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A B S T R A C T

Time and space partitioning techniques are implemented in the development of safety-critical applications
to ensure isolation among components. A suitable arrangement of the execution of such partitions is a key
challenge so that applications meet the timing requirements imposed to software. In this work, the effect of
window sizes and context switch overheads in the partition window configuration is studied, with the aim
of analyzing their impact when the response-time analysis and priority assignment techniques are applied.
Then, a heuristic algorithm is proposed, in order to obtain a partition window configuration that enables the
schedulability of partition-based safety critical systems. This algorithm is evaluated in synthetic test scenarios
and it is also applied to a safety-critical use-case in the railway domain.
1. Introduction

1.1. Context and objective

Modern cyber–physical systems must meet both sophisticated func-
tional and non-functional requirements, which leads to the increase of
their complexity. Railway companies are following the path marked out
by the avionics domain [1], whose architectural designs have evolved
towards time and space partitioned models [2,3], where applications
can execute in isolation. Each partition can have distinct non-functional
requirements to guarantee response times, safety, confidentiality, etc.,
which make up the so-called mixed-criticality systems [4]. In [5], a
detailed review of the work done in the last decade on this type of
systems is carried out, ranging from the most theoretical scheduling
or design aspects, to the basic implementation mechanisms. In mixed-
criticality systems it is necessary to have total independence among
partitions with the aim that the processes of specification, design,
implementation, safety certification (in those systems that require it)
and execution are totally independent throughout the different system
components [6–9]. In the European project MultiPARTES [10] for
example, a set of tools was proposed for the development of mixed
criticality systems based on partitioning, from hardware and software
architectures to partition management tools.

The ARINC 653 standard defines temporal partitioning, where par-
titions are executed periodically. Each partition can be composed of
one or more partition windows, which are in essence time intervals
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during which processing resources are assigned for the execution of a
certain partition. The standard defines a hierarchical scheduling policy,
where partitions are executed sequentially in a pre-defined order within
a major frame (MAF) and, within each partition, there is a secondary
scheduler based on preemptive fixed priorities. The scheduling opti-
mization of such systems has traditionally been solved at the partition
level, by considering synchronous approaches where tasks’ activations
are referred to the beginning of the MAF. Therefore, the MAF is usually
defined as the least common multiple of tasks’ activation periods (also
known as hyper-period), and most solutions rely on obtaining a table-
driven scheduler at this partition level designed to fit each task in
its corresponding partition. However, in this work we consider hier-
archical scheduling as well as tasks that do not have to be necessarily
synchronized with the MAF (events can arrive at any time within the
MAF), making the worst-case response time analysis and optimization
non-trivial. Hence, we aim at proposing an efficient algorithm to design
the scheduling of tasks by combining partition window assignment
stages with priority assignment heuristics, in such a way that all tasks
can meet their timing requirements.

Safety and application-specific standards mandate adherence to
complex architectural patterns. A paradigmatic example can be found
in the railway domain too: in order to maintain a certain integrity level,
manufacturers implement redundant architectures where processing
activities are performed in separated instances and their results are
voted [11,12]. From a real-time perspective, these architectures are
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modeled as multipath flows composed of fork and join structures that
enable complex execution flows to be modeled. These architectures
can also be analyzed and optimized through the priority assignment
in each partition as presented in [13,14]. Correct functioning of safety
critical applications depends not only on results being right, but also
on them being produced in time. It is usual that timing requirements
are imposed to software, which must not be exceeded even in the worst
case scenario, and therefore adequately setting all the schedule-related
parameters gains paramount importance.

As a step forward on re-factoring railway signaling applications, the
aim of this work is to define an adequate partition window configura-
tion that enables meeting the deadlines imposed to a partition-based
safety critical application. To tackle this complex problem, we aim
to perform a study on the effect of the size and number of partition
windows in the schedulability of this kind of applications, and based
on the knowledge acquired, a heuristic partition window assignment
algorithm is developed. This algorithm will be characterized by means
of a set of synthetic experiments, and then it will be applied to a railway
use-case that motivates this work.

1.2. Related work

Research works addressing the scheduling optimization of time-
partitioned real-time system have recently been attracting growing
interest. Some of them make use of meta-heuristic approaches, such
as [15] where an evolutionary algorithm [16] is implemented in the
field of aerospace domain to create hierarchical schedulers, applied to
multi-core architectures. They consider implicit-deadline independent
tasks, in contrast to the multipath e2e flow model composed of tasks
with arbitrary deadlines considered in this work. In [17,18] the authors
propose a Tabu Search algorithm [19] to allocate tasks to partitions and
to generate table-driven partition schedulers, with the aim of minimiz-
ing several aspects such as the certification costs. However, applications
are modeled as a set of tasks with precedence relationships that are not
allowed to cross different partitions, which is a key feature of safety
critical applications, represented by the industrial use-case addressed in
this work. There are other approaches that implement dedicated heuris-
tic algorithms to tackle the partition scheduling problem. For instance,
in [20] partitions are scheduled through a MILP method [21], which
is later refined by means of a Game Theory algorithm [22]. However,
their system model does not address any tasking model, as the work
is limited to partition scheduling. This is also the case of [23], where
partitions are allocated to processors by performing partial analysis in
each stage of the algorithm proposed by the authors. Finally, in [24]
tasks are allocated to partitions and then a TDMA partition schedule is
created. This work is the only one so far that considers context switch
overheads at partition level. However, their application model is based
on independent tasks with implicit deadlines.

1.3. Manuscript organization

The paper is organized as follows. We address a real-time schedul-
ing problem whose main features have been described in Section 1.
The system model, the schedulability analysis technique and priority
assignment algorithms used in this work are described in Section 2,
and a study of the effect that the size and number of partition windows
has in the schedulability of hierarchically scheduled distributed real-
time systems is performed in Section 3. Then, Section 4 describes the
proposed heuristic algorithm that leverages the knowledge of the prior
study, and in Section 5, the experimental evaluation is carried out by
characterizing the algorithm through synthetic experiments and also by
applying it to a railway use-case, which is also described in this section.
Finally, Section 6 draws some conclusions and discusses future research
2

lines.
2. Modeling, analysis and priority assignment

2.1. System model

Fig. 1 shows a simple model containing the elements that are used
to describe the systems addressed in this work. The main element is
the end-to-end (e2e) flow, which consists of a sequence of activities
with precedence relations executed in response to a periodic or sporadic
workload event, with a minimum inter-arrival time (𝑇𝑖). The main
component of an e2e flow is the event handler called step, which
represents an operation being executed by a schedulable resource (a
task or a message) in a processing resource (a computer or a network).
Each step is activated by an input event, and after its execution it
generates an output event. The 𝑗th step in the e2e flow 𝛤𝑖 is denoted
as 𝜏𝑖𝑗 , and it has a worst-case and a best-case execution time, 𝐶𝑖𝑗 and
𝐶𝑏
𝑖𝑗 respectively. In each e2e flow, steps are numbered in topological

order in the range [1..𝑁𝑖]. Workload events that activate e2e flows and
also the internal events that activate handlers may exhibit a release
jitter, so any step 𝜏𝑖𝑗 may suffer a release jitter up to a maximum of
𝐽𝑖𝑗 . Steps can also have an initial offset 𝛷𝑖𝑗 , which is the minimum
release time of the step relative to the nominal activation instant of
the workload event, i.e. the event that activates the first step of the
e2e flow. In Fig. 1, a workload event 𝑒𝑖𝑛1, which is represented by a
down-pointing arrow, activates a step (𝜏1 1) and then its output event
forks, activating two steps, whose output events combine to activate a
final step (𝜏1 4). Horizontal blue arrows represent precedence relations
among event handlers.

The response time of an instance of a step is the difference between
its completion time and the nominal activation time of the workload
event that triggered that instance of the e2e flow (which matches the
activation of the first step of the e2e flow). The worst-case response
time is denoted as 𝑅𝑖𝑗 and the best-case response time as 𝑅𝑏

𝑖𝑗 , and
both are obtained by schedulability analysis techniques. As mentioned
before, deadlines are imposed to software in order to guarantee that
applications complete their duties within a bounded time. In this paper,
we only consider e2e deadlines, denoted as 𝐷𝑖𝑗 , which are the deadlines
set at the output steps of e2e flows. Each step represents a utilization
of the processing resource of 𝑈𝑖𝑗 = 𝐶𝑖𝑗∕𝑇𝑖.

This model includes other event handlers that do not have runtime
ffects and enable the modeling of complex event combinations like the
ultipath e2e flows addressed here:

• Fork: It generates one event in each of its outputs each time an
input event arrives.

• Join: It generates an output event when all of its input events have
arrived.

In this work, we address a distributed architecture, where different
rocessors, which provide hardware and software resources for task
xecution, are connected through one or more communication net-
orks. It is assumed, without loss of generality, that the minimum
nd maximum latencies that messages undergo at network level can
e obtained. Scheduling communications traffic is beyond the scope of
his paper and it remains as future work. Processors host a real-time
perating system that enables temporal partitioning, such as Integrity
TOS [25]. Therefore, hierarchically scheduled and time-partitioned
ystems are considered in this work.

Hierarchical schedulers are composed of a primary scheduler and
secondary scheduler. A table-driven scheduling policy is considered

s primary scheduler in every processor, where temporal partitions are
cheduled in a cyclic manner within a Major Frame (MAF). We define
𝐴𝐹𝑦 as the MAF of 𝐶𝑃𝑈𝑦. A temporal partition 𝑃𝑥 is composed of one

r more partition windows 𝑊 𝑖𝑛𝑥𝑘, defined as follows: 𝑊 𝑖𝑛𝑥𝑘 = { 𝑆𝑥𝑘,
𝐿𝑥𝑘 } where 𝑆𝑥𝑘 is the start time relative to the start of the MAF, and
𝐿𝑥𝑘 is its length. The secondary scheduler is based on preemptive fixed
priorities, where 𝑃𝑟𝑖𝑜 is the priority of the step 𝜏 , and where the
𝑖𝑗 𝑖𝑗



Journal of Systems Architecture 130 (2022) 102671A. Amurrio et al.
Fig. 1. Distributed multipath e2e flow. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Example of hierarchical scheduler.

highest number represents the highest priority. Priorities are valid in
the context of each partition. Fig. 2 shows an example of a hierarchical
scheduler composed of four temporal partitions, 𝑃1 to 𝑃4, where 𝑃1 and
𝑃3 are composed of two partition windows. Within Partition 1 there
are four steps, executed according to their priorities by the secondary
scheduler.

We define the Available Utilization of the partition 𝑃𝑥, 𝐴𝑈𝑃𝑥 , as
the processing time allocated to 𝑃𝑥 in its processor 𝐶𝑃𝑈𝑦, which is
in essence, following the terminology just presented, the sum of the
utilization of all the temporal windows within the MAF, so:

𝐴𝑈𝑃𝑥 =
∑

∀𝑊 𝑖𝑛𝑥𝑘∈𝑃𝑥

𝐿𝑥𝑘∕𝑀𝐴𝐹𝑦 (1)

Following the description given for the utilization represented by
each step, the Partition Utilization of 𝑃𝑥, 𝑈𝑃𝑥 is defined as the sum of
the utilization of all the steps contained in 𝑃𝑥:

𝑈𝑃𝑥 =
∑

∀𝜏𝑖𝑗∈𝑃𝑥

𝑈𝑖𝑗 (2)

The overheads provoked by context switches at the primary sched-
uler are taken into account. This overhead is the time 𝐶𝑆𝑦 that 𝐶𝑃𝑈𝑦
needs to load a partition context at the beginning of a partition window
and to save it after execution finishes. In other words, it can be
understood as a non-available CPU time whenever a partition win-
dow executes. For response-time analysis purposes, this effect can be
modeled by recording this unavailable time at the beginning of every
partition window and subtracting this amount from the available CPU-
time for that window, as shown in the example in Fig. 3, where 𝑃
3

𝑥

Fig. 3. Partition and effective partition with 𝐶𝑆𝑦 = 1 ms.

executes on 𝐶𝑃𝑈𝑦 within a 𝑀𝐴𝐹𝑦 = 40 ms. In this example, a time
partition is composed of two partition windows, and the effect of the
context switch time of 𝐶𝑆𝑦=1 ms at each window provokes that the
total available time of the effective partition (𝑃 ′

𝑥) is 2 ms less than
the original 𝑃𝑥. Therefore, the effective partition window is defined as
follows: 𝑊 𝑖𝑛′𝑥𝑘 = { 𝑆𝑥𝑘 + 𝐶𝑆𝑦, 𝐿𝑥𝑘 − 𝐶𝑆𝑦}.

The system model derived in this work complies with the MAST
model [26]. MAST (Modeling and Analysis Suite for Real-Time Appli-
cations) is a GPL open source model and also a set of tools developed by
the University of Cantabria, which is aligned with the OMG’s MARTE
standard [27]. It enables the description of the temporal behavior of
computing systems, and includes a bunch of scheduling parameter
assignment algorithms, different schedulability analysis techniques and
simulation tools. The second version of its metamodel, MAST2 [28],
adds several novel scheduling policies and modeling elements, such as
time partitioning.

2.2. Response-time analysis and priority assignment

In order to conduct the experimental evaluation of this work, we
need to calculate the steps’ worst-case response times. To do so, we
will make use of the technique developed in [13]. This is an offset-
based schedulability analysis technique [29,30], which was extended
to support multipath e2e flows. It is the most accurate technique
available to calculate worst-case response times, as it is demonstrated
that the results of the holistic analysis [31] for multipath flows are
notably improved. Readers are encouraged to read the aforementioned
references for a deeper understanding of the schedulability analysis.

As said before, the secondary scheduler is based on the FP policy,
and therefore several priority assignment algorithms can be used within
the proposed partition window assignment algorithm. We will rely
on the priority assignment techniques developed in [14], which can
be applied to multipath e2e flows and time-partitioned distributed
real-time systems. These algorithms produce a single solution by dis-
tributing the end-to-end deadline through all the steps in the flow
(called Virtual Deadlines or VDs), and then transforming such deadlines
into priorities following the deadline monotonic algorithm. The main
conclusion in [14] is that there is no algorithm that stands out from the
others in the tested scenarios, which reinforces the idea of evaluating
all of them and choosing the one that produces the best solution. Here
is a brief introduction to each algorithm:

• Ultimate Deadline (UD): It is the simplest scheduling-parameter
assignment algorithm, where the e2e deadline is assigned to all
steps composing the e2e flow [32].

• Effective Deadline (ED): The VD of a step according to the ED
algorithm is the e2e deadline minus the sum of the worst-case
execution times of its successor steps [32].

• Proportional Deadline (PD): The e2e deadline is distributed among
all the steps in the flow proportionally to their worst-case exe-
cution times and the sum of the worst-case execution times of
all the steps of the flow [32]. If the produced VDs refer to the
activation event of the e2e-flow, they are called global deadlines,
and if they refer to the activation of each step, they are called
local deadlines. Therefore, two variants of the PD algorithm are
distinguished: PD_Global and PD_Local.
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Fig. 4. Guiding application example.

• Normalized Proportional Deadline (NPD): This algorithm is sim-
ilar to PD, but it also considers the utilization of the processing
element where it is hosted [32]. In this case the global and local
versions are also distinguished: NPD_Global and NPD_Local.

• Equal Slack (EQS): This algorithm was proposed for on-line
deadline assignment in soft real-time distributed systems, based
on EDF schedulers [33]. Deadline assignment is performed by
equally dividing the slack, defined as the difference between the
deadline and the worst-case response time.

• Equal Flexibility (EQF): This algorithm was also originally pro-
posed for on-line EDF scheduling [33], and it is also based on
dividing the slack (considering the previously given definition),
while the proportionality with respect to the execution times of
the steps is maintained. To do so, the concept flexibility is defined
as the ratio between the slack and the worst-case response time.

Readers are encouraged to read the aforementioned references for
further details on their design and implementation.

3. Study of the influence of partition windows in schedulability

In this section, a study of the influence of the of size and number
of partition windows on the worst-case response times is presented,
which was performed in [34] and which serves as the basis for the
development of the heuristic partition window assignment algorithm
presented in Section 4. To perform the proposed study, different parti-
tion scheduling schemes will be evaluated. Thus, a simple application
example is built, which includes the most relevant features that char-
acterize the motivating railway use-case. This example is composed of
a single multipath e2e flow activated periodically every 50 ms which
is composed of six steps (𝜏1 1 to 𝜏1 6), as shown in Fig. 4. The e2e flow
is mapped within a single partition (𝑃𝑥) composed of a single partition
window, and it is assumed, for the sake of simplicity, that the worst-
case execution time of each step is fixed and equal 2 ms. The priority of
each step is shown in brackets, and the MAF considered for the whole
experiment set is 50 ms. When referring to the schedulability of the
application, it relates to the worst-case response time of 𝜏1 6 (𝑅1 6) in
comparison with its deadline.

3.1. Available utilization

A very common early-design decision regards the CPU time allo-
cated for the execution of each partition, i.e. 𝐴𝑈𝑃𝑥 in the example
described here. Depending on this time, response times may vary
significantly as shown in Fig. 5. Even if this effect seems obvious, it
gives us an idea about the effect that not having all the processor time
dedicated for the execution of applications produces on the worst-case
response times calculated by the analysis technique. For a fixed MAF
and considering a fixed number of windows, a lower available utiliza-
tion generates longer gaps between partition windows, thus the longer
these gaps are (where 𝑃𝑥 is not allowed to be executed), the higher is
the worst-case response time. In this example the partition utilization
𝑈𝑃𝑥 represents 24% of the CPU time, and worst-case response times
vary from 580 ms to 12 ms when the available CPU goes from the initial
value of 24% to 100% respectively.
4

Fig. 5. Worst-case response time of 𝜏1 6 as a function of 𝐴𝑈𝑃𝑥.

Fig. 6. Evolution of worst-case response time of 𝜏1 6 with the number of partition
windows for different values of 𝐴𝑈𝑃𝑥

(in %).

3.2. Number of windows

Once the available time has been fixed for a partition, the next
design decision to take is to distribute this given time in the MAF.
As a first approach, a uniform distribution of partition windows will
be considered, although this might be subject to optimization when
more partitions make up the MAF. Fig. 6 shows the worst-case response
times obtained for this example when the number of partition windows
varies from 1 to 100, for three different values of 𝐴𝑈𝑃𝑥 . As can be seen,
increasing the number of windows produces a reduction in the length
of the unavailable gaps in the MAF, leading to a remarkable reduction
of the obtained response times, up to a point where this reduction is no
longer significant. Again, we can observe here how having larger gaps
between windows leads to higher response times.

3.3. Context switch overheads

The experiments modeled in the previous section have not con-
sidered the effects of the context switch overheads that are present
when a partition is activated. These context switch overheads have
been modeled in the previous section. In general, they depend on the
operating system/hypervisor where applications are executed. For in-
stance, in [35] the measured context switch overhead in a hypervisor is
17 μs, and in [36], it is 27 μs. Therefore, in the experiments performed
in this paper, a value of 𝐶𝑆 = 20 μs is considered, along with a higher
order of magnitude representing a slower processor, i.e. 𝐶𝑆 = 200 μs.
Formally, the maximum CPU time that can be spent in context switch
overheads in processor 𝐶𝑃𝑈𝑦, is bounded by the difference between the
available partition utilization (𝐴𝑈𝑃𝑥 ) and the partition utilization (𝑈𝑃𝑥 ).
Considering this, the limit of the number of partition windows that can
be set for partition 𝑃𝑥 without overloading the partition is defined as
follows:

𝑁𝑊𝑃𝑥 = ⌊(𝐴𝑈𝑃𝑥 − 𝑈𝑃𝑥 ) ⋅
𝑀𝐴𝐹𝑦

⌋ (3)

𝐶𝑆𝑦
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Fig. 7. Worst-case response time as a function of the number of partition windows —
𝑈𝑃𝑥

= 40%. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Worst-case response time as a function of the number of partition windows —
𝑈𝑃𝑥

= 50%. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

In other words, with the number obtained by this expression or a
ower value of windows, enough time for the execution of partition 𝑃𝑥
s guaranteed.

Figs. 7 to 9 show the worst-case response times obtained for dif-
erent numbers of partition windows, available utilizations and context
witch overhead values for this guiding example. For different 𝐴𝑈𝑃𝑥
alues we calculate the response times when increasing the number of
artition windows in the range 1 to 𝑁𝑊𝑃𝑥 . Qualitatively, worst-case
esponse times vary in the same way regardless of the CPU availability,
.e. the maximum response times are obtained when 𝑃𝑥 is scheduled in

single window, and as the number of windows increases response
imes reduce fast, up to a point. After that point, notice that in the
deal scenario, 𝐶𝑆𝑦 = 0 (blue plot), the response-time curve remains
onstant, while if 𝐶𝑆 > 0 (orange plot) the curve increases again.
5
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Fig. 9. Worst-case response time as a function of the number of partition windows —
𝐴𝑈𝑃𝑥

= 60%. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3.4. Conclusions of the study

It has been observed that increasing the number of partition win-
dows has a positive effect on the reduction of response times, which is
outweighed by the negative effect of context switch overheads. Finding
the window configuration that produces the turning point in response
times is essential for a partition window optimization algorithm.

When the partition utilization is very low in comparison to the
available utilization, and also when context switch overheads are very
low, the range of windows to explore (1..𝑁𝑊𝑥 for 𝑃𝑥) is very large.
It has been found that the schedulability analysis tool requires a long
execution time to analyze systems with large numbers of windows
(𝑁𝑊𝑥 > 500). Therefore, the strategy to follow will be to start to
explore from a minimum number of windows and then increase the
number until the turning point is found.

4. Window Assignment (WinAs) algorithm

In the previous study, the effect of the configuration parameters
(referred to the available utilization and the number of windows within
the MAF) on the worst-case response times has been analyzed. Now,
an algorithm called Window Assignment (WinAs) is proposed in or-
der to leverage this knowledge, by searching for a partition window
configuration that produces a schedulable solution for a fixed available
utilization in each partition.

The WinAs algorithm tries to find a schedulable system config-
uration by increasing the number of windows for a fixed available
utilization assigned to each partition. It produces, in each processor, an
adjusted MAF where there is one partition window for each partition,
as well as a priority assignment. This algorithm exploits the results of
the study presented in the previous section, where the influence of the
number of partition windows within the MAF and the gap between
these windows on the worst-case response times is shown.

The rationale for the design of the algorithm is to gradually in-
crement the number of partition windows, by always having a single
window per partition within a diminishing MAF. Reducing the MAF is
equivalent to increasing the number of windows, assuming a uniform
window distribution, within a fixed MAF. For example: considering
a 100 ms MAF, the window for a certain partition 𝑃1 whose 𝐴𝑈𝑃1
is 40% will first be defined as follows: 𝑊 𝑖𝑛11 = {0, 40}. In order to
increase the number of windows (assuming that the solution was not
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schedulable), WinAs sets the new MAF in that processor to 50 ms.
Therefore, the new partition window will be defined as: 𝑊 𝑖𝑛11 =
{0, 20}, which is equivalent to dividing the previous 40 ms window
into two uniformly distributed 20 ms windows within the prior 100 ms
MAF. Performing a non-uniform window assignment remains as future
research work, bearing in mind that, as noticed in the previous study,
worst-case response times are highly influenced by the longest gap
between windows within the MAF.

The design of the algorithm is described in Algorithm 1. The first
step of the algorithm consists of calculating the initial MAF values (line
2). It is calculated, in the context of each processor, as follows: the value
of the MAF will be the most restrictive deadline (the lowest value) of
all the steps present in that processor. With this choice, we make sure
that all partitions will be executed at least once in the time lapse of the
most restrictive deadline. In each iteration, a single window is defined
for each partition within the MAF (line 8), its length being proportional
to the available utilization of that partition, which for partition 𝑃𝑥 is
calculated as follows:

𝐿𝑥1 = 𝑀𝐴𝐹 ⋅ 𝐴𝑈𝑃𝑥 (4)

Since the schedulability analysis of each partition is performed
independently [13], the worst-case response times do not depend on
a specific partition ordering within the MAF. Therefore, the newly
defined partition windows (one per partition) are placed one after
another in an arbitrary ordering, based on the partition’s index.
Algorithm 1 Window Assignment (WinAs) algorithm
1: for each 𝐶𝑃𝑈𝑦 do
2: 𝑀𝐴𝐹𝑦 = 𝑚𝑖𝑛(𝐷𝑖𝑗 ∈ 𝐶𝑃𝑈𝑦)
3: end for
4: while Stopping criterion not met do
5: for each 𝐶𝑃𝑈𝑦 do
6: 𝑂𝑓𝑓𝑠𝑒𝑡 = 0
7: for each 𝑃𝑥 in 𝐶𝑃𝑈𝑦 do
8: 𝑊 𝑖𝑛𝑥1 = {𝑂𝑓𝑓𝑠𝑒𝑡, 𝐿𝑥1}
9: 𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝐿𝑥1

10: end for
11: end for
12: Perform priority assignment and response-time analysis
13: if Schedulable then
14: Return SUCCESS
15: else
16: for each 𝐶𝑃𝑈𝑦 do
17: 𝑀𝐴𝐹𝑦 = 𝑀𝐴𝐹𝑦∕𝑄
18: end for
19: end if
20: end while
21: Return FAIL

As shown in [14], priorities assigned to the steps within time
artitions have a big impact on the system’s schedulability. In this step
line 12), all the algorithms described in [14] are evaluated, and the
est solution is selected at this stage. To determine the best priority
ssignment, a figure of merit is proposed for schedulable solutions: for
ach e2e flow the maximum value 𝑅𝑖𝑗∕𝐷𝑖𝑗 among all output steps is

calculated, so that the worst result per e2e flow is captured; then, the
average 𝑅𝑖𝑗∕𝐷𝑖𝑗 ratio of all e2e flows is calculated, so the algorithm’s
result that obtains the lowest average ratio is considered the best
solution.

If the system is schedulable, the algorithm succeeds (line 14),
whereas if it is not, the MAF is reduced by an adjustable factor (𝑄 in
line 17), which should be greater than 1, and Eq. (4) is applied to the
single window of each partition in order to maintain the appropriate
available utilization. In the previous example, where the rationale of
this algorithm has been explained, the reduction factor applied to the
MAF was 𝑄 = 2, as the MAF was reduced from 100 ms to 50 ms.
This value will also be used for the performance evaluation in the next
6

section. The adjustment of factor Q constitutes an optimization problem
in itself, and it may be addressed in future work.

The stopping condition evaluated in line 4 of Algorithm 1 will be
met when all partitions reach the maximum number of windows, which
can be calculated directly by Eq. (3). If during this search a schedulable
solution is not found, WinAs fails (line 21), and returns the MAF value
that produces the highest System Slack Factor (SSF) value among all the
explored values, where a single partition window is assigned to each
partition according to its available utilization. The System Slack Factor
is defined in the MAST toolset1 in the following way: a Slack Factor
(SF) is the factor by which the worst-case execution times of a step or
a set of steps may be increased while keeping the system schedulable,
or decreased, in order to make the system schedulable. This definition
of SF can be applied to different sets of steps, therefore if all the steps
that compose the system are considered, it is called System Slack Factor
(SSF).

5. Performance evaluation

In this section the algorithm proposed in Section 4 is evaluated.
First, the WinAs algorithm is characterized through a set of synthetic
experiments, and then it is applied to a railway industrial use-case.

5.1. Design of the synthetic experiments

As seen in the study in Section 4, varying the number of windows
within the MAF may be beneficial for some e2e flow’s response times
and detrimental for others, since the algorithm tries to schedule the
most restrictive e2e flows by selecting an appropriate MAF for them.
Therefore, the least restrictive ones suffer an increase in their response
times, due to the large context switch overheads. As the study of
Section 4 has been performed for a single e2e flow allocated to a single
partition, it is necessary to analyze the behavior of WinAs, in order to
assess its capacity to search for schedulable solutions when different
e2e flows, in terms of deadline requirements and/or load, are part of
the same target system. Moreover, the effect of considering some e2e
flows that are allocated only to a subset of the processors needs to
be evaluated, since, as shown in the description of the algorithm, the
solution space may be different in the context of each processor.

With all these features in mind, a set of synthetic scenarios will be
evaluated. To do so, a baseline synthetic scenario, referenced as Scn1
from now on and depicted in Fig. 10, has been designed. It is composed
of four e2e flows with different extensive deadline requirements, and
they are allocated to four processors. Then, some modifications upon
this base scenario will be performed, which include modifying the step-
to-processor allocation in Scn2 and Scn3 (Figs. 11 and 12 respectively)
nd also modifying their workloads (Scn4 and Scn5). Although the
arget systems of this work contain multipath e2e flows, only linear
2e flows are considered in these experiments, so that the results are
ot affected by other effects related to multipath e2e flows. This will
rovide a deep insight into the behavior of the algorithm.

In Scn1, four e2e flows (𝛤1 − 𝛤4) are allocated to four processors.
he periods of their activation events, which represent a wide range
f values, are as follows: 𝑇1 = 40 ms, 𝑇2 = 250 ms, 𝑇3 = 750 ms and

𝑇4 = 1000 ms. It is assumed that all their deadlines are equal to their
periods, although the response-time analysis technique would support
arbitrary ones too. Therefore, 𝛤1 is the most restrictive e2e flow and 𝛤4
the least restrictive one. Table 1 shows, for each step of each e2e flow,
its worst-case execution time. Best-case execution times are assumed to
be the same as the worst-case ones.

In Scn2 steps from 𝛤1 are removed from CPU1 and in Scn3 steps
from 𝛤2 are also relocated, thus obtaining an unbalanced partition
allocation. Due to the MAF selection strategy described in the previous

1 https://mast.unican.es/

https://mast.unican.es/
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Fig. 10. Baseline synthetic scenario Scn1: 2 partitions hosted in each of the 4 processors.
Fig. 11. Scn2: 𝛤1 has been removed from 𝐶𝑃𝑈1 and its steps relocated to partitions in the other processors.
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s

ection, the solution space becomes independent in the context of each
rocessor, depending on which is the most deadline-restrictive e2e flow
hey host. In Scn4 and Scn5 a scaling factor of 2 is applied to the
orst-case execution times of the steps of the most restrictive and

east restrictive e2e flows, 𝛤1 and 𝛤4 respectively, both considering the
rchitecture of the baseline scenario. Since the algorithm considers the
ost restrictive flow’s deadline to calculate the MAF in each processor,

he effect of increasing the workload of 𝛤1 has to be analyzed. Similarly,
he effect of increasing the load in the least restrictive e2e flow is also
7

mportant, as it has the least influence in the MAF calculation. i
As the utilization of the partitions is in the range of 6% and 17%,
he following available utilization for the partitions will be evaluated:
0%, 30%, 40% and 50% (note that 50% is the maximum available
tilization possible as there are two partitions per processor). In these
xperiments, context switch overhead is assumed to be 1 𝜇𝑠.

.2. WinAs algorithm characterization

After designing the experiments that will be carried out in this
ection, the WinAs algorithm will be applied on them in order to assess

ts performance in the different scenarios previously described.
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Fig. 12. Scn3: 𝛤2 has also been removed from 𝐶𝑃𝑈1 and its steps relocated to partitions in the other processors.
Table 1
Worst-case execution times for Scn1.
Scn1

e2e Step 𝐶𝑖𝑗 e2e Step 𝐶𝑖𝑗

𝛤1

𝜏11 1

𝛤2

𝜏21 1
𝜏12 0.5 𝜏22 2
𝜏13 0.5 𝜏23 3
𝜏14 1 𝜏24 2
𝜏15 1 𝜏25 1
𝜏16 2 𝜏26 4
𝜏17 2 𝜏27 2
𝜏18 1 𝜏28 1

𝛤3

𝜏31 15

𝛤4

𝜏41 20
𝜏32 12 𝜏42 40
𝜏33 20 𝜏43 6
𝜏34 40 𝜏44 7.5
𝜏35 30 𝜏45 30
𝜏36 16 𝜏46 37.5
𝜏37 18 𝜏47 6.5
𝜏38 22 𝜏48 11

The worst-case response times of each e2e flow, as a function
f the number of iterations that WinAs takes, have been plotted in
igs. 13 to 17. In each figure, the e2e flows have been separated into
ifferent graphs, and each colored plot represents a different available
tilization assigned to each partition. The horizontal red line shows the
eadline requirement of each e2e flow, and vertical axes have been
epresented in logarithmic scale for the sake of clarity. The first schedu-
able solution obtained by applying WinAs to the synthetic experiments
n each scenario can be seen in Table 2. For each available utilization
alue, we show the MAF produced by WinAs in each processor, as well
s the worst-case response time of the output step of each synthetic e2e
low.

Qualitative results are consistent with the ones obtained in the
revious experiments, as for all e2e flows, increasing the number of
indows is beneficial at the beginning of the search. However, and as
as expected, it becomes detrimental (response times increase) earlier

or the least restrictive e2e flows. Therefore, the number of window
rade-offs must be carefully chosen in order to obtain a schedulable
8

solution. In fact, notice that in Scn1, for 20% and 30% available
utilizations, the algorithm fails to obtain a schedulable solution, as
response-time curves of 𝛤4 are always above the deadline plot. In con-
trast, when the available utilizations are 40% and 50%, the algorithm
does find schedulable solutions.

Regarding Scn2 and Scn3, the proposed algorithm takes more iter-
ations to finish the search. During the first 10 iterations, the number
of windows is increased in all processors, while after that, they are
increased only in a subset of processors. This is because, in processors
where the most restrictive e2e flows are hosted, the limit of the number
of windows is reached before it is reached in those where they are not
present. However, as shown in Figs. 14 and 15, response times always
increase after the 10th iteration, when the number of windows is only
increased in a subset of processors. Finally, as shown in Figs. 16 and
17, which correspond to Scn4 and Scn5 respectively, although there are
not significant qualitative differences in the behavior of the algorithm
when the load of a certain e2e flow is increased, it fails in obtaining
schedulable solutions for any available utilization at Scn5, and only
when the available utilization is 50% there is a schedulable solution
in Scn4. Generally, it can be stated that WinAs’s behavior remains
qualitatively consistent in all the scenarios described in this section.

5.3. Scheduling evaluation of a railway industrial use-case

The need of train manufacturers to re-factor safety critical appli-
cations has motivated the research into novel analysis and scheduling
optimization techniques [13,14]. In this section we present the mod-
eling of the real-time railway signaling application according to the
system model previously described. Although some information has
been omitted because of confidentiality agreements, we show real data
provided by the application developers.

The targeted signaling application, depicted in Fig. 18, is in charge
of supervising the driving and providing relevant information to the
driver [37]. This supervision consists of executing several functional-
ities, which are activated when the train goes through a balise and
receives a message with driving instructions. The event that triggers the
execution is represented by the workload event 𝑒𝑖𝑛1, whose activation
period is 1 s, and 𝜏 represents the capturing task. After capturing
11
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Fig. 13. e2e flows’ worst-case response times for different numbers of windows (Scn1). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 14. e2e flows’ worst-case response times for different numbers of windows (Scn2). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 15. e2e flows’ worst-case response times for different numbers of windows (Scn3). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 16. e2e flows’ worst-case response times for different numbers of windows (Scn4). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Table 2
Schedulable solutions found by WinAs: MAF and worst-case response times.
𝐴𝑈𝑃𝑥 MAF (ms) 𝑅𝑖𝑗 (ms)

𝐶𝑃𝑈1 𝐶𝑃𝑈2 𝐶𝑃𝑈3 𝐶𝑃𝑈4 𝑅1 8 𝑅2 8 𝑅3 8 𝑅4 8

Scn1

40% 5 5 5 5 39.1 82.2 545.1 969.4
50% 5 5 5 5 29.08 60.1 423.8 757.03

Scn2

40% 31.25 5 5 31.25 39.6 134.1 583.2 995.5
50% 31.25 5 5 31.25 29.58 110.1 467.1 773.4

Scn3

40% 23.43 1.25 1.25 7.81 28.76 78.73 551.9 987.35
50% 93.75 5 5 31.25 29.58 102.01 485.29 795.07

Scn4

50% 1.25 1.25 1.25 1.25 39.6 70.83 469.4 835.58
Fig. 17. e2e flows’ worst-case response times for different numbers of windows (Scn5). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
the message, three different safety functionalities are executed: (1)
application of the Emergency Brake (EB functionality), (2) establishing
a communication session with a centralized control center called Radio-
Block Center (RBC-CS functionality), and (3) parameter visualization
in Human–Machine-Interface (PV-DMI functionality). According to rail-
way safety certification authorities, the execution of all functionalities
must not take longer than 1 s from the reception of the message
from the balise [38]. In order to provide a clear picture, only the
EB functionality has been depicted in Fig. 18, although the others
exhibit the same logical structure. This safety application is executed
redundantly in two CPUs, and therefore there are two output events
for each functionality that must satisfy temporal constraints: 𝑒𝑜𝑢𝑡1.1 and
𝑒𝑜𝑢𝑡1.2 for the EB functionality in Fig. 18.

Both processors are connected through a communication network,
which is modeled as a black box where messages are characterized by
a minimum and a maximum latency, which are assumed to be 40 μs
11
and 400 μs, respectively. The manufacturer provided the worst-case ex-
ecution times of each function, which were obtained through complex
measurement techniques, although in order to maintain confidentiality,
the exact values cannot be shown. However, the ones used in this
experiment, shown in Table 3, are of the same magnitude order as
the real ones. We assume that best-case execution times are half of the
worst-case ones.

In order to apply WinAs to this industrial use-case, we will focus
on the experiments from [13], where tentative available utilizations,
partition windows and priorities were assigned, subject to future op-
timization. In this work we will perform several experiments where
different fixed available utilization values are considered, in order to
assess how this input parameter affects WinAs in order to schedule
this industrial use-case. In Experiments 1 and 2 the same available
utilization is allocated to all partitions, which should be enough to host
the targeted application in both cases. Then these values are slightly
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Fig. 18. Real-time application model (RBC-CS & PV-DMI not depicted for the sake of clarity).
Table 3
Train signaling application (times in μs).
Functionality Emergency-brake application — EB

𝜏𝑖𝑗 𝜏1 1 𝜏1 2 𝜏1 3 𝜏1 4 𝜏1 5 𝜏1 6 𝜏1 7 𝜏1 8 𝜏1 9 𝜏1 10 𝜏1 11 𝜏1 12 𝜏1 13
𝐶𝑖𝑗 5 3 6 6 6 3 6 6 6 8 2 8 2
𝑃𝑥 𝑃1 𝑃1 𝑃2 𝑃4 𝑃2 𝑃3 𝑃4 𝑃4 𝑃2 𝑃3 𝑃3 𝑃1 𝑃1

Functionality RBC Communication-session establishment — RBC-CS

𝜏𝑖𝑗 – 𝜏1 14 𝜏1 15 𝜏1 16 𝜏1 17 𝜏1 18 𝜏1 19 𝜏1 20 𝜏1 21 𝜏1 22 𝜏1 23 𝜏1 24 𝜏1 25
𝐶𝑖𝑗 – 15 6 6 6 15 6 6 6 40 10 40 10
𝑃𝑥 – 𝑃1 𝑃2 𝑃4 𝑃2 𝑃3 𝑃4 𝑃4 𝑃2 𝑃3 𝑃3 𝑃1 𝑃1

Functionality Parameter visualization — PV-DMI

𝜏𝑖𝑗 – 𝜏1 26 𝜏1 27 𝜏1 28 𝜏1 29 𝜏1 30 𝜏1 31 𝜏1 32 𝜏1 33 𝜏1 34 𝜏1 35 𝜏1 36 𝜏1 37
𝐶𝑖𝑗 – 30 6 6 6 30 6 6 6 80 20 80 20
𝑃𝑥 – 𝑃1 𝑃2 𝑃4 𝑃2 𝑃3 𝑃4 𝑃4 𝑃2 𝑃3 𝑃3 𝑃1 𝑃1
modified in order to see the impact of different distributions of avail-
able utilization among partitions, first by unbalancing the available
utilization among partitions of the same processor (Experiment 3), and
then by unbalancing the available utilization among partitions that
are hosted in different processors (Experiment 4). The values of the
available utilizations used are shown in Table 4.

Although the safety standards oblige completion of the execution
of functionalities within 1 s, in this section a wider range of deadlines
will be evaluated, in order to determine the behavior of the algorithm
under more constrained and diverse timing requirements. Therefore,
four different values of the e2e deadlines (50, 100, 500 and 1000 ms)
will be explored.

Table 5 shows the results obtained by WinAs when it is applied to
the industrial use-case for each experiment and deadline requirement.
Each line of the table corresponds to a different e2e deadline and it
shows the MAF obtained by the proposed algorithm, the worst-case
response times of the output steps of the application, as well as the
priority assignment technique that got these results. As can be seen,
the proposed algorithm is capable of finding schedulable solutions for
a wide range of deadline requirements and available utilization values.
As expected, the worst-case response times always meet the deadlines
of the e2e flow, and the more available utilization is assigned to a
partition, the lower is the worst-case response time of the application.
Experiment 1 replicates the experiment from [13]. In that paper, the
authors tentatively set a 10 ms MAF in order to meet a 1000 ms dead-
line requirement. Applying WinAs, we obtain a schedulable solution
by setting a 125 ms MAF, thus producing a much lower context-switch
overhead.
12
Table 4
Available utilization of each partition (in %) in each experiment.
Experiment ID 𝐴𝑈𝑃1 𝐴𝑈𝑃2 𝐴𝑈𝑃 3 𝐴𝑈𝑃 4

1 2 2 2 2
2 8 8 8 8
3 6 1 6 1
4 3 3 1 1

6. Conclusions and future work

In this work, the scheduling of time partitions has been addressed.
First, a study of the effect of the size and number of partition windows
taking into account context switch overheads has been performed. It is
concluded that increasing the number of windows of a partition is ben-
eficial, up to a point, for the worst-case response times. The knowledge
coming from this study has been leveraged to develop an algorithm,
called WinAs, to search for schedulable solutions by adjusting the MAF
with one window per partition for a fixed available utilization. The
proposed algorithm has been applied to a representative set of synthetic
experiments and also to the industrial use-case that motivates this work.
It is shown to be capable of finding schedulable solutions in many
different scenarios, including applications composed of a wide range
of deadline requirements.

As highlighted in the paper, there are quite a few research paths to
consider. Exploring a non-uniform window assignment would be one
of the first tasks to address, together with different strategies of MAF
reduction inside WinAs, depending on specific application features.
All the knowledge gathered during the study, in combination with
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Table 5
Results of applying WinAs to the railway application under the different experiments and deadlines tested (all times in ms).
𝐷𝑖𝑗 MAF Priority 𝜏1 11 𝜏1 13 𝜏1 23 𝜏1 25 𝜏1 35 𝜏1 37

Experiment 1

1000 125 ED 735.18 980.18 735.18 980.19 735.16 980.17
500 62.5 ED 367.68 490.18 367.68 490.19 367.66 490.17
100 12.5 PD_G 73.69 98.18 73.69 98.19 73.67 98.16
50 3.125 PD_G 24.69 30.81 21.64 27.68 21.66 27.77

Experiment 2

1000 125 ED 690.18 920.18 690.185 920.19 690.16 920.17
500 62.5 ED 345.18 460.18 345.18 460.19 345.16 460.17
100 12.5 PD_G 69.19 92.18 69.19 92.19 69.17 92.15
50 6.25 PD_G 34.69 46.18 34.69 46.19 34.67 46.15

Experiment 3

1000 125 ED 717.68 965.18 717.68 965.19 717.6 965.17
500 62.5 ED 358.93 482.68 358.93 482.69 358.91 482.67
100 12.5 PG_G 71.94 96.68 71.94 96.69 71.92 96.65
50 6.25 PD_G 36.06 48.43 36.07 48.44 36.05 48.41

Experiment 4

1000 125 ED 613.92 977.68 737.67 977.69 737.65 977.67
500 62.5 ED 368.92 488.93 368.92 488.94 368.9 488.92
100 12.5 PD_G 86.3 97.93 73.94 97.94 73.95 97.91
50 6.25 PD_G 49.42 49.06 43.26 49.07 43.28 49.03
the proposed heuristic algorithm, provides a solid basis for developing
more complex search and optimization algorithms, such as simulated
annealing or genetic algorithms.
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