
cation, organising them in four groups as shown in Figure 8. PlatformResource gathers
the elements representing the whole digital platform, including the software services
that support the applications deployed and the hardware where it is deployed. The
WorkloadStreamData part contains the elements relative to the data streams defined in
the industrial application. The Workflow elements represent the applications deployed in
the platform that process and generate data. And, finally, the Metric group contains the
elements that can be used to define and configure the monitoring metrics for the different
platform resources, data streams or workflows.



Information 2024, 15, 557 16 of 22

Figure 8. RAI4.0 root model.

Figure 9 shows the set of services defined in RAI4.0 and how they are connected to the
processing resources hosting them.

Figure 9. RAI4.0 platform resources model.

The proposed platform and the data flow between the different services is depicted in
Figure 10. As can be observed, the platform comprises three main modules: the data stream
management component, machine learning management component and monitoring and
visualisation component. Next, we briefly describe each one.



Information 2024, 15, 557 17 of 22

Figure 10. Deployment platform for anomaly detection predictive models.

6.1. Data Stream Management Component

This component is responsible for both the communication and scheduling of the
applications or services. It consists of three elements: a data bus or communication service
implemented using Kafka, a scheduling server or stream processing engine powered by
Apache Flink, and a distribution service for maintaining configuration information, which
in this case is Zookeeper.

Apache Kafka 3.7.1 is a distributed messaging software that has emerged as one of
the most popular tools for implementing event-driven architecture. Kafka offers a highly
scalable, fault-tolerant, and low-latency solution for managing large volumes of event data.
It employs a publish-subscribe messaging model, where producers send events to topics,
and consumers subscribe to these topics to receive events. Additionally, Kafka supports
partitions, allowing for parallel processing of events across multiple nodes. In addition,
it operates in memory, enabling fast read and write speeds. Apache Flink is a distributed
stream processing engine that allows real-time data to be processed and transformed on the
fly, in batches or in time windows. It performs computations at in-memory speed and at
any scale. Finally, Apache Zookeeper is a configuration system that serves as an auxiliary
service for coordination and synchronising Kafka and Flink brokers.

6.2. Machine Learning Model Management Component

This component is responsible for managing the life cycle of the predictive models,
allowing the description, storage, versioning, deployment and update of the predictors. It
is implemented by means of a model registry called MlFlow and a MLOps tool focuses pri-
marily on the deployment (InferenceService) named Seldon Core in our platform. Seldom
Core is a new tool that deploys machine learning models locally using Docker containers
or in a Kubernetes cluster (Orchestration Cluster).

Once the predictor has been created as described in Section 3 and stored in the MlFlow,
it must be deployed for its use. This will be carried out via Seldon Core, which will convert
the ML model into a production REST/GRPC microservice.
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6.3. Monitoring and Visualisation Component

The monitoring and visualisation component aims to collect and organise relevant infor-
mation about the platform and the applications running on it. In our proposal, this component
is implemented using Prometheus (MonitoringService) and Grafana (VisualizationService).

Prometheus 2.53.0 is a monitoring software that gathers use of resource metrics from
the services deployed in the platform, as well as custom metrics defined as part of the work-
flows or applications running on it. Grafana is a visualisation tool that allows designing
interactive and dynamic user-friendly dashboards using data from different sources such
as databases, files or monitoring systems, e.g., Prometheus.

Thus, this component is an invaluable tool for IT operators, enabling them to maintain
high availability and performance of the platform.

6.4. Data Flow

Having the platform already deployed, IoT sensors are defined as publishers in the
Kafka data bus. Data are defined as topics which are preprocessed by means of a pipeline
deployed on a Flink cluster. The pipeline applies a sliding window transformation to the
data and requests the predictions to the microservice endpoint created by Seldon Core.
This microservice offers both gRPC and REST API containing the desired version of the
predictive model stored in the MlFlow registry. The response with the predicted value
(water pump status) is then sent back to the Flink workflow so it can be published on the
corresponding Kafka topic in real time and stored in a persistent database (e.g., Cassandra)
for carrying out later the performance assessment of the predictive model. That means,
Grafana dashboard would display both the pump status value and the predicted value, in
such way that if the failure rate is high, IT operators could determine that the model needs
to be retrained. At this respect, it must be remembered that the predictive model is built
and trained off-line.

7. Conclusions

Predictive maintenance (PdM) entails anticipating system failures by identifying early
indicators of malfunction, enabling maintenance tasks to be conducted in advance. In
the midst of Industry 4.0, predictive maintenance is an unavoidable task that not only
provides equipment reliability, but also helps to save energy, extend equipment life, reduce
downtime and increase the overall safety of the installations.

This article describes a case study of the application of AI techniques for the prediction
of failures in a sensorised environment. It not only details the configuration and perfor-
mance of the predictive models built but also compares and explains by means of XAI
techniques which features are the most decisive for the failure detection. This is important
not only for maintenance engineers to understand the model but also as a strategy for
selecting features to build future predictors.

Furthermore, a RAMI4.0-compliant technological environment is provided, which not
only allows the predictor to be deployed and requested continuously in real time, but also
to monitor its behaviour so that IT operators can determine when it needs to be retrained
(towards MLOps). This proposal will eventually enable the automation and integration of
predicted operational actions into maintenance plans.

Despite the progress made, there are still challenges and limitations in the use of AI
for PdM, as Ucar et al. [2] point out. On the one hand, there is a lack of real-world data
collected, with the appropriate quality and labelled for this purpose, and on the other hand,
there are many algorithms and alternatives for configuring the neural network, so in order
to democratise the use of these strategies, benchmarks and tools that help non-AI-experts
to build predictors are required. Furthermore, these must also be complemented by XAI
techniques, which are still scarce and are not integrated with the models.

As lines of work in the near future, our aim is to extend this benchmark to other
synthetic and real-world datasets and to take steps towards remaining useful life prediction,
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where work is still reduced. On the other hand, progress will be made in the development
of an application that allows the construction of pipelines for PdM by non-AI experts.
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Appendix A

SENSOR_00 Motor Casing Vibration
SENSOR_01 Motor Frequency A
SENSOR_02 Motor Frequency B
SENSOR_03 Motor Frequency C
SENSOR_04 Motor Speed
SENSOR_05 Motor Current
SENSOR_06 Motor Active Power
SENSOR_07 Motor Apparent Power
SENSOR_08 Motor Reactive Power
SENSOR_09 Motor Shaft Power
SENSOR_10 Motor Phase Current A
SENSOR_11 Motor Phase Current B
SENSOR_12 Motor Phase Current C
SENSOR_13 Motor Coupling Vibration
SENSOR_14 Motor Phase Voltage AB
SENSOR_16 Motor Phase Voltage BC
SENSOR_17 Motor Phase Voltage CA
SENSOR_18 Pump Casing Vibration
SENSOR_19 Pump Stage 1 Impeller Speed
SENSOR_20 Pump Stage 1 Impeller Speed

https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
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SENSOR_21 Pump Stage 1 Impeller Speed
SENSOR_22 Pump Stage 1 Impeller Speed
SENSOR_23 Pump Stage 1 Impeller Speed
SENSOR_24 Pump Stage 1 Impeller Speed
SENSOR_25 Pump Stage 2 Impeller Speed
SENSOR_26 Pump Stage 2 Impeller Speed
SENSOR_27 Pump Stage 2 Impeller Speed
SENSOR_28 Pump Stage 2 Impeller Speed
SENSOR_29 Pump Stage 2 Impeller Speed
SENSOR_30 Pump Stage 2 Impeller Speed
SENSOR_31 Pump Stage 2 Impeller Speed
SENSOR_32 Pump Stage 2 Impeller Speed
SENSOR_33 Pump Stage 2 Impeller Speed
SENSOR_34 Pump Inlet Flow
SENSOR_35 Pump Discharge Flow
SENSOR_36 Pump UNKNOWN
SENSOR_37 Pump Lube Oil Overhead Reservoir Level
SENSOR_38 Pump Lube Oil Return Temp
SENSOR_39 Pump Lube Oil Supply Temp
SENSOR_40 Pump Thrust Bearing Active Temp
SENSOR_41 Motor Non Drive End Radial Bearing Temp 1
SENSOR_42 Motor Non Drive End Radial Bearing Temp 2
SENSOR_43 Pump Thrust Bearing Inactive Temp
SENSOR_44 Pump Drive End Radial Bearing Temp 1
SENSOR_45 Pump non Drive End Radial Bearing Temp 1
SENSOR_46 Pump Non Drive End Radial Bearing Temp 2
SENSOR_47 Pump Drive End Radial Bearing Temp 2
SENSOR_48 Pump Inlet Pressure
SENSOR_49 Pump Temp Unknown
SENSOR_50 Pump Discharge Pressure 1
SENSOR_51 Pump Discharge Pressure 2
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