
Journal of Systems Architecture 122 (2022) 102339

A
1
(

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Priority assignment in hierarchically scheduled time-partitioned distributed
real-time systems with multipath flows
Andoni Amurrio a,b,∗, J. Javier Gutiérrez b, Mario Aldea b, Ekain Azketa a

a IKERLAN Research Centre - Basque Research & Technology Alliance, Arrasate, Spain
b Software Engineering and Real-Time Group, University of Cantabria, Santander, Spain

A R T I C L E I N F O

MSC:
00-01
99-00

Keywords:
Priority assignment
Schedulability
Time-partitioning
Multipath Flows

A B S T R A C T

The increasing complexity in the design of industrial embedded systems represents a challenge in the
development of scheduling algorithms for such systems, which are essential to guarantee that they meet their
deadlines even in the worst-case situation. In this work, we propose a new collection of non-iterative priority
assignment algorithms for multipath flows within hierarchical schedulers based on state-of-the-art scheduling
algorithms, which have been adapted to this complex system model. They are applied to an industrial railway
use case that has motivated this work, and then their performance is evaluated in different general synthetic
scenarios, with the aim of providing a view on how they behave in a wider range of system configurations.
1. Introduction

The design of modern cyber–physical systems is facing the chal-
lenge of meeting both sophisticated functional and non-functional re-
quirements, which has led to the increase of their complexity. This
phenomenon can be observed in several industrial domains, such as
avionics, whose architectures have evolved to time and space par-
titioned models [1,2], where applications can execute in isolation,
i.e. without interfering each other. Railway companies are also will-
ing to re-factor their application designs and to substitute traditional
architectures by novel execution environments that allow the execu-
tion of several applications within embedded architectures, even when
their criticality levels (i.e. the level of assurance that safety functions
provide according to a safety certification standard) are different [3].
This is what the scientific community calls mixed-criticality systems.
During their design, it is essential to keep strict temporal and spa-
tial isolation among components, so that low criticality applications
cannot jeopardize high criticality ones. This is usually achieved by
implementing partitioning techniques. On the one hand, temporal par-
titioning guarantees that an application will be executed only during
the specified amount of time, without compromising other applications
by CPU or shared resource monopolization. On the other hand, keep-
ing applications isolated within their memory addresses and avoiding
unauthorized read/write operations are part of the space partitioning

∗ Corresponding author at: IKERLAN Research Centre - Basque Research & Technology Alliance, Arrasate, Spain.
E-mail address: aamurrio@ikerlan.es (A. Amurrio).

techniques. Partitioning also allows component integration when sev-
eral stakeholders take part in system development. In [4] readers can
find a complete survey on mixed-criticality systems, addressing differ-
ent design aspects such as timing analysis or scheduling issues. Several
European research projects have also made important contributions on
the execution of partitioned systems [5,6].

In the development of safety critical systems, it is also a common
practice that software components are executed in more than one
instance, so that processing outcomes have a higher level of integrity.
A well-known strategy to achieve this is via active redundancy and
voting techniques [7], and in the context of real-time systems, these
redundant architectures can be modelled as complex execution flows,
such as multipath flows. In multipath flows, fork and join structures are
used to describe precedence or data dependencies between the different
functions that compose safety critical applications. Such applications
must meet, even in the worst-case scenario, hard deadlines that are
imposed on software, being the consequences of not meeting them
potentially catastrophic. Therefore, scheduling, which refers to the
specific task-execution order that guarantees meeting such deadlines,
becomes a major concern. In [8] the authors perform a deep analysis
and characterization of existing techniques for mapping and scheduling
distributed real-time systems, and one of the main conclusions is that
the scheduling of distributed real-time systems based on partitioning is
a topic that has been scarcely addressed.
vailable online 3 December 2021
383-7621/© 2021 The Authors. Published by Elsevier B.V. This

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.sysarc.2021.102339
Received 26 October 2021; Accepted 13 November 2021
is an open access article under the CC BY-NC-ND license

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:aamurrio@ikerlan.es
https://doi.org/10.1016/j.sysarc.2021.102339
https://doi.org/10.1016/j.sysarc.2021.102339
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102339&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.

s
c
p
t
a
i
f
s
a
(
r
t
a

u
t
E
t
F
a
s
a
p

o
D
w
t
c
l
c
k
h
F

1

t
f
i
a
s

i
e
r
t

1.1. Related work

There is a vast number of scheduling approaches for real-time
systems, since [9] demonstrated that Rate Monotonic priority assign-
ment was optimal for periodic and independent tasks whose deadlines
are equal to their periods. Later, in [10] Deadline Monotonic pri-
ority assignment was proved to be optimal when tasks’ deadlines
are not longer than their periods, and in [11] the authors presented
the algorithm called ‘‘Optimal Priority Assignment’’ (OPA), which is
optimal for arbitrarily triggered and independent tasks. As architec-
tural paradigms evolved, so did the scheduling parameter assignment
techniques, developing specifically dedicated algorithms for certain
problems (heuristic approaches) such as [12,13] as well as search and
more general optimization algorithms (metaheuristic approaches) such
as genetic algorithms [14] or simulated annealing [15]. In [16], some of
the most relevant priority assignment techniques from the last 40 years
are compiled; they can be applied to a wide range of real-time systems,
from mixed-criticality ones to those using probabilistic analysis.

More recently, time-partitioned systems are scheduled via iterative
algorithms in [17] by allocating tasks to time-partitions and produc-
ing a Time-Division Multiple Access (TDMA) schedule taking context-
switch overheads into consideration, addressing single-core platforms
and constrained (𝐷 < 𝑇 ) deadlines. They do not provide any priority as-
ignment for the hierarchical scheduler they implement. In [18] mixed-
riticality applications are mapped and scheduled in heterogeneous
artitioned architectures using an iterative optimization algorithm, al-
hough it does not consider inter-partition communications [19], which
re a key feature in redundant execution schemes like the one presented
n our use case. The work in [20] proposes an iterative algorithm
or fixed-priority assignment in both preemptive and non-preemptive
cheduling policies. However, it does not consider time-partitioned
rchitectures like the one addressed in this work. Finally, in [21] an ILP
Integer Linear Programming) formulation is proposed for scheduling
eal-time tasks in uniprocessor systems. This approach can be applied
o hierarchical schedulers, although they do not address distributed
rchitectures.

On the other hand, non-iterative algorithms, i.e. those that provide a
nique solution without any optimization loop, have also been used in
he literature when addressing priority assignment. For instance, UD,
D, PD [22], EQF and EQS [23] are deadline distribution algorithms
hat have been used both in Fixed Priorities (FP) and Earliest Deadline
irst (EDF) systems. In [24] these algorithms were used with the aim of
ssigning Scheduling Deadlines in EDF systems, and in [25] it is demon-
trated that there are systems scheduled by FP where non-iterative
lgorithms may outperform iterative ones. These works however were
roposed only for linear systems without time-partitioning.

The system model addressed in this work, as well as the developed
ptimization tools around it, can be directly transformed into the
AG (Directed Acyclic Graph) model. There is a bunch of research
orks addressing this system model, such as [26–28]. In these works,

he authors propose several methods to decompose DAGs into multi-
ore architectures under different scheduling policies (Earliest Dead-
ine First, Rate Monotonic...) and always considering implicit-deadline
onstraints. However, there is not any work, as far as the authors
now, addressing the particular features targeted in this paper, say
ierarchical scheduling combining time-partitioning and preemptive
P.

.2. Objectives and manuscript organization

As a step forward on re-factoring railway signalling applications,
he aim of this work is to find feasible priority assignment solutions
or the kind of systems represented by the industrial use case described
n this work. Rather than implementing complex priority assignment
lgorithms that might entail high computation times, we want to adapt
2

everal non-iterative priority assignment algorithms to our multipath
and time-partitioned system model, as they have exhibited reasonably
good behaviour in the literature for different scenarios [25]. We will
analyse and compare their performance by applying them (1) to our
real industrial use case, and (2) to a complex synthetic system that
enables the exploration of their performance on a wide range of system
configurations.

In this manuscript we address a real-time scheduling problem whose
main features have been described in Section 1, along with an overview
of the related work. The system model and also the schedulability
analysis technique are described in Section 2, and in Section 3 the
selected algorithms to be adapted to this model are described in detail.
Section 4 shows how the interpretation of the proposed algorithms is
performed and in Section 5 they are applied to the motivating industrial
use case, which is described in detail. Then, they are applied to a
synthetically generated system in order to show their performance.
Finally, Section 6 draws the conclusions and suggests some future
research lines.

2. Modelling and analysis

This work is based on a system model compliant with MAST (Mod-
elling and Analysis Suite Tool for Real-Time Applications) [29], which
is a GPL open source model and also a set of tools developed by
the University of Cantabria. It enables the description of the temporal
behaviour of computing systems, and provides several algorithms for
scheduling parameter assignment, schedulability analysis and simula-
tion. Its metamodel has been evolved to a second version, MAST2 [30],
which adds some novel scheduling policies and modelling elements,
such as time partitioning. The model used in this work is aligned with
the OMGs MARTE standard [31].

2.1. Architecture

We address a distributed architecture, where one or more commu-
nication networks allow the inter-connection of different processors.
Processors provide hardware (storage, actuators...) and software (li-
braries, programs...) resources for task execution, and they host a real-
time operating system that enables partitioning, such as Integrity [32].
We will assume without loss of generality that we can obtain the
minimum and maximum latencies that messages undergo at network
level. Scheduling communications traffic is beyond the scope of this
paper and it remains as future work.

Fig. 1 shows a simple model containing the elements that are used
to describe the systems addressed in this work. The main element
is the distributed end-to-end flow (e2e flow from now on), which
consists of a sequence of activities with precedence relations executed
in response to a periodic or sporadic workload event, with a minimum
inter-arrival time (𝑇𝑖). The main component of an e2e flow is the event
handler called step, which represents an operation being executed by a
schedulable resource (a task or a message) in a processing resource (a
computer or a network). Each step is activated by an input event, and
after its execution it generates an output event. The 𝑗-th step in the e2e
flow 𝛤𝑖 is denoted 𝜏𝑖𝑗 , and it has a worst-case and a best-case execution
time, 𝐶𝑖𝑗 and 𝐶𝑏

𝑖𝑗 respectively. In each e2e flow, steps are numbered in
topological order in the range [1..𝑁𝑖].

Workload events that activate e2e flows and also the internal events
that activate handlers may exhibit a release jitter, so any step 𝜏𝑖𝑗 may
suffer a release jitter up to a maximum of 𝐽𝑖𝑗 . Steps can also have an
initial offset 𝛷𝑖𝑗 , which is the minimum release time of the step relative
to the nominal activation instant 𝑡𝑖𝑛. Therefore, the release time for that
step is in the range of [𝑡𝑖𝑛 +𝛷𝑖𝑗 , 𝑡𝑖𝑛 + 𝑚𝑎𝑥(𝛷𝑖𝑗 , 𝐽𝑖𝑗 )].

The response time of an instance of a step is the difference between
ts completion time and the nominal activation time of the workload
vent that triggered that instance of the e2e flow. The worst-case
esponse time (WCRT) is denoted as 𝑅𝑖𝑗 and the best-case response
ime (BCRT) as 𝑅𝑏 , and both are obtained by schedulability analysis
𝑖𝑗



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.
Fig. 1. Distributed multipath e2e flow.

techniques. As mentioned before, deadlines are imposed on software
in order to guarantee that applications complete their duties within a
bounded time. We identify such requirements as e2e deadlines, set at
the output steps of e2e flows, and they are denoted as 𝐷𝑖𝑗 . Each step
represents a utilization of the processing resource of 𝑈𝑖𝑗 = 𝐶𝑖𝑗∕𝑇𝑖.

This model includes other event handlers that do not have runtime
effects and enable the modelling of complex event combinations like
the multipath e2e flows addressed here:

• Fork: It generates one event in each of its outputs each time an
input event arrives.

• Join: It generates an output event when all of its input events have
arrived.

Due to the multipath nature of these e2e flows, there may be more
than one output step, each of them having a different (or even without)
timing requirement. This is usual, for instance, when logging tasks are
inserted: they do not have to meet any hard-deadline constraint but
their scheduling must be determined along with the rest of the system.
Each step may have more than one immediate predecessor and/or
successor steps. The subset of steps immediately preceding the step 𝜏𝑖𝑗
is named 𝛤 𝑝𝑟𝑒𝑑

𝑖𝑗 , and similarly, 𝛤 𝑠𝑢𝑐𝑐
𝑖𝑗 are those steps that are immediate

successors of step 𝜏𝑖𝑗 .
In Fig. 1, the workload event 𝑒𝑖𝑛, which is represented by a down-

pointing arrow, forks and activates two steps, whose output events com-
bine to activate a final step. Horizontal arrows represent precedence
relations among event handlers.

2.2. Hierarchical scheduling

In this work hierarchically scheduled and time-partitioned systems
are addressed. Hierarchical schedulers are composed of a primary
scheduler and a secondary scheduler. A timetable-driven scheduling
policy is considered as primary scheduler in every processor, where
temporal partitions are scheduled in a cyclic manner within a Major
Frame (MAF). A temporal partition 𝑃𝑥 is composed of one or more
partition windows 𝑊 𝑖𝑛𝑥𝑘, defined as follows: 𝑊 𝑖𝑛𝑥𝑘 = { 𝑆𝑥𝑘, 𝐿𝑥𝑘 }
where 𝑆𝑥𝑘 is the start time relative to the start of the MAF, and 𝐿𝑥𝑘
is its length. The secondary scheduler is based on preemptive fixed
priorities, where 𝑃𝑟𝑖𝑜𝑖𝑗 is the priority of the step 𝜏𝑖𝑗 , and where the
highest number the highest priority. These priorities are valid in the
context of each partition. Fig. 2 shows an example of a hierarchical
scheduler composed of four temporal partitions, 𝑃1 to 𝑃4, where 𝑃1 and
𝑃3 are composed of two partition windows. Within Partition 1 there
are four steps, executed according to their priorities by the secondary
scheduler.
3

Fig. 2. Example of hierarchical scheduler.

We define the Available Utilization of the partition 𝑃𝑥, 𝐴𝑈𝑃𝑥 , as the
processing time allocated to 𝑃𝑥 in its processor, which is in essence,
following the terminology just presented, the sum of the utilization of
all the temporal windows within the MAF, so:

𝐴𝑈𝑃𝑥 =
∑

∀𝑊 𝑖𝑛𝑥𝑘∈𝑃𝑥

𝐿𝑥𝑘∕𝑀𝐴𝐹 (1)

Following the description given for the utilization represented by
each step, the Partition Utilization of 𝑃𝑥, 𝑈𝑃𝑥 is defined as the sum of
the utilization of all the steps contained in 𝑃𝑥:

𝑈𝑃𝑥 =
∑

∀𝜏𝑖𝑗∈𝑃𝑥

𝑈𝑖𝑗 (2)

Considering our target applications, we assume that steps are stat-
ically assigned to partitions, which is equivalent to the concept of
partitioned scheduling used in multiprocessor systems; in contrast to
global scheduling in which the migration of steps would be allowed.

2.3. Response-time analysis

The response-time analysis technique used to process the exper-
imental evaluation of this work is [33], which is an offset-based
technique [34]–[35] extended to support multipath e2e flows. It was
demonstrated that it improves the results of the holistic approach [36]
in general FP systems, so it is the most advanced tool available. Readers
are encouraged to read the aforementioned references for a deeper
understanding of the schedulability analysis.

3. Scheduling-parameter assignment overview

Scheduling-parameter assignment (say priorities in FP schedulers or
scheduling-deadlines in EDF schedulers) is vital in the design and de-
velopment of real-time systems. Even if some works such as [37]–[38]
proposed optimal solutions in the field of multiprocessor scheduling,
this problem is typically considered NP-hard for non-trivial cases [15];
the priority assignment to tasks is just a combinatorial problem where
the number of possible solutions explodes quickly with the size of
the system. That is why researchers have dedicated their efforts to
developing algorithms that reach sub-optimal solutions in an accept-
able computational time, and which are typically based on iterative
optimization algorithms that improve their results at each iteration
following some optimization criteria, which implies long computation
times anyway.

In order to achieve the objectives mentioned in section 1.3, we
select a collection of non-iterative algorithms proposed in the literature
for different application domains. We will follow the same methodology
as in [24], where the authors assign to each step what they call Virtual
Deadlines (VDs). These VDs are not temporal requirements but just a
mechanism to distribute the e2e deadline across all the steps of the e2e
flow. We have selected the following algorithms:



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.

s
a
p

4

f
S
t
a
w
f

4

p
n
c
o
e
w
D
t
t
a

r
T
s

d
a
s
d

• Ultimate Deadline (UD)
It is the simplest scheduling-parameter assignment algorithm,
where the e2e deadline is assigned to all steps composing the e2e
flow [22]. It was used in [24] for VD assignment in linear e2e
flows based on EDF schedulers.

𝑉 𝐷𝑖𝑗 = 𝐷𝑖 (3)

where 𝐷𝑖 refers to the e2e deadline of the linear e2e flow 𝛤𝑖.
• Effective Deadline (ED)

The VD of a step according to the ED algorithm is the e2e
deadline minus the sum of the worst-case execution times of its
successor steps [22] . In [24] it was also used for VD assignment,
considering linear e2e flows scheduled by EDF policy.

𝑉 𝐷𝑖𝑗 = 𝐷𝑖 −
𝑁𝑖
∑

𝑘=𝑗+1
𝐶𝑖𝑘 (4)

• Proportional Deadline (PD)
The e2e deadline is distributed/dealt among all the steps in the
flow proportionally to their worst-case execution times and the
sum of the worst-case execution times of all the steps of the
flow [22].
In [24] the authors used this algorithm in non-synchronized linear
distributed systems based on EDF, therefore when distributing the
e2e deadline they assigned local scheduling deadlines to steps.
These deadlines are referred to the event that activates that
step, and to be interpreted as local in the literature, it has been
accepted that in linear e2e flows the sum of local deadlines should
be the e2e deadline [39]. On the contrary, if there is a global clock
and all scheduling deadlines are referred to the workload event
that activates the e2e flow, they are global deadlines. The authors
show that interpreting deadline distribution algorithms as local or
global produces significant differences in response times.

𝑉 𝐷𝑖𝑗 =
𝐶𝑖𝑗

∑𝑁𝑖
𝑘=1 𝐶𝑖𝑘

∗ 𝐷𝑖 (5)

• Normalized-Proportional Deadline (NPD)
This algorithm is similar to PD, but it also considers the utilization
of the processing element where it is hosted [22]. It was also used
in [24] for scheduling-deadline assignment in EDF systems, based
on linear e2e flows.

𝑉 𝐷𝑖𝑗 = 𝐷𝑖 ∗
𝐶𝑖𝑗 ∗ 𝑈𝑃𝑖𝑗

∑𝑁𝑖
𝑘=1 𝐶𝑖𝑘 ∗ 𝑈𝑃𝑖𝑘

(6)

where 𝑈𝑃𝑖𝑗 is the utilization of the processor where 𝜏𝑖𝑗 is hosted.
• Equal Slack (EQS)

This algorithm was proposed for on-line deadline assignment in
soft real-time distributed systems, based on EDF schedulers [23].
Deadline assignment is performed by equally dividing the slack,
defined as the difference between the deadline and the worst-
case response time. An interpretation of this algorithm was per-
formed by [25] for off-line scheduling parameter assignment of
distributed linear e2e flows. Since activation times are unknown
for off-line schedulers, the authors assumed that such activations
happened at time 0, and tasks’ response times were assumed to
be their worst-case execution times. Paradoxically this algorithm,
which is non-iterative, produced better results than iterative algo-
rithms when deadlines were larger than activation periods [25].
In that work, VDs are assigned as shown in Eq. (7):

𝑉 𝐷𝑖𝑗 = 𝐶𝑖𝑗 +
𝐷𝑖 −

∑𝑁𝑖
𝑘=𝑗 𝐶𝑖𝑘

𝑁𝑖 − 𝑗 + 1
(7)

There are three main elements in Eq. (7): (1) the worst-case
execution time of the step under assignment, (2) the numerator
4

term, where the sum of the worst-case execution times of all the a
steps from the step under analysis till the end of the e2e flow are
subtracted from the e2e deadline, and (3) the denominator term,
which is the relative position of the step counted from the end of
the e2e flow.

• Equal Flexibility (EQF)
This algorithm was also originally proposed for on-line EDF
scheduling [23], and it is also based on dividing the slack (consid-
ering the previously given definition), while the proportionality
with respect of the execution times of the steps is maintained.
To do so, the concept flexibility is defined as the ratio between
the slack and the worst-case response time. This algorithm was
also adapted for off-line scheduling of linear e2e flows in [25],
and similarly to the previous algorithm, it outperformed other
iterative algorithms when deadlines are higher than activation
periods and in those scenarios where the e2e flows have to transit
through the same processor more than once.

𝑉 𝐷𝑖𝑗 = 𝐶𝑖𝑗 + [𝐷𝑖 −
𝑁𝑖
∑

𝑘=𝑗
𝐶𝑖𝑘] ∗ [

𝐶𝑖𝑗
∑𝑁𝑖

𝑘=𝑗 𝐶𝑖𝑘

] (8)

Eq. (8) is composed of three main elements: (1) the worst-case
execution time 𝐶𝑖𝑗 of the step under assignment, (2) a factor
where the execution times of all the successor steps from the step
under assignment till the end of the e2e flow are subtracted to the
e2e deadline, and (3) a proportionality factor between the worst-
case execution time of the step under assignment and the sum of
all the successor steps from the step under assignment till the end
of the e2e flow.

Supported by these results from the background literature pre-
ented, we propose to adapt these algorithms to the system model
ddressed in this work, which includes multipath e2e flows and time-
artitions.

. Priority assignment in multipath flows within time-partitions

In order to find schedulable solutions to our problem, we will
ollow a two-step strategy. First, based on the algorithms described in
ection 3, we will formulate our new algorithms in order to apply them
o multipath e2e flows within hierarchically scheduled time-partitioned
rchitectures. These algorithms produce Virtual Deadlines. Then, VDs
ill be transformed into priorities in the second step of our proposal,

ollowing a Deadline Monotonic policy in the context of each partition.

.1. Virtual deadline assignment

To illustrate the Virtual Deadline assignment process, a simple yet
aradigmatic example is depicted in Fig. 3, where all of the challenging
ew features are contained: a single workload event triggers the exe-
ution of a multipath e2e flow with different timing constraints at its
utput events. The number within brackets represents the worst-case
xecution time of each step. For the sake of clarity, a single processor
ithout time partitioning is assumed for this illustrative example.
istributed architectures and time-partitions in them are considered in

he experiments performed in the paper, as the response-time analysis
echnique allows us to analyse both system models (time-partitioned
nd non time-partitioned).

Considering the illustrative example in Fig. 3, Table 1 details the
esults of applying the proposed algorithms in this illustrative example.
he response times obtained by applying the analysis technique are also
hown for all steps.

There are several remarkable conclusions to be mentioned. First,
ue to the nature of the UD algorithm, many VDs in the e2e flow
re the same, which would lead to equal priorities if we did not
olve these ties in some way. ED, PD_Local, NPD_Local and EQS also
eal with ties, and they are solved as explained in the paper. Second,

ccording to the worst-case response times of steps 𝜏1.8 and 𝜏1.9, the



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.
Fig. 3. Illustrative example.

Table 1
Virtual deadlines, priorities and response times for each algorithm, applied to the
multipath e2e flow depicted in Fig. 3.

Simple example 𝜏1 1 𝜏1 2 𝜏1 3 𝜏1 4 𝜏1 5 𝜏1 6 𝜏1 7 𝜏1 8 𝜏1 9

UD
VD𝑖𝑗 30 30 30 50 30 50 50 50 30
Prio𝑖𝑗 9 8 7 4 6 3 2 1 5
R𝑖𝑗 5 8 10 17 14 22 25 27 16

ED
VD𝑖𝑗 21 24 28 43 28 48 48 50 30
Prio𝑖𝑗 9 8 7 4 6 3 2 1 5
R𝑖𝑗 5 8 10 17 14 22 25 27 16

PD_Global
VD𝑖𝑗 10.71 17.14 15 26.47 25.71 41.17 44.11 50 30
Prio𝑖𝑗 9 7 8 5 6 3 2 1 4
R𝑖𝑗 5 10 7 15 14 22 25 27 17

PD_Local
VD𝑖𝑗 10.71 6.42 4.28 9.32 8.57 14.7 18.4 5.88 4.28
Prio𝑖𝑗 3 6 9 4 5 2 1 7 8
R𝑖𝑗 19 28 21 37 36 45 48 50 38

NPD_Global
VD𝑖𝑗 10.71 17.14 15 26.47 25.71 41.17 44.11 50 30
Prio𝑖𝑗 9 7 8 5 6 3 2 1 4
R𝑖𝑗 5 10 7 15 14 22 25 27 17

NPD_Local
VD𝑖𝑗 10.71 6.42 4.28 9.32 8.57 14.7 18.4 5.88 4.28
Prio𝑖𝑗 3 6 9 4 5 2 1 7 8
R𝑖𝑗 19 28 21 37 36 45 48 50 38

EQS
VD𝑖𝑗 11.6 12.5 15 15 17.66 26.5 25.5 50 30
Prio𝑖𝑗 9 8 7 6 5 3 4 1 2
R𝑖𝑗 5 8 10 11 15 23 18 27 25

EQF
VD𝑖𝑗 18.81 19.57 19.33 23.9 23.2 40.83 36.75 50 30
Prio𝑖𝑗 9 7 8 5 6 2 3 1 4
R𝑖𝑗 5 10 7 15 14 25 20 27 17

best priority assignment algorithms are UD and ED, PD_Global and EQF
algorithms also obtain good results. However, as will be shown later,
this should not be taken as representative for all situations, as there are
other algorithms that exhibit better behaviour in other different system
configurations. Finally, it should be noticed that the VDs and hence the
priority assignments given by PD_Global and PD_Local are the same as
the ones produced by NPD_Global and NPD_Local respectively. This is
an expected result for this simple example since all the steps are hosted
in the same partition, and therefore the normalization factor has no
effect. Experiments at the evaluation section show that none of those
algorithms produce the same VDs when e2e flows traverse more than
one partition.

In the following lines the algorithms proposed for Virtual Deadline
assignment are shown. Each algorithm is presented with its pseu-
docode, showing how it has been implemented.

4.1.1. Ultimate Deadline (UD)
Due to the multipath nature of our use case, there may be more than

one timing requirement at different outputs. Therefore, an adequate
propagation of such deadlines must be done, guaranteeing that the
effect of the most restrictive one is propagated through all the paths
where it has an influence. This propagation can be seen in Algorithm
1.
5

Algorithm 1 Ultimate Deadline
Initialize all 𝑉 𝐷𝑖𝑗 to inf.

2: for j ← 𝑁𝑖 to 1 in each 𝛤𝑖 do
if ∄𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 then
4: 𝑉 𝐷𝑖𝑗 = 𝐷𝑖𝑗

else
6: for each 𝜏𝑖𝑘 ∈ 𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 do
if 𝑉 𝐷𝑖𝑘 < 𝑉 𝐷𝑖𝑗 then

8: 𝑉 𝐷𝑖𝑗 = 𝑉 𝐷𝑖𝑘
end if

10: end for
end if

12: end for

4.1.2. Effective Deadline (ED)
In addition to the issue of the different end-to-end deadlines, which

applies here too, the execution time of the successor steps also influ-
ences the calculation of each VD. Therefore, for each step, the VD will
be the most restrictive value of the difference between the successors
VD and its worst-case execution time, as shown in Algorithm 2.

Algorithm 2 Effective Deadline
Initialize all 𝑉 𝐷𝑖𝑗 to inf.

2: for j ← 𝑁𝑖 to 1 in each 𝛤𝑖 do
if ∄𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 then
4: 𝑉 𝐷𝑖𝑗 = 𝐷𝑖𝑗

else
6: for each 𝜏𝑖𝑘 ∈ 𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 do
if 𝑉 𝐷𝑖𝑘 − 𝐶𝑖𝑗 < 𝑉 𝐷𝑖𝑗 then

8: 𝑉 𝐷𝑖𝑗 = 𝑉 𝐷𝑖𝑘 − 𝐶𝑖𝑘
end if

10: end for
end if

12: end for

4.1.3. Proportional Deadline (PD)
As our experience in applying this algorithm with local and global

deadlines corroborates that remarkable differences can be obtained in
the schedulability of linear e2e flows [24], we will propose two versions
of this algorithm for our system model as well.

• Global version (PD_Global):
Based on the algorithm proposed in [22] described in Section 3,
we propose the global version of the proportional deadline algo-
rithm through the following equation, which retains the essence
of the original algorithm:

𝑉 𝐷𝑖𝑗 = 𝐿𝑜𝑎𝑑𝑖𝑗 ∗ 𝐹𝑖𝑗 (9)

where:

– 𝐿𝑜𝑎𝑑𝑖𝑗
Represents the accumulated load (sum of 𝐶𝑖𝑗s) from the
workload event to each step. When there is more than one
path, the highest possible value will be considered. This
propagation is shown in step 1 of Algorithm 3.

– 𝐹𝑖𝑗
Represents the proportionality factor between the e2e dead-
line and the accumulated load at each step. To determine
this value, the e2e deadline 𝐷𝑖𝑗 is divided by the term
𝐿𝑜𝑎𝑑𝑖𝑗 at all output steps with an e2e deadline. Then, it is
propagated backwards, and in those steps with more than
one predecessor step (where different e2e deadlines may
have effect) the highest value of 𝐹𝑖𝑗 is propagated (so that
the most restrictive VD is produced). This is shown in step
2 of Algorithm 3.



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.

w

Algorithm 3 Proportional Deadline (PD_Global)
Step 1:

2: Initialize all 𝐿𝑜𝑎𝑑𝑖𝑗 = 0
for j ← 1 to 𝑁𝑖 in each 𝛤𝑖 do

4: if ∄𝛤 𝑝𝑟𝑒𝑑
𝑖𝑗 then

𝐿𝑜𝑎𝑑𝑖𝑗 = 𝐶𝑖𝑗
6: else

for each 𝜏𝑖𝑘 ∈ 𝛤 𝑝𝑟𝑒𝑑
𝑖𝑗 do

8: if 𝐿𝑜𝑎𝑑𝑖𝑘 + 𝐶𝑖𝑗 > 𝐿𝑜𝑎𝑑𝑖𝑗 then
𝐿𝑜𝑎𝑑𝑖𝑗 = 𝐿𝑜𝑎𝑑𝑖𝑘 + 𝐶𝑖𝑗

10: end if
end for

12: end if
end for

14: Step 2:
Initialize all 𝐹𝑖𝑗 to inf.

16: for j ← 𝑁𝑖 to 1 in each 𝛤𝑖 do
if ∄𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 then
18: 𝐹𝑖𝑗 = 𝐷𝑖𝑗∕𝐿𝑜𝑎𝑑𝑖𝑗

else
20: for each 𝜏𝑖𝑘 ∈ 𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 do
if 𝐹𝑖𝑘 < 𝐹𝑖𝑗 then

22: 𝐹𝑖𝑗 = 𝐹𝑖𝑘
end if

24: end for
end if

26: end for
Step3:

28: for each 𝜏𝑖𝑗 in each 𝛤𝑖 do
Calculate VDs by Eq. (9)

30: end for
• Local version (PD_Local)

This algorithm turns global deadlines obtained by Algorithm 3
into local deadlines. To do so, we invert the notion of local dead-
lines explained before, where the summation of local deadlines
provided the e2e deadline in linear e2e flows: from each of the
output steps in the e2e flow, the local VD of each step is obtained
by subtracting the value of the global VD from the predecessor
step. If there is more than one, the most restrictive (lowest value)
VD is assigned. The algorithm that turns global VDs into local
ones is described in Algorithm 4.

Algorithm 4 Turn Global VD into Local VD
for j ← 𝑁𝑖 to 1 in each 𝛤𝑖 do

2: for each 𝜏𝑖𝑘 ∈ 𝛤 𝑝𝑟𝑒𝑑
𝑖𝑗 do

if 𝑉 𝐷𝑖𝑗 − 𝑉 𝐷𝑖𝑘 < 𝑉 𝐷𝑖𝑗 then
4: 𝑉 𝐷𝑖𝑗 = 𝑉 𝐷𝑖𝑗 − 𝑉 𝐷𝑖𝑘

end if
6: end for

end for

4.1.4. Normalized Proportional Deadline (NPD)
This algorithm is similar to the PD algorithm; in this case a normal-

ization factor that considers the utilization of the resource where steps
are hosted is applied. Two versions of the algorithm are proposed too,
considering Global and Local VDs:

• Global Version (NPD_Global)
Following the same criterion applied to the PD algorithms, we
propose an equation based on the original formulation and we
explain how to calculate each factor that composes it in Algorithm
5.

𝑉 𝐷𝑖𝑗 = 𝐿𝑜𝑎𝑑′𝑖𝑗 ∗ 𝐹 ′
𝑖𝑗 (10)

where
6

t

– 𝐿𝑜𝑎𝑑′𝑖𝑗
Is the accumulated load from the workload event to each
step. Since we are addressing partitioned systems, this factor
will refer to the utilization of partition where the step is
allocated (𝑃𝑥). Thus, the accumulated value is 𝐶𝑖𝑗 ∗ 𝑈𝑃𝑥 .
When there is more than one predecessor step we propagate
the maximum value, as shown in the step 1 of Algorithm 5.

– 𝐹 ′
𝑖𝑗

Is the proportionality factor between the e2e deadline and
the accumulated load at each step. It is calculated in the
same way as in PD_Global algorithm, as described in the step
2 of Algorithm 5.

Algorithm 5 Normalized Proportional Deadline (NPD_Global)
Step 1:

2: Initialize all 𝐿𝑜𝑎𝑑′𝑖𝑗 = 0
for j ← 1 to 𝑁𝑖 in each 𝛤𝑖 do

4: for each 𝑃𝑥 do
if 𝜏𝑖𝑗 ∈ 𝑃𝑥 then

6: if ∄𝛤 𝑝𝑟𝑒𝑑
𝑖𝑗 then

𝐿𝑜𝑎𝑑′𝑖𝑗 = 𝐶𝑖𝑗 ∗ 𝑈𝑃𝑥
8: else

for each 𝜏𝑖𝑘 ∈ 𝛤 𝑝𝑟𝑒𝑑
𝑖𝑗 do

10: if 𝐿𝑜𝑎𝑑′𝑖𝑘 + 𝐶𝑖𝑗 ∗ 𝑈𝑃𝑥 > 𝐿𝑜𝑎𝑑′𝑖𝑗 then
𝐿𝑜𝑎𝑑′𝑖𝑗 = 𝐿𝑜𝑎𝑑′𝑖𝑘 + 𝐶𝑖𝑗 ∗ 𝑈𝑃𝑥

12: end if
end for

14: end if
end if

16: end for
end for

18: Step 2:
Initialize all 𝐹 ′

𝑖𝑗 to inf.
20: for j ← 𝑁𝑖 to 1 in each 𝛤𝑖 do

if ∄𝛤 𝑠𝑢𝑐𝑐
𝑖𝑗 then

22: 𝐹 ′
𝑖𝑗 = 𝐷𝑖𝑗∕𝐿𝑜𝑎𝑑′𝑖𝑗

else
24: for each 𝜏𝑖𝑘 ∈ 𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 do
if 𝐹 ′

𝑖𝑘 < 𝐹 ′
𝑖𝑗 then

26: 𝐹 ′
𝑖𝑗 = 𝐹 ′

𝑖𝑘
end if

28: end for
end if

30: end for
Step3:

32: for each 𝜏𝑖𝑗 in each 𝛤𝑖 do
Calculate VDs by Eq. (10)

34: end for
• Local Version (NPD_Local)

In order to develop the Local version of the Normalized Propor-
tional Deadline algorithm we will apply Algorithm 4, which turns
Global VDs into Local ones.

4.1.5. Equal Slack (EQS)
When Eq. (8) was formulated in [25], the authors considered linear

systems where there is only a single e2e deadline. However in our
model, the relative position of the step within the e2e flow becomes
non-trivial due to the multipath structures. Therefore, we propose an
equivalent equation which is similar in its structure, and in Algorithm
6 we show how each of the terms that compose the equation are
calculated.

𝑉 𝐷𝑖𝑗 = 𝐶𝑖𝑗 +
𝐻1𝑖𝑗
𝐻2𝑖𝑗

(11)

here 𝐻1𝑖𝑗 refers to the numerator term from Eq. (8) and 𝐻2𝑖𝑗 reflects
he denominator term. When calculating these terms, if there is more



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.

1

1

1

1

𝑊
𝑊
𝑊

s
a
t
m
v

than one predecessor step we will consider the one that produces the
highest 𝐻1𝑖𝑗/𝐻2𝑖𝑗 value, with the aim of obtaining the most restrictive
VD.

Algorithm 6 Equal Slack
Initialize all 𝐻1 to inf. and 𝐻2 to 0.0

2: for j ← 𝑁𝑖 to 1 in each 𝛤𝑖 do
if ∄𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 then
4: 𝐻1𝑖𝑗 = 𝐷𝑖𝑗 − 𝐶𝑖𝑗

𝐻2𝑖𝑗 = 1
6: Calculate 𝑉 𝐷𝑖𝑗 through Eq. 11

else
8: 𝐻1𝑖𝑗 = 𝐻1𝑖𝑗 − 𝐶𝑖𝑗

𝐻2𝑖𝑗 = 𝐻2𝑖𝑗 + 1
10: Calculate 𝑉 𝐷𝑖𝑗 through Eq. (11)

end if
12: for each 𝜏𝑖𝑘 ∈ 𝛤 𝑝𝑟𝑒𝑑

𝑖𝑗 do
if 𝐻1𝑖𝑘∕𝐻2𝑖𝑘 > 𝐻1𝑖𝑗∕𝐻2𝑖𝑗 then

14: 𝐻1𝑖𝑘 = 𝐻1𝑖𝑗
𝐻2𝑖𝑘 = 𝐻2𝑖𝑗

16: end if
end for

18: end for

4.1.6. Equal Flexibility (EQF)
The formulation in Eq. (9) also considered linear e2e flows, and

the sum of worst-case execution times from the step under assignment
becomes non-trivial too, as there is more than a single path to take into
account. Therefore, we propose an equation that retains the structure
of Eq. (9), and in Algorithm 7 we detail how this interpretation is
performed. We will also choose the 𝑄1𝑖𝑗 ∗ 𝑄2𝑖𝑗 that produces the lowest
VD in those cases where there is more than one predecessor step.

𝑉 𝐷𝑖𝑗 = 𝐶𝑖𝑗 +𝑄1𝑖𝑗 ∗ 𝑄2𝑖𝑗 (12)

Algorithm 7 Equal Flexibility
Initialize all 𝑄1 and 𝑄2 to inf.

2: for j ← 𝑁𝑖 to 1 in each 𝛤𝑖 do
if ∄𝛤 𝑠𝑢𝑐𝑐

𝑖𝑗 then
4: 𝑄1𝑖𝑗 = 𝐷𝑖𝑗 − 𝐶𝑖𝑗

𝑄2𝑖𝑗 = 1
6: Calculate 𝑉 𝐷𝑖𝑗 through Eq. (12)

else
8: 𝑄1𝑖𝑗 = 𝑄1𝑖𝑗 − 𝐶𝑖𝑗

𝑄2𝑖𝑗 =
𝐶𝑖𝑗
𝑄2𝑖𝑗

+ 𝐶𝑖𝑗

0: Calculate 𝑉 𝐷𝑖𝑗 through Eq. (12)
end if

2: for each 𝜏𝑖𝑘 ∈ 𝛤 𝑝𝑟𝑒𝑑
𝑖𝑗 do

if 𝑄1𝑖𝑘 ∗ 𝑄2𝑖𝑘 > 𝑄1𝑖𝑗 ∗ 𝑄2𝑖𝑗 then
14: 𝑄1𝑖𝑘 = 𝑄1𝑖𝑗

𝑄2𝑖𝑘 = 𝑄2𝑖𝑗
6: end if

end for
8: end for

4.2. Virtual deadline transformation into priorities

As said before, the second stage of our priority assignment strategy
is to transform the Virtual Deadlines into priorities. To do so, we
assign priorities in the context of each partition following a deadline
monotonic order, which assigns the highest priority to the step with
the lowest Virtual Deadline.

Being a multipath architecture, it is likely that the same Virtual
Deadline is assigned to more than one step, mostly depending on worst-
case execution times of steps and also the e2e deadlines. In fact, there
7

t

are cases where this kind of tie happens in a generalized manner, for
instance: in the ED algorithm, the same VD will be assigned to all
the steps preceding a Join event handler. If these steps are hosted
in the same partition, assigning the same VD implies assigning the
same priority, which is undesirable in the response-time analysis like
the one applied in this work. In the absence of a clear criterion to
solve such ties we propose the following approach: steps are processed
following their index order, and they are sorted in a non-decreasing
order according to their VDs. Then, priorities are assigned following
this order decreasingly. Thus, the same priority is never assigned to
two or more different steps. An optimized strategy for solving ties in
priority assignment is a subject for future work.

5. Evaluation of the priority assignment algorithms

In this section the proposed algorithms are evaluated in different
scenarios. First, a real industrial use case from the railway domain is
presented. Then, a more general evaluation is performed by generat-
ing synthetic e2e flows with a wide range of activation patterns and
deadline requirements.

5.1. Industrial use case

The scheduling problem addressed in this work is motivated by
the need of train manufacturers, whose concern in scheduling of sig-
nalling applications motivated them to explore and develop novel
response-time analysis and scheduling techniques [33]. In this section
the motivational use case is presented, modelling a real application
by means of the system model described previously and using real
data provided by the application developers. However, there is some
information omitted due to confidentiality issues, which does not lead
to a loss of generality.

Fig. 4 shows the modelling of a railway signalling application,
which supervises the driving and also provides information to drivers
[40]. Supervision in performed through the execution of several func-
tionalities, which are activated when the train goes through a balise
and receives a message with driving instructions. This triggering event
is represented by the workload event 𝑒𝑖𝑛1, and 𝜏11 represents the cap-
turing task. After that, three safety functionalities are executed: (1)
application of the Emergency Brake (EB functionality), (2) establish-
ing a communication session with a centralized control centre called
Radio-Block Center (RBC-CS functionality), and (3) parameter visual-
ization in Human–Machine-Interface (PV-DMI functionality). According
to railway safety certification standards, all the functionalities must
be executed within 1 s of receiving the message from the balise [41].
For the sake of clarity, only the EB functionality has been depicted in
Fig. 4, although the others exhibit the same logical structure. This safety
application is executed redundantly in two CPUs, and therefore there
are two output events for each functionality that must satisfy temporal
constraints: 𝑒𝑜𝑢𝑡1.1 and 𝑒𝑜𝑢𝑡1 .2 in Fig. 4. There are two partitions in each
processor: 𝑃1 for processing tasks and 𝑃2 for communication tasks, and
they are scheduled in a 10 ms MAF where partition windows are dis-
tributed uniformly. 𝑃1 is composed of four 0.05 ms windows: 𝑊 𝑖𝑛11 =
{0, 0.05}, 𝑊 𝑖𝑛12 = {2.5, 0.05}, 𝑊 𝑖𝑛13 = {5, 0.05} and 𝑊 𝑖𝑛14 = {7.5, 0.05},
and 𝑃2 is composed of eight 0.025 ms windows 𝑊 𝑖𝑛21 = {1, 0.025},

𝑖𝑛22 = {2.25, 0.025}, 𝑊 𝑖𝑛23 = {3.5, 0.025}, 𝑊 𝑖𝑛24 = {4.75, 0.025},
𝑖𝑛25 = {6, 0.025}, 𝑊 𝑖𝑛26 = {7.25, 0.025}, 𝑊 𝑖𝑛27 = {8.5, 0.025} and
𝑖𝑛28 = {9.75, 0.025}.
The communications network that connects both processors is con-

idered a black box where messages are characterized by a minimum
nd a maximum latency, which based on our experience are assumed
o be 40 μs and 400 μs, respectively. The manufacturer provided the
easured worst-case execution times of each function, but the exact

alues cannot be shown in order to maintain confidentiality. However,

he ones used in this test, shown in Table 2, are of the same magnitude



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.
Table 2
Priority assignment for the train signalling application (𝐶𝑖𝑗 in μs)

Functionality Emergency Brake - EB

𝜏𝑖𝑗 𝜏1 1 𝜏1 2 𝜏1 3 𝜏1 4 𝜏1 5 𝜏1 6 𝜏1 7 𝜏1 8 𝜏1 9 𝜏1 10 𝜏1 11 𝜏1 12 𝜏1 13

𝐶𝑖𝑗 5 3 6 6 6 3 6 6 6 8 2 8 2

Priority assignment

UD 10 9 9 9 8 9 8 7 7 8 7 8 7
ED 10 7 3 3 2 7 1 2 1 4 3 4 3
PD_Global 10 9 7 3 3 7 1 2 1 4 3 4 3
PD_Local 10 6 2 2 1 8 1 3 3 3 9 3 9
NPD_Global 10 9 9 9 6 9 6 5 5 8 3 7 3
NPD_Local 10 4 1 3 2 8 1 2 3 3 9 3 9
EQS 10 9 7 7 4 9 1 4 1 6 3 6 3
EQF 9 6 4 6 9 6 1 9 1 9 3 10 3

Functionality RBC Communication-session establishment - RBC-CS

𝜏𝑖𝑗 𝜏1 14 𝜏1 15 𝜏1 16 𝜏1 17 𝜏1 18 𝜏1 19 𝜏1 20 𝜏1 21 𝜏1 22 𝜏1 23 𝜏1 24 𝜏1 25
𝐶𝑖𝑗 15 6 6 6 15 6 6 6 40 10 40 10

Priority assignment

UD 6 6 6 5 6 5 4 4 5 4 5 4
ED 8 6 6 5 8 4 5 4 5 2 5 2
PD_Global 8 8 8 5 8 5 4 2 5 2 5 2
PD_Local 5 5 5 4 5 4 6 6 2 7 2 8
NPD_Global 8 8 8 4 7 4 3 3 5 2 5 2
NPD_Local 5 4 5 5 5 4 6 6 2 7 2 8
EQS 8 8 8 5 8 2 5 2 5 2 5 2
EQF 5 3 7 8 5 2 5 5 8 2 8 2

Functionality Parameter visualization - PV-DMI

𝜏𝑖𝑗 𝜏1 26 𝜏1 27 𝜏1 28 𝜏1 29 𝜏1 30 𝜏1 31 𝜏1 32 𝜏1 33 𝜏1 34 𝜏1 35 𝜏1 36 𝜏1 37
𝐶𝑖𝑗 30 6 6 6 30 6 6 6 80 20 80 20

Priority assignment

UD 3 3 3 2 3 2 1 1 2 1 2 1
ED 9 9 9 8 9 7 8 7 6 1 6 1
PD_Global 7 9 9 6 9 7 6 4 6 1 6 1
PD_Local 4 8 8 7 4 7 9 9 1 6 1 7
NPD_Global 6 7 7 2 6 2 1 1 4 1 4 1
NPD_Local 6 9 9 7 4 7 8 8 1 6 1 7
EQS 7 9 9 6 7 3 6 3 4 1 4 1
EQF 4 2 8 7 4 3 4 6 7 1 7 1
Fig. 4. Real-time application model (RBC-CS & PV-DMI not depicted for the sake of clarity).
8



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.

T
W

Fig. 5. RBU evolution of all algorithms.
able 3
orst-case response times of the railway signalling application.
Railway signalling app EB RBC-CS PV-DMI

𝜏1 11 𝜏1 13 𝜏1 23 𝜏1 25 𝜏1 35 𝜏1 37

Worst-case response times (ms)

UD 12.28 14.74 12.37 14.83 19.85 22.31
ED 17.34 19.78 17.34 19.79 17.37 19.82
PD_Global 17.37 19.78 17.34 19.79 17.37 19.82
PD_Local 14.84 17.31 16.12 18.59 21.11 23.58
NPD_Global 14.89 17.33 14.9 17.34 17.37 19.81
NPD_Local 16.09 18.52 17.35 18.6 22.32 23.59
EQS 14.91 17.34 14.92 17.35 17.39 19.82
EQF 21.16 23.63 21.17 23.64 23.65 26.11

Table 4
Slack factor for each algorithm applied in the industrial use
case.

Slack factor

UD 81.87
ED 88.7
PD_Global 88.33
PD_Local 66.25
NPD_Global 87.5
NPD_Local 68.75
EQS 86.25
EQF 51.14

order as the real ones. We assume that best-case execution times are
half of the worst-case ones.
9

The resulting priority assignments are shown in Table 2. For all
cases, the highest number means the highest priority, and as explained
before, priorities are valid in the context of each partition. As in the
previous example, here the different assignments obtained by the algo-
rithms can be seen. The schedulability analysis introduced in Section 3
is applied for each priority assignment, and the worst-case response
times obtained for the steps with an e2e deadline have been compiled
in Table 3. These steps are 𝜏1 11 and 𝜏1 13 for the emergency brake func-
tionality, 𝜏1 23 and 𝜏1 25 for the RBC Communication-session establish-
ment functionality and 𝜏1 35 and 𝜏1 37 for the parameter visualization
functionality.

Looking at Table 3, the lowest response time for the whole ap-
plication is obtained by the NPD_Global algorithm, as it completes it
execution in 19.81 ms in the worst-case scenario, and ED, PD_Global
and EQS show a very similar performance (19.82 ms in the worst-
case scenario). Taking a look at each functionality independently, it
is remarkable that with UD, PD_Local and NPD_Local algorithms the
EB functionality finishes its execution several ms before the others.
This, however, is achieved by penalizing the execution of the other two
functionalities, so in those cases where applications must meet different
deadline requirements, the collection of algorithms proposed in this
work can provide different alternatives for their design.

Focusing only on the response times may not provide an adequate
view on the system schedulability if there are several outputs in re-
sponse to the same input event, which is actually the case described
in this application. It is convenient to perform a sensitivity analysis
through the calculation of Slack times. These times can be associated to
a single task, to a single e2e flow or to the whole system under analysis.



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.

e
I
s
t
a
o
u
s
p
a
b
a
f
a
a

5

c
d
d
o
m
a
o
t

Table 5
Highest RBU results (in %) with time-partitioning.

𝐷 = 𝑇 𝐷 = 2𝑇 𝐷 = 4𝑇 𝐷 = 6𝑇 𝐷 = 8𝑇 𝐷 = 10𝑇

1 Processor EQS EQS EQS EQS EQS EQS
(54) (75) (89) (93) (95) (97)

2 Processors NS NS EQS EQS EQS EQS
– – (83) (88) (90) (93)

4 Processors

EQS EQS,PD_Global EQS,PD_Local
NS NS PD_Local PD_Local,NPD_Local EQS NPD_Local
– – NPD_Local PD_Global, NPD_Global

(66) (71) (76) (76)

8 Processors

NS NS EQS,PD_Local EQS,PD_Local
PD_Local NPD_Local NPD_Local NPD_Local

– NPD_Global
– (66) (76) (76) (76)

10 Processors
NS NS NPD_Local EQS,PD_Local, EQF, EQF, PD_Local NPD_Local

NPD_Local PD_Global, NPD_Local
NPD_Global NPD_Global

– – (62) (62) (62) (75)
Table 6
Highest BU results (in %).

𝐷 = 𝑇 𝐷 = 2𝑇 𝐷 = 4𝑇 𝐷 = 6𝑇 𝐷 = 8𝑇 𝐷 = 10𝑇

1 Processor NPD_Local EQS EQS EQS EQS EQS
(63) (78) (89) (93) (95) (96)

2 Processors PD_Local, NPD_Local EQS EQS EQS EQS EQS
(61) (76) (89) (93) (94) (95)

4 Processors PD_Local, NPD_Local PD_Local EQS EQS EQS EQS
(57) (72) (85) (91) (93) (94)

8 Processors

PD_Local, EQS, PD_Local, EQS, PD_Local EQS EQS EQS
PD_Global NPD_Local NPD_Local PD_Local
NPD_Local NPD_Global NPD_Local
(49) (64) (78) (84) (88) (96)

10 Processors NPD_Local EQS NPD_Local EQS EQS EQS
(46) (63) (80) (86) (89) (91)
According to MAST,1 a Slack time is the value by which the associated
lement may be increased while maintaining the system schedulable.
f the calculated slack is negative, this means that the system is not
chedulable and the percentage obtained should be subtracted in order
o achieve schedulability. Based on this, we define the Slack Factor
s the maximum factor that can be applied to the execution times
f all tasks until the boundary of schedulability is reached. In our
se case, this factor can give designers an insight into how much
ystems could grow (in terms of utilization) when applying the different
riority assignment algorithms. The Slack Factors calculated for each
lgorithm are shown in Table 4: even if NPD_Global seemed to be the
est algorithm for our use case in terms of response times, the priority
ssignment that lets the system load grow the most is ED, closely
ollowed by PD_Global and NPD_Global. The fact that the Slack Factors
re so high can be explained by highlighting that the system represents
very low load and therefore execution times can be greatly increased.

.2. Performance evaluation

After applying all the proposed algorithms to our industrial appli-
ation, we need to assess their behaviour when external conditions
iffer from the ones that characterize this use case, in order to get a
eeper view of their behaviour. Instead of generating a huge number
f synthetic task sets to perform our evaluation, we are committed to
aking all our experiments reproducible by the research community

nd therefore we will generate a small-sized task set that includes most
f the representative features relevant for the system model we are
argeting in this work. We will generate synthetic DAGs with the tool

1 https://mast.unican.es.
10
TGFF [42], which can be directly transformed to our system model and
then processed by our tools. We will use the TGFF tool to randomly
generate ten different step-sequences, and we will assign steps’ random
worst-case execution times in a 0-20 ms range. These e2e flows will
allow us to test the following features:

• Activation periods: We will test a wide range of activation pe-
riods, from 50 ms to 1s. These values are within the ranges
of the sampling frequency of automotive subsystems [43] and
the typical minimum inter-arrival times of balises in the railway
domain.

• Deadlines: Different deadline requirements (relative to the pe-
riods) will be evaluated. The most restrictive requirements are
normally found in certification standards, although we will con-
sider more relaxed deadlines as distributed systems normally have
deadlines larger than periods.

• Number of processors: We will analyse the behaviour of our algo-
rithms first by assigning 80% of available utilization to a single
partition allocated to a single processor, and then by distributing
this available utilization into 2, 4, 8 and 10 processors (with one
partition each) having the same total available utilization (this
means that when testing 2 processors, partitions within them will
get 40% of available utilization, and so on). Step-to-core mapping
is performed randomly, but two consecutive steps will not be
allowed to be assigned to the same processors, if possible. The
utilization of all partitions shall be kept in a fair balance so that
the pessimism that unbalanced loads produce is minimized.

In order to determine which of the proposed algorithms shows the
best performance, we introduce the term Relative Breakdown Utiliza-
tion (RBU) for time partitioned systems. It is based on the Breakdown

https://mast.unican.es


Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.

s
a
p
t
t
p
w
a
c
f

l
h
r
T
w
r
a

6
R
o
a
C
w
s
r
h
u
n

w
t
p
s
a
t
4
b
w
p
W
e
h
n

s
t
a
p
i

a

Table 7
Execution time of some of the experiments.

Experiment Execution time (s)

Simple example 26
Railway signalling use case 28
1 Processor - D=T 36
1 Processor - D=10T 27
10 Processors - D=10T 31

Utilization (BU) introduced in [44], extended to be applied to parti-
tioned systems where CPU time is not fully available for a partition.
Thus, the RBU term (in percentage) for a partition is the value calcu-
lated as 𝑈𝑃𝑥∕𝐴𝑈𝑃𝑥 ∗ 100, reached when all the execution times are
caled up to a point at which a deadline is first missed. To do so, we
pply a scaling factor to all execution times in the context of each
artition, until the system reaches the boundary of schedulability. For
hose tests with more than one partition, we will take the average RBU
o show the experimental results, which is possible because step-to-
rocessor mapping is kept fairly balanced in all cases. As a reference,
e will consider a non-partitioned system where the CPU is fully avail-
ble (general FP systems). Thus, we will replicate all the experiments
onsidering a single partition with 𝐴𝑈 = 100%, so we will show the BU
or each algorithm.

When deadlines are too restrictive or the system is barely schedu-
able, and hence for calculating RBU/BU, the execution times of tasks
ave to be drastically reduced, we will consider that when partitions
each a utilization lower than 1%, the system is not schedulable (NS).
his happens because the response-time analysis computes all the time-
indow gaps where the execution is not allowed and thus worst-case

esponse times increase. Proposing an optimized partition window
ssignment is beyond the scope of this work.

The most relevant results have been compiled in Tables 5 and
. They show the algorithm or algorithms that obtain the highest
BU/BU (expressed in % in brackets) for each combination of number
f processors and deadline/period rates. Generally comparing Tables 5
nd 6, we can directly see the penalization occurring when 100% of
PU-time is not available, i.e. without time partitioning, those scenarios
here D=T are schedulable, whereas with time partitioning only the

cenario with a single processor is schedulable. Even if the RBU term is
elative to the CPU availability, the CPU unavailability and the effect it
as in the analysis technique for time-partitioned systems provokes that
tilizations in all scenarios are always lower than their counterparts in
on-partitioned ones.

Regarding Table 5, which corresponds to time-partitioned systems,
hen the computing is performed in a single processor, the algorithm

hat obtains the highest RBU is always EQS. When the number of
rocessors is increased some other algorithms seem to behave better,
uch as NPD_Local that produces the highest RBU when deadlines
re 6, 8 and 10 times the period. Moreover, PD_Local also exhibits
he a high performance in distributed systems where deadlines are
, 6 or 8 times the period. In systems without time-partitioning (Ta-
le 6) NPD_Local always obtains the highest BU when deadlines are
ithin the periods, and in this scenario PD_Local also exhibits good
erformance when steps are mapped in more than one processor.
hen deadlines tend to relax, EQS is the most suitable in most of the

xperiment-configurations. Note that the UD and ED algorithms, which
ad obtained fairly good results in the simple example from Section 4,
ever appear in any of these tables as the best ones.

In order to complete the qualitative analysis of these tests Fig. 5
hows, for each number of processors, the evolution of the RBU ob-
ained by the proposed algorithms as a function of the D/T ratio. This
llows readers to track the performance of those algorithms that are not
resent in the tables, which only presented the outstanding algorithms
n each experiment configuration.

As a general conclusion, it can be stated that there is no single
11

lgorithm that behaves the best in all cases. This reinforces our idea of
Fig. 6. Generated e2e flows.

proposing simple and non-iterative algorithms so that all of them can
be applied, and then the most suitable result can be selected. Table 7
shows the execution times of some of the experiments conducted in
this work: the simple example from Section 4, the railway signalling
use case from Section 5.1 and a subset of the synthetic scenarios from
Section 5.2. In each experiment, the presented execution time includes
the execution of the eight priority assignment algorithms plus their
worst-case response-time analysis.

6. Conclusions and future work

In this paper we have presented a collection of algorithms for
priority assignment to multipath e2e flows in hierarchically scheduled
and time-partitioned distributed real-time systems. All of them are non-

iterative algorithms that can provide feasible solutions in a short time,



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.
Table A.8
Step-to-Processor mapping of the synthetic e2e flows.
in contrast to iterative algorithms that might require high computation
times, so designers and developers have the possibility of applying all
of them in order to check which one best suits the target system. Results
show that there is no single algorithm that stands out clearly from the
others. Therefore, the algorithm that best suits a certain configuration
should be chosen from this collection, although an insight into the
behaviour can be obtained by comparing the targeted scenario with
the ones evaluated in this work. The proposed algorithms have been ap-
plied to an industrial use case, then they have been evaluated and their
performance has been ranked by means of a synthetic representative
application.

The following stage of this research includes the development of
a heuristic algorithm for scheduling time-partition windows, in order
to optimize the response times of the applications addressed in this
work. Moreover, a more elegant strategy for solving the aforementioned
ties in priority assignment could be explored. Finally, adequate task-to-
partition strategies might be explored as part of a holistic optimization
stage.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work was supported in part by the ‘‘Doctorados Industriales
2018’’ program from the University of Cantabria and the Spanish
Government and FEDER funds (AEI/FEDER, UE) under grant TIN2017-
86520-C3-3-R (PRECON-I4).
12
Annex

In this annex more details for reproducing the performance evalua-
tion experiments from Section 5.2 are provided:

• Listing 1 shows the input code for generating synthetic e2e flows
with TGFF.

• Fig. 6 shows the generated synthetic e2e flows, including activa-
tion periods of all e2e flows and worst-case execution times for
all steps. Note that a 1/3 scaling factor is later applied to the
generated execution times in order to produce feasible utilizations
for the experiments.

• Table A.8 shows the Step-to-Processor mapping for the different
number of processors evaluated.

t g _ cn t 10
t a sk _ cn t 7 3
task _degree 3 3
period_mul 1 ,0.85 ,1.02
t g _wr i t e
eps _wr i t e

t a b l e _ c n t 1
t a b l e _ l a b e l Processor
t y p e _ a t t r i b WCET 10 10
t r an s _wr i t e

Listing 1: Input code for TGFF



Journal of Systems Architecture 122 (2022) 102339A. Amurrio et al.
References

[1] Airlines Electronic Engineering Committee, Aeronautical Radio INC, Avionics
application software standard interface. arinc specification 653-1, 2010, pp.
21401–27435, AERONAUTICAL RADIO, INC 2551.

[2] Aeronautical Radio INC, Arinc specification 664p7: Aircraft data network, part 7
- avionics full duplex switched ethernet (afdx) network, 2009, pp. 21401–27435,
AERONAUTICAL RADIO, INC 2551.

[3] H. Fang, R. Obermaisser, Execution environment for mixed-criticality train ap-
plications based on an integrated architecture, in: 2017 International Conference
on Promising Electronic Technologies, ICPET, IEEE, 2017, pp. 1–7.

[4] A. Burns, R.I. Davis, A survey of research into mixed criticality systems, ACM
Comput. Surv. 50 (6) (2017) 82.

[5] Safe4rail, URL https://safe4rail.eu/partners.
[6] S. Trujillo, A. Crespo, A. Alonso, J. Pérez, Multipartes: Multi-core partitioning

and virtualization for easing the certification of mixed-criticality systems, Micro-
process. Microsyst. 38 (8) (2014) 921–932, http://dx.doi.org/10.1016/j.micpro.
2014.09.004.

[7] IEC, IEC 61508: Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems Part 6: Guidelines on the application of IEC 61508-2
and IEC 61508-3.

[8] A. Amurrio, E. Azketa, J. Javier Gutierrez, M. Aldea, J. Parra, A review on
optimization techniques for the deployment and scheduling of distributed real-
time systems, Rev. Iberoam. Autom. Inform. Ind. (in Spanish) 16 (3) (2019)
249–263.

[9] C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a
hard-real-time environment, J. ACM 20 (1) (1973) 46–61.

[10] N.C. Audsley, A. Burns, M.F. Richardson, A.J. Wellings, Hard real-time
scheduling: The deadline-monotonic approach, IFAC Proc. Vol. 24 (2) (1991)
127–132.

[11] N.C. Audsley, Optimal Priority Assignment and Feasibility of Static Priority Tasks
with Arbitrary Start Times, Citeseer, 1991.

[12] J.J. Gutiérrez, M. González Harbour, Optimized priority assignment for tasks
and messages in distributed hard real-time systems, in: Proceedings of Third
Workshop on Parallel and Distributed Real-Time Systems, IEEE, 1995, pp.
124–132.

[13] R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, L.M. Pinho, Task partitioning and
priority assignment for distributed hard real-time systems, J. Comput. System Sci.
81 (8) (2015) 1542–1555.

[14] E. Azketa, J.P. Uribe, M. Marcos, L. Almeida, J.J. Gutierrez, Permutational
genetic algorithm for the optimized assignment of priorities to tasks and messages
in distributed real-time systems, in: 2011 IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications, IEEE, 2011, pp.
958–965.

[15] K.W. Tindell, A. Burns, A.J. Wellings, Allocating hard real-time tasks: an np-hard
problem made easy, Real-Time Syst. 4 (2) (1992) 145–165, http://dx.doi.org/
10.1007/BF00365407.

[16] R.I. Davis, L. Cucu-Grosjean, M. Bertogna, A. Burns, A review of priority
assignment in real-time systems, J. Syst. Archit. 65 (2016) 64–82.

[17] Y. Zhou, S. Samii, P. Eles, Z. Peng, Scheduling optimization with partitioning
for mixed-criticality systems, J. Syst. Archit. 98 (2019) 191–200.

[18] D. Tămaş-Selicean, P. Pop, Task mapping and partition allocation for mixed-
criticality real-time systems, in: Dependable computing (PRDC), in: 2011 IEEE
17th Pacific Rim International Symposium on, IEEE, 2011, pp. 282–283, http:
//dx.doi.org/10.1109/PRDC.2011.42.

[19] R. Shah, Y.-H. Lee, D. Kim, Sharing i/o in strongly partitioned real-time systems,
in: International Conference on Embedded Software and Systems, Springer, 2004,
pp. 502–507.

[20] Y. Zhao, H. Zeng, The concept of maximal unschedulable deadline assignment
for optimization in fixed-priority scheduled real-time systems, Real-Time Syst.
55 (3) (2019) 667–707.
13
[21] A. Guasque, H. Tohidi, P. Balbastre, J.M. Aceituno, J. Simó, A. Crespo, Integer
programming techniques for static scheduling of hard real-time systems, IEEE
Access 8 (2020) 170389–170403.

[22] J. Liu, Real-Time Systems, Vol. 48, Prentice Hall, 2000, p. 42.
[23] H. Kao, H. Garcia-Molina, Deadline assignment in a distributed soft real-time

system, in: [1993] Proceedings. the 13th International Conference on Distributed
Computing Systems, IEEE, 1993, pp. 428–437.

[24] J.M. Rivas, J.J. Gutierrez, J.C. Palencia, M.G. Harbour, Deadline assignment in
edf schedulers for real-time distributed systems, IEEE Trans. Parallel Distrib. Syst.
26 (10) (2014) 2671–2684.

[25] J.M. Rivas Concepción, J.J. Gutiérrez García, et al., Interpretación de dos
algoritmos edf on-line para la optimización de sistemas distribuidos de tiempo
real, (In Spanish). URL http://hdl.handle.net/10902/17634.

[26] A. Saifullah, J. Li, K. Agrawal, C. Lu, C. Gill, Multi-core real-time scheduling for
generalized parallel task models, Real-Time Syst. 49 (4) (2013) 404–435.

[27] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, C.D. Gill, Parallel real-time
scheduling of dags, IEEE Trans. Parallel Distrib. Syst. 25 (12) (2014) 3242–3252.

[28] F. Guan, J. Qiao, Y. Han, Dag-fluid: A real-time scheduling algorithm for dags,
IEEE Trans. Comput. 70 (3) (2020) 471–482.

[29] M. González Harbour, J.J. Gutiérrez, J.C. Palencia, J.M. Drake, Mast: Modeling
and analysis suite for real time applications, in: Proceedings of the 13th
Euromicro Conference on Real-Time Systems, IEEE, 2001, pp. 125–134.

[30] M.G. Harbour, J.J. Gutiérrez, J.M. Drake, P. López, J.C. Palencia, Modeling
distributed real-time systems with mast 2, J. Syst. Archit. 59 (6) (2013) 331–340.

[31] Object Management Group, Uml profile for marte: Modeling and analysis of real
time embedded systems, version 1.1., OMG Document Formal.

[32] Green Hill Software, IntegrityRTOS, URL http://www.ghs.com/.
[33] A. Amurrio, E. Azketa, J.J. Gutierrez, M. Aldea, M.G. Harbour, Response-

time analysis of multipath flows in hierarchically-scheduled time-partitioned
distributed real-time systems, IEEE Access 8 (2020) 196700–196711, http://dx.
doi.org/10.1109/ACCESS.2020.3033461.

[34] J.C. Palencia, M. González Harbour, Schedulability analysis for tasks with static
and dynamic offsets, in: Proceedings 19th IEEE Real-Time Systems Symposium
(Cat. No. 98CB36279), IEEE, 1998, pp. 26–37.

[35] J.C. Palencia, M. González Harbour, J.J. Gutiérrez, J.M. Rivas, Response-time
analysis in hierarchically-scheduled time-partitioned distributed systems, IEEE
Trans. Parallel Distrib. Syst. 28 (7) (2016) 2017–2030.

[36] J.C. Palencia, J.J. Gutiérrez, M.González Harbour, On the schedulability anal-
ysis for distributed hard real-time systems, in: Proceedings Ninth Euromicro
Workshop on Real Time Systems, IEEE, 1997, pp. 136–143.

[37] A. Srinivasan, J.H. Anderson, Optimal rate-based scheduling on multiprocessors,
J. Comput. System Sci. 72 (6) (2006) 1094–1117.

[38] R.I. Davis, A. Burns, Improved priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems, Real-Time Syst. 47 (1)
(2011) 1–40.

[39] N. Serreli, G. Lipari, E. Bini, The distributed deadline synchronization protocol
for real-time systems scheduled by edf, in: 2010 IEEE 15th Conference on
Emerging Technologies & Factory Automation, ETFA 2010, IEEE, 2010, pp. 1–8.

[40] ERTMS/ETCS, European Rail Traffic Management System/European Train Con-
trol System release notes to system requirements specification, Subset 026 version
2.3.0.

[41] Ertms/etcs - subset-041: Performance requirements for interoperability, 2015.
[42] R.P. Dick, D.L. Rhodes, W. Wolf, Tgff: task graphs for free, in: Proceed-

ings of the Sixth International Workshop on Hardware/Software Codesign,
CODES/CASHE’98, IEEE, 1998, pp. 97–101.

[43] A. Sangiovanni-Vincentelli, M. Di Natale, Embedded system design for
automotive applications, Computer 40 (10) (2007) 42–51.

[44] J. Lehoczky, L. Sha, Y. Ding, The rate monotonic scheduling algorithm: Exact
characterization and average case behavior, in: RTSS, Vol. 89, 1989, pp.
166–171.

http://refhub.elsevier.com/S1383-7621(21)00232-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb2
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb2
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb2
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb2
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb2
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb4
https://safe4rail.eu/partners
https://safe4rail.eu/partners
http://dx.doi.org/10.1016/j.micpro.2014.09.004
http://dx.doi.org/10.1016/j.micpro.2014.09.004
http://dx.doi.org/10.1016/j.micpro.2014.09.004
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb8
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb8
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb8
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb8
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb8
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb8
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb8
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb9
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb9
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb9
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb10
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb10
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb10
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb10
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb10
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb11
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb11
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb11
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb14
http://dx.doi.org/10.1007/BF00365407
http://dx.doi.org/10.1007/BF00365407
http://dx.doi.org/10.1007/BF00365407
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb16
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb16
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb16
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb17
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb17
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb17
http://dx.doi.org/10.1109/PRDC.2011.42
http://dx.doi.org/10.1109/PRDC.2011.42
http://dx.doi.org/10.1109/PRDC.2011.42
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb21
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb21
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb21
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb21
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb21
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb22
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb24
http://hdl.handle.net/10902/17634
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb26
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb26
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb26
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb27
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb27
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb27
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb28
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb28
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb28
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb30
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb30
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb30
http://www.ghs.com/
http://www.ghs.com/
http://dx.doi.org/10.1109/ACCESS.2020.3033461
http://dx.doi.org/10.1109/ACCESS.2020.3033461
http://dx.doi.org/10.1109/ACCESS.2020.3033461
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb35
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb35
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb35
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb35
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb35
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb37
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb37
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb37
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb38
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb38
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb38
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb38
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb38
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb39
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb39
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb39
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb39
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb39
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb41
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb42
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb42
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb42
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb42
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb42
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb43
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb43
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb43
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb44
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb44
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb44
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb44
http://refhub.elsevier.com/S1383-7621(21)00232-0/sb44

	Priority assignment in hierarchically scheduled time-partitioned distributed real-time systems with multipath flows
	Introduction
	Related work
	Objectives and manuscript organization

	Modelling and analysis
	Architecture
	Hierarchical scheduling
	Response-time analysis

	Scheduling-parameter assignment overview
	Priority assignment in multipath flows within time-partitions
	Virtual deadline assignment
	Ultimate Deadline (UD)
	Effective Deadline (ED)
	Proportional Deadline (PD)
	Normalized Proportional Deadline (NPD)
	Equal Slack (EQS)
	Equal Flexibility (EQF)

	Virtual deadline transformation into priorities

	Evaluation of the priority assignment algorithms
	Industrial use case
	Performance evaluation

	Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	Annex
	References


