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A B S T R A C T

In this note, we provide two results concerning the global well-posedness and decay of solutions to an
asymptotic model describing the nonlinear wave propagation in the troposphere, namely, the morning glory
phenomenon. The proof of the first result combines a pointwise estimate together with some interpolation
inequalities to close the energy estimates in Sobolev spaces. The second proof relies on suitable Wiener-like
functional spaces.
1. Introduction and main result

Many fascinating events that constantly test our comprehension of
the dynamic and intricate atmospheric processes on Earth characterize
the field of atmospheric science. Of all these mysterious events, the
morning glory is the one weather phenomenon that has fascinated
scientists for decades. Long, horizontal cloud bands that often spread
across the sky to make a recognizable and arresting pattern are what
define the morning glory phenomenon. Recently in [1], the authors
derived from the general Navier–Stokes equation in rotating spher-
ical coordinates a more tractable asymptotic nonlinear system that
describes this wave propagation given by

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝜇𝛥𝑢 + 𝛼𝑢 + 𝛽𝑣 + 𝐹 , in 𝛺, 𝑡 > 0, (1a)

𝑢𝑥 + 𝑣𝑦 = 0, in 𝛺, 𝑡 > 0. (1b)

The components of the vector velocity field are denoted by 𝑢, 𝑣 and
𝜇 ∈ (0,∞) is the viscosity parameter. Moreover, 𝛼, 𝛽 are fixed real
constants that depend on the wave front distortion and a fixed reference
parameter measuring the latitude. A more precise description of both
constants will be given later. The force 𝐹 represents a thermodynamic
forcing term, which comprises the heat sources driving the motion.
Eq. (1)b comprises the incompressibility condition of the flow. In (1)
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the spatial domain 𝛺 is the two-dimensional channel domain

𝛺 = {(𝑥, 𝑦) s.t. 𝑥 ∈ T, 0 < 𝑦 < 1},

and the time satisfies 𝑡 ∈ [0, 𝑇 ] for certain 0 < 𝑇 ≤ ∞. Moreover,
Eqs. (1) are subject to the following boundary conditions

𝑢 = 0, on 𝜕𝛺, 𝑡 > 0, (2a)

𝑣 = 0, on {𝑦 = 0}, 𝑡 > 0. (2b)

The corresponding initial-value problem consists of the system (1), (2)
along with the initial condition

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦) (3)

which is assumed to be smooth enough for the purposes of the work (cf.
the statement of Theorem 1 for the precise assumptions on the initial
data). As already mentioned, system (1) was originally derived in [1,
equations (6.18)-(6.19)]. After a quick inspection one can readily check
that the constants 𝛼 and 𝛽 are given in [1, equations (6.18)-(6.19)] as

𝛼 = 𝜎𝑆, 𝛽 = 𝜎
𝐶 cos(𝛾)

𝑑0
,

where 𝑆 = sin(𝜃0+𝛷 sin(𝛾)) and 𝐶 = cos
(

𝜃0 +𝛷 sin(𝛾)
)

, see [1, equation
(4.19)]. Here 𝛷 describes the distortion along the wavefront, 𝜃0 is a
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fixed parameter measuring the latitude (in spherical coordinates) and 𝛾

s a fixed angle of rotation. Moreover, we have that 𝜎 =
2
(

sin2(𝛾)+𝐶 cos2(𝛾)
)

(1−𝐶) sin(𝛾) cos(𝛾)
nd 𝑑0 denotes a positive density function.

In [1], Constantin & Johnson provided a number of exact solutions:
reeze-like flows, bore-like flows as well as oscillatory-like solutions,
f. [1, §6]. The same named authors investigated the existence of
ravelling-wave solutions, cf. [2]. Their analysis relies on studying a
onlinear second-order ordinary differential equation by means of a
lobal phase-space analysis using Lyapunov functions. Recently, Matioc

Roberti in [3], using an abstract quasilinear parabolic evolution
ramework, showed the global existence of weak solutions to (1) as
ell as the local existence of strong solutions. The main contribution
nd novelty of this article is to show the global existence and decay
f classical solutions to (1) in Sobolev spaces under a smallness 𝐿∞

assumption. Moreover, we also show a similar result in Wiener-like
functional spaces.

In order to present the main result of this work, it is convenient
to rewrite (1) by eliminating the variable 𝑣. Following the approach
in [3], we find that integrating 𝑣 in (1)b from 0 to 𝑦, we have that

(𝑥, 𝑦, 𝑡) = ∫

𝑦

0
𝑣𝑦(𝑥, 𝜉, 𝑡) 𝑑𝜉 = −∫

𝑦

0
𝑢𝑥(𝑥, 𝜉, 𝑡) 𝑑𝜉 ∶= −𝑇 𝑢(𝑥, 𝑦, 𝑡),

where 𝑇𝑓 ∶ 𝛺 × R+ → R is given by

𝑇𝑓 (𝑥, 𝑦, 𝑡) = ∫

𝑦

0
𝑓𝑥(𝑥, 𝜉, 𝑡) 𝑑𝜉.

This idea of using the fundamental theorem of calculus to express 𝑣
in terms of 𝑢 is reminiscing about the viscous primitive equations of
large scale ocean and atmosphere dynamics, cf. [4]. Therefore, using
this observation system (1) can be rewritten as

𝑢𝑡 + 𝑢𝑢𝑥 − 𝑇 𝑢𝑢𝑦 = 𝜇𝛥𝑢 + 𝛼𝑢 − 𝛽𝑇 𝑢 + 𝐹 , in 𝛺, 𝑡 > 0, (4a)

𝑇 𝑢 = ∫

𝑦

0
𝑢𝑥(𝑥, 𝜉) 𝑑𝜉, (4b)

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺 (4c)

upplemented with

= 0, on 𝜕𝛺, 𝑡 > 0. (5)

e need to impose some further conditions in order to show the main
esult of this article. In particular, we will take 𝛼 ≤ 0, 𝛽 = 0 and no
xternal forcing, i.e., 𝐹 ≡ 0. Hence, (4) becomes

𝑡 + 𝑢𝑢𝑥 − 𝑇 𝑢𝑢𝑦 = 𝜇𝛥𝑢 + 𝛼𝑢, in 𝛺, 𝑡 > 0, (6a)

𝑇 𝑢 = ∫

𝑦

0
𝑢𝑥(𝑥, 𝜉) 𝑑𝜉, (6b)

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺 (6c)

upplemented with

= 0, on 𝜕𝛺, 𝑡 > 0. (7)

s noticed in [1, §6 (b)], in the particular case of the geographical
oordinates of the Gulf of Carpentaria, we have that 𝐶 ∼ 0.97, 𝑆 ∼ −0.24
nd 𝜎 ∼ 133 (for 𝛾 = 5𝜋

4 ), so that 𝛼 = 𝜎𝑆 ≤ 0. Therefore, taking 𝛼 ≤ 0
is a physically justified assumption. Generically, since 𝛾 can be chosen
freely, we can also take 𝛾 such that 𝛽 ∼ 0, for instance, 𝛾 ∼ 𝜋

2 . Moreover,
we are assuming that the external thermodynamic force is negligible,
this is, that the are not heat sources driving the motion. The three stated
hypothesis on 𝛼, 𝛽 and 𝐹 are crucial in order to show the decay of the
solution.

The main result of this work is to provide the decay of the 𝐿∞ norm
or arbitrary initial data together with a global existence of classical
olutions to (6a)–(6b) under a smallness 𝐿∞ assumption on the initial
ata. More precisely, the result reads as follows:
2 
Theorem 1. Let 𝑢0 ∈ 𝐻1
0 (𝛺) ∩ 𝐻4(𝛺), be a zero mean function. Let

≤ 0 and 𝜇 ∈ (0,∞). Then, the Cauchy problem (6a)–(6c) possesses a
unique classical solution

𝑢 ∈ 𝐶
(

[0, 𝑇 );𝐻4(𝛺)
)

for 𝑇 = 𝑇 (𝑢0) > 0 satisfying

‖𝑢(𝑡)‖𝐿∞(𝛺) ≤ ‖𝑢0‖𝐿∞(𝛺), for 0 ≤ 𝑡 ≤ 𝑇 .

Furthermore, if ‖
‖

𝑢0‖‖𝐿∞ is sufficiently small, the unique classical solution to
(6a)–(6b) satisfies

𝑢 ∈ 𝐶([0,∞);𝐻1
𝐷(𝛺)) ∩ 𝐶([0,∞);𝐻4(𝛺)) ∩ 𝐿2([0,∞);𝐻5(𝛺)).

Remark 1. Before stating the next result, let us make the following
important observations regarding Theorem 1 compared to previous
well-posedness results obtained results in the literature.

• In [3], Matioc & Roberti showed two well-posedness results for
system (1). First, they establish the existence and uniqueness of
classical solutions to (1) for sufficiently regular initial data in
𝐻𝑠

𝐷(𝛺) with 1 < 𝑠 < 2 and external force 𝐹 ∈ 𝐶1− (𝐶[0,∞);𝐻𝑟(𝛺))
for some small 𝑟 > 0. In [3], the Sobolev spaces 𝐻𝑠

𝐷 are given by

𝐻𝑠
𝐷(𝛺) = {𝑢 ∈ 𝐻𝑠(𝛺) ∶ 𝑢 = 0 on 𝜕𝛺} .

To that purpose, they invoke an abstract quasilinear parabolic
evolution framework. Moreover, they also show the existence
of global weak solutions for initial data in 𝐿2(𝛺) and 𝐹 ∈
𝐿2 ((0, 𝑇 );𝐿2(𝛺)

)

. The proof uses a Galerkin scheme together with
proper a priori estimates to pass to the limit.

• Our main contributions are three-fold: First, since the local so-
lutions in [3] enjoy just the regularity 𝑢 ∈ 𝐶

(

[0, 𝑇 );𝐻𝑠
𝐷(𝛺)

)

,
1 < 𝑠 < 2, we follow a classical approach based on estimating
the time-derivative of the equation to provide the higher order
regularity 𝑢 ∈ 𝐶

(

[0, 𝑇 );𝐻4(𝛺)
)

. Second, we show the 𝐿∞ decay
of the classical solution (under the assumptions 𝛼 ≤ 0, 𝛽 = 0 and
𝐹 ≡ 0). Such decay is not available in the literature before and
to the best of the authors’ knowledge it is new. To conclude, we
prove that for small initial 𝐿∞ data, the local classical solution
can be extended globally in time, i.e. 𝑇 = ∞.

• Just after the completion of this article, the preprint [5] ap-
peared. Compared with the results in [3], the authors shows
the global existence of weak solutions for external forces 𝐹 ∈
𝐿2 ((0, 𝑇 );𝐻−1(𝛺)

)

. On the other hand, the author in [5] shows
that for initial data in 𝐻1(𝛺) and 𝐹 ∈ 𝐿2 ((0, 𝑇 );𝐿2(𝛺)

)

there exists
a global strong solution 𝑢 ∈ 𝐿2 ((0, 𝑇 );𝐻2(𝛺)

)

∩ 𝐻1 ((0, 𝑇 );𝐿2(𝛺)
)

.
Compared to our global existence result showed in Theorem 1, the
author in [5] does not need the 𝐿∞ smallness on the initial data
to absorb the non-linear contributions. Actually, such nonlinear
terms are handled claiming an odd extension method works. To
the best of our knowledge it is not a priori clear why the imposed
odd-parity is preserved by system (1).

In order to present the second result showed in this manuscript,
let us introduce the so called Wiener-like spaces. Recalling that 𝛺 =
{(𝑥, 𝑦) s.t. 𝑥 ∈ T, 0 < 𝑦 < 1}, let us consider the Fourier series represen-
tation

𝑢(𝑥, 𝑦) =
∑

𝑛∈Z

∑

𝑚≥1
�̂�(𝑛, 𝑚)𝑒𝑖𝑛𝑥 sin(𝑚𝜋𝑦).

Using this, we can consider the following Wiener-like spaces ̃𝑠 for
𝑠 ≥ 0 given by

̃𝑠(𝛺) =

{

𝑢 =
∑

𝑛∈Z

∑

𝑚≥1
�̂�(𝑛, 𝑚)𝑒𝑖𝑛𝑥 sin(𝑚𝜋𝑦) ∶ ‖𝑢‖̃𝑠

=
∑

𝑛∈Z

∑

𝑚≥1
(|𝑛|𝑠 + |𝑚|𝑠)|�̂�(𝑛, 𝑚)| < ∞

}

.
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These spaces will allow us to achieve maximal parabolic regularity. The
properties of Wiener-like spaces have been investigated in [6] and the
references therein. In particular, we observe that

̃𝑠(𝛺) ⊂ 𝐶𝑠(𝛺),

nd that they form a Banach scale of Banach algebras. Let 𝜕 be a first
rder differential operator, then we have that

𝜕𝓁𝑢‖‖
‖̃0 ≤ 𝐶 ‖𝑢‖̃𝓁 , 𝓁 ≥ 0.

n particular, we have that

‖

‖

𝜕𝑥𝑢‖‖̃0 ≤ ‖𝑢‖̃1 ,
‖

‖

‖

𝜕𝑦𝑢
‖

‖

‖̃0 ≤ 𝜋 ‖𝑢‖̃1 , ‖𝛥𝑢‖̃0 ≥ ‖𝑢‖̃2 . (8)

Moreover, for 0 ≤ 𝑠 < 𝑟, 𝜃 = 𝑠
𝑟 the following interpolation inequalities

𝑢‖̃𝑠 ≤ 𝐶𝜃 ‖𝑢‖
1−𝜃
̃0

‖𝑢‖𝜃̃𝑟

old. In particular, we have that

‖𝑢‖̃1 ≤ ‖𝑢‖
1
2

̃0
‖𝑢‖

1
2

̃2
. (9)

Let us state the second result shown in this work.

Theorem 2. Let 𝑢0 ∈ 𝐴0(𝛺) be a zero mean function. Let 𝛼, 𝛽 ∈ R and
∈ (0,∞) such that the relation

+
𝛽2

2𝜇
≤ 0,

olds. Then, if 𝑢0 ∈ 𝐴0(𝛺) is such that

(1 + 𝜋) ‖
‖

𝑢0‖‖𝐴0 <
𝜇
2
, (10)

there exists a unique global in time solution to (4) satisfying 𝑢 ∈ 𝐶([0,∞);
𝐴0(𝛺)) ∩ 𝐿1([0,∞);𝐴2(𝛺)).

Remark 2. In order to show Theorem 2 we need milder restrictions
on the parameter 𝛼, 𝛽 and 𝜇. In particular, we can take 𝛽 = 0 and 𝛼 ≤ 0
as in Theorem 1, however this is not the only choice. Moreover, this is
the first result in Wiener-type spaces for system (4).

Notation

For 𝑚 ∈ N, the natural inhomogeneous and homogeneous Sobolev
norms are defined by

‖𝑓‖2𝐻𝑚(𝛺) ∶= ‖𝑓‖2
𝐿2(𝛺)

+ ‖𝜕𝑚𝑓‖2𝐿2(𝛺) , ‖𝑓‖2�̇�𝑚(𝛺) ∶= ‖𝜕𝑚𝑓‖2𝐿2(𝛺) ,

espectively. We will use 𝑧 = (𝑥, 𝑦) to denote an element in 𝛺. More-
ver, throughout the paper 𝐶 = 𝐶(⋅) will denote a positive constant
hat may depend on fixed parameters (but independent of time and the
rojection parameter 𝑁) and can change from line to line.

. Proof of Theorem 1

We divide the proof of Theorem 1 into several steps.

tep 1: Local in time solution d’aprés matioc & roberti [3]. As stated in
emark 1, invoking the result by Matioc & Roberti [3] there exists a
nique local solution 𝑢 to (6a)–(6c) such that 𝑢 ∈ 𝐶

(

[0, 𝑇 );𝐻𝑠
𝐷(𝛺)

)

,
< 𝑠 < 2. Moreover, from such regularity we can also extract the

arabolic contribution implying 𝑢 ∈ 𝐿2 ((0, 𝑇 );𝐻1+𝑠(𝛺)
)

. However, in
rder to apply a pointwise 𝐿∞ type estimate to (6a)–(6c), we need to
how higher regularity for the solution 𝑢. More precisely, we will show

4
hat 𝑢 ∈ 𝐶([0, 𝑇 );𝐻 (𝛺)).

3 
tep 2: The regularized approximate problem and higher-order a priori
stimates. To show the higher order estimate, we derive appropriate
nergy estimates combined with a suitable approximation procedure,
iven by

𝑡 + 𝑃𝑁 (𝑃𝑁𝑢𝑃𝑁𝑢𝑥) − 𝑃𝑁 (𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦) = 𝜇𝛥𝑃𝑁𝑢 + 𝛼𝑃𝑁𝑢, (11)

here

𝑁𝑢 =
𝑁
∑

𝑛=−𝑁

𝑁
∑

𝑚≥1
�̂�(𝑛, 𝑚)𝑒𝑖𝑛𝑥 sin(𝑚𝜋𝑦), 𝑁 ∈ N ∪ {0}.

bserve that we can use Picard’s theorem in these finite dimensional
paces to prove the local existence of an analytical approximate so-
ution to (11), so, in particular, 𝑢 ∈ 𝐶∞ ([0, 𝑇 ) ×𝛺). Hence, every
omputation is justified and we just focus on deriving the desired a
riori estimates.

Let us start, by showing the evolution of the 𝐿2 estimate for 𝑢. First,
sing the fact that 𝑃𝑁 commutes with derivatives and recalling the
efinition of 𝑇 𝑢 in (6b) we find that

∫𝛺
𝑃𝑁 (𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦)𝑢 𝑑𝑧 = −1

2 ∫T ∫

1

0
𝑃𝑁𝑢𝑥(𝑃𝑁𝑢)2 𝑑𝑦 𝑑𝑥

= −1
6 ∫𝛺

𝜕𝑥(𝑃𝑁𝑢)3 𝑑𝑧 = 0. (12)

Hence, taking the inner product of (11) with 𝑢, integrating by parts,
and making use of the cancellation estimate (12) together with the sign
assumption on 𝛼 we obtain that

esssup
𝑡≤𝑇

‖𝑢‖2
𝐿2 ≤ 𝐶 ‖

‖

𝑢0‖‖
2
𝐿2 . (13)

Furthermore, we also achieve the parabolic gain

∫

𝑇

0
‖

‖

∇𝑃𝑁𝑢(𝜏)‖
‖

2
𝐿2 𝑑𝜏 ≤ 𝐶 ‖

‖

𝑢0‖‖
2
𝐿2 . (14)

To obtain higher regularity, we follow a classical approach based on
taking time-derivatives of the problem. Indeed, deriving in time (11) we
find that

𝑢𝑡𝑡 + 𝑃𝑁 (𝑃𝑁𝑢𝑡𝑃𝑁𝑢𝑥 + 𝑃𝑁𝑢𝑃𝑁𝑢𝑥𝑡) − 𝑃𝑁 (𝑃𝑁𝑇 𝑢𝑡𝑃𝑁𝑢𝑦 + 𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦𝑡)

= 𝜇𝛥𝑃𝑁𝑢𝑡 + 𝛼𝑃𝑁𝑢𝑡, (15)

with the same boundary conditions in 𝜕𝛺. Repeating the same argu-
ments as for the 𝐿2 estimate (13), i.e., testing (15) against 𝑢𝑡 and
integrating by parts we find that

1
2
𝑑
𝑑𝑡

‖𝑢𝑡‖
2
𝐿2 + 𝜇‖∇𝑃𝑁𝑢𝑡‖

2
𝐿2 = −1

2 ∫𝛺
𝑃𝑁𝑢𝑥(𝑃𝑁𝑢𝑡)2 𝑑𝑧

+ ∫𝛺

(

𝑃𝑁𝑇 𝑢𝑡𝑃𝑁𝑢𝑦𝑃𝑁𝑢𝑡 −
1
2
(

𝑃𝑁𝑇 𝑢
)

𝑦 (𝑃𝑁𝑢𝑡)2
)

𝑑𝑧 + 𝛼 ∫𝛺
|𝑃𝑁𝑢𝑡|

2 𝑑𝑧.

(16)

Therefore, using the sign assumption on 𝛼, the cancellation property
(12) and invoking Hölder’s inequality we obtain that
𝑑
𝑑𝑡

‖𝑢𝑡‖
2
𝐿2 + 𝜇‖∇𝑃𝑁𝑢𝑡‖

2
𝐿2 ≤ 𝐶‖𝑃𝑁𝑢𝑡‖

2
𝐿2‖𝑃𝑁∇𝑢‖𝐿∞

+ ∫𝛺
|𝑃𝑁𝑇 𝑢𝑡𝑃𝑁𝑢𝑦𝑃𝑁𝑢𝑡| 𝑑𝑧. (17)

oreover, using the definition of 𝑇 𝑢 given in (6b) combined with
ölder’s and Young’s inequality we readily check that

∫𝛺
|𝑃𝑁𝑇 𝑢𝑡𝑃𝑁𝑢𝑦𝑃𝑁𝑢𝑡| 𝑑𝑧 ≤ 𝐶 ‖

‖

𝑃𝑁∇𝑢𝑡‖‖𝐿2 ‖
‖

𝑃𝑁∇𝑢‖
‖𝐿∞ ‖𝑃𝑁𝑢𝑡‖𝐿2

≤ 𝜇
2
‖

‖

𝑃𝑁∇𝑢𝑡‖‖
2
𝐿2 + 𝐶‖𝑃𝑁∇𝑢‖2𝐿∞‖𝑃𝑁𝑢𝑡‖

2
𝐿2 .

(18)

ence, combining both (17)–(18) we conclude that
𝑑
𝑑𝑡

‖𝑢𝑡‖
2
𝐿2 ≤ 𝐶‖𝑃𝑁𝑢𝑡‖

2
𝐿2

(

‖𝑃𝑁∇𝑢‖𝐿∞ + ‖𝑃𝑁∇𝑢‖2𝐿∞
)

2 2
≤ 𝐶‖𝑃𝑁𝑢𝑡‖𝐿2 (‖𝑃𝑁𝑢‖𝐻1+𝑠 + ‖𝑃𝑁𝑢‖
𝐻1+𝑠 ),
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where in the last inequality we have used Sobolev embedding 𝐻𝑠(𝛺) ↪
∞(𝛺) for 1 < 𝑠 < 2. Using Grönwall’s inequality combined with the

act that

∈ 𝐶
(

[0, 𝑇 );𝐻𝑠
𝐷(𝛺)

)

∩ 𝐿2 ((0, 𝑇 );𝐻1+𝑠(𝛺)
)

,

y Matioc & Roberti [3], see Step 1, we infer

𝑢𝑡‖
2
𝐿2 ≤ 𝐶‖𝑢𝑡|𝑡=0‖

2
𝐿2exp

(

∫

𝑡

0
(‖𝑃𝑁𝑢(𝜏)‖𝐻1+𝑠 + ‖𝑃𝑁𝑢(𝜏)‖2

𝐻1+𝑠 ) 𝑑𝜏
)

≤ 𝐶
(

‖𝑢𝑡|𝑡=0‖𝐿2 , ‖𝑢0‖𝐻𝑠
)

exp
(
√

𝑡
)

. (19)

Moreover, evaluating Eq. (11) at 𝑡 = 0 we have that

𝑢𝑡|𝑡=0‖‖𝐿2 ≤ 𝐶
(

‖

‖

𝑃𝑁 (𝑃𝑁𝑢0𝑃𝑁𝑢𝑥|𝑡=0)‖‖𝐿2 + ‖

‖

‖

𝑃𝑁 (𝑃𝑁𝑇 𝑢0𝑃𝑁𝑢𝑦|𝑡=0)
‖

‖

‖𝐿2

+ ‖

‖

𝛥𝑃𝑁𝑢0‖‖𝐿2 + ‖

‖

𝑃𝑁𝑢0‖‖𝐿2
)

≤ 𝐶
(

‖

‖

𝑃𝑁𝑢0‖‖
2
𝐻1 + ‖

‖

𝑃𝑁𝑇 𝑢0‖‖𝐿4
‖

‖

‖

𝑃𝑁𝑢𝑦|𝑡=0
‖

‖

‖𝐿4 + ‖

‖

𝑃𝑁𝑢0‖‖𝐻2

)

≤ 𝐶
(

‖

‖

𝑢0‖‖𝐻2
)

, (20)

here in the last inequality we have invoked the classical Gagliardo–
irenberg inequality (where we have used the boundary conditions to
liminate the extra term 𝐶 ‖𝑓‖𝐿2 )

‖𝑓‖𝐿4 ≤ 𝐶 ‖𝑓‖1∕2
𝐿2 ‖∇𝑓‖1∕2

𝐿2 , (21)

or 𝑓 = 𝑃𝑁𝑇 𝑢0 and 𝑓 = 𝑃𝑁𝑢𝑦|𝑡=0. Thus plugging (20) in (19) we can
ind 𝑇 > 0 and a uniform bound in 𝑁 such that

esssup
𝑡≤𝑇

‖𝑢𝑡‖𝐿2 ≤ 𝐶(‖𝑢0‖𝐻2 )exp
(
√

𝑇
)

. (22)

In addition, using Eq. (17) we find the parabolic regularity estimate

∫

𝑇

0
‖∇𝑃𝑁𝑢𝑡(𝜏)‖2𝐿2 𝑑𝜏 ≤ 𝐶(‖𝑢0‖𝐻2 )exp

(
√

𝑇
)

. (23)

Furthermore, using Eq. (11) with the previous parabolic estimate (23)
we obtain

∫

𝑇

0
‖∇𝛥𝑃𝑁𝑢(𝜏)‖2

𝐿2 𝑑𝜏 ≤ 𝐶(‖𝑢0‖𝐻2 )exp
(
√

𝑇
)

. (24)

Next, let us show how estimate (22) yields control for the 𝐻2 norm
f the solution using the structure of Eq. (11). Indeed, we have that
‖

‖

𝛥𝑃𝑁𝑢‖
‖𝐿2 = ‖

‖

‖

𝑢𝑡 + 𝑃𝑁 (𝑃𝑁𝑢𝑃𝑁𝑢𝑥) − 𝑃𝑁 (𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦) − 𝛼𝑃𝑁𝑢‖‖
‖𝐿2

≤ ‖

‖

𝑢𝑡‖‖𝐿2 + ‖

‖

𝑃𝑁𝑢𝑃𝑁𝑢𝑥‖‖𝐿2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝖨1

+ ‖

‖

‖

𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦
‖

‖

‖𝐿2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝖨2

+|𝛼| ‖
‖

𝑃𝑁𝑢‖
‖𝐿2 .

(25)

sing Hölder’s and Young’s inequality together with Sobolev interpo-
ation we find that

1 ≤ ‖

‖

𝑃𝑁𝑢‖
‖𝐿∞

(

‖

‖

𝑃𝑁𝑢𝑥𝑥‖‖
1∕2
𝐿2

‖

‖

𝑃𝑁𝑢‖
‖

1∕2
𝐿2

)

≤ 𝐶 ‖𝑢‖𝐿∞ ‖

‖

𝛥𝑃𝑁𝑢‖
‖𝐿2 . (26)

ere, we use the fact that ‖

‖

𝑃𝑁𝑢‖
‖𝐿∞ ≤ 𝐶 ‖𝑢‖𝐿∞ for smooth functions

. On the other hand, using Jensen inequality and the Gagliardo–
irenberg inequalities

‖

‖

‖

𝑓𝑦
‖

‖

‖𝐿4 ≤ 𝐶 ‖𝑓‖1∕2𝐿∞
‖

‖

‖

𝑓𝑦𝑦
‖

‖

‖

1∕2

𝐿2 , ‖

‖

𝑔𝑥‖‖𝐿4 ≤ 𝐶 ‖𝑔‖1∕2𝐿∞
‖

‖

𝑔𝑥𝑥‖‖
1∕2
𝐿2 , (27)

or 𝑓 = 𝑃𝑁𝑢 and 𝑔 = 𝑃𝑁𝑢 we have that

2 ≤ ‖

‖

𝑃𝑁𝑇 𝑢‖
‖𝐿4

‖

‖

‖

𝑃𝑁𝑢𝑦
‖

‖

‖𝐿4 ≤ 𝐶 ‖

‖

𝑃𝑁𝑢𝑥‖‖𝐿4
‖

‖

‖

𝑃𝑁𝑢𝑦
‖

‖

‖𝐿4

≤ 𝐶 ‖𝑢‖𝐿∞ ‖

‖

𝛥𝑃𝑁𝑢‖
‖𝐿2 . (28)

ombining (26) and (28) and recalling estimates (13) and (22), we
how that
‖

‖

𝛥𝑃𝑁𝑢‖
‖𝐿2 ≤ 𝐶

(

‖

‖

𝑢0‖‖𝐻2
)

exp
(
√

𝑡
)

+ 𝐶 ‖𝑢‖𝐿∞ ‖

‖

𝛥𝑃𝑁𝑢‖
‖𝐿2 . (29)

herefore, in order to absorb the second term with the left hand side
f (29), we use the fact by continuity for 0 < �̃� sufficiently small

‖ ‖ ̃

‖𝑢‖𝐿∞ ≤ 2

‖

𝑢0‖𝐿∞ , for 0 ≤ 𝑡 ≤ 𝑇 . (30)

4 
hus taking ‖

‖

𝑢0‖‖𝐿∞ small enough, for instance ‖

‖

𝑢0‖‖𝐿∞ = 𝜇
4𝐶 we

conclude that

esssup
𝑡≤�̃�

‖

‖

𝛥𝑃𝑁𝑢‖
‖𝐿2 ≤ 𝐶

(

‖

‖

𝑢0‖‖𝐻2
)

exp
(√

�̃�
)

. (31)

Since by (13) we also have uniform control of the 𝐿2 norm of 𝑢, we
have shown that the 𝐻2 norm of 𝑢 is bounded by

esssup
𝑡≤�̃�

‖𝑢‖𝐻2 ≤ 𝐶
(

‖

‖

𝑢0‖‖𝐻2
)

exp
(√

�̃�
)

. (32)

Taking the inner product of (15) with −𝛥𝑢𝑡 and integrating by parts
we obtain
1
2
𝑑
𝑑𝑡

‖∇𝑢𝑡‖2𝐿2 + 𝜇‖𝛥𝑃𝑁𝑢𝑡‖
2
𝐿2 = ∫𝛺

(

𝑃𝑁𝑢𝑡𝑃𝑁𝑢𝑥 + 𝑃𝑁𝑢𝑃𝑁𝑢𝑥𝑡

)

𝑃𝑁𝛥𝑢𝑡 𝑑𝑧

− ∫𝛺

(

𝑃𝑁𝑇 𝑢𝑡𝑃𝑁𝑢𝑦 + 𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦𝑡

)

𝑃𝑁𝛥𝑢𝑡 𝑑𝑧 + 𝛼 ∫𝛺
|𝑃𝑁𝑢𝑡|

2 𝑑𝑧.

sing the sign hypothesis on 𝛼 together with Hölder’s and Young’s
nequality (mimicking the computations in (17)–(18)) we find that
𝑑
𝑑𝑡

‖∇𝑢𝑡‖2𝐿2 +
𝜇
2
‖𝛥𝑃𝑁𝑢𝑡‖

2
𝐿2

≤ 𝐶‖𝑃𝑁∇𝑢𝑡‖2𝐿2

(

‖𝑃𝑁𝑢‖2𝐿∞ + ‖𝑃𝑁∇𝑢‖2𝐿∞
)

+ ‖𝑃𝑁∇𝑢‖2𝐿∞‖𝑃𝑁𝑢𝑡‖
2
𝐿2 . (33)

nvoking Grönwall’s inequality and the previous parabolic gain of
egularity bounds (19) and (23), we conclude

sssup
𝑡≤𝑇

‖∇𝑢𝑡‖𝐿2 ≤ 𝐶(‖
‖

∇𝑢𝑡|𝑡=0‖‖𝐿2 , ‖
‖

𝑢0‖‖𝐻2 )exp
(
√

𝑇
)

.

However, as before taking the spatial gradient in (11) and evaluating
at 𝑡 = 0, we find that ‖

‖

∇𝑢𝑡|𝑡=0‖‖𝐿2 ≤ 𝐶(‖𝑢0‖𝐻3 ) and hence

esssup
𝑡≤𝑇

‖∇𝑢𝑡‖𝐿2 ≤ 𝐶(‖
‖

𝑢0‖‖𝐻3 )exp
(
√

𝑇
)

. (34)

oreover, repeating the parabolic regularity gain using Eqs. (11) and
33)

𝑇

0
‖𝛥𝑃𝑁𝑢𝑡(𝜏)‖2𝐿2𝑑𝜏 + ∫

𝑇

0
‖𝛥2𝑃𝑁𝑢(𝜏)‖2

𝐿2𝑑𝜏 ≤ 𝐶(‖𝑢0‖𝐻3 )exp
(
√

𝑇
)

.

In the same way that we derived the bound for the 𝐻2 norm of 𝑢 (32)
using the 𝐿2 control for 𝑢𝑡 in (22), we can obtain 𝐻3 norm control of
𝑢 using the 𝐿2 bound for ∇𝑢𝑡 (34). Indeed, using Eq. (11) we readily
check that

𝜇 ‖

‖

∇𝛥𝑃𝑁𝑢‖
‖𝐿2 =‖

‖

‖

∇𝑢𝑡 +∇𝑃𝑁 (𝑃𝑁𝑢𝑃𝑁𝑢𝑥) − ∇𝑃𝑁 (𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦) − 𝛼∇𝑃𝑁𝑢‖‖
‖𝐿2

≤ 𝐶(‖
‖

∇𝑢𝑡‖‖𝐿2 + ‖

‖

∇(𝑃𝑁𝑢𝑃𝑁𝑢𝑥)‖‖𝐿2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝖩1

+ ‖

‖

‖

∇(𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦)
‖

‖

‖𝐿2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝖩2

+|𝛼| ‖
‖

∇𝑃𝑁𝑢‖
‖𝐿2 ).

(35)

herefore, using Gagliardo–Nirenberg inequality (27) and the Sobolev
mbedding 𝐻𝑠(𝛺) ↪ 𝐿∞(𝛺) for 1 < 𝑠 < 2 we find that

1 ≤ ‖

‖

𝑃𝑁∇𝑢‖
‖𝐿4

‖

‖

‖

𝑃𝑁𝑢𝑦
‖

‖

‖𝐿4 + ‖

‖

𝑃𝑁𝑢‖
‖𝐿∞ ‖

‖

∇𝑃𝑁𝑢𝑥‖‖𝐿2

≤ 𝐶 ‖

‖

𝑃𝑁𝑢‖
‖𝐿∞ ‖

‖

𝛥𝑃𝑁𝑢‖
‖𝐿2 + ‖

‖

𝑃𝑁𝑢‖
‖

2
𝐿2 ≤ 𝐶 ‖

‖

𝑃𝑁𝑢‖
‖

2
𝐻2 . (36)

or the second term we proceed in a similar way. Using once again
ölder’s and Jensen’s inequality we obtain

2 ≤ 𝐶
(

‖

‖

𝑃𝑁∇𝑢𝑥‖‖𝐿4
‖

‖

‖

𝑃𝑁𝑢𝑦
‖

‖

‖𝐿4 + ‖

‖

𝑃𝑁𝑢𝑥‖‖𝐿4
‖

‖

‖

𝑃𝑁∇𝑢𝑦
‖

‖

‖𝐿4

)

.

By means of the Gagliardo–Nirenberg inequality (21) and (27) we first
notice that

‖

‖

𝑃𝑁∇𝑢𝑥‖‖𝐿4 ≤ 𝐶 ‖

‖

𝑃𝑁∇𝑢𝑥‖‖
1
2
𝐿2

‖

‖

𝑃𝑁∇∇𝑢𝑥‖‖
1
2
𝐿2 + 𝐶 ‖

‖

𝑃𝑁∇𝑢𝑥‖‖𝐿2 ,

‖

‖

‖

𝑃𝑁∇𝑢𝑦
‖

‖

‖𝐿4 ≤ 𝐶 ‖

‖

‖

𝑃𝑁∇𝑢𝑦
‖

‖

‖

1
2

𝐿2
‖

‖

‖

𝑃𝑁∇∇𝑢𝑦
‖

‖

‖

1
2

𝐿2 + 𝐶 ‖

‖

‖

𝑃𝑁∇𝑢𝑦
‖

‖

‖𝐿2 ,

‖ ‖

‖ ‖

1
2 ‖𝑃 𝑢 ‖

1
2 + 𝐶 ‖𝑃 𝑢 ‖ ,
‖

‖

𝑃𝑁𝑢𝑦‖
‖𝐿4 ≤ 𝐶

‖

𝑃𝑁𝑢
‖𝐿∞ ‖

‖

𝑁 𝑦𝑦‖
‖𝐿2 ‖

‖

𝑁 𝑦‖
‖𝐿2
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‖

‖

𝑃𝑁𝑢𝑥‖‖𝐿4 ≤ 𝐶 ‖

‖

𝑃𝑁𝑢‖
‖

1
2
𝐿∞

‖

‖

𝑃𝑁𝑢𝑥𝑥‖‖
1
2
𝐿2 + 𝐶 ‖

‖

𝑃𝑁𝑢𝑥‖‖𝐿2 .

herefore, following the same argument before taking 0 < 𝑡 < �̃� and
sing bound (32), we find that

2 ≤ 𝐶 ‖

‖

𝑃𝑁𝑢‖
‖𝐿∞ ‖

‖

∇𝛥𝑃𝑁𝑢‖
‖𝐿2 + 𝐶 ‖

‖

𝑃𝑁𝑢‖
‖

3
𝐻2

≤ 𝐶 ‖

‖

𝑢0‖‖𝐿∞ ‖

‖

∇𝛥𝑃𝑁𝑢‖
‖𝐿2 + 𝐶(‖

‖

𝑢0‖‖𝐻2 )exp
(
√

𝑡
)

. (37)

Collecting estimates (36)–(37), taking ‖

‖

𝑢0‖‖𝐿∞ sufficiently small and
invoking the previous estimate (34) we conclude that

esssup
𝑡≤�̃�

‖

‖

∇𝛥𝑃𝑁𝑢‖
‖𝐿2 ≤ 𝐶

(

‖

‖

𝑢0‖‖𝐻3
)

exp
(√

�̃�
)

. (38)

ence, estimate (38) together with the uniform bound (14) yields

esssup
𝑡≤�̃�

‖𝑢‖𝐻3 ≤ 𝐶
(

‖

‖

𝑢0‖‖𝐻3
)

exp
(√

�̃�
)

. (39)

Taking a new time derivative of the problem we find that

𝑢𝑡𝑡𝑡 = −𝑃𝑁 (𝑃𝑁𝑢𝑡𝑡𝑃𝑁𝑢𝑥 + 𝑃𝑁𝑢𝑃𝑁𝑢𝑥𝑡𝑡) + 𝑃𝑁 (𝑃𝑁𝑇 𝑢𝑡𝑡𝑃𝑁𝑢𝑦
+ 𝑃𝑁𝑇 𝑢𝑃𝑁𝑢𝑦𝑡𝑡) + 𝜇𝛥𝑃𝑁𝑢𝑡𝑡 + 𝛼𝑃𝑁𝑢𝑡𝑡
− 𝑃𝑁 (𝑃𝑁𝑢𝑡𝑃𝑁𝑢𝑡𝑥 + 𝑃𝑁𝑢𝑡𝑃𝑁𝑢𝑥𝑡)

+ 𝑃𝑁 (𝑃𝑁𝑇 𝑢𝑡𝑃𝑁𝑢𝑦𝑡 + 𝑃𝑁𝑇 𝑢𝑡𝑃𝑁𝑢𝑦𝑡),

and performing an 𝐿2 energy estimate repeating the previous compu-
tations once again, we find

esssup
𝑡≤𝑇

‖𝑢𝑡𝑡‖𝐿2 ≤ 𝐶(‖𝑢0‖𝐻4 )exp
(
√

𝑇
)

. (40)

Bound (40) can be bootstrapped (mimicking the estimates (32) and
(39)) using the structure of the Eqs. (11) and (15) to obtain the 𝐻4

ound

esssup
𝑡≤�̃�

‖𝑢‖𝐻4 ≤ 𝐶(‖𝑢0‖𝐻4 )exp
(√

�̃�
)

. (41)

n particular, combining bounds (22), (34) and (40) we find uniform a
riori estimates

esssup
𝑡≤�̃�

‖𝑢𝑡‖𝐻2 + esssup
𝑡≤�̃�

‖𝑢‖𝐻4 ≤ 𝐶(‖𝑢0‖𝐻4 )exp
(√

�̃�
)

. (42)

ecall that this estimate is only valid, as long as the bound (30) holds
hich for the moment can only be guaranteed for times 0 < 𝑡 < �̃� .

tep 3: Passing to the limit and inherited regularity. Thanks to the previ-
us uniform estimates, we can extract weakly converging subsequences.
ore precisely, owing to (42), we deduce the existence of a function �̄�

elonging to the space 𝐿∞([0, �̃� );𝐻4(𝛺)) such that, up to the extraction
f a subsequence, one has the convergence
∗
⇀ �̄�, in 𝐿∞([0, �̃� );𝐻4(𝛺)) for 𝑁 → ∞.

oreover, we also have that 𝜕𝑡𝑢 is uniformly bounded in 𝐿∞([0, �̃� );𝐻2(𝛺)
hus

𝑡𝑢
∗
⇀ 𝜕𝑡�̄�, in 𝐿∞([0, �̃� );𝐻2(𝛺)) for 𝑁 → ∞.

ence, using the compactness argument as in [7, Corollary 4], we
btain up to a subsequence that

⟶ �̄� in 𝐶([0, �̃� );𝐻𝑠(𝛺)) for 𝑁 → ∞,

or 2 < 𝑠 < 4. Equipped with these convergences we can pass to the
imit in 𝑁 via the weak formulation of the problem and find a weak
olution. Furthermore, given the regularity of the limit function, such
eak solution is in fact a classical solution of the original problem

6a)–(6c) supplemented with (7). By uniqueness of the limit (we avoid
riting the bar notation again) the limit solution 𝑢 enjoys the regularity
∞([0, �̃� );𝐻4(𝛺)).
 𝑚

5 
tep 4: The pointwise estimate and global in time solution. The time life-
pan of the constructed classical solution is valid as long as the bound
30) holds true. In this section, we will show a pointwise estimate
or the classical solution that demonstrates that (30) is valid for all
> 0. Before proceeding to the computations, notice that the mean

ero condition is conserved during the existence of the solution. Indeed,
ntegrating (6a) in 𝛺 we find that

𝑡 ∫𝛺
𝑢(𝑧, 𝑡)𝑑𝑧 = −∫𝛺

(

𝑢𝑢𝑥 − 𝑇 𝑢𝑢𝑦 − 𝜇𝛥𝑢 − 𝛼𝑢
)

(𝑧, 𝑡) 𝑑𝑧. (43)

otice that the first and the third term on the right hand side in
43) are zero using the periodicity in the 𝑥 variable and the boundary
ondition (7). Furthermore, integrating by parts in the 𝑦 variable,
ecalling the definition (6b) and using that 𝑢 = 0 in 𝜕𝛺 we also have
hat

𝛺
𝑇 𝑢𝑢𝑦 𝑑𝑧 = −∫𝛺

𝑢𝑥𝑢 𝑑𝑧 = 0.

herefore,

𝑡 ∫𝛺
𝑢(𝑧, 𝑡)𝑑𝑧 = 𝛼 ∫𝛺

𝑢(𝑧, 𝑡) 𝑑𝑧,

nd since by assumption 𝑢0(𝑧) has zero mean and 𝛼 ≤ 0 we conclude
hat

∫𝛺
𝑢(𝑧, 𝑡) 𝑑𝑧 = 0, for 0 ≤ 𝑡 ≤ 𝑇 . (44)

Following, [8,9], we define

(𝑡) = max
𝑧∈𝛺

𝑢(𝑧, 𝑡) = 𝑢(𝑧𝑡, 𝑡), for 𝑡 > 0, (45)

𝑚(𝑡) = min
𝑧∈𝛺

𝑢(𝑧, 𝑡) = 𝑢(𝑧𝑡, 𝑡), for 𝑡 > 0. (46)

ne can readily check that 𝑀(𝑡), 𝑚(𝑡) are Lipschitz functions. Moreover,
ne can readily check that 𝑀(𝑡) satisfies

𝑀(𝑡) −𝑀(𝑠)| =

{

𝑢(𝑧𝑡, 𝑡) − 𝑢(𝑧𝑠, 𝑠) if 𝑀(𝑡) > 𝑀(𝑠)

𝑢(𝑧𝑠, 𝑠) − 𝑢(𝑧𝑡, 𝑡) if 𝑀(𝑠) > 𝑀(𝑡)

≤

{

𝑢(𝑧𝑡, 𝑡) − 𝑢(𝑧𝑡, 𝑠) if 𝑀(𝑡) > 𝑀(𝑠)

𝑢(𝑧𝑠, 𝑠) − 𝑢(𝑧𝑠, 𝑡) if 𝑀(𝑠) > 𝑀(𝑡)

≤

{

|𝜕𝑡𝑢(𝑧𝑡, 𝜉)||𝑡 − 𝑠| if 𝑀(𝑡) > 𝑀(𝑠)

|𝜕𝑡𝑢(𝑧𝑠, 𝜉)||𝑡 − 𝑠| if𝑀(𝑠) > 𝑀(𝑡)

≤ max
𝜂,𝜉

|𝜕𝑡𝑢(𝜂, 𝜉)||𝑡 − 𝑠|.

imilarly

𝑚(𝑡) − 𝑚(𝑠)| ≤ max
𝜂,𝜉

|𝜕𝑡𝑢(𝜂, 𝜉)||𝑡 − 𝑠|.

rom Rademacher’s theorem it holds that 𝑀(𝑡) and 𝑚(𝑡) are differen-
iable in 𝑡 almost everywhere. Furthermore, adding and subtracting in
he denominator 𝑢(𝑧𝑡+𝛿 , 𝑡), we find that

𝑀 ′(𝑡) = lim
𝛿→0

𝑢(𝑧𝑡+𝛿 , 𝑡 + 𝛿) − 𝑢(𝑧𝑡, 𝑡)
𝛿

≤ lim
𝛿→0

𝑢(𝑧𝑡+𝛿 , 𝑡 + 𝛿) − 𝑢(𝑧𝑡+𝛿 , 𝑡)
𝛿

≤ 𝜕𝑡𝑢(𝑧𝑡, 𝑡).

n a similar fashion, adding and subtracting in the denominator 𝑢(𝑧𝑡, 𝑡+
𝛿), we obtain that

𝑀 ′(𝑡) = lim
𝛿→0

𝑢(𝑧𝑡+𝛿 , 𝑡 + 𝛿) − 𝑢(𝑧𝑡, 𝑡)
𝛿

≥ lim
𝛿→0

𝑢(𝑧𝑡, 𝑡 + 𝛿) − 𝑢(𝑧𝑡, 𝑡)
𝛿

≥ 𝜕𝑡𝑢(𝑧𝑡, 𝑡).

s a consequence

′(𝑡) = 𝜕𝑡𝑢(𝑧𝑡, 𝑡) a.e. (47)

imilarly
′(𝑡) = 𝜕 𝑢(𝑧 , 𝑡) a.e.
𝑡 𝑡
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Therefore, using (6a) and noticing that 𝑢𝑥(𝑧𝑡, 𝑡) = 𝑢𝑦(𝑧𝑡, 𝑡) = 0 and
𝑢(𝑧𝑡, 𝑡) ≤ 0 we find that
′(𝑡) ≤ 0,

hich implies that

(𝑡) ≤ 𝑀(0). (48)

imilarly, repeating the same argument and recalling that 𝛥𝑢(𝑧𝑡, 𝑡) ≥ 0,

𝑚(𝑡) ≥ 𝑚(0). (49)

Notice that the maximum is obtained in the interior of 𝛺, i.e. 𝑧 ∈ �̇�
nd moreover 𝑀(𝑡) > 0. Otherwise, the maximum is obtained on the
oundary and hence using the boundary condition (7) this implies
(𝑡) = 0. Similarly, the minimum must be obtained in the interior of
, otherwise 𝑚(𝑡) = 0 but this violates (44). As a consequence 𝑚(𝑡) < 0.
ence, combining (48) and (49) we have that

‖𝑢‖𝐿∞(𝛺) ≤ ‖

‖

𝑢0‖‖𝐿∞(𝛺) , for 0 ≤ 𝑡 ≤ 𝑇 . (50)

Therefore, we have shown that the constraint (30) is satisfied for
ll times 𝑇 > 0. Therefore, we can derive once again the same energy
stimates as in Step 2 for the classical solution and prove that the
olution remains in the desired functional spaces for all positive time.

To obtain the uniqueness, we argue by means of a contradiction
rgument. If 𝑢 and 𝑤 are two solutions emanating from the same initial
ata, we consider 𝑈 their difference. Then, 𝑈 = 𝑢 −𝑤 solves

𝑡 = −𝑢𝑈𝑥 + 𝑇𝑈𝑢𝑦 − 𝑈𝑤𝑥 + 𝑇𝑤𝑈𝑦 + 𝜇𝛥𝑈 + 𝛼𝑈.

esting against 𝑈 and integrating by parts, we find
𝑑
𝑑𝑡

‖𝑈‖

2
𝐿2 ≤ −𝜇‖∇𝑈‖

2
𝐿2 + ‖𝑈‖𝐿2‖∇𝑈‖𝐿2 (‖𝑢‖𝐿∞ + ‖𝑤‖𝐿∞ )

+ ‖𝑈𝑦‖𝐿2‖𝑇𝑈‖𝐿2‖𝑢‖𝐿∞ + 2‖𝑈‖𝐿2‖𝑈𝑥‖𝐿2‖𝑤‖𝐿∞ .

sing the smallness hypothesis we conclude the desired bound and the
esult.

. Proof of Theorem 2

For the proof of Theorem 2 we just provide the needed a priori
estimates. The approximation procedure to justify the regularity can
be done by mimicking projecting the functions into a finite dimensional
space as in the beginning of the proof of Theorem 1.

Let us start by deriving appropriate a priori energy estimates. Notic-
ing that
𝑑
𝑑𝑡

‖𝑢(𝑡)‖̃0 =
∑

𝑛∈Z

∑

𝑚≥1
𝜕𝑡|�̂�(𝑛, 𝑚, 𝑡)|,

we find that
𝑑
𝑑𝑡

‖𝑢(𝑡)‖̃0 ≤ ‖

‖

𝑢𝑢𝑥‖‖̃0 +
‖

‖

‖

𝑇 𝑢𝑢𝑦
‖

‖

‖̃0 + 𝛼 ‖𝑢‖̃0 + 𝛽 ‖𝑇 𝑢‖̃0 − 𝜇 ‖𝛥𝑢‖̃0 .

Using the inequalities (8) and the Banach algebra property we obtain
that
𝑑
𝑑𝑡

‖𝑢(𝑡)‖̃0 ≤ ‖𝑢‖̃0 ‖𝑢‖̃1 + 𝜋 ‖𝑇 𝑢‖̃0 ‖𝑢‖̃1

+ 𝛼 ‖𝑢‖̃0 + 𝛽 ‖𝑇 𝑢‖̃0 − 𝜇 ‖𝑢‖̃2 .

Moreover, noticing that 𝑇 𝑢(𝑛, 𝑚) = 𝑛
𝑚 �̂�(𝑛, 𝑚) and the fact that 𝑚 ≥ 1 we

find that

‖𝑇 𝑢‖̃0 ≤ ‖𝑢‖̃1 .

Thus,
𝑑
𝑑𝑡

‖𝑢(𝑡)‖̃0 ≤ ‖𝑢‖̃0 ‖𝑢‖̃1 + 𝜋 ‖𝑢‖2
̃1

+ 𝛼 ‖𝑢‖̃0 + 𝛽 ‖𝑢‖̃1 − 𝜇 ‖𝑢‖̃2 .
6 
Invoking the interpolation inequality (9) and Young’s inequality we
find that
𝑑
𝑑𝑡

‖𝑢(𝑡)‖̃0 ≤ (1 + 𝜋) ‖𝑢‖̃0 ‖𝑢‖̃2 + 𝛼 ‖𝑢‖̃0 +
𝛽2

2𝜇
‖𝑢‖̃0 −

𝜇
2
‖𝑢‖̃2

≤
(

(1 + 𝜋) ‖𝑢‖̃0 −
𝜇
2

)

‖𝑢‖̃2 +
(

𝛼 +
𝛽2

2𝜇

)

‖𝑢‖̃0 . (51)

herefore, since by hypothesis 𝛼 + 𝛽2

2𝜇 ≤ 0, we have that

𝑑
𝑑𝑡

‖𝑢(𝑡)‖̃0 ≤ (1 + 𝜋) ‖𝑢‖̃0 ‖𝑢‖̃2 + 𝛼 ‖𝑢‖̃0 +
𝛽2

2𝜇
‖𝑢‖̃0 −

𝜇
2
‖𝑢‖̃2

≤
(

(1 + 𝜋) ‖𝑢‖̃0 −
𝜇
2

)

‖𝑢‖̃2 . (52)

Taking ‖𝑢‖̃0 small enough, more precisely as in (10), concludes the a
priori estimates of the solution. The uniqueness is a consequence of the
obtained regularity and a standard contradiction result, from where we
conclude the desired result.
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