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Abstract

This work is aimed to study a few different stochastic processes, and their most relevant stat-
istical properties. First, the Langevin equations of one-dimensional (1D) and two-dimensional
(2D) Brownian motion were solved, using numerical integration. Different integration times ∆t
were used, to study the convergence of the statistical moments when reducing it. In the 1D
case, the variance of the N = 10000 trajectories was shown to converge to a linear function of
time when reducing ∆t. Moreover, the probability density of the trajectories was determined to
be really close to a Gaussian, after times large enough. In the 2D case, the phase of the process,
Φ, was studied. For that, no convergence of the variance was found when ∆t was reduced. This
is because the probability density of Φ approaches a Cauchy distribution for times big enough,
which was also proved with the data. The Cauchy distribution has infinite variance. Last,
the experimental results of the optical phase of a semiconductor laser were analysed. This can
be described by two different sets of mathematical equations. When the bias intensity of the
laser is lower than the threshold I < Ith, one of them can be approximated by 1D Brownian
motion, and the other by 2D Brownian motion. It was shown that the variance of the optical
phase converged to a linear function of time, and the probability density of the phase noise
approached a Gaussian, which gives experimental backup to the first set of equations over the
second set.

Key words: Stochastic process, Brownian motion, optical phase, Quantum Random Num-
ber Generator

Resumen

El objetivo principal de este trabajo es estudiar algunos procesos estocásticos, y determinar sus
propiedades estad́ısticas. Primero, se resolvieron las ecuaciones de Langevin del movimiento
browniano unidimensional y bidimensional, mediante integración numérica. Se utilizaron difer-
entes tiempos de integración ∆t para estudiar la convergencia de los momentos estad́ısticos, con
la reducción de dicho tiempo. En una dimensión, se demostró que la varianza de las N = 10000
trayectorias converge a una función lineal del tiempo al reducir ∆t. Además, se determinó
que la densidad de probabilidad de las trayectorias se aproxima a una gaussiana tras tiempos
suficientemente largos. En el caso bidimensional, se estudió la fase del proceso, Φ. Para dicha
fase, no se encontró convergencia de la varianza al reducir ∆t. Esto se debe a que la densidad
de probabilidad de Φ se aproxima a una distribución de Cauchy, para tiempos suficientemente
largos, lo cual también se demotró en los resultados. La distribución de Cauchy tiene una
varianza infinita. Por último, se analizaron los resultados experimentales de la fase óptica de
un láser de semiconductor. Esta fase se puede describir mediante dos conjuntos diferentes de
ecuaciones matemáticas. Para intensidades de corriente del láser inferiores al umbral I < Ith,
uno de ellos puede aproximarse al movimiento browniano 1D, y el otro al movimiento browniano
2D. Se demostró que la varianza de la fase óptica converǵıa a una función lineal del tiempo, y
que la densidad de probabilidad del ruido en fase se aproximaba a una gaussiana. Esto respalda
experimentalmente el primer conjunto de ecuaciones sobre las segundas.

Palabras clave: Proceso estocástico, movimiento browniano, fase óptica, generador de números
aleatorios cuántico.
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Chapter 1

Introduction

1.1 Quantum Technologies in Cryptography

Cryptography is the art of protecting or enciphering information under a given code. It is
essential in modern communications, since it allows sending confidential data safely, so that it
can only be read by the chosen receiver. To avoid the deciphering of the message by hackers
or fraudulent parties, the cryptographic system uses a series of algorithms, keys, and other
mathematical tools.

To encipher a message, the sender uses a given algorithm, which the receiver can invert to
recover the original information. This algorithm is usually not secret, or not very complicated,
so the validity of the method relies on a given key. The algorithm uses this key, which can be a
series of numbers, to encipher the message; and the receiver also needs the key to decipher it.

Symmetric-key encryption algorithms rely in a single key, which both the sender and the re-
ceiver keep secretly. Thus, if the communication of the message is compromised by an external
intruder, they cannot decipher it, since they will not have access to the key. This is the case of
for instance the Advanced Encryption Standard (AES) used by the US government for classified
information [1].

On the other hand, asymmetric-key encryption algorithms have both a public key and a private
key. This is the case of the RSA algorithm, which uses the product P = p × q of two large
prime numbers as a public key. Anyone has access to the public key P , but the private key,
which is the factorisation (p, q), is kept secret. It is not feasible for a computer to factorise a
big number like P into primes in a short time, so the private key is safe even if P is publicly
known.

1.1.1 Quantum Key Distribution and Quantum Random Number
Generators

Quantum Key Distribution (QKD) uses the inherent properties of quantum systems to generate
and distribute cryptographic keys. These keys might be used in symmetric-key cryptographic
algorithms, if there is an assurance that the QKD comes from the desired source [2].

QKD is part of the broader scientific field of Quantum Comunications, which consists on the
transfer of information between distant parties, employing quantum states. To encode the in-
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formation, quantum bits (qubits) are used. A qubit is the superposition of two eigenstates,
|0 > and |1 > in a two-dimensional Hilbert space. This superposition is inherent of quantum
systems, as the wave-function ψ of the system can be written as |ψ >= c1|0 > +c2|1 >. The
use of a 2D Hilbert space allows the storage of much more information than in classical binary
computing, and explains the relevance of the development of quantum communications [3].

QKD is based on the exchange of quantum states, where a quantum statistical analysis provides
a measure of the information leakage to a potential eavesdropper. The key advantage is that if
a hacker tries to observe qubits in transit, the quantum state collapses to either |0 > or |1 >.
This means that the hacker will leave behind a tell-tale sign of the activity [3].

One way to create cryptographic keys is to generate a large series of random numbers. This
is why Quantum Random Number Generators (QRNG) play an important role in QKD tech-
nologies. QRNGs are a particular type of hardware physical random generator, in which data
are obtained from quantum events. Their main advantage is that the generated randomness
is inherent to quantum mechanics, making quantum systems a perfect entropy source for ran-
dom number generation. In this context, entropy is a measure of the true randomness of the
method, i.e. higher entropy means that the numbers are more unpredictable. QRNGs are some
of the most developed quantum technology systems, and many devices are already available in
the market to consumers and companies. Most existing QRNGs are based on quantum optics
because of the availability of high-quality optical components and the possibility of chip-size
integration [4].

Most random numbers used in computing come from pseudorandom number generators (PRNGs),
also known as deterministic random bit generators. These use deterministic algorithms to cal-
culate a sequence of numbers, which may follow a given probability distribution and thus be
considered random as a whole. The problem with these methods is that they are not random
at all, and hence, anyone which knows the algorithm can reproduce the sequence of numbers.

This is why QRNGs are really important to create cryptographic keys, where its not only
relevant that the sequence of numbers follows a given distribution, but also that they are actu-
ally random so that they can be kept secret. The quantum processes behind QRNGs cannot be
replicated or reproduced, and therefore only the originators have access to the list of random
numbers.

1.1.2 Optical Random Number Generators

In optical RNGs, the source of entropy is generally based on fluctuations of a light signal. These
fluctuations can for instance be due to spontaneous emission noise, which makes the phase of
the light fluctuate, due to spontaneous emission being random. In semiconductor lasers, for
example, atoms emit light spontaneously, which creates a random noise on top of the stimu-
lated emission characteristic to the laser. Recall stimulated emission is coherent and hence has
a given constant phase. This noise is a high entropy source [5].

There is an special type of QRNG based on semiconductor lasers in which the randomness
is based on spontaneous emission noise. The laser emits a pulse and then is turned down,
so that spontaneous emission, which has random phase, dominates. Then, when the laser is
turned up again, its stimulated emission starts again, but with a phase that is random and de-
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termined by the noise. That means that the phase of this pulse and the one just before should
be statistically independent. By interference of these two pulses, which might interfere either
constructively or destructively due to their different phases, a random number of photons will
be created. This can be measured in a photo-detector, and serve as a source of random numbers
[3]. Randomness of the optical phase is at the core of this QRNG. That is why we are interested
in characterising the statistics of the optical phase of the light emitted by semiconductor lasers.

1.2 Motivation of this work

1.2.1 Aims and Objectives

The main aim of this work is to understand the statistics that characterise the optical phase,
and specifically the phase noise, of semiconductor laser light. Since this phase can be modelled
by a stochastic process, the first objective of the work is to give a brief introduction to the
mathematical field of stochastic processes. This will be done in the second chapter, where the
main definitions, theorems and results of this branch are reviewed. In particular, the theory of
stochastic differential equations (SDEs) will be studied.

The next objective consists on the numerical resolution of one-dimensional and two-dimensional
Brownian motion. This is a stochastic process which is defined by some SDEs, which can be
solved by numerical integration. The statistical moments and probability distributions of a set
of solutions will be analysed, and compared to theoretical results.

Last, a set of experimental trajectories of the optical phase of a semiconductor laser will be
studied. The experiment is not part of this work, but analysing them in the same way as the
Brownian motion trajectories will help understand the inherent statistics of optical phase. A
comparison of all the results will allow a discussion about the equations that characterise the
light of semiconductor lasers.

1.2.2 Scientific Interest

The importance of this research work is based on the growing interest on Quantum Key Distri-
bution and Quantum Random Number Generator technologies based on semiconductor lasers.
By determining the equations that dominate the optical phase in these lasers, and the statistics
of the stochastic processes that are determined by those equations, a deeper understanding
on the physical basis of these technologies will be achieved. This will allow to optimise the
performance and reliability of QKD systems based on lasers. Moreover, it will help ensure the
generation of truly random numbers in QRNG, which are essential for cryptographic applica-
tions.

In addition to the technological and commercial interest of this work, its scientific interest
is more than evident. By connecting the statistical properties of Brownian motion with those
of the phase of lasers, this research provides an intriguing mathematical insight into the nature
of light. It is both simple in form and complex in essence, and builds a connection between two
apparently very different physical phenomena: the movement of a pollen grain in water and
the emission of light by atoms. It shows that these phenomena are actually intricately bound
together, by the underlying mathematics that govern them
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Chapter 2

Theoretical Background

2.1 Stochastic Processes

2.1.1 History. Brownian Motion

In 1827, Robert Brown was investigating the fertilisation process in Clarkia pulchella, observing
pollen grains through a microscope. He noticed that when the grains were floating over water,
they moved in a very irregular way. Further analysis proved that it wasn’t a biologic process,
since it could be observed in chips of glass and smoke particles as well. This chaotic movement
was called Brownian motion, and it was studied by many physicists in the following decades [6].

In 1905, Albert Einstein solved the mystery of Brownian motion, by attributing it to the
collision of the different molecules in the fluid with the pollen grains. Einstein considered that
the movement of the molecules was so complicated, that it could only be studied with a prob-
abilistic approach. As an example, 1 dimensional Brownian motion will be studied below [7].

First let’s consider a very small time interval τ , such that collisions separated by τ are statist-
ically independent. Let x be the position of each particle, and ∆ the change in that position
after every time interval τ , both real numbers. ∆ is a random variable, with a normalised
probability density function φ : R −→ R, such that φ(∆) = φ(−∆) and φ(∆) 6= 0 only for
|∆|≪ 1. If particle density in x at time t (number of particles per unit volume) is denoted as
f(x, t), then after a time τ the density will be:

f(x, t+ τ) =

∫ ∞
−∞

f(x+ ∆, t)φ(−∆)d∆ (2.1)

As both τ and ∆ are very small quantities, Taylor expansion can be applied, to approximate
the density functions as f(x, t + τ) ' f(x, t) + τ ∂f

∂t
and f(x + ∆, t) ' f(x, t) + ∆∂f

∂x
+ ∆2

2
∂2f
∂x2 .

Introducing these into equation (2.1):

f(x, t) + τ
∂f

∂t
= f(x, t)

∫ ∞
−∞

φ(∆)d∆ +
∂f

∂x

∫ ∞
−∞

∆φ(∆)d∆ +
∂2f

∂x2

∫ ∞
−∞

∆2

2
φ(∆)d∆ (2.2)

The second term on the right vanishes, since φ is an even function. Defining the diffusion
coefficient D as the last term on the right, D = 1

τ

∫∞
−∞

∆2

2
φ(∆)d∆, the problem is simplified

into a partial differential equation:
∂f

∂t
= D

∂2f

∂x2
(2.3)

This is the heat or diffusion equation in 1D, with f(x, t) = exp(−x2/4Dt)/
√

4πDt as funda-
mental solution, which is a Gaussian with mean value 0 and standard deviation

√
2Dt.
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2.1.2 Formal Definition

A stochastic process is defined as a set of random variables {X(θ)} where θ belongs to some
index set Θ. In general, the random variables will be studied as functions of time, taking θ = t
and Θ ⊂ R. [8]

The stochastic processX(t) is characterised by its probability density function p(x1, t1, x2, t2, ...),
where usually t1 ≥ t2 ≥ .... This is the probability distribution of measuring X(t1) = x1,
X(t2) = x2 and so on. Therefore, conditional probability density functions can be defined as:

p(x1, t1, x2, t2, ...|y1, τ1, y2, τ2, ...) =
p(x1, t1, x2, t2, ..., τ1, y2, τ2, ...)

p(y1, τ1, y2, τ2, ...)
(2.4)

2.1.3 Statistical Moments

Given a stochastic process X(t) and its probability density function p(x, t), there are several
definitions which can be useful:
-Mean Value: η(t) = E[X(t)] :=

∫∞
−∞ xp(x, t)dx

-Variance: σ2
X := E[(X − E[X])2] = E[X2]− E[X]2

-Standard Deviation: σX :=
√
σ2
X =

√
E[X2]− E[X]2

-Autocorrelation: R(t1, t2) := E[X(t1)X(t2)] =
∫∞
−∞

∫∞
−∞ x1x2p(x1, t1, x2, t2)dx1dx2

2.1.4 Stationary and Markovian processes

A stochastic process is stationary if the two processes X(t) and X(t + ε) have the same char-
acteristics ∀ε ∈ R, i.e. if their probability density functions are equal:

p(x1, t1, x2, t2, ..., xn, tn) = p(x1, t1 + ε, x2, t2 + ε, ..., xn, tn + ε) ∀ε ∈ R (2.5)

This means that for a single random variable p(x, t) = p(x, t + ε) ∀ε ∈ R, and hence p(x, t) =
p(x) ∀t. For two variables a new time τ = t2 − t1 can be defined, such that p(x1, t1, x2, t2) =
p(x1, x2, τ).

On the other hand, a stochastic process is Markovian, if the conditional probabilities only
depend on the most recent past. That is, mathematically, if:

p(x1, t1, x2, t2, ...|y1, τ1, y2, τ2, ...) = p(x1, t1, x2, t2, ...|y1, τ1) (2.6)

Markovian processes have probability distributions that can be written as products of simple
conditional probabilities:

p(x1, t1, x2, t2, ..., xn, tn) = p(x1, t1|x2, t2)p(x2, t2|x3, t3) · · · p(xn−1, tn−1|xn, tn)p(xn, tn) (2.7)

This is easily proved by induction on n. The case n = 2 is trivial. Let’s assume it is true for
n = k − 1, and prove it for n = k.

p(x1, t1, x2, t2, ..., xk−1, tk−1, xk, tk) = p(x1, t1, x2, t2, ..., xk−1, tk−1|xk, tk)p(xk, tk)

Since in general P (A|C ∩D) = P (A|C|D) = P (A ∩ C|D)/P (C|D), it is noted that

p(x1, t1|x2, t2, ..., xk, tk)p(x2, t2, ..., xk−1, tk−1|xk, tk) = p(x1, t1, x2, t2, ..., xk−1, tk−1|xk, tk)
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which allows to rewrite the previous expression, taking into account that sinceX(t) is Markovian,
p(x1, t1|x2, t2, ..., xk, tk) = p(x1, t1|x2, t2):

p(x1, t1, x2, t2, ..., xk−1, tk−1, xk, tk) = p(x1, t1|x2, t2)p(x2, t2, ..., xk−1, tk−1|xk, tk)p(xk, tk)

By the definition of conditional probabilities, the product of the last two terms on the right is
equal to p(x2, t2, ..., xk, tk), which is the case n = k − 1, and hence by the induction hypothesis
allows the discussed factorisation:

p(x1, t1, x2, t2, ..., xk, tk) = p(x1, t1|x2, t2)p(x2, t2|x3, t3) · · · p(xk−1, tk−1|xk, tk)p(xk, tk)

From this result, it is also relevant to write down the Chapman-Kolmogorov equation, which
is trivial from the case n = 3:

p(x1, t1|x3, t3) =

∫
p(x1, t1|x2, t2)p(x2, t2|x3, t3)dx2 (2.8)

2.1.5 Continuous Stochastic Processes. The Fokker-Planck Equa-
tion

A stochastic process is continuous, if X(t) is always a continuous function of time, for any
possible process. It can be proved that a Markovian stochastic process is continuous if the
following condition is met [7]:

∀ε > 0 lim
∆t→0

1

∆t

∫
||~x−~z||>ε

p(~x, t+ ∆t|~z, t)d~x = 0 (2.9)

Considering now the 1 dimensional case, if the process satisfies the following two conditions:

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx (x− z)p(x, t+ ∆t|z, t) = A(z, t) +O(ε) (2.10)

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx (x− z)2p(x, t+ ∆t|z, t) = B(z, t) +O(ε) (2.11)

then the Chapman-Kolmogorov equation (2.8) can be written as [7]:

∂p(z, t|y, t′)
∂t

= − ∂

∂z
(A(z, t)p(z, t|y, t′)) +

1

2

∂2

∂z2
(B(z, t)p(z, t|y, t′)) (2.12)

which is the Fokker-Planck equation in 1D. The coefficients A (drift coefficient) and B (diffusion
coefficient) are characteristic to each continuous stochastic process, and every process can
be defined by its Fokker-Planck equation with those two coefficients. Let’s assume now the
initial condition is p(z, t|y, t) = δ(z − y). Assuming the derivatives ∂A/∂z ≪ ∂p/∂z and
∂2B/∂z2 ≪ ∂2p/∂z2 the equation can be approximated as:

∂p(z, t|y, t′)
∂t

= −A(y, t)
∂p(z, t|y, t′)

∂z
+

1

2
B(y, t)

∂2p(z, t|y, t′)
∂z2

which has a solution p(z, t + ∆t|y, t) in the time t + ∆t which defines a Gaussian variable
y(t+ ∆t) with mean y(t) + A(y, t)∆t and variance B∆t:

p(z, t+ ∆t|y, t) =
1√

2πB∆t
exp

(
−(z − y − A(y, t)∆t)2

2B∆t

)
This variable y(t+ ∆t) can therefore be written as a function of its variance and mean values,
taking a general Gaussian variable η(t) ∼ N (0,

√
B):

y(t+ ∆t) = y(t) + A(y, t)∆t+ η(t)∆t1/2 (2.13)

This result explains how the system’s mean y+A(y, t)∆t changes with ’velocity’ A(y, t) (being
A(y, t)∆t the drift) and its variance is B(y, t)∆t which defines the diffusion term.
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2.1.6 Wiener Process

A Wiener process W (t) is the solution to the Fokker-Planck equation when the drift coefficient
A = 0 and the diffusion coefficient B = 1. If the initial condition of the process is W (t0) = ω0,
then the probability of the process is conditional p(ω, t|ω0, t0), and satisfies the Fokker-Planck
equation:

∂

∂t
p(ω, t|ω0, t0) =

1

2

∂2

∂ω2
p(ω, t|ω0, t0) (2.14)

The initial condition W (t0) = ω0 may also be written as p(ω, t0, ω0, t0) = δ(ω − ω0). Let’s now
define a characteristic function φ(s, t) = E[eisW ], which is the same as the Fourier Transform
of the probability density of W :

φ(s, t) = E[eisW ] =

∫ ∞
−∞

eisωp(ω, t|ω0, t0)dω

Therefore, p(ω, t|ω0, t0) will be the inverse F.T. of φ(s, t):

p(ω, t|ω0, t0) =
1

2π

∫ ∞
−∞

e−isωφ(s, t)ds

Introducing this into equation (2.14):∫ ∞
−∞

e−isω
∂φ

∂t
ds =

1

2
(−is)2

∫ ∞
−∞

e−isωφds ⇒ ∂φ

∂t
+
s2

2
φ = 0

This equation is easily integrated separating the variables:∫ φ(s,t)

φ(s,t0)

dφ

φ
= −

∫ t

t0

s2

2
dt ⇒ φ(s, t) = φ(s, t0)e−

s2

2
(t−t0)

To calculate the initial value φ(s, t0), the initial condition must be taken into account:

φ(s, t0) =

∫ ∞
−∞

eisωp(ω, t0|ω0, t0)dω =

∫ ∞
−∞

eisωδ(ω − ω0)dω = eisω0 ⇒ φ(s, t) = eisω0− s2

2
(t−t0)

Finally, since φ(s, t) is the F.T. of the probability density, p will be the inverse F.T., which can
be calculated as:

p(ω, t|ω0, t0) =
1√

2π(t− t0)
e
− (ω−ω0)2

2(t−t0) (2.15)

Note that the solution of the 1 dimensional diffusion equation (2.3) can also be obtained by
this method of the characteristic function. Thus, the probability density of the Wiener process
W (t), which has been derived in (2.15), shows that W is a Gaussian variable with mean value
ω0 and variance (t− t0). The process W (t) is characterised by a Fokker-Planck equation, and
therefore, it is a continuous Markovian process. This means that:

p(ωn, tn, ..., ω0, t0) =
n−1∏
i=0

p(ωi+1, ti+1|ωi, ti)p(ω0, t0) =
n−1∏
i=0

e
−∆W2

i
2∆ti√

2π(∆ti)
p(ω0, t0) (2.16)

where the differences in W and t are defined as ∆Wi := ωi+1 − ωi and ∆ti := ti+1 − ti. This
shows that ∆Wi are independent processes, with Gaussian probability distributions of mean 0
and variance ∆ti.
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2.2 Stochastic Differential Equations

2.2.1 Definitions. White Noise

Stochastic differential equations (SDEs) are differential equations in which some terms are
stochastic processes ξ(t). The most simple case are the Langevin equations, which have the
structure:

dx

dt
= a(x, t) + b(x, t)ξ(t) (2.17)

where a(x, t) and b(x, t) are known functions, and ξ(t) is defined to vary very fast and irregularly,
i.e. for t 6= t′, ξ(t) and ξ(t′) are statistically independent. If the mean value is defined to be
zero, < ξ(t) >= 0, and

< ξ(t)ξ(t′) > = δ(t− t′) (2.18)

then ξ(t) is called white noise. This name comes from the calculus of the power spectrum.
This is given by the Fourier transform of the autocorrelation [7]. For the case of a Dirac’s delta
autocorrelation, like in (2.18), the power spectrum is one, independent of the frequency. This
means it contains all the frequencies, and hence it is ”white”.

Equation (2.18) also implies that ξ(t) and ξ(t′) are statistically independent, and moreover
that ξ(t) has infinite variance, < (ξ(t)− < ξ(t) >)2 >=< ξ(t)2 >= δ(0) =∞. This is obviously
a mathematical idealisation, since in reality a physical variable cannot have infinite variance.
Note that a new notation is being introduced, < ξ >= E[ξ] for averages over realisations,
because it is the most usual notation. Both notations will be used indistinguishably from now
on.

Now, assuming equation (2.17) is integrable, u(t) =
∫ t

0
ξ(t′)dt′ exists, and it is a continuous

function of t, since it is an integral and ξ(t) ∈ R ∀t. This implies that u(t) is a Markovian
stochastic process. To prove this let’s write:

u(t′) =

∫ t

0

ξ(s)ds +

∫ t′

t

ξ(s)ds = lim
ε→0

[∫ t−ε

0

ξ(s)ds

]
+

∫ t′

t

ξ(s)ds

Take an ε > 0. Since ∀s ∈ [0, t− ε] ∀s′ ∈ [t, t′], ξ(s) and ξ(s′) are statistically independent, then
u(t− ε) and u(t′)−u(t) are also independent. Therefore, by continuity u(t) and u(t′)−u(t) are
statistically independent, which proves that the stochastic process u is a Markovian process.

2.2.2 Connection to the Fokker-Planck Equation

The stochastic process u(t) from above is Markovian and continuous, and thus it is the solution
of a given Fokker-Planck equation. The goal now is to calculate the drift and diffusion coeffi-
cients. For that let’s write the process u(t) in the form of equation (2.13), taking u(t) = u0 as
initial condition:

u(t+ ∆t)− u(t) = A(u0, t)∆t+ η(t)∆t1/2

where η(t) ∼ N (0,
√
B). Now taking mean values, at the limit when ∆t approaches zero, the

calculation of the drift coefficient A is as follows:

A = lim
∆t→0

< u(t+ ∆t)− u0 >

∆t
(2.19)

since < η(t) >= 0. Analogously, taking the mean value of (u(t + ∆t) − u(t))2, again since
< η(t) >= 0 and < η(t)2 >= B the diffusion coefficient is derived as:

B = lim
∆t→0

< (u(t+ ∆t)− u0)2 >

∆t
(2.20)
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Therefore, calculating now those quantities:

< u(t+∆t)−u0 >=<

∫ t+∆t

0

ξ(s)ds−
∫ t

0

ξ(s)ds >=<

∫ t+∆t

t

ξ(s)ds >=

∫ t+∆t

t

< ξ(s) > ds = 0

< (u(t+ ∆t)− u0)2 >=<

∫ t+∆t

t

∫ t+∆t

t

ξ(s)ξ(s′)dsds′ >=

=

∫ t+∆t

t

∫ t+∆t

t

< ξ(s)ξ(s′) > dsds′ =

∫ t+∆t

t

∫ t+∆t

t

δ(s− s′)dsds′ =
∫ t+∆t

t

ds = ∆t

The coefficients A and B follow then from equations (2.19) and (2.20) as A = 0 and B = 1.
These coefficients characterise a Fokker-Planck equation with a solution which is, by definition,
a Wiener process. Hence, the process u(t) =

∫ t
0
ξ(s)ds = W (t), and therefore, the differential

of the Wiener process is dW (t) = W (t+ dt)−W (t) =
∫ t+∆t

t
ξ(s)ds:

dW (t) = ξ(t)dt (2.21)

In general, following the previous reasoning, it can be proved that the stochastic differential
equation (2.17) is equivalent to the Fokker-Planck equation [7]:

∂p(x, t|x0, t0)

∂t
= − ∂

∂x
[a(x, t)p(x, t|x0, t0)] +

1

2

∂2

∂x2

[
b(x, t)2p(x, t|x0, t0)

]
(2.22)

and hence, the stochastic process X(t) must be continuous and Markovian.

2.2.3 Numerical Integration of SDEs

Lastly, let’s study how to solve the SDE in (2.17) using a numerical algorithm, which is the
method which will be followed on the next chapter of this work. Let’s rewrite the general SDE:

dx

dt
= a(x, t) + b(x, t)ξ(t)

where ξ(t) is a Gaussian with mean 0 and < ξ(t)ξ(t′) > = δ(t − t′). Now, discretising the
time variable t into a set of points {ti}i=1,...,N such that ti+1 − ti ≡ ∆ti, the equation can be
rewritten into an iterative process:

x(ti + ∆ti)− x(ti) = a(x(ti), ti)∆ti + b(x(ti), ti)[W (ti+1)−W (ti)]

since dW (t) = ξ(t)dt or discretely ∆Wi ≡ W (ti+1) −W (ti) = ξ(ti)∆ti. Now, recalling that
equation (2.16) proves ∆Wi are Gaussian with mean 0 and variance ∆ti, the previous equation
can be written as follows, with ∆Wi =

√
∆tiZi where {Zi}i are independent Gaussian variables

Zi ∼ N (0, 1):

x(i+1) = x(i) + a(x(i), ti)∆t+ b(x(i), ti)
√

∆tiZi (2.23)

rewriting x(i) := x(ti). This is the final equation for a simple algorithm for solving a Langevin
equation, and will be used in the following sections of this work.
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2.3 The Semiconductor Laser

2.3.1 General Structure of Lasers

Lasers (Light Amplification by Stimulated Emission of Radiation) are devices that create co-
herent light, i.e. light with a well defined wavelength, with high intensity. Stimulated emission
happens when an excited atom is hit by a photon of the correct energy, and causes the atom to
emit another photon with the same wavelength, direction and phase. Any laser consists of an
active medium, which is the material where the light is created, and two mirrors in both sides
of it. One mirror is usually totally reflective, while the other is partially transmitting, and lets
the laser light out. A general scheme of a laser from [9] is shown in Figure 2.1.

Figure 2.1: Scheme of a general laser. The stimulated radiation is produced in the active
medium, and the mirrors help increase its instensity by a cascade effect [9].

The active medium needs an external source of energy, a pumping process, to emit light. The
atoms in the medium get excited to higher energies by the pumping process, and as they are
hit by some photons, some produce stimulated emission. At the same time this emission can
be reflected in the mirrors, and stimulates other atoms to emit more light. In this manner, a
cascade effect is created, which produces high intensity light with a given energy and direction.
In the case of a laser in which the pumping process relies on the application of an electrical
current, the minimum electrical intensity needed to activate the medium and start laser emission
is called the threshold intensity Ith.

2.3.2 Semiconductor active medium

In semiconductor materials, the energy gap between the valence band (VB) and the conduc-
tion band (CB) is relatively small (around 1 eV). At T = 0K the valence band is full and
the conduction band is totally empty. When temperature increases, electrons from the VB are
thermically excited to the CB, and electron-hole pairs are created.

When a photon of energy similar to the band-gap strikes the material, it may induce the
recombination of an electron-hole pair, and the stimulated emission of a photon. To enhance
this process and create a cascade, many electron-hole pairs are needed in a small space. This is
why p-n junctions are used to create lasers. Applying a negative voltage to the n region and a
positive voltage to the p region (direct polarisation) the p-n junction will be full of pairs, which
may then recombine [10]. This is shown in Figure 2.2:
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Figure 2.2: Scheme of a semiconductor laser. Direct polarisation is applied to a p-n junction
to increase the number of electron-hole pairs [11].

Modern semiconductor lasers are made out of several p-n heterojunction layers, which form a
heterostructure. This is specially designed to confine the charge carriers in the active medium
of the laser. For this purpose, these heterostructures have semiconductors of different energy
gaps. Moreover, they are such that the refractive indexes of the internal layers are larger than
those of the surrounding layers, also producing a confinement of the light by total internal
reflection. The energy diagram of a semiconductor heterojunction is shown in Figure 2.3.

Figure 2.3: Energy diagram of a semiconductor heterojunction. The energy gap of semicon-
ductor A is smaller than B, and the refractive index of A is larger than B. This produces the
confinement of both charge carriers and light inside the structure [12].
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2.3.3 Gain-switched lasers

Gain-switching is a technique usually employed in semiconductor-laser QRNGs, where the
pumping of energy is modulated to oscillate between different intensities, so that the laser
emits in short and intense pulses. When a laser receives a sudden increase in pump power,
there is a delay before laser emission begins, and the active medium stores that pump energy
over some time. After turning the pump power off, or lowering it under the threshold, this
energy can be emitted in the form of an intense pulse. This is usually shorter than the pulse
of pump power, as is exemplified in Figure 2.4 from [13].

Figure 2.4: Pulses of pump power and subsequent output power in a gain switched laser [13].

2.3.4 Semiconductor Laser Equations

There are different sets of stochastic differential equations that are typically used to describe
the light emitted by semiconductor lasers. The first one written here has been derived from
first principles, for a system in equilibrium and with a constant current I(t) ≡ I [14]:

dP

dt
=

[
GN(N −Nt)

1 + εP
− 1

τp

]
P + βBN2 +

√
2βBP̄ N̄FP (t) (2.24)

dφ

dt
=

α

2

[
GN(N −Nt)−

1

τP

]
+

√
βB

2P̄
N̄Fφ(t) (2.25)

dN

dt
=

I

e
− (AN +BN2 + CN3)− GN(N −Nt)P

1 + εP
(2.26)

where P (t) is the photon number inside the laser, φ(t) is the optical phase in the reference
frame corresponding to the resonant frequency ωth at the threshold current [15], and N(t) is
the number of carriers in the active region. The parameters appearing in the equations are
the following: GN is the differential gain, Nt is the carrier number at transparency, ε is the
non-linear gain coefficient, τP is the photon lifetime, β is the fraction of spontaneous emission
coupled into the lasing mode, α is the linewidth enhancement factor, I is the injected current,
e is the electron charge, and A,B and C are the non-radiative, spontaneous, and Auger recom-
bination coefficients, respectively.

The terms FP (t) and Fφ(t) are Gaussian white noises, with < Fi(t) >=0 and < Fi(t)Fj(t
′) >=

δijδ(t− t′). Note that the current I has a constant value, and variables P̄ and N̄ are averages
over time.
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In many applications, though, semiconductor lasers are used with a current I(t) that changes
over time. For this case, there are no rate equations derived from first principles. The usual
way to act has therefore been to substitute the averages P̄ and N̄ in equations (2.24)-(2.26) by
their corresponding variables [16]:

dP

dt
=

[
GN(N −Nt)

1 + εP
− 1

τp

]
P + βBN2 +

√
2βBPNFp(t) (2.27)

dΦ

dt
=

α

2

[
GN(N −Nt)−

1

τp

]
+

√
βB

2P
NFφ(t) (2.28)

dN

dt
=

I(t)

e
− (AN +BN2 + CN3)− GN(N −Nt)P

1 + εP
(2.29)

where Φ is again the optical phase, written in capital to differentiate the equations. The
integration of equations (2.27)-(2.28) is unstable when I(t) < Ith due to the presence of the
terms P 1/2 and P−1/2. That is why it is interesting to write the equivalent equations, for the
complex electric field E(t) = E1(t) + iE2(t) [17]:

dE

dt
=

[(
1

1 + ε | E |2
+ iα

)
GN(N −Nt)−

1 + iα

τp

]
E

2
+

√
βB

2
Nξ(t) (2.30)

dN

dt
=

I(t)

e
− (AN +BN2 + CN3)− GN(N −Nt) | E |2

1 + ε | E |2
(2.31)

where P (t) =| E |2= E2
1 + E2

2 , Φ(t) = arctan (E2/E1), and ξ(t) = ξ1(t) + iξ2(t) is a complex
Gaussian white noise with zero average and correlation < ξ(t)ξ∗(t′) >= 2δ(t− t′). These equa-
tions can be integrated to find Φ with no numerical instabilities [17].

The statistical properties of Φ and φ can be approximated by two-dimensional and one-
dimensional Brownian motion, respectively, when I < Ith. In this case the noise terms in
equation (2.28) and (2.25) dominate over the corresponding deterministic terms [17]. This oc-
curs because when the current is below the threshold value, P and P̄ are very small, and thus
the terms

√
βB/2P and

√
βB/2P̄ are very large. Then Φ, which is obtained from equation

(2.28) or (2.30), can be obtained from the approximation of (2.30): dEi/dt =
√
βB/2Nξi(t).

This means that the real and imaginary part of the electric field follow a two-dimensional
Brownian motion in the complex plane (E1, E2). On the other hand, φ, obtained from equation

(2.25), is approximately described by dφ/dt =
√
βB/2P̄ N̄Fφ(t) = constant ·Fφ(t), which is the

equation of one-dimensional Brownian motion.
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Chapter 3

Simulation of Stochastic Processes

3.1 One-Dimensional (1D) Brownian Motion

3.1.1 Mathematical Framework

In the first section of the previous chapter, Brownian motion was studied, using a function
f(x, t) as the particle density at every point x. This particle density can be interpreted as a
probability density function p(x, t) ∝ f(x, t), which hence follows the same equation (2.3) as f .
This is a Fokker-Planck equation of the form in (2.22):

∂p

∂t
= − ∂

∂x
[a(x, t)] +

1

2

∂2

∂x2

[
b(x, t)2p

]
taking a(x, t) ≡ 0 and b(x, t) ≡

√
D, and therefore its equivalent Langevin equation is:

dx

dt
=
√

2Dξ(t) (3.1)

where ξ(t) is a Gaussian white noise. Following result (2.23) from the previous chapter, this
SDE can be solved numerically by the algorithm:

x(i+1) = x(i) +
√

2D∆tZi (3.2)

where Zi ∼ N (0, 1). This algorithm was applied to solve Brownian motion for trajectories
starting at x(0) = 0 and t0 = 0, and running up to a final time tf = 1. The diffusion coefficient
was set to D = 1, all variables considered being dimensionless. The algorithm was developed
to use an integrating time of ∆t = ti+1 − ti ∼ 10−5, which was varied for different purposes.
Since this is very small, only the values calculated every writing time ∆T = 10−3 were saved.
This process was repeated N different times. Thus, the result was of N different stochastic
trajectories, also called realisations of the stochastic process, each defined by the values of X
over tf/∆t = 1000 writing times Ti. The program that numerically calculates the trajectories
is written in MATLAB and shown in Appendix 5.2.

3.1.2 Simulations

First, the algorithm was run for an integrating time of ∆t = 10−5 and N = 10000. Three of
the trajectories are shown in Figure 3.1 below, as an example.
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Figure 3.1: Three trajectories of 1D Brownian motion, with starting point x(0) = 0, starting
time t0 = 0 and final time tf = 1. The integrating time difference was ∆t = 10−5.

Now, taking into account all N = 10000 trajectories, it is of interest to calculate their mean
value and standard deviation, at every writing time Ti. This was done and is shown in Figure
3.2.

Figure 3.2: The mean value and standard deviation of all the N = 10000 1D Brownian motion
trajectories, with integrating time difference ∆t = 10−5.

Figure 3.2 shows how the mean value of all trajectories keeps very close to 0, as expected, since
the probability density at any time is Gaussian with mean 0 and variance 2Dt. The stand-
ard deviation, on the other hand, follows a function

√
2Dt of time, with D = 1. This is also

backing up the theory, since the standard deviation is defined as the square root of the variance.

Now, it is also interesting to analyse what happens to the variance when modifying the values
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of ∆t and N . If the latter is reduced, it is easy to predict that for smaller N the variance will
deviate from the 2Dt line, since the statistical variations will have a bigger impact. This is
evidenced in Figure 3.3, in which the variance was calculated for N = 200, 1000 and 10000
independent processes. The integrating time was kept constant at ∆t = 10−5.

Figure 3.3: The variance of N = 200, 1000 and 10000 independent 1D Brownian motion
processes, with integrating time difference ∆t = 10−5.

Furthermore, it is even more relevant to study how the variance converges when reducing ∆t.
For that, the algorithm was run three different times with N = 10000 and ∆t = 10−3, 10−4

and 10−5. The results of the computed variance are presented in Figure 3.4.

Figure 3.4: The variance of the N = 10000 1D Brownian motion processes for ∆t = 10−3, 10−4

and 10−5.

Figure 3.4 shows how the variance converges to the theoretical line of 2Dt when reducing ∆t,
just as expected. It will be relevant to keep this in mind for the next section of this work, since
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in the two-dimensional (2D) Brownian motion case, variance does not converge when reducing
∆t, which is an indication of it being infinite.

As it was already pointed out several times, 1D Brownian motion has a Gaussian probability
density, of mean 0 and variance 2Dt. This means that the numerically calculated trajectories
will approach a Gaussian distribution with time. For t = 0, the distribution is Dirac’s delta,
since all trajectories are at X(t = 0) = 0. But after enough time has passed, the distribution
will start to approach a Gaussian. This can be shown by creating a histogram of the value
of each trajectory at, for instance, the last time tf = 1. At this point the trajectories should
follow a N (0,

√
2) distribution. This is demonstrated in Figure 3.5, comparing two histograms

with N = 1000 (blue) and N = 10000 (red) with the pdf corresponding to N (0,
√

2).

Figure 3.5: Normalised histograms of the value X(tf ) of a 1D Brownian motion process for
∆t = 10−5 and N = 1000 (blue) and N = 10000 (red). The pdf corresponding to the N (0,

√
2)

distribution is plotted with a red line.

This clearly demonstrates how for N = 1000, the variable X(tf ) already follows a Gaussian,
and for N = 10000 the histogram follows the theoretical pdf closely.
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3.2 Two-Dimensional (2D) Brownian Motion

3.2.1 Mathematical Framework

After the analysis of Brownian motion in one dimension, it is of interest to make the problem
two-dimensional, and study what differs from the previous case. This problem is defined by
the same Langevin equation (3.1), but for both variables x1 and x2:

dxj
dt

=
√

2Dξj(t) ; < ξj(t) >= 0 , < ξj(t)ξk(t
′) >= δ(t− t′)δjk (3.3)

where ξ1(t) and ξ2(t) are Gaussian white noises, statistically independent one from the other,
and δjk is Kroenecker’s delta. Thus, to solve these SDEs, the same algorithm (3.2) can be used
for each one of the two variables, using independent Gaussian numbers Z1

i and Z2
i for each

iteration. As a result, 2D trajectories are computed, with a starting point (x
(0)
1 , x

(0)
2 ).

As the two variables x1 and x2 are independent, and both follow the 1D Brownian motion
SDE, analysing them separately will give the exact same results already discussed in section
3.1. What is novel and of relevance is to study the trajectories in polar coordinates, that is in
terms of a radius a(t) and an angle or phase Φ = Φ(t).{

P (t) = a2(t) = x2
1 + x2

2

Φ(t) = arctan(x2/x1)
(3.4)

As x1 and x2 are independent Gaussian random variables, [17] proves that P (t) is an exponential
random variable, with a probability density f(P ) given by:

f(P ) =

{
exp(−P/<P>)

<P>
, P ≥ 0

0 , P < 0
(3.5)

To calculate the mean value of P is trivial from its definition, since < P > = < x2
1 > + < x2

2 >

= σ2
x1

+ < x1 >
2 +σ2

x2
+ < x2 >

2 = 2Dt+ (x
(0)
1 )2 + 2Dt+ (x

(0)
2 )2, so:

< P (t) > = P (0) + 4Dt (3.6)

Regarding the phase Φ(t), [17] also shows that the stochastic differential equation that describes
it is written as:

dΦ

dt
=

√
2D

P
ξΦ(t) (3.7)

where ξΦ is a Gaussian white noise with < ξΦ(t) >= 0 and < ξΦ(t)ξΦ(t′) >= δ(t − t′). The
variance of the phase, σ2

Φ, depends both on time and the inverse of the random variable P [17]:

σ2
Φ = 2D < 1/P > t (3.8)

The mean value of 1/P is calculated by integrating it with the probability function in (3.5):

< 1/P >=

∫ ∞
0

1

P

exp(−P/ < P >)

< P >
dP =∞ (3.9)

This proves that the variance of the phase σ2
Φ diverges. This is a classical result obtained by

Paul Lévy in 1940 [18]. Numerically, an infinite variance cannot be calculated. Instead, this
divergence is proved by calculating the variance of a set N of trajectories. For smaller integ-
ration times ∆t, this variance will be higher and higher. This shows how in the limit, for an
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infinitely small integration time the variance would diverge.

In fact, as F. Spitzer showed in 1958 [19], the probability density function of Φ tends, when
t→∞, to a Cauchy distribution with mean value 0, defined in equation (3.10) below.

f(Φ) =
1

πγ

1

1 +
(

Φ
γ

)2 (3.10)

This distribution has an infinite variance, which is shown since the integral
∫∞
−∞ x

2/(1 + x2)dx
diverges.

3.2.2 Algorithm to calculate Φ

The phase Φ is calculated simply by determining arctan(x2/x1). This function, though, is
defined to only take values in the interval [−π/2, π/2]. To maintain the continuity and unboun-
dedness of the phase, so that it can be considered as a continuous stochastic process Φ(t) by
itself, it is important to count how many times the trajectory crosses the vertical axis x1 = 0.
This way the phase can take any value in R, and angles bigger than π in module will count for
how many turns the trajectory made around the origin.

For this purpose, let’s describe an algorithm to calculate the phase at every integration time,
developed in [17]. First, let’s define two numbers: n for the number of the counter-clockwise
turns (cuadrant Q1 to Q2 or Q3 to Q4), and m for the clockwise turns (Q2 to Q1 or Q4 to
Q3). Therefore, every time the trajectory crosses the axis counterclockwise or clockwise, n or

m are increased by 1, respectively. Naming x
(1)
j the value of the variable xj just after the first

iteration, the algorithm calculates the phase at the time ti as follows:

Φ(ti) = Φi =



arctan
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x

(i)
2

x
(i)
1

)
+ (n−m)π , x

(1)
1 > 0

arctan

(
x

(i)
2

x
(i)
1

)
+ (n−m− 1)π , x

(1)
1 < 0 and x

(1)
2 < 0

arctan

(
x

(i)
2

x
(i)
1

)
+ (n−m+ 1)π , x

(1)
1 < 0 and x

(1)
2 > 0

(3.11)

It is noted that, equation (3.11) does not take into account the diagonal crossings, between Q1
and Q3 and Q2 and Q4. To take these into account the algorithm adds or subtracts π with
1/2 probability in those cases, considering that with a smaller integration time the trajectory
was just as likely to have arrived there both clockwise or counter-clockwise. This is the main
difference between using this algorithm or a predefined function in MATLAB like ’unwrap’,
which always minimises the phase difference in a diagonal crossing, instead of considering the
1/2 probability. The program calculates the phase for all integration times ti but only saves
the data of the writing times Ti. The program that calculates the trajectories and implements
this algorithm to determine Φ is written in MATLAB and shown in Appendix 5.2.

3.2.3 Simulations

The calculation of the 2D Brownian trajectories was performed as explained above, first for
(x

(0)
1 , x

(0)
2 ) = (0, 0). In Figure 3.6 three independent trajectories are shown. The phase of each

trajectory was calculated by the algorithm (3.11), and they are plotted in Figure 3.7 over time.
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Figure 3.6: Three trajectories of 2D Brownian motion, with starting point (x
(0)
1 , x

(0)
2 ) = (0, 0),

starting time t0 = 0 and final time tf = 1. The integrating time difference was ∆t = 10−5.

Figure 3.7: Phase Φ of the three independent 2D Brownian motion trajectories, over time t.
Φ(t) is a stochastic process itself.

At a first look, the stochastic process Φ(t) could resemble the 1D Brownian motion trajectories
in Figure 3.1. The mean value and standard deviation of Φ(t) can also be calculated, and
results are in some way similar to the ones from the previous section, as shown in Figure 3.8.
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Figure 3.8: Mean value and standard deviation of the phase Φ of N = 10000 2D Brownian
motion trajectories.

The mean value of Φ fluctuates around 0, and the standard deviation follows something which
looks like a square root, just like in the 1D Brownian motion process. However, the values of
σX in Figure 3.2 and σΦ in Figure 3.8 are very different. The phase Φ in Figure 3.7 changes
very fast at initial times, increasing or decreasing to certain positive or negative value. Then, it
can stabilise for a long period of time like in the yellow and blue trajectories in the plot. Later
on, the trajectory might change abruptly again, like in the red trajectory.

This has a really simple mathematical explanation. Since the starting point is the origin (0,0),
at the beginning the trajectories can move around the quadrants with very small steps, making
the phase vary abruptly. Later, it is reasonable to think that the trajectory will displace from
(0,0) to one of the quadrants, thus making it more difficult for Φ to change so abruptly. In the
case that (x1, x2) for any chance come back close to the origin again, like the red trajectory
does, these abrupt changes can occur again.

Plotting the variance of the phase σ2
Φ for N = 10000 trajectories, just like for 1D Brownian

Motion, these abrupt changes of the phase are evident. This is done in Figure 3.9. For small
times, the variance increases almost vertically. This is because as said before, (0, 0) is a singular
point, and when trajectories are close to it they might vary really fast. Moreover equation (3.8)
shows that σ2

Φ ∝< 1/P >. Near (0, 0) P is almost 0, and 1/P tends to infinity.

When P increases, i.e. the square of the distance to the origin increases, 1/P is smaller and the
variance of the phase σ2

Φ will increase slower. This perfectly summarizes this idea that getting
closer to (0, 0) involves faster variability in Φ, and getting away from it means the trajectory
is deep into some quadrant, with high P and low phase variability. Note that here when we
refer to ’the variance σ2

Φ’ we are referring to the numerically estimated variance. The purely
mathematical variance is always infinity, as also shown in Figure 3.9 by the fact that σ2

Φ does
not converge as ∆t decreases.
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Figure 3.9: The variance of the phase φ in the N = 10000 2D Brownian motion processes for
∆t = 10−3, 10−4 and 10−5.

3.2.4 Starting Point (1,0)

In the previous analysis, it was noticed how (0, 0) is a singular point, since when trajectories get
close to it Φ can vary really fast. To further analyse 2D Brownian motion, it seems reasonable
to study processes with a starting point further away from the origin. Thus, the rapid increase
of the variance for smaller times should be avoided. That is why the case (x

(0)
1 , x

(0)
2 ) = (1, 0)

was studied next, which also has a starting phase Φ = 0 and hence the mean < Φ > should
also be zero. Three trajectories are shown in Figure 3.10 and their respective phases in Figure
3.11.

Figure 3.10: Three trajectories of 2D Brownian motion, with starting point (x
(0)
1 , x

(0)
2 ) = (1, 0),

starting time t0 = 0 and final time tf = 1. The integrating time difference was ∆t = 10−5.
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Figure 3.11: Phase Φ of the three independent 2D Brownian motion trajectories from
(x

(0)
1 , x

(0)
2 ) = (1, 0).

The first result to notice is how now the phase does not abruptly change at t = 0, as was
expected. It is interesting to analyse the variance of the phase σ2

Φ over time in this case.

Figure 3.12: The variance of Φ for N = 10000 2D Brownian motion processes, ∆t = 10−3, 10−4

and 10−5.

This time, the variance doesn’t increase faster for small times than bigger times. Moreover, as
seen before, when ∆t is reduced, the variance always increases. This is how the divergence of
σ2

Φ is numerically proved. In any way, σ2
Φ has smaller values than in Figure 3.9 and is not a

linear function of time like in 1D Brownian motion. This is once again because σ2
Φ ∝< 1/P >,

which is not constant since P is a time-dependent random variable. To show this, in Figure
3.13 the mean value of P over time for N = 10000 trajectories is plotted, with ∆t = 10−3, 10−4

and 10−5.
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Figure 3.13: The mean of P for N = 10000 trajectories, over time t.

The plot shows how equation (3.6) is fulfilled, that is < P >= P (0) + 4Dt. In this case

P (0) = (x
(0)
1 )2 + (x

(0)
2 )2 = 1 and since D = 1, the slope of the line is 4. This is perfectly

followed for all integration times ∆t. These results show that P , contrary to Φ, has finite
moments, which do converge when ∆t is decreased. This happens because P is described by an
exponential distribution, as shown in (3.5). To visualise that, a histogram of all the N = 10000
values of P (tf ) is plotted in Figure 3.14, using a logarithmic scale on the y-axis to exhibit it is
exponential.

Figure 3.14: The distribution of P (tf ) for N = 10000 trajectories. The number of trajectories
is normalised and on logarithmic scale. The distribution follows a line, which shows that it is
exponential.

Last, it is also insightful to study the histogram of the phase at the last time, Φ(tf ), as done
with X in 1D Brownian motion. This is shown in Figure 3.15, using logarithmic scale for the
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number of trajectories, which are also normalised. The logarithmic scale allows to visualise
better the tails of the distribution, which decrease slowly.

Figure 3.15: Histogram of the value Φ(tf ) of a 2D Brownian motion process for ∆t = 10−5 and
N = 10000. The number of trajectories is normalised and in logarithmic scale. A Gaussian
curve with the standard deviation of the data (red), and a Cauchy distribution curve (blue)
are added.

The plot shows in red the Gaussian curve with the standard deviation of the data, and in blue
the Cauchy distribution. The Cauchy probability approximates the data closely, specially on
the tails of the distribution, where the Gaussian drops faster to zero. This explains why the
Cauchy distribution’s variance diverges, while the Gaussian has finite variance.

Figure 3.16: Normalised histograms of the number of trajectories with their values of Φ(tf/100)
(a), Φ(tf/10) (b) and Φ(tf/2) (c). Cauchy distributions are painted in blue on all of them.

In the beginning of this section it was explained how Φ would approximate the Cauchy distri-
bution for t → ∞ . But on Figure 3.15 it can be seen how t = tf ≡ 1 is already a really big
time in this sense, since the distribution is very close to a Cauchy. Therefore, it is insightful
to analyse the distribution of Φ also at intermediate times, to try to visualise its evolution in
time. It is clear that at t = 0 the distribution is Dirac’s delta, since all trajectories start at
Φ(0) = 0. But with time, trajectories start to ’open up’, and more and more of them will go
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away from zero. In Figure 3.16 the distributions for t = tf/100, t = tf/10 and t = tf/2 are
plotted.

The results show that the distribution of trajectories approaches the Cauchy distribution very
quickly in time. For t = tf/100 ≡ 0.01 and t = tf/10 ≡ 0.1, the distribution is already close
in the center, but is quite far in the tails. For a time t = tf/2 ≡ 0.5, the distribution already
approximates the data closely, in the centre and the tails, just like what happens for t = tf ≡ 1.
This shows that t → ∞, in the sense of Spitzer’s theorem, in this case is already achieved for
times greater than t = 0.5.
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Chapter 4

Optical Phase in a Semiconductor
Laser

This chapter will study the results of the experimental measurement of the optical phase in a
semiconductor laser. The experiment will be briefly explained, but is not the main focus of this
work, since developing it wasn’t part of this Undergraduate Thesis. The goal is to study the
mathematical properties of the measured data, under the stochastic process theory developed
in previous chapters, to understand the relationship between the optical phase and Brownian
motion processes.

4.1 Experimental Measurement of the Optical Phase

4.1.1 Experimental Set Up and Method

The experimental setup is shown in Figure 4.1. A single polarization 90o optical hybrid (kylia
COH24) is used to measure the phase from a single longitudinal discrete mode laser (DML),
a type of semiconductor laser, with a threshold current of Ith = 14.14 mA at 25◦C. The
hybrid has two inputs. The light from the DML goes through an optical isolator (OI) and
a polarization controller (PC), and enters one input. A tunable laser (TL) (Pure Photonics
PPCL300) feeds the other input. The outputs from the hybrid go to two balanced amplified
photodetectors (Thorlabs PDB480C-AC) connected to two channels of a real-time oscilloscope
(Keysight DSO91204A).

Figure 4.1: Experimental set up employed to measure the optical phase of a DML semiconductor
laser.

The electrical output at photodetectors 1 and 2, PD1 and PD2, are proportional to [20]:{
PD1 = 1/

√
2S · LO cos [(ωs − ωLO)t+ ϕ(t)] ≡ E1

PD2 = 1/
√

2S · LO sin [(ωs − ωLO)t+ ϕ(t)] ≡ E2

(4.1)
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where
S(t) = Sei(ωSt+ϕ(t)) (4.2)

is the electric field corresponding to the DML, and

LO(t) = LOei(ωLOt) (4.3)

is the electric field corresponding to the tunable laser. The linewidth of the optical spectrum
of the TL is 75 kHz, much smaller than the linewidth, of the order of GHz of the DML laser
close to threshold, which is the operating region on this work. That is why the phase noise of
the TL is neglected. Thus the phase φS of the semiconductor laser is φS = ωSt+ ϕ(t). ϕ(t) is
the phase noise of the DML laser, and is the quantity that wants to be measured and analysed.
The phase θ(t) that appears in PD1 and PD2 is:

θ(t) = ∆ωt+ ϕ(t) (4.4)

where ∆ω = (ωS − ωLO). Furthermore, the derivative of θ(t) over time is:

dθ

dt
= ∆ω +

dϕ

dt
(4.5)

Now, the angular frequency of the laser is dφS/dt = ωS+dϕ/dt, and its average over realisations
is < dφS/dt >= ωS+ < dϕ/dt >, which must be unequivocally ωS, and hence < dϕ/dt >= 0.
Calculating now the average over realisations of equation (4.5):

<
dθ

dt
>= ∆ω (4.6)

Since dθ/dt is a stationary process, averages over realisations are equal to averages over time:

∆ω =<
dθ

dt
> =

dθ

dt
:=

1

T

∫ T

0

dθ

dt
dt (4.7)

where T is an integration interval chosen to calculate all temporal averages. Therefore, once
∆ω can be numerically calculated by (4.7), the optical phase ϕ(t) can be derived from equation
(4.4). Note that the parameter ∆ω fluctuates with time, since the frequencies ωS and ωLO also
fluctuate. In any laser, the inner temperature varies over time, which makes the instantaneous
frequency of the laser vary. Thus, it is important to determine a time interval for which ∆ω
can be considered constant. This is the case for a time interval of T = 1µs or less, as is shown
by [21].

4.1.2 Numerical Algorithm to calculate ϕ

The experimental data determined consists of three elements for each measurement: time, and
E1 and E2, which are PD1 and PD2 in equation (4.1). The time difference between two con-
secutive data points is ∆t = tj+1 − tj = 500ps. In the measurements it is considered that
the bias current applied to the DML is 14mA, just below the threshold current. The data
is cut N times, so that N different trajectories can be considered, independent one another
since the process is Markovian. N is calculated so that each trajectory consists of 2000 data
points, and thus, the total time of the trajectory is T = 1µs and ∆ω can be considered con-
stant. The data file contains data for 20 millions of times, and therefore N = 2 ·107∆t/T = 104.

Running the same algorithm from subsection 3.2.2 on E1 and E2, θ(t) is determined, since
this is the phase that appears in PD1 and PD2. To determine ϕ(t), the value of ∆ω must be
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calculated, from equation (4.7) derived above. The time interval T to perform the averages is
chosen as the total time length of each trajectory. Now if each trajectory has ip data points,
∆ω can be numerically calculated as:

∆ω =
dθ

dt
=

1

(ip− 1)

ip∑
j=2

θ(tj+1)− θ(tj)
∆t

(4.8)

From this, the calculation of the phase noise ϕ(t) consists just on following equation (4.4):

ϕ(tj) = θ(tj)−∆ω(j ·∆t) (4.9)

where instead of multiplying by tj, j ·∆t is used, so that for every trajectory it can be calculated
as if t1 = 0 and tip = T . The program that uses this algorithm to calculate the phases θ and ϕ
from the experimental data was written in MATLAB and is shown in Appendix 5.2.

4.2 Results and Analysis

4.2.1 Results of θ and ϕ

The results from an experiment like the one described in 4.1.1 will be studied. First, the
algorithm from subsection 3.2.2 is applied to the data, to calculate the phase θ from PD1 and
PD2. This is plotted over time for 5 different trajectories, in Figure 4.2.

Figure 4.2: The phase θ from PD1 and PD2, over time t, for 5 different trajectories.

In the Figure 4.2 it is noted how θ starts at 0, and then reduces down to very negative values.
This is because, as shown in equation (4.4), θ(t) = ∆ωt + ϕ(t), and it can be deduced ∆ω is
negative for the 5 trajectories.

In fact, in 4.1.1 it was explained how ∆ω = dθ/dt, but only because dθ/dt is a stationary
process, i.e. its probability distribution does not depend on time. This is also evident in the
experimental results. The derivative is numerically calculated as dθ(i)/dt = (θ(i)−θ(i−1))/∆t,
and plotted against time in Figure 4.3 for two trajectories. The time derivatives are divided by
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2π, to convert from rad/s to Hz. This will be important later, when considering the instantan-
eous frequency ν of the laser.

Figure 4.3: Numerical calculation of the time-derivative 1/2π(dθ/dt), over time t, for 2 of the
trajectories.

It can be seen how dθ/dt has the exact same evolution for different times, which is the meaning
of it being stationary. Thus, the constants ∆ω can be numerically calculated by equation (4.8).
The results are shown on Figure 4.4, for 1000 different trajectories. Since, as explained in 4.1.1,
the N = 10000 trajectories were ”cut” from a single big trajectory over time, ∆ω is plotted
over time, defining times as tj = j ∗ T where T is the time-length of each trajectory.

Figure 4.4: The experimental calculation of the constant ∆ω for 1000 different trajectories,
over the time t characteristic to each trajectory.

Finally, since ∆ω is known for all the N trajectories, the results of ϕ can be derived from
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equation (4.9), as ϕ(t) = θ(t)−∆ωt. These are shown in Figure 4.5, for the same 5 trajectories
as in Figure 4.2, over the time t up to 1µs; and in Figure 4.6 zooming in, for t up to 125ns.

Figure 4.5: Experimental results of the phase noise ϕ for the 5 different trajectories, for times
t from 0ns to 1000ns.

Figure 4.6: Experimental results of the phase noise ϕ for the 5 different trajectories, for times
t from 0ns to 125ns.

Note that this is a numerical algorithm, and since time T is not infinite, the results of ∆ω are
not exact, and depend strongly on the choice of T . In fact, as shown in the previous section
< dϕ/dt >= 0, which implies that:

dϕ

dt
=

1

T

∫ T

0

dϕ

dt
dt = 0 =

1

T
ϕ(T ) ⇒ ϕ(T ) = 0 (4.10)
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and explains why the phase noise ϕ of every single trajectory in Figure 4.5 ends up at 0. This
shows how ϕ(t) is inevitably characterised by the choice of T , and that results of ϕ(t) are only
reliable for small times t << T . This is already visible analysing the results of ϕ only up to a
time t = 125ns, plotted in Figure 4.6.

It is also interesting to analyse the time derivative of ϕ. In Figure 4.7, the numerical time
derivative 1/2π(dϕ/dt) is plotted against time for two of the trajectories.

Figure 4.7: Numerical calculation of the time-derivative 1/2π(dϕ/dt), over time t, for 2 of the
trajectories.

The instantaneous frequency of the laser is ν(t) = 1/2π(dφS/dt) = 1/2π(dϕ/dt) + ωS/2π, so
the time derivative plotted in Figure 4.7 is in reality the variation between the instantaneous
frequency and the optical frequency of the laser ωS/2π:

1

2π

dϕ

dt
= ν(t)− ωS

2π
(4.11)

and therefore 1/2π(dϕ/dt) is the noise of the optical frequency. Mathematically, this noise
can be described with a white noise (see section 2.3.4), since its average over time < dϕ/dt >
equals 0, there is no correlation at very small time differences, and its variance is really big as
can be seen in the plot. Note that the data on Figure 4.7 is limited by the bandwidth of the
photodetectors, which is 1.6 GHz [20].

4.2.2 Statistical Moments and Distribution of ϕ

Given that the primary aim of this chapter is to study the optical phase noise in a semiconductor
laser as a stochastic process itself, now the objective is to determine the statistical properties
of the results. As done previously for Brownian motion, first let’s calculate the mean value and
standard deviation of ϕ(t) over the N trajectories. This is shown over time in Figure 4.8.
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Figure 4.8: The average < ϕ(t) > and standard deviation σϕ of the phase noise ϕ over the N
realisations, versus time t.

As expected, the average is always really close to zero for all times. The standard deviation, on
the other hand, increases at first for small times, but later starts decreasing and reaches 0 at
time t = T . This is for the same reason why ϕ(T ) = 0 for all trajectories, which was explained
in the previous section.

As for Brownian motion, it is also relevant to study the variance of ϕ for the N = 10000
trajectories. This is shown in Figure 4.9, versus time t. Since all trajectories are forced to end
up at zero, ϕ(T ) = 0, it is understandable that the variance at t = T will also be zero, since
there is no variation in the trajectories. But importantly, σ2

ϕ increases linearly with t when
t << T , a typical feature of 1D Brownian motion.

Figure 4.9: The variance σ2
ϕ of the phase noise ϕ over the N realisations, versus time t.
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The plots prove that the choice of T totally determines the resulting calculation of ϕ. To show
this dependence between the results and the choice of the time-interval T , it is insightful to plot
the variance over time for different values of T . To do this, the whole calculation of θ and ϕ
must be changed, since the initial list of results must be cut in trajectories of a different length
Ti. This was done, but the same number of a total N = 10000 trajectories was kept, since this
is considered high enough to calculate statistical moments. The results are plotted in Figure
4.10, over one time interval for T = 1000, 500, 200 and 100 ns.

Figure 4.10: The variance σ2
ϕ versus time t of one time interval, for T = 1000, 500, 200 and 100

ns.

The results in Figure 4.10 are overall significantly different for every choice of T . However,
analysing at small times, t << T , it is clear that they are much closer one another. To visualise
that, in Figure 4.11 the same results are plotted but only up to a time t = 20ns.

Figure 4.11: The variance σ2
ϕ versus time t up to 20ns, for T = 1000, 500, 200 and 100 ns.
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Now, in Figure 4.11 all variance values are very similar, and approach linear functions of time.
Moreover, the T = 500ns variance is really close to the T = 1000ns variance, which shows
there is a convergence to that value. Similarly to the reasoning done for Brownian motion with
the reduction of ∆t, this shows that the variance converges in the small time regime t << T .
Analogously as well to what was done for Brownian motion, a normalised histogram of the
number of trajectories ordered by their phase noise ϕ value is plotted in Figure 4.12. This is
done for a time t = 20ns, in the small time regime t << T .

Figure 4.12: Normalised histogram of the phase noise ϕ of the trajectories at a time t = 20ns.
A red Gaussian pdf approximates the data.

The distribution of the phase noise ϕ shown in the plot is very close to a Gaussian, as can be
seen by plotting the Gaussian distribution corresponding to the standard deviation of the data
and mean 0 in red. The diffusion of the phase noise is characterised by the diffusion coefficient,
Dϕ, defined by σ2

ϕ = 2Dϕt, for t << T . Dϕ can be obtained from a linear fit in Figure 4.11 for

t = 1000ns. The result is Dϕ = 4.67 ± 0.01 rad2/ns, with a regression coefficient of 0.99989.
Keeping these results in mind, the next chapter develops on the main goal of this work, which
is to understand which type of Brownian motion better describes the experimental phase noise
ϕ in a semiconductor laser.
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Chapter 5

Discussion & Conclusions

In the final chapter of this work, the aim is to compare the experimental results of the phase
noise ϕ from Chapter 4 with the numerical results of 1D and 2D Brownian motion, developed
in Chapter 3. That comparison is performed using the different statistical moments and dis-
tributions determined in both chapters, and studying their relationship with the SDEs of both
Brownian motion and the semiconductor laser.

5.1 Discussion of the Experimental Results

5.1.1 Semiconductor Laser Equations and Brownian Motion

In the second chapter of this work, subsection 2.3.4, the stochastic rate equations for a semi-
conductor laser were introduced. Two different sets of equations were introduced. The first
three equations, (2.24)-(2.26), considered the current I in the laser to be constant over time,
and were derived from first principles. Equation (2.25) is the one that describes the phase φ of
the laser in that case:

dφ

dt
=
α

2

[
GN(N −Nt)−

1

τP

]
+

√
βB

2P̄
N̄Fφ(t)

where Fφ is a Gaussian white noise. The evolution of φ can be well approximated by 1D
Brownian motion in Eq. (2.25) when I < Ith because the noise term (right) dominates over the
deterministic term (left). This means that the distribution of φ is Gaussian, and therefore finite
values of σ2

φ are obtained, with a linear dependence on t just like in one dimensional Brownian
motion.

On the other hand, it was explained how when the current I is not constant, historically
the solution has been to write the same equations but changing averages over time P̄ and N̄ by
the variables, and I by I(t). This approach is not based on first principles, and gives another
set of three equations, (2.27)-(2.29). These are mathematically equivalent to equations (2.30)
and (2.31), which use the complex electric field E(t) = E1 + iE2. The equation that describes
this electric field is equation (2.30):

dE

dt
=

[(
1

1 + ε | E |2
+ iα

)
GN(N −Nt)−

1 + iα

τp

]
E

2
+

√
βB

2
Nξ(t)

Recall that the phase of the electric field, i.e. the argument of the complex number E(t) =
E1 + iE2, was written as Φ, to differentiate it from the phase φ in the first set of equations. For
bias currents below threshold, I < Ith, equation (2.30) can be approximated by 2D Brownian
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motion, again because the deterministic term (left) is much smaller than the noise term (right).
In fact, using these last equations, it has been shown that the variance of Φ diverges σ2

Φ = ∞
[17], just like it was shown here for two-dimensional Brownian motion.

5.1.2 Which set of equations better describes the experimental res-
ults?

It is the time to try to answer the main question in this work. Between the two, which set of
equations better describes the experimental results? As explained in the previous subsection,
5.1.1, this is equivalent to comparing the statistical moments and distributions of the experi-
mental results with those of 1D and 2D Brownian motion.

It is important to note that, in the experimental results, the optical phase noise ϕ(t) was
studied, which is not exactly the same as the phases φ and Φ in the semiconductor laser rate
equations. It was explained in subsection 2.3.4 that, in equations (2.24)-(2.26), φ is the optical
phase in the reference frame of the threshold frequency ωth. This means that the phase of the
laser would be ωtht+φ(t). On the other hand, the phase of the laser was written in section 4.1
as ωst+ ϕ(t). Therefore, it can be concluded that:

φ(t) = (ωs − ωth)t+ ϕ(t) (5.1)

Since (ωs − ωth)t is not a random variable, it is understood that the statistical properties of
both φ and ϕ will be the same. That is, σ2

ϕ = σ2
φ, and if φ is Gaussian, ϕ is also Gaussian with a

mean value different by a constant (ωs−ωth)t. Moreover, (ωs−ωth) << ωs, and therefore both
φ and ϕ are almost the same. The exact same applies to the phase Φ in equations (2.27)-(2.29).

At this point, the conclusion may already seem evident. As explained several times, the results
of θ and ϕ from the numerical algorithm that is employed to analyse the data are only valid in
the small time regime, t << T . For small times, it is shown that the method gives variance σ2

ϕ

values that converge to a linear function of time, as explained in Figure 4.11. This convergence
shows that the stochastic process has a finite variance, and moreover that this variance is a
linear function of time.

Furthermore, it was shown in Figure 4.12 that the probability distribution of the stochastic
process ϕ already approaches a Gaussian for small times t = 20ns. These two properties, as
was shown in Chapter 3, are characteristic of 1D Brownian motion. It can be thereby con-
cluded that, the set of equations, from the two described in Chapter 2, which better describe
the experimental data, are equations (2.24)-(2.26).

5.2 Conclusions

The main conclusion of this work is that the experimental measurement of the phase noise ϕ
in a semiconductor laser is a stochastic process with finite variance and Gaussian distribution.
This makes it very similar to one dimensional Brownian motion, which has a Langevin equation
which is like the equation for φ in (2.24)-(2.26), but without the deterministic term.

To describe ϕ mathematically, studies on QRNG based on gain-switching of semiconductor
lasers, have usually used equations (2.27)-(2.29), which are equivalent to equations (2.30) and
(2.31) [3, 17, 22, 23, 24, 25, 26, 27] . These equations, though, are similar to the Langevin
equations of 2D Brownian motion; and therefore, as shown by [17], they imply σ2

Φ = ∞. Fur-
thermore, the phase Φ of 2D Brownian motion has a Cauchy probability distribution, which is
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very different from the Gaussian distribution.

These findings provide robust theoretical and experimental support for equations (2.24)-(2.26),
which offer a comprehensive explanation of the results. Additionally, they cast doubt on the use
of equations (2.27)-(2.29) and (2.30)-(2.31) when current is below the threshold value, which
can’t explain the convergence of the variance of ϕ and its Gaussian distribution. Although they
have been used in the latest bibliography on gain-switched semiconductor lasers for QRNG,
the use of equations (2.27)-(2.29) and (2.30)-(2.31) is not considered correct, considering these
results. They just give an approximation of the real results. The goal would be to find a modi-
fication of these equations that avoids the divergence of the variance and explains the Gaussian
distribution of the results.
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Appendix A

brownian-motion-1D.m calculates N trajectories of 1D Brownian motion:
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Appendix B

brownian-motion-2D.m calculates N trajectories of 2D Brownian motion, and their respective
phase Φ, using the function calculate-phase.m:
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Appendix C

experiment.m calculates the phases θ and ϕ of N trajectories from the file ’data’, using the
function calculate-phase.m:
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