
Journal of Systems Architecture 132 (2022) 102742

Available online 24 September 2022
1383-7621/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

EDF scheduling for distributed systems built upon the IEEE 802.1AS clock -
A theoretical-practical comparison

Héctor Pérez *, J. Javier Gutiérrez
Software Engineering and Real-Time Group, Universidad de Cantabria, Santander, Spain

A R T I C L E I N F O

Keywords:
Distributed systems
EDF
Clock synchronization
Real-time
Schedulability analysis
Scheduling deadline assignment

A B S T R A C T

Existing response time analysis and optimization techniques for real-time distributed systems show that EDF
schedulers feature better scheduling capabilities when a global clock reference can be used; this form of
scheduling is known as global-clock EDF. In this context, precise clock synchronization is an enabling technology
for future distributed real-time systems that want to leverage EDF scheduling. The IEEE 802.1AS protocol can be
considered a stable technology for this purpose, as it is part of the Time-Sensitive Networking (TSN) family of
standards to provide real-time communication over Ethernet. This paper presents a system architecture for
applying global-clock EDF scheduling in distributed systems with soft real-time requirements. It also presents
experiments to (1) assess the synchronization capabilities of the clock synchronization mechanism in the pro-
posed architecture, (2) evaluate the performance of different scheduling deadline assignment techniques, and (3)
contrast the theoretical results obtained by the schedulability analysis against those obtained through the
execution of these experiments.

1. Introduction

Earliest Deadline First (EDF) is a preemptible priority-driven
scheduling algorithm in which priorities are dynamically assigned to
tasks according to their deadlines (i.e., the assigned priority is inversely
proportional to the absolute deadline computed at release time).
Compared to fixed-priority (FP) scheduling, EDF scheduling can achieve
better usage of the CPU in uniprocessor systems [1], and the frequently
attributed advantages of FP over EDF are not always present [2].
Furthermore, EDF scheduling is now supported in an increasing number
of operating systems (e.g., Linux [3], Zephyr [4], or ERIKA [5]), but it is
also used in communication networks (e.g., CAN Bus [6] or switched
networks [7]), and real-time programming languages such as Ada [8].

Regarding scheduling real-time distributed systems with EDF, the
work in [9] shows how the availability of a global clock (i.e., a clock that
is constantly synchronized across all nodes of the distributed system
from one and the same timing source) may increase schedulability.
According to [9], this improvement is attained when tasks are composed
of a sequence of sub-tasks with precedence relations (i.e., activities
which are independently scheduled, and may be executed in different
CPUs). In this paper, we use the notion of scheduling deadline to denote
the deadline as scheduling parameter as opposed to the deadline as

timing requirement [9,10]. In this context, we can distinguish two kinds
of scheduling policies: (1) in local-clock EDF (LC-EDF), the scheduling
deadlines of each sub-task refer to their release times in their own
processor, determined from a local clock source; and (2) in global-clock
EDF (GC-EDF), the scheduling deadlines of each sub-task refer to the
release time of the task (first sub-task), determined from a global clock,
as the sub-tasks in the concatenation may be located in different
processors.

The GC-EDF scheduling can be applied as long as each node
belonging to the distributed system draws its time source from a global
clock, common to all other nodes of the system. To this end, the IEEE
802.1AS specification [11] proposes a protocol for the transport of
timing over bridged local area networks. This specification is part of the
Time-Sensitive Networking (TSN) set of standards [12], an ongoing
effort to enable deterministic data transfer in Ethernet networks.

Implementations for the clock synchronization mechanism proposed
by IEEE 802.1AS are available for different operating systems, including
Linux. The Linux kernel is getting more and more adopters in the in-
dustry. Results from a recent survey to 120 industry practitioners in the
field of real-time embedded systems [13] show that Linux is deployed in
55.88% of respondents’ applications, from which 42,2% also use a
real-time operating system. For instance, running applications with

* Corresponding author.
E-mail address: perezh@unican.es (H. Pérez).

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

https://doi.org/10.1016/j.sysarc.2022.102742
Received 21 January 2022; Received in revised form 16 September 2022; Accepted 20 September 2022

mailto:perezh@unican.es
www.sciencedirect.com/science/journal/13837621
https://www.elsevier.com/locate/sysarc
https://doi.org/10.1016/j.sysarc.2022.102742
https://doi.org/10.1016/j.sysarc.2022.102742
https://doi.org/10.1016/j.sysarc.2022.102742
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102742&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Systems Architecture 132 (2022) 102742

2

real-time requirements over Linux has been explored for space or HPC
applications [14].

This paper addresses the question of whether EDF scheduling per-
forms better when GC-EDF is used as opposed to LC-EDF, as suggested by
theoretical results [10]. In particular, we explore and evaluate the
behavior of LC-EDF and GC-EDF in distributed real-time systems using
theoretical and experimental results supported by the proposal of a
distributed architecture based on Linux and the IEEE 802.1AS standard.
This work originates from an earlier and initial experimentation with the
proposed architecture [15], and it also completes a previous analysis for
LC-EDF that was presented in [16]. Specifically, this paper makes the
following contributions:

• Identification of a viable system architecture to apply GC-EDF
scheduling. This architecture would enable clock synchronization
through the facilities implemented by the Linux kernel, thus making
this architecture suitable for soft real-time applications.

• Assess the viability of the approach by (1) developing a distributed
real-time platform with support for EDF scheduling and a global
clock, and (2) assessing the synchronization capabilities of the
platform.

• Evaluate different scheduling deadline assignment techniques that
can be applied to distributed real-time systems.

• Verify whether the experimental results follow the same behavior as
the theoretical results obtained by schedulability analysis
techniques.

This paper is organized as follows. Section 2 reviews the related
work. Section 3 presents the proposed system architecture, while Sec-
tion 4 describes the distributed real-time platform that implements the
proposed architecture. Section 5 outlines the real-time model and the
schedulability analysis and deadline assignment techniques for EDF
scheduling on which this paper is based. Section 6 presents the evalu-
ation of the proposed approach, including the assessment of the syn-
chronization capabilities of using a global clock, and the comparison of
the theoretical and experimental results obtained for EDF scheduling in
a distributed real-time application. Finally, Section 7 summarizes the
main contributions and outlines directions of future work.

2. Related work

Since the initial work by Liu and Layland [1], the EDF scheduling
policy has been very widely studied for uniprocessor systems from
different perspectives of theory and practice, even in comparison with
other industrially accepted scheduling policies such as FP [2,17].
Moreover, the interest that these studies still have is clear as shown in a
recent work [18] presenting a toolbox that enables quantitative
per-application comparison of EDF and FP uniprocessor scheduling. This
toolbox is based on [19] to allow EDF to be used in place of default FP in
Ada Ravenscar systems without any change in the application code.

There are also many works concerning EDF and multiprocessor
systems [20], where EDF schedulers are well defined and can be clas-
sified into global scheduling (tasks may migrate from one processor to
another, e.g. [21]) or partitioned scheduling (fixed allocation of tasks to
processors, e.g. [22,23]). An evaluation of these two kinds of schedulers
in a real-time operating system is presented in [24]. In the context of
data-intensive applications, the paper in [25] studies the use of global
EDF scheduling with gang scheduled tasks on a homogeneous multi-
processor system.

In the case of real-time distributed systems, the body of knowledge
about the behavior of EDF scheduling is much smaller. For instance, the
book by Liu [26] shows deadline-assignment algorithms where sched-
uling deadlines are obtained by distributing the end-to-end deadline of a
task to each of its sub-tasks. Later works [10,9] present algorithms for
optimizing the assignment of deadlines to tasks and messages in
distributed hard real-time systems which outperform the processor

utilization of existing ones in the case of LC-EDF schedulers. Some of
these algorithms are supported by response time analysis techniques for
distributed systems. Most of these analysis techniques are derived from
the holistic analysis for GC-EDF proposed by Spuri [27]. The holistic
analysis technique for LC-EDF was proposed in [10] as a modification of
Spuri’s technique. In essence, the holistic analysis assumes that each
sub-task is independent of the others, even if they all belong to the same
task. After analyzing each sub-task in isolation, the dependencies among
them are captured into the jitter term of each sub-task. Response time
analysis seeks to determine the longest busy period, found from a critical
instant. Notably, the analysis techniques for LC-EDF and GC-EDF also
work for systems with arbitrary deadlines, i.e. task’s deadlines can be
larger than task’s periods.

The work presented in [28] discusses an offset-based technique for
GC-EDF, which reduces in part the pessimism of the holistic approach.
More recently in [29], two equivalent offset-based techniques were
proposed for LC-EDF. While the latter techniques yield less pessimistic
results, they are extremely complex and a reliable implementation of
them is not available yet. So, for the purpose of the work presented here,
the holistic technique is used as it can be applied to both LC-EDF and
GC-EDF, which also allows comparable results to be obtained.

Several authors have assessed the timing capabilities of the clock
synchronization protocol provided by the IEEE 802.1AS standard. For
instance, the results obtained in [30] show a clock offset between 3 and
8 µs in a simple distributed system; and the authors in [31] evaluated the
precision of clock synchronization in large-scale realistic networks by
means of simulations, which achieved a precision of 2 µs with the as-
sumptions made in their system model.

3. System architecture

The Linux kernel provides developers with notable features such as
the high availability of popular development tools and packages,
extensive platform support, and ease of customization. This has led users
to regard Linux as a relevant choice of operating system in the industry
[13]. Whereas the Linux kernel architecture was designed for
general-purpose computing, its real-time performance has been
continuously improved and the current real-time scheduling perfor-
mance can be sufficient for soft real-time systems as long as the kernel is
appropriately configured [14]. However, additional features are needed
for it to become able to support global-clock EDF scheduling:

• Support for EDF scheduling service

Modern Linux kernels provide an implementation of EDF scheduling
combined with the CBS (Constant Bandwidth Server) algorithm [32].
Under this scheduling policy, the current scheduling deadline of a
sub-task is initialized to the current time plus a configured period set
by CBS, where each sub-task is associated with a budget and a period.
Thus, this policy does not fit well with the concept of GC-EDF [9],
where scheduling deadlines of each sub-task are refer to the release
time of the task.
To mitigate this issue, our system architecture relies on a real-time
operating system to provide scheduling services. MaRTE OS [33] is
a real-time kernel mainly written in Ada [8], which follows the
Minimal Real-Time POSIX.13 subset. This kernel implements most of
the services defined by the Real-Time Systems Annex of Ada [8],
including the EDF_Across_Priorities dispatching policy. The imple-
mentation of the EDF policy in MaRTE OS allows developing appli-
cations scheduled with GC-EDF scheduling as long as a global clock is
available. Furthermore, MaRTE OS allows the execution of applica-
tions not only over bare machine but also over the Linux kernel with
some limitations. The latter option is enabled by means of the
linux_lib architecture [34] which allows MaRTE OS applications to be
executed as user processes in Linux.

H. Pérez and J.J. Gutiérrez

Journal of Systems Architecture 132 (2022) 102742

3

• Support for a clock synchronization mechanism

Several solutions exist for clock synchronization in a distributed
system, which assure different degrees of time-synchronization.
Unlike most of them, the Precision Time Protocol (PTP) relies on
standard hardware and infrastructure to synchronize clocks in the
nodes of a distributed system. The IEEE 802.1AS standard can be
seen as a subset or profile of PTP to provide better real-time gua-
rantees. Thus, the proposed architecture provides the notion of
global time by means of the implementation of the IEEE 802.1AS
protocol [11], which is responsible for synchronizing all the PTP
Hardware Clocks (PHC) for each node of the distributed system.
Among other functionalities, the protocol deals with (1) the trans-
port of synchronized time, (2) the selection of a timing source, and
(3) the indication of timing errors. This standard ensures that the
jitter and time synchronization requirements are met for
time-sensitive applications.
The synchronization protocol specified by IEEE 802.1AS generates a
master-slave hierarchy among the clocks of the network. One clock is
used as a reference time source (Grandmaster) and the other clocks
are used as slaves. Fig. 1 shows a possible configuration for the
synchronization of PHC and system clocks in IEEE 802.1AS systems.

In this example, the timing source is located in the switch but other
configurations are allowed by the standard.

Fig. 2 shows a multicore system following the proposed software
architecture for integrating a global clock in distributed systems with
real-time requirements. The Linux kernel provides different services to
applications, such as timing or networking. Real-time applications are
executed on top of MaRTE OS, which is configured with the linux_lib
architecture [34]. Under this architecture, a MaRTE OS application can
be executed as a standard Linux process in which concurrency and
scheduling facilities are provided by MaRTE OS. It is worth noting that
these applications are standard processes and therefore may be inter-
rupted by Linux kernel activities.

However, the design of the Linux kernel favors throughput over
predictability and therefore it should not be used with its default
configuration for real-time systems. Some of the most notable ap-
proaches to bound response times of real-time applications in Linux
include the PREEMPT_RT kernel patch and the core isolation capabilities
[14]. While the former aims at reducing latency by making most of the
kernel preemptable, the isolation capabilities aim at reserving a pro-
cessing core for one or more tasks or sub-tasks (i.e., they prevent the
Linux scheduler to schedule other workload on the isolated cores). To
enhance the predictability of a MaRTE OS application executed on top of

Fig. 1. Example of clock synchronization in IEEE 802.1AS system.

Fig. 2. System architecture.

H. Pérez and J.J. Gutiérrez

Journal of Systems Architecture 132 (2022) 102742

4

Linux, our proposal applies the isolation capabilities provided by the
Linux kernel. Isolating a core can enhance the predictability of appli-
cations by limiting user and kernel preemptions. Whereas the Linux
kernel provides several features to facilitate the execution of threads in
isolated cores, these features do not provide full isolation and they do
not consider some sources of interferences such as shared caches, global
work queues or interprocessor interrupts. Furthermore, there are also a
few kernel threads bound to each core whose workload cannot be
migrated. It is worth noting that the use of MaRTE OS enables the
execution of a multithreading application in the isolated core.

Finally, a system clock (e.g., a POSIX clock) could also be synchro-
nized to the PHC clock in order to facilitate access to the global time
from user-space applications as shown in Fig. 2.

4. The distributed real-time platform

This section describes the implementation of the architecture intro-
duced in Section 3 in order to validate the integration of the required
software and provide experimental results in subsequent sections. The
configuration of the Linux kernel requires tuning both compilation and
runtime parameters, which are briefly described next. For instance, core
isolation at runtime is provided by means of isolcpus and cpuset facilities
[3]. These facilities allow executing the MaRTE OS process as isolated
workload on a given core, exempt from competition from other
workload.

To enhance isolation, the CONFIG_NO_HZ_FULL kernel parameter
[3] has been enabled. This parameter allows a core to run in adaptative
tick mode (i.e., the kernel tick is offloaded to another core when the
isolated core is idle or running a single thread). However, this parameter
cannot remove a residual 1 Hz tick which still remains as a source of
interference. Additionally, the isolated core is switched off during boot
time to force the kernel to assign the regular workload to the
non-isolated cores.

The PREEMPT_RT patch makes several changes to the kernel to favor
predictability over throughput. One of them is converting interrupt
handlers into preemptible kernel threads, which somehow compromises
the benefit of the adaptative tick mode (i.e., several runnable threads can
be available at the same time and therefore the kernel tick cannot be
offloaded to another core). Furthermore, the design of the linux_lib ar-
chitecture of MaRTE OS relies on POSIX signals for the communication
with the Linux kernel, which increases the complexity of the system
configuration when POSIX signals are handled by kernel threads.

The proposed architecture relies instead on the low-latency profile
for the kernel, which integrates some of the changes proposed by the
PREEMPT_RT patch without compromising core isolation. As a side
note, the use of MaRTE OS as a threading library on top of Linux allows
the execution of a multithreaded application in adaptative tick mode
since there is only one runnable thread from the Linux kernel
perspective.

LinuxPTP1 is a suite of tools for Linux that enable configuration and
access to a global clock in a distributed system. For our purposes, two
tools from the toolset are particularly relevant: (1) ptp4l to synchronize
the PHC clocks through the network, and (2) phc2sys to synchronize two
local clocks in each node (e.g., a POSIX clock and a PHC clock). Besides
following the IEEE 802.1AS specification, both tools are configured to
provide monotonically increasing times (i.e., clock corrections are per-
formed by changing clock frequency), as it is more suitable for real-time
applications.

At the MaRTE OS level, the linux_lib architecture has been modified
to provide access to the global clock from the application level. To
enable this feature, the timing functions located in the Hardware
Abstraction Layer have been modified to use the clock with synchronized
time provided by the PTP stack. In the original implementation of the

kernel, the clock call was based on the Linux system call gettimeofday
[3]. Since the PHC clock can be mapped to the system clock through
phc2sys, the new call relies on the clock_gettime system call to query the
time from the global clock. In a similar way, the Ada runtime system
used by MaRTE OS has been also modified to enable the access to the
global clock from Ada applications.

5. System model, schedulability analysis and scheduling
deadline assignment

This section briefly describes the system model, the schedulability
analysis techniques and some of the scheduling deadline assignment
algorithms used in this work. MAST (Modeling and Analysis Suite for
Real-Time Applications) [35] is a tool suite used for modeling and
analysis of real-time and embedded systems. It integrates the tools
needed in this work as well as a model [36] aligned with MARTE
(Modeling and Analysis of Real-Time Embedded systems) [37], a stan-
dard defined by the OMG (Object Management Group). MAST, there-
fore, has facilitated the process of obtaining the theoretical results
presented in this paper.

• Real-time model

In MAST, a real-time system is composed of distributed end-to-end
flows with periodic or sporadic activations. Each end-to-end flow
(e2e flow hereafter) Γi is released by a sequence of external events
with a period (or a minimum interarrival time) Ti, and contains a set
of steps that model tasks (CPU-bound scheduling units) and messages
(network-bound scheduling units). Each periodic release of an e2e
flow causes the execution of the set of steps, each step being released
when the preceding one in its e2e flow completes. We assume that
steps are statically assigned to processors and networks (migration is
not allowed), and that the relative phasing of different e2e flows is
arbitrary.
Fig. 3 shows an example of one e2e flow, denoted Γi, with three steps.
The arrival of the external event that releases the e2e flow is repre-
sented by a thick horizontal arrow labelled ei, which has period Ti.
The thin horizontal arrows represent the release of the following
steps in the e2e flow; a step cannot be executed before the preceding
step has completed. We assume that events represented in Fig. 3 are
instantaneous and any activity in the system is modelled as a step.
The j-th step of e2e flow Γi is identified as τij; it is characterized by its
worst case execution time Cij and its best-case execution time Cb

ij. The
timing requirements that we consider are end-to-end deadlines (e2e
deadlines hereafter), Di, relative to that particular release period of
the e2e flow, and must be met by the final step in the e2e flow. We

Fig. 3. The model of the e2e flow Γi. 1 Available at http://linuxptp.sourceforge.net/

H. Pérez and J.J. Gutiérrez

http://linuxptp.sourceforge.net/

Journal of Systems Architecture 132 (2022) 102742

5

allow e2e deadlines to be larger than the corresponding e2e flow
periods. As a result of schedulability analysis, each step τij also has a
worst-case response time (or an upper bound on it) Rij, and a best-
case response time (or a lower bound on it) Rb

ij. The worst-case
response time estimation of the last step is then compared with the
e2e deadline in order to determine the schedulability of the system.
We allow the external event that triggers an e2e flow to have a
maximum release jitter Ji1 in relation to the corresponding activation
of the e2e flow. Other steps τij may also have an initial release jitter
Jij. Despite this jitter, e2e deadlines and response times always refer
to the theoretical start of their respective instance’s period, not to the
actual release of the e2e flow. We assume that Jij may be larger than
the period of its e2e flow, Ti. For each step τij scheduled by the EDF
policy, two kinds of scheduling deadlines are defined: (1) a local
scheduling deadline Sdij, relative to the release time of its associated
step in its own processing resource, thus allowing the use of the LC-
EDF policy; and (2) a global scheduling deadline SDij for the GC-EDF
policy, relative to the release period of the corresponding e2e flow.

• Schedulability analysis techniques for EDF

The real-time model described above allows the response time
analysis techniques developed in [27] for GC-EDF and in [10] for
LC-EDF to be applied in order to obtain an estimation of the
worst-case response times. It is known [38] that using the best-case
response time of an e2e flow in the holistic analysis makes jitter
calculation more precise, which in turn reduces the overall pessi-
mism of the analysis. We compute a lower bound on the best-case
response time as the sum of the best-case execution times of the
current step and all its predecessors in the e2e flow.

• Scheduling deadline assignment techniques

In this work, we use four scheduling deadline assignment methods
and evaluate them according to their interpretation depending on
whether LC-EDF or GC-EDF is used, as described in [9]:

• Ultimate Deadline (UD) [26], which obtains the scheduling dead-
lines by assigning the e2e deadline of an e2e flow (Di) to each one
of its steps.

• Effective Deadline (ED) [26], which obtains the scheduling dead-
lines by considering that if a step finishes its execution within its
assigned deadline, the following steps in the same e2e flow will
have to complete within their worst-case execution time.

• Proportional Deadline (PD) [26], which calculates scheduling
deadlines by distributing the e2e deadline (Di) proportionally to
the worst-case execution time of each step (Cij.).

• Proportional Deadline with Global Scheduling Deadline (PD-GSD) [9],
which works as PD does, but converts the scheduling deadlines
obtained for LC-EDF into GC-EDF ones. Thus, the scheduling
deadline of step τij equals the sum of all deadlines (assigned by PD)
of the preceding steps in the e2e flow, including itself.

Fig. 4 shows an illustrative example for the application of the
scheduling deadline assignment methods in a single e2e flow with a
period and an e2e deadline of 12 and 25 units of time, respectively.
This e2e flow is composed of 4 steps whose worst-case execution
times are 2, 5, 1 and 2 units of time, as shown in Fig. 4. Further
details on the description of these algorithms as well as on their
scheduling capabilities can be found in [9].

6. Evaluation

After introducing the real-time model, the schedulability analysis
algorithm, and the deadline assignment techniques, an evaluation of the
proposal is performed with a twofold objective:

• Assessing the synchronization capabilities of using a global clock in
the proposed architecture by obtaining performance metrics. In
particular, three experiments have been carried out in the context of
the proposed architecture to estimate (1) the overhead associated
with the reading of the global clock, (2) the latency associated with
the handling of an external event and (3) the synchronization ca-
pabilities of the global clock.

• Verifying whether the experimental results for EDF scheduling in
distributed systems slant in the same direction as the theoretical
results obtained by the schedulability analysis techniques. To this
end, a distributed real-time application with synthetic workloads is
evaluated when different scheduling deadline assignment techniques
are applied.

The hardware platform consists of two quad-core 1.9 GHz nodes
connected through an isolated 1 Gbps Ethernet network. Both nodes and
the switch are compliant with the IEEE 802.1AS standard and run the
PTP stack to implement the synchronization of clocks according to the
configuration illustrated in Fig. 1.

The implementation of the architecture depicted in Fig. 2 has used
the following software components: (1) Linux kernel v4.4.256-rt214
compiled using the parameters described in Section 3; (2) MaRTE OS
v2017 using the linux_lib architecture, together with the required
changes for accessing to the global clock described in Section 4; (3) ptp4l
v3.0 to implement the PTP stack; and (4) phc2sys v3.0 to synchronize
system and PHC clocks.

The evaluation has been performed with regular kernel workload
and without any additional user workload except the one determined by
the experiments themselves.

6.1. Assessment of the synchronization capabilities

The proposed architecture is based on IEEE 802.1AS and MaRTE OS
for providing a global clock and EDF scheduling, respectively. Thus, it is
worth estimating the synchronization capabilities of the global clock
from the perspective of a real-time application executed on top of
MaRTE OS. To better compare the measurements obtained, two different
scenarios are defined: (1) the MaRTE OS over Linux scenario, which
represents the proposed approach; and (2) the Reference scenario in
which the test applications use the same features as the previous

Fig. 4. Example of applying different scheduling deadline assignment techniques.

H. Pérez and J.J. Gutiérrez

Journal of Systems Architecture 132 (2022) 102742

6

scenario (e.g., core isolation) but they execute directly on top of the
Linux kernel.

6.1.1. Overhead metrics
The first experiment aims to estimate the overhead associated with

the reading of the global clock. This operation is executed 10,000,000
times, and the average, maximum, and minimum times are estimated,
together with the standard deviation.

Table 1 shows the results obtained for both scenarios under evalu-
ation, which report a high maximum time compared to the average and
minimum values. This difference may be caused by interferences of the
Linux kernel whose design is not specifically tailored to real-time sys-
tems. As noted in Sections 3 and 4, the Linux kernel does not provide full
isolation and it can suffer from some sources of interferences such as
shared caches, global work queues, interprocessor interrupts or the re-
sidual 1 Hz tick. According to specialized literature [39], this can lead to
worst-case latencies in the range of tens of μs.

It is also worth noting that MaRTE OS over Linux scenario obtains
higher average and minimum values. In Linux, the clock_gettime function
is usually supported as vDSO (virtual Dynamic Shared Object) to
improve its performance [3]. However, the clock_gettime call in the
linux_lib architecture of MaRTE OS is internally redirected to the Linux
kernel through an explicit system call, which incurs additional overhead
in relation to the native case. Finally, the results show that the standard
deviation is below 0.1 μs in both scenarios.

6.1.2. Event-handling latency metrics
The second experiment aims to estimate the latency associated with

the handling of an external event. In particular, this test measures the
delay in the response to a periodic timer event (i.e., it executes clock_-
nanosleep followed by clock_gettime using the global clock). In this case,
the requested time through clock_nanosleep should be nearly identical to
the time measured by clock_gettime. This experiment is executed
1,000,000 times with a period of 100 μs, and the average, maximum,
and minimum times are estimated, together with the standard deviation.

Table 2 shows the results obtained for this experiment. Again, the
measurements obtained for MaRTE OS over Linux are higher for average
and minimum values. This is due to the design of MaRTE OS, which
relies on POSIX signals to communicate with the Linux kernel. However,
the results show that this overhead is lower than the maximum in-
terferences which are caused by the Linux kernel. Finally, the standard
deviation remains below 1 μs in both scenarios, although it is slightly
lower for MaRTE OS over Linux. Thus we can conclude that the proposed
approach reduces execution-time dispersion (variability) at the cost of
acceptable runtime overhead.

6.1.3. Timing synchronization metrics
The last experiment aims to evaluate the synchronization of the

global clock in a distributed system. To this end, two nodes periodically
and synchronously to each other raise a digital signal using the global
clock as the timing source. Then, an oscilloscope measures the delay
between the two digital signals. This operation is executed 50,000 times,
and the average and maximum times together with the standard devi-
ation are estimated. Figs. 5 and 6 show the results taken by oscilloscope
for both scenarios using a period of 100 μs. In this experiment, the
maximum time is obtained as the maximum absolute value of the Max
and Min times captured by the oscilloscope. It is worth noting that
negative values indicate that the second signal is raised before the first
one.

Both scenarios obtain similar maximum absolute delays below 10 μs.
Furthermore, the standard deviation obtained by each scenario is in the
same range as the second experiment. These results suggest that the
approach may be suitable for real-time applications whose deadlines are
in the range of hundreds of microseconds.

6.2. Theoretical and practical comparison

Our second objective is to contrast the worst-case response times
obtained by applying the holistic response time analysis techniques for
EDF with those obtained from the experiments using the platform
described in Section 4. According to the theoretical results from previous
research [10], EDF scheduling should be expected to perform better
when GC-EDF is used as opposed to LC-EDF.

In relation to the scheduling deadlines assignment, PD could be the
only algorithm that would make sense to apply to LC-EDF, as we might
think that the e2e deadline will be guaranteed as long as local deadlines
are also guaranteed for each step. However, the other scheduling
deadline assignment techniques are known to be able to obtain lower
worst-case response times as shown in [9,16]. Hence, we evaluate the
four techniques for LC-EDF, and the UD, ED and PD-GSD techniques for
GC-EDF.

6.2.1. Evaluation scenario
The distributed real-time application used for the analysis is illus-

trated in Fig. 7. It consists of two processors (CPU1 and CPU2) connected
through a communication network. Four e2e flows are defined, all of
them with the same structure as shown next: each e2e flow is composed
of four steps, which are executed sequentially and alternately in each
processor; the first one is activated periodically and the remaining steps
are triggered by the arrival of the corresponding message through the
network. The execution times, periods and deadlines of each e2e flow
are carefully selected to show the differences in the response times ob-
tained by the analysis when different scheduling deadline assignment
techniques are used. The objective of this selection is to find configu-
rations that allow obtaining representative theoretical results for the
behavior of LC-EDF and GC-EDF scheduling, so that they can be later
compared with the experimental ones. For the sake of simplicity, mes-
sages sent through the network have a fixed length of 64 bytes. In this
example, the overhead associated with the network is considered
negligible. This can be done without loss of generality since the trans-
mission times are going to be several orders of magnitude smaller than
the shortest of the e2e flow periods, as we show next. Similarly, we also
consider negligible the overheads associated with the scheduling of the
operating system (e.g., context switches) and the clock synchronization
mechanism, which are in the range of microseconds while the
application-level execution times are in the range of milliseconds.

In this experiment, we apply two configurations of the system
concept outlined above, and whose characteristics are shown in Table 3.
Both configurations define the same activation periods for the e2e flows
and they also have the same e2e deadlines, which have been set as three
times the period of the corresponding e2e flow; this is a common case of
arbitrary deadlines in distributed systems. These deadlines enable
obtaining a schedulable configuration for high CPU utilization (more
than 95%). Furthermore, the execution times shown in Table 3 are
constant (that is, the best-case execution times of steps are equal to their
worst-case execution times), as it is the normally case for synthetic
workloads. Once periods were set, several configurations for the
execution times, ranging from mid to high (44% – 97%) CPU

Table 1
Overhead in accessing the global clock (time in μs).

Scenario Max Avg Min Std Dev

Reference 27.30 0.07 0.07 0.01
MaRTE OS over Linux 38.80 3.40 3.40 0.07

Table 2
Event-handling latency for a timer event (time in μs).

Scenario Max Avg Min Std Dev

Reference 30.20 6.50 5.10 0.60
MaRTE OS over Linux 23.70 18.60 16.20 0.32

H. Pérez and J.J. Gutiérrez

Journal of Systems Architecture 132 (2022) 102742

7

utilizations, were tested by means of schedulability analysis and
scheduling deadline assignment techniques. Finally, the two configu-
rations shown in Table 3 were selected, whose CPU utilizations are:

• Configuration 1: 74.14% for CPU1 and 74.59% for CPU2. Considering
increasing workloads, this is the first configuration in which at least
one of the scheduling deadline assignment techniques used (UD for

Fig. 5. Synchronization of two digital signals: metrics taken by oscilloscope in the Reference scenario.

Fig. 6. Synchronization of two digital signals: metrics taken by oscilloscope in the MaRTE over Linux scenario.

H. Pérez and J.J. Gutiérrez

Journal of Systems Architecture 132 (2022) 102742

8

instance) causes the system to incur a deadline miss (according to
schedulability analysis).

• Configuration 2: 96.92% for CPU1 and 96.97% for CPU2. Considering
increasing workloads, this is the first configuration in which none of
the scheduling deadline assignment techniques used makes the sys-
tems schedulable.

6.2.2. Response-time analysis
Once the proposed application has been modelled with MAST, the

scheduling deadline assignment techniques can be applied. Table 4
shows the scheduling deadlines obtained by the four techniques
described in Section 5. It can be seen that the trivial UD technique

assigns the same values for both configurations, and PD is the only
technique in which the sum of the scheduling deadlines of the steps
belonging to an e2e flow are within the bounds of the e2e deadline.

The results obtained by applying the holistic schedulability analysis
techniques [26,10] to the proposed example are shown in Table 5. Only
the worst-case response times of the last step in each e2e flow are shown,
since they are the ones that can be compared to the e2e deadlines.

6.2.3. Response-time of experimental measurements
An implementation of the proposed application has been coded in C

and executed on top of the platform described in Section 4. The two
configurations have been executed with the different assignments of
scheduling deadlines. Each test has been executed for one hour
(approximately, 119 500 e2e flow executions per test) and the worst,
best, and average response times of each e2e flow have been calculated
from the response times measured. The availability of a global clock
facilitates taking end-to-end measurements. In this case, the release time
of each e2e flow is transmitted along with the network messages so it can
be used by the last step in the corresponding e2e flow to calculate its
response time.

Figs. 8 and 9 show the results obtained, expressed as a ratio to the e2e
deadline of the corresponding e2e flow (i.e., a value below 100 indicates

Fig. 7. The distributed real-time application under analysis.

Table 3
Parameters for the distributed real-time application (times in ms).

Configuration 1 Configuration 2
e2e flow Ti Di Ci1 Ci2 Ci3 Ci4 Ci1 Ci2 Ci3 Ci4

Γ1 50 150 12 7 6 10 15 10 8 11
Γ2 120 360 5 12 9 5 9 14 13 8
Γ3 300 900 22 6 19 36 29 9 26 46
Γ4 650 1950 14 41 83 26 21 59 98 38

Table 4
Scheduling deadlines (Sdij or SDij) assigned to steps by each technique (times in ms).

Configuration 1 Configuration 2
Step UD ED PD PD-GSD Di UD ED PD PD-GSD Di

τ11 150.000 127.000 51.429 51.429 150 150.000 121.000 51.136 51.136 150
τ12 150.000 134.000 30.000 81.429 150.000 131.000 34.091 85.227
τ13 150.000 140.000 25.714 107.143 150.000 139.000 27.273 112.500
τ14 150.000 150.000 42.857 150.000 150.000 150.000 37.500 150.000
τ21 360.000 334.000 58.065 58.065 360 360.000 325.000 73.636 73.636 360
τ22 360.000 346.000 139.355 197.419 360.000 339.000 114.545 188.182
τ23 360.000 355.000 104.516 301.935 360.000 352.000 106.364 294.545
τ24 360.000 360.000 58.065 360.000 360.000 360.000 65.455 360.000
τ31 900.000 839.000 238.554 238.554 900 900.000 819.000 225.000 225.000 900
τ32 900.000 845.000 65.060 303.614 900.000 828.000 75.000 300.000
τ33 900.000 864.000 206.024 509.639 900.000 854.000 216.667 516.667
τ34 900.000 900.000 390.361 900.000 900.000 900.000 383.333 900.000
τ41 1950.000 1800.000 166.463 166.463 1950 1950.000 1755.000 189.583 189.583 1950
τ42 1950.000 1841.000 487.500 653.963 1950.000 1814.000 532.639 722.220
τ43 1950.000 1924.000 986.890 1640.850 1950.000 1912.000 884.722 1606.940
τ44 1950.000 1950.000 309.146 1950.000 1950.000 1950.000 343.056 1950.000

H. Pérez and J.J. Gutiérrez

Journal of Systems Architecture 132 (2022) 102742

9

that the observed response time is below the deadline). The values
represented in these figures refer to the measured worst-case response
times (Wcrt), the theoretical results that come from the analysis (Wcrt-T,

except the cases that do not converge in Configuration 2 which are not
represented) and the average response times (Avgrt). Furthermore, a
logarithmic scale is used for Configuration 2 in order to better appreciate

Table 5
Theoretical worst-case response times of the e2e flows for each scheduling deadline assignment (times in ms).

Configuration 1 – LC-EDF Configuration 2 – LC-EDF
e2e flow UD ED PD PD-GSD Di UD ED PD PD-GSD Di

Γ1 70.000 54.000 48.000 64.000 150 N/C N/C N/C 87.000 150
Γ2 164.000 118.000 134.208 176.321 360 N/C N/C N/C 326.505 360
Γ3 609.000 356.000 433.286 400.000 900 N/C N/C N/C 814.000 900
Γ4 2392.000 1466.000 1025.100 893.000 1950 N/C N/C N/C 2786.940 1950

Configuration 1 – GC-EDF Configuration 2 – GC-EDF
UD ED PD PD-GSD Di UD ED PD PD-GSD Di

Γ1 51.000 64.000 – 64.000 150 1114.000 884.000 – 88.318 150
Γ2 121.000 141.000 – 178.000 360 1352.000 1084.000 – 316.818 360
Γ3 530.000 481.000 – 391.000 900 1923.000 1663.000 – 761.485 900
Γ4 1508.000 1457.000 – 893.000 1950 3037.000 2793.000 – 2048.820 1950

N/C: the response time analysis does not converge.
Worst-case response times written in bold correspond to non-schedulable e2e flows.

Fig. 8. E2e flow response times relative to the e2e deadlines forConfiguration 1 (in%).
Wcrt/Avgrt: worst-case and average response times for the real execution. Wcrt-T: worst-case response times for the theoretical analysis

Fig. 9. Configuration 2 (in%).
Wcrt/Avgrt: worst-case and average response times for the real execution. Wcrt-T: worst-case response times for the theoretical analysis" and do the needful.

H. Pérez and J.J. Gutiérrez

Journal of Systems Architecture 132 (2022) 102742

10

the differences, since some theoretical results far exceed the e2e
deadline.

6.2.4. Discussion
The theoretical results from Table 5 show that the predicted worst-

case response times are strongly dependent on the assignment of
scheduling deadlines; thus, the results from the response time analysis
for the configuration with the highest CPU load (Configuration 2) show
that the algorithm that computes the response time for LC-EDF does not
converge (i.e., the worst-case response time of at least one e2e flow goes
to infinite) when UD, ED and PD assignments are used. UD and ED as-
signments do converge for GC-EDF, although with very high times.
According to the other configurations analysed (not shown in this
paper), this lack of convergence begins to appear from a CPU utilization
of 86% when UD, ED and PD assignments are used.

For the configuration with the lowest CPU load (Configuration 1),
the results obtained for LC-EDF and GC-EDF are very similar except for
the UD assignment. Under this configuration, the lowest response times
are usually obtained by the PD-GSD assignment. Similarly to Configu-
ration 1, in general, the lowest response times for Configuration 2 are
also obtained with the PD-GSD assignment. In this case, the use of GC-
EDF scheduling provides better results, as it significantly reduces the
response times of three e2e flows (i.e., Γ2, Γ3 and Γ4) at the cost of
slightly increasing it in Γ1.

These theoretical results are similar to those obtained in our previous
works [9,16] in which GC-EDF also provides better results than LC-EDF,
although the difference between the two schedulers is smaller for the
example presented here.

The experimental results from Figs. 8 and 9 shows that the assign-
ment techniques that did not converge in the theoretical analysis (i.e.,
those using LC-EDF in Configuration 2) obtain very similar worst-case
response times among them in the real execution. Furthermore, some
e2e flows present even lower worst-case response times than those ob-
tained using the assignment techniques that converged. In any case, for
the configuration with the highest CPU load, the best results come from
the PD and the PD-GSD assignments techniques. In general, the UD and
ED assignments for GC-EDF have obtained the highest response times in
the real execution, following the trend of the theoretical results in which
the predicted worst-case response times were remarkably high.

Likewise, Configuration 1 presents very similar experimental results
for all the scheduling deadline assignment techniques, with small dif-
ferences among them. Under this configuration, the PD-GSD assignment
shows the smallest differences between theoretical and experimental
results for both LC-EDF and GC-EDF scheduling. As can be seen in Fig. 8,
the average response times for this configuration follow the same
behavior as the worst-case response times (i.e., the assignment tech-
niques with lower worst-case response times also obtain lower average
response times). For CPU utilizations much lower than those in
Configuration 1, diverse theoretical and experimental results have been
observed. We consider that this is not an issue for low workloads when
the system stays comfortably schedulable; e.g., for the lowest CPU uti-
lization tested (44%), the ratio response time/deadline is not higher
than 32% and 15% for the theoretical and the experimental results,
respectively.

7. Conclusions and future work

This paper has explored and evaluated an EDF scheduling policy
based on global scheduling deadlines for distributed real-time system. In
order to apply GC-EDF scheduling, the paper has firstly proposed an
architecture for distributed systems with support for a globally syn-
chronized clock based on the IEEE 802.1AS standard. Under this ar-
chitecture, global and local timing services are provided by the Linux
kernel, and threading and real-time scheduling services are provided by
MaRTE OS. This is appropriate since MaRTE OS supports EDF sched-
uling as described in the Real-Time Annex of Ada, which fits well with

the concept of GC-EDF. The proposed architecture only aims at soft real-
time systems since MaRTE OS applications are executed as standard
Linux processes. To achieve better predictability, the proposed approach
is also built upon the isolation facilities provided by the Linux kernel in
order to execute MaRTE OS applications in an isolated core. Full isola-
tion, however, cannot be guaranteed as the 1 HZ tick still remains pre-
sent in the isolated core.

Furthermore, the paper also presents a distributed real-time platform
where the proposed system architecture is implemented. The experi-
mental results obtained in the platform tests show that the proposed
approach could suit soft real-time applications with deadlines in the
range of hundreds of microseconds.

This implementation is key to verifying whether the experimental
results for EDF scheduling in distributed systems follow the same
behavior as the theoretical results obtained by state-of-the-art schedul-
ability analysis techniques. Since these experimental results are ob-
tained from a limited simulation, the worst-case response times of the
e2e flows may not have been actually observed. However, the mea-
surements obtained do show a trend in the behavior followed by the
different deadline assignment techniques: (1) the UD and ED assign-
ments have generally obtained the highest response times for the theo-
retical analysis, and also obtained high response times for the real
execution with high CPU load; (2) in general, the PD-GSD assignment
can be considered the best technique for both LC-EDF and GC-EDF; and
(3) the results of the schedulability analysis technique are highly
dependent on the assignment of scheduling deadlines.

From these results, we can highlight that the theoretical dominance
of GC-EDF over LC-EDF has not been observed in the experimental re-
sults. Even though the analysis techniques for both GC-EDF and LC-EDF
are pessimistic (i.e., they obtain large upper bounds of the actual worst-
case response times), the results suggest that the analysis is more
pessimistic for LC-EDF as there is a larger disparity between the theo-
retical results and the experimental measurements. Finally, we can
conclude that, except for simple systems, the relation between the
theoretical-practical behaviors of EDF scheduling in distributed systems
is rather difficult to understand and it would require further study.

In the short term, we plan to continue our investigation by exploring
new emerging technologies such as ACRN, an hypervisor for Linux built
with real-time and safety-criticality requirements in mind, which could
enhance the isolation capabilities of the proposed architecture.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was partially supported by MCIN/ AEI /10.13039/
501100011033/ FEDER “Una manera de hacer Europa” under grant
TIN2017-86520-C3-3-R (PRECON-I4).

References

[1] C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard real-
time environment, J. ACM 20 (1) (1973) 46–61.

[2] G. Buttazzo, Rate monotonic vs. EDF: judgment day, Real-Time Syst. 29 (1) (2005)
5–26.

[3] The Linux kernel documentation. Available online: https://www.kernel.org
/doc/Documentation/[Retrieved January 2022].

H. Pérez and J.J. Gutiérrez

http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0001
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0001
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0002
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0002
https://www.kernel.org/doc/Documentation/
https://www.kernel.org/doc/Documentation/

Journal of Systems Architecture 132 (2022) 102742

11

[4] Zephyr real-time operating system home page: https://zephyrproject.org.
[Retrieved January 2022].

[5] ERIKA enterprise, evidence home page, http://www.evidence.eu.com/. [Retrieved
January 2022].

[6] P. Pedreiras, L. Almeida, EDF message scheduling on controller area network,
Comput. Control Eng. J. 13 (4) (2002) 163–170.

[7] T. Qian, F. Mueller, Y. Xin, Hybrid EDF packet scheduling for real-time distributed
systems, in: Proc. of the 27th Euromicro Conference on Real-Time Systems, Lund
(Sweden), 2015, pp. 37–46.

[8] ISO/IEC, 2012. Ada 2012 reference manual. Language and standard libraries -
International Standard ISO/IEC 8652:2012(E), doi: 10.1007/978-3-642-45419-6,
(2012).

[9] J.M. Rivas, J.J. Gutiérrez, J.C. Palencia, M.González Harbour, Deadline assignment
in EDF schedulers for real-time distributed systems, IEEE Trans. Parallel Distrib.
Syst. 26 (10) (2015) 2671–2684.

[10] J.M. Rivas, J.J. Gutiérrez, J.C. Palencia, M.González Harbour, Optimized deadline
assignment and schedulability analysis for distributed real-time systems with local
EDF scheduling, in: Proc. of the 8th International Conference on Embedded
Systems and Applications, ESA’2010, Las Vegas (Nevada), USA, 2010,
pp. 150–156.

[11] IEEE 802.1AS - “Timing and synchronization for time-sensitive applications in
bridged local area networks”. (2020).

[12] IEEE 802.1 Time-sensitive networking (TSN) task group. Available online: https://
1.ieee802.org/tsn/[Retrieved January 2022].

[13] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, R.I. Davis, An empirical survey-
based study into industry practice in real-time systems, in: Proceedings of the 41st
Real-Time Systems Symposium (RTSS 2020), 2020, pp. 3–11.

[14] M. Madden. “Challenges using Linux as a real-time operating system”. AIAA
SciTech Forum (Software Challenges in Aerospace). doi:10.2514/6.2019-0502(201
9).

[15] H. Pérez Tijero, D. García, J.J. Gutiérrez, First steps towards an IEEE 802.1AS clock
for EDF scheduling in distributed real-time systems, in: 25th Ada-Europe
International Conference on Reliable Software Technologies (AEiC), Work in
Progress Session, in Ada User Journal 42, 2021, pp. 121–124.

[16] J.J. Gutiérrez, H. Pérez, Theory and practice of EDF scheduling in distributed real-
time systems, in: Proc. of the 23rd International Conference on Reliable Software
Technologies, Ada-Europe 2018, Lisbon (Portugal), in Lecture Notes in Computer
Science 10873, LNCS, 2018, pp. 123–137.

[17] R.I. Davis, A. Burns, S. Baruah, T. Rothvoß, L. George, O. Gettings, Exact
comparison of fixed priority and EDF scheduling based on speedup factors for both
pre-emptive and non-pre-emptive paradigms, Real-Time Syst. 51 (5) (2015)
561–601.

[18] D. Perale, T. Vardanega, Removing bias from the judgment day: a Ravenscar-based
toolbox for quantitative comparison of EDF-to-RM uniprocessor scheduling, J. Syst.
Arch. 119 (2021), 102236.

[19] P. Carletto, T. Vardanega, Ravenscar-EDF: comparative benchmarking of an EDF
variant of a Ravenscar runtime. Reliable Software Technologies – Ada-Europe
2017, LNCS, Springer International Publishing, 2017, pp. 18–33.

[20] R.I. Davis, A. Burns, A survey of hard real-time scheduling for multiprocessor
systems, ACM Comput. Surv. 43 (4) (2011) 35.

[21] M. Bertogna, M. Cirinei, G. Lipari, Schedulability analysis of global scheduling
algorithms on multiprocessor platforms, IEEE Trans. Parallel Distrib. Syst. 20 (4)
(2009) 553–566.

[22] S. Baruah, N. Fisher, Non-migratory feasibility and migratory schedulability
analysis of multiprocessor real-time systems, Real-Time Syst. 39 (1–3) (2008)
97–122.

[23] S. Baruah, Partitioned EDF scheduling: a closer look, Real-Time Syst. 49 (6) (2013)
715–729.

[24] G. Gracioli, A.A. Fröhlich, R. Pellizzoni, S. Fischmeister, Implementation and
evaluation of global and partitioned scheduling in a real-time OS, Real-Time Syst.
49 (6) (2013) 669–714.

[25] Z. Dong, K. Yang, N. Fisher, C. Liu, Tardiness bounds for sporadic gang tasks under
preemptive global EDF scheduling, in: IEEE Transactions on Parallel and
Distributed Systems 32, 2021, pp. 2867–2879, https://doi.org/10.1109/
TPDS.2021.3081019.

[26] J. Liu, Real-Time Systems, Prentice Hall, 2000.
[27] M. Spuri, Tech. Rep. RR-2873. “Holistic Analysis for Deadline Scheduled Real-

Time Distributed Systems”, INRIA, France, 1996.

[28] J.C. Palencia, M. González Harbour, Offset-based response time analysis of
distributed systems scheduled under EDF, in: Proc. 15th Eur. Conf. Real-Time Syst.,
Porto, (Portugal), 2003, pp. 3–12.

[29] U. Diaz De Cerio, M. González Harbour, J.C. Palencia, J.P. Uribe, Adding
precedence relations to the response-time analysis of EDF distributed real-time
systems, in: 22nd International Conference on Real-Time Networks and Systems,
RTNS, 2014.

[30] K. Yong Ju, et al., Performance of IEEE 802.1 AS for automotive system using
hardware timestamp, in: The 18th IEEE International Symposium on Consumer
Electronics (ISCE), 2014.

[31] M. Gutiérrez, W. Steiner, R. Dobrin, S. Punnekkat, Synchronization quality of IEEE
802.1AS in large-scale industrial automation networks, in: IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2017, pp. 273–282,
https://doi.org/10.1109/RTAS.2017.10.

[32] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard real-time
systems, in: Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid,
1998, pp. 4–13.

[33] M. Aldea, M. González, MaRTE OS: an Ada kernel for real-time embedded
applications, in: Proc. of the International Conference on Reliable Software
Technologies, Ada-Europe 2001 2043, Leuven, Belgium, in Lecture Notes in
Computer Science, LNCS, 2001.

[34] M. Masmano, J. Real, I. Ripoll, A. Crespo, Extending the capabilities of real-time
applications by combining MaRTE-OS and Linux, in: Proc. of the International
Conference on Reliable Software Technologies, Ada-Europe 2004. Lecture Notes in
Computer Science 3063, 2004, https://doi.org/10.1007/978-3-540-24841-5_11.

[35] MAST home page: http://mast.unican.es/[Retrieved January 2022].
[36] M. González Harbour, J.J. Gutiérrez, J.M. Drake, P. López, J.C. Palencia, Modeling

distributed real-time systems with MAST 2, J. Syst. Arch. 59 (6) (2013) 331–340.
[37] Object Management Group. UML profile for MARTE: modeling and analysis of real-

time embedded systems. OMG document, v1.1 formal/2011-06-02 (2011).
[38] J.C. Palencia, J.J. Gutierrez, M.Gonzalez Harbour, Best-case analysis for improving

the worst-case schedulability test for distributed hard real-time systems, in: Proc. of
the 10th EUROMICRO Workshop on Real-Time Systems, 1998, pp. 35–44, https://
doi.org/10.1109/EMWRTS.1998.684945.

[39] F. Reghenzani, G. Massari, W. Fornaciari, The real-time Linux kernel: a survey on
PREEMPT_RT, ACM Comput. Surv. 52 (1) (2019) 36, https://doi.org/10.1145/
3297714. Article 18.

Héctor Pérez Tijero has been participating in intense teaching
and research activity in the Software Engineering and Real-
Time Group at the University of Cantabria (Spain) since
2008. He received his M.Sc. and Ph.D. in 2008 and 2012,
respectively. His-Ph.D. was concerned with the integration of a
real-time model into distribution middleware to facilitate the
development process of distributed real-time systems. He
works in software engineering for real-time systems and has
been involved in several research and industrial projects using
emerging distribution middleware technologies to build
distributed and deterministic applications.

J. Javier Gutiérrez received his B.S. and Ph.D. Degrees from
the University of Cantabria (Spain) in 1989 and 1995 respec-
tively. He is an Associate Professor in the Software Engineering
and Real-Time Group at the University of Cantabria since 1996,
where he works in software engineering for real-time. His-
research activity deals with the scheduling, analysis and opti-
mization of embedded real-time distributed systems (including
communication networks). He has been involved in several
research projects building real- time controllers for robots,
evaluating Ada for real-time applications, developing middle-
ware for real-time distributed systems, and proposing models
along with the analysis and optimization techniques for
distributed real-time applications.

H. Pérez and J.J. Gutiérrez

https://zephyrproject.org
http://www.evidence.eu.com/
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0006
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0006
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0007
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0007
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0007
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0009
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0009
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0009
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0010
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0010
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0010
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0010
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0010
https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0013
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0013
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0013
https://doi.org/10.2514/6.2019-0502(2019)
https://doi.org/10.2514/6.2019-0502(2019)
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0015
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0015
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0015
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0015
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0016
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0016
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0016
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0016
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0017
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0017
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0017
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0017
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0018
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0018
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0018
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0019
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0019
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0019
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0020
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0020
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0021
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0021
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0021
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0022
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0022
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0022
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0023
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0023
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0024
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0024
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0024
https://doi.org/10.1109/TPDS.2021.3081019
https://doi.org/10.1109/TPDS.2021.3081019
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0026
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0027
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0027
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0028
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0028
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0028
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0029
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0029
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0029
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0029
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0030
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0030
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0030
https://doi.org/10.1109/RTAS.2017.10
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0032
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0032
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0032
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0033
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0033
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0033
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0033
https://doi.org/10.1007/978-3-540-24841-5_11
http://mast.unican.es/
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0036
http://refhub.elsevier.com/S1383-7621(22)00227-2/sbref0036
https://doi.org/10.1109/EMWRTS.1998.684945
https://doi.org/10.1109/EMWRTS.1998.684945
https://doi.org/10.1145/3297714
https://doi.org/10.1145/3297714

	EDF scheduling for distributed systems built upon the IEEE 802.1AS clock - A theoretical-practical comparison
	1 Introduction
	2 Related work
	3 System architecture
	4 The distributed real-time platform
	5 System model, schedulability analysis and scheduling deadline assignment
	6 Evaluation
	6.1 Assessment of the synchronization capabilities
	6.1.1 Overhead metrics
	6.1.2 Event-handling latency metrics
	6.1.3 Timing synchronization metrics

	6.2 Theoretical and practical comparison
	6.2.1 Evaluation scenario
	6.2.2 Response-time analysis
	6.2.3 Response-time of experimental measurements
	6.2.4 Discussion

	7 Conclusions and future work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

