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On the adaptability of ensemble
methods for distributed classification
systems: A comparative analysis
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Abstract
In this work, a two-stage architecture is used to analyze the information collected from several sensors. The first stage
makes classifications from partial information of the entire target (i.e. from different points of view or from different kind
of measures) using a simple artificial neural network as a classifier. In addition, the second stage aggregates all the estima-
tions given by the ensemble in order to obtain the final classification. Four different ensembles methods are compared in
the second stage: artificial neural network, plurality majority, basic weighted majority, and stochastic weighted majority.
However, not only reliability is an important factor but also adaptation is critical when the ensemble is working in chang-
ing environments. Therefore, the artificial neural network and the plurality majority algorithm are compared against our
two proposed adaptive algorithms. Unlike artificial neural network, majority methods do not require previous training.
The effects of improving the first stage and how the system behaves when different perturbations are presented have
been measured. Results have been obtained from two applications: a realistic one and another simpler one, with more
training examples for a more accurate comparison. These results show that artificial neural network is the most accu-
rate proposal, whereas the most innovative proposed stochastic weighted voting is the most adaptive one.
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Introduction

In the last years, the importance of wireless sensors net-
works (WSNs) has significantly increased as a conse-
quence of the requirements of the Internet of Things
(IoT). Systems tend to be more complex, using many
sensors to sense a high number of variables and to
‘‘know’’ the environment around them in order to act
properly. Consequently, these systems not only demand
more communication and cooperation among their
sensors but also need to be more intelligent and adap-
tive. In this work, some cooperative classifier ensemble
methods are presented to combine estimations from
sensors in order to obtain a more reliable solution.
Besides, adaptation to changing environment is also
tackled to determine how the system would be able to

maintain a certain level of accuracy although external
or internal conditions affect the system.

During the course of many years, several research
activities have been focused on improving the behavior
of intelligent systems using different artificial intelligent
strategies. Particularly, decision making plays an
important role under this topic since it can be used for
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different applications such as networks and energy
management,1–3 health care and medical decisions,4,5

or autonomous transportation and road traffic6–8

among others. Moreover, nowadays, systems tend to
be increasingly more autonomous, and decisions have
to be taken by themselves according to the environmen-
tal information. Furthermore, many of these systems
have to be able to determine their behavior facing with
changing environments or even to combine different
responses provided by different sensors or agents in
order to obtain a more accurate one. The application
establishes the requirements; sometimes, reliability will
be the most important aspect but performance, con-
sumption, ease of deployment, or even adaptation are
also other factors to be taken into account.

Pattern recognition is very related to decision mak-
ing, and it is very extended in classification systems.
One of the main characteristics of these systems is relia-
bility, since classifiers need to be able to generate out-
puts with a high level of accuracy. Moreover, they
allow us to predict the output of a specific event (usu-
ally once the system has been trained). There are many
classification methods, such as artificial neural net-
works (ANNs), decision trees, K-nearest neighbors
(KNNs), linear regression, or support vector machines
(SVMs), which try to obtain a good classification of a
training set in order to establish the best criteria for
splitting and to label the data properly. In spite of the
existing methods, several modifications of the original
ones are being studied in order to improve the classifi-
cation rates. Furthermore, the importance of this
dependability requirement involves multiple efforts on
developing new strategies to improve the system
response.

Ensemble methods can improve the accuracy of a
classification.9–11 Usually, an ensemble is composed of
two stages. Generally, it contains a primary set of lear-
ners, also called base learners, which are in charge of
generating estimations for the second stage, which has
to combine all of them. The most popular ensemble
methods are bagging, boosting, stacked generalization,
and ensembles of learners. All of them are based on
creating several models using a training set. In case of
bagging, models are built independently using different
samples with replacement from the training set to
obtain them. Once the models are created, they are
ready to classify new samples. The same sample is
applied as an input to every model, and the output is
calculated as a combination of all single outputs (i.e.
normally a mean or majority voting). Random forests
are a special case of bagging. In this particular case, a
set of decision trees are combined to obtain the final
classification. Each decision tree–based model is built
using a random selection of its attributes. Then, an
input is applied to every model, and the final classifica-
tion is given by the most popular class. In contrast to

bagging, in boosting methods, a dependency among the
models is defined. The most famous boosting method,
called AdaBoost, was proposed by Freund and
Schapire12 in 1997. In this one, models are created
sequentially, taking into account the behavior of the
previous one. The samples tested in the previous model
are weighted for the next one. In this way, the final
classifier combines the votes of each individual classi-
fier, where the vote of each one is weighted according
to its accuracy. Although boosting methods are more
accurate, the traditional ones usually risk overfitting
the model.13 However, Schapire et al.14 demonstrated,
through the margin theory, that AdaBoost has no indi-
cation of overfitting. Besides, random forests are often
more robust to errors and even faster than traditional
boosting. On the contrary, Wolpert defined the staked
generalization15 as a two-level classifier in which the
first one is an ensemble of classifiers whose outputs are
used as input to the second level meta-classifier.
Finally, an ensemble of learners combines different het-
erogeneous models. They use the training set to create
different models using different algorithms (decision
tree, KNN, linear regression, SVM, or ANN). All of
these models are trained using the same training data
set. Once the heterogeneous set of models is created,
the same input is applied to every model, and all the
single outputs are often combined using a mean opera-
tion. Usually, ensembles provide less error, so they are
more accurate that bagging and booting, and they also
decrease the overfitting and biases.

Kuncheva16 explains the importance of classifier
ensembles and how the combination of several classi-
fiers can improve the behavior of a classifier system.
When different classifiers are combined, it is necessary
to handle the contribution of each one to the final
decision.17–19 Therefore, an appropriated management
of each classifier has to be previously defined. There
are two main strategies to deal with the whole ensem-
ble: (1) fusion and (2) selection. On one hand, a selec-
tion strategy is more focused on working with different
specialized classifiers, which means that each one
knows a specific part of the feature space and therefore
is responsible for classifying the classes belonging to
this part. On the other hand, classifier fusion approach
is more focused on combining the contribution of every
classifier in order to obtain another more accurate
one.20

In this work, we use the two-stage classifier ensem-
ble architecture used in our previous work.21 It is com-
posed of several individual classifiers which have to be
combined in order to obtain the final result. The pro-
posed architecture is shown in Figure 1.

The first stage provides some classifications obtained
from partial information about the target, and then the
second stage is in charge of combining all of them to
obtain a final improved classification. Classifiers of the
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first stage have been implemented as ANNs (particu-
larly as multi-layer perceptrons (MLPs)) trained with
partial information about the target. The proposed
methodologies of this work are focused on the second
stage, where different methods will be employed to
compare the efficiency and adaptability of each one. On
one hand, another ANN will be implemented, whereas,
on the other hand, different voting algorithms are also
tested. This second-stage ANN needs to be trained, and
it uses the estimations of the first stage as its inputs in
order to generate the output of the ensemble. Related
to the voting algorithms, three different methods are
tested. The simplest one is plurality majority and the
others are two proposals based on weighted majority,
which are called basic weighted and stochastic weighted
voting algorithms. In section Second stage: classifier
ensemble, these algorithms are described in detail.

As mentioned before, bagging and booting methods
use the same data set and split it using different tech-
niques. In contrast, in this case, there are different data
sets to be analyzed as a consequence of a multi-sensor
scenario. This fact allows us to use the same algorithm
(in this work, ANNs) for all the classifiers located in
the first stage, because each one provides different
results since they use different data sets. Although the
proposal is not exactly an ensemble of learners in terms
of heterogeneity, it can be considered as an ensemble
method which deals with its own scenario. Three of the
proposed algorithms are considered machine learning
methods because they have some learning capabilities
and take into account the previous system behavior.
Therefore, in these cases, the proposal can be consid-
ered as a stacked generalization approach. Just in case
of majority voting, this assumption is not certain,
because it does not imply any kind of learning.

Moreover, not only accuracy has to be taken into
account, adaptability is another characteristic to

address. Therefore, this article introduces a comparison
among adaptive and non-adaptive fusion algorithms in
a two-stage classification scheme as an ensemble
method mainly focused on the second stage. A classifier
can be trained for a specific application and, conse-
quently, it will carry out a great classification.
However, if some changes affect the system, the classi-
fier will provide worse results. Therefore, adaptability
is a very important factor to consider a high level of
reliability, even in classifier ensembles.22,23 Hence, in
this work, adaptive capabilities are also analyzed and
compared depending on the algorithm used in the sec-
ond stage.

In this article, we present improved results of the
first stage from our previous work.21 Thus, the results
of the second stage are also improved. This allow us to
analyze the effect of the first-stage accuracy on the sec-
ond stage. Besides, we present an additional application
example which is more realistic and uses real data col-
lected from sensors (in this case, low-cost radars).

This article is organized as follows. In section
Example applications, the two example applications
used to compare and test the algorithms are described.
Then, in section First stage: preprocessing individual
sensor data, the role of the first stage is discussed and
the ANN used is described. Section Second stage: clas-
sifier ensemble describes the algorithms used in the sec-
ond stage, which are then compared. Section Results of
the detection with radars shows the results obtained for
this application example. The comparison of the
second-stage algorithms is shown in section Results of
the multi-sensor MNIST application, where the pertur-
bation effect is also analyzed. Discussion of the
obtained results are shown in sections Results of the
pedestrian and car detection and Results of the multi-
sensor MNIST, where authors explain the advantages
and disadvantages of each method. Finally, in section

Figure 1. Proposed general scheme of the system.
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Conclusion and future lines, final conclusions are given
and some future lines are also presented to show which
could be the future steps to improve the system perfor-
mance and the behavior of each algorithm. Figure 2
shows a graphic structure of the article.

Example applications

As mentioned in the above section, this work makes a
comparison among different algorithms for combining
the outputs of a classifier ensemble. In order to test the
proposed algorithms, different example applications
have been analyzed. The first one consists of detecting
and identifying cars and pedestrians using low-cost
radars.24 This is a realistic application where the posi-
tion of the radar device is so critical, therefore colla-
boration among devices can be a solution to play down
this problem. For this application, only a small set of
samples is available since samples were taken in a com-
plex environment. However, it is possible to analyze
the behavior of each algorithm on the overall system
testing different situations. In order to make a more
detailed study, we have defined another example appli-
cation. In this case, a huge data set is available, so a
statistically relevant analysis of the algorithms can be
performed since enough tagged examples are available.
This second application is a modification of the well-
known MNIST database25 in order to adapt this data-
base into our multi-sensor scenario. It was also the
same application example used in our previous work,21

in which handwritten numbers had to be classified.
Each device analyzes only a small part of the whole
image, so the partial information is combined using the
proposed algorithms. Although this application is not
as realistic as expected, it is a good way to test the

efficiency of the collaborative algorithms since we have
enough samples to generalize the obtained results.

Pedestrian and car detection

Detecting cars, persons, animals, bikes, or another
kinds of objects when they are moving is not a compli-
cated task. The challenge resides in the classification to
identify the kind of the moving object. Although if this
is complicated enough in itself, this difficulty becomes
higher when the sensor device is a low-cost radar and
due to the fact that it has no complex and precise func-
tions. In spite of the sensor having some limitations,
the obtained results were acceptable.24 However, the
radar position was so critical. In order to minimize this
influence, a combination of several radars working
together improve the results.26 Therefore, in this work,
a comparison among different algorithms is analyzed
to demonstrate the utility of the cooperation.

In this example application, three low-cost radars
were used in order to detect and identify the moving
object from different angles. A deployment of the sys-
tem was carried out to obtain a data set with real
tagged samples. The three radars were placed in the
parking of our school (Figure 3) to take samples of
moving objects. Tags were added manually. When each
radar signal surpasses a threshold, the software tool
saves 512 samples in a second and the time of the event.
Then, the first 128 points of the fast Fourier transform
(FFT) of the 512 points signals are introduced as inputs
to the first-stage classifiers. In this case, instead of using
a classification tree,24,26 an ANN is used to provide the
results of each radar device for this first stage.

A critical aspect of this example application resides
in the limitations of the environment. The place was not

Figure 2. Structure of the article.
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so friendly for taking the samples, since the environ-
ment was not very controlled. Many people were mov-
ing around and many times trees were moving, and the
radars detected these movements and mixed them with
moving people or vehicles. Therefore, taking the sam-
ples was not an easy task. These complications caused a
lot of problems in obtaining enough samples to make
an exhaustive analysis. In order to reduce this problem,
different testing situations are studied, and another
example application is also tested to be available as an
statistically relevant analysis.

After this experiment, we achieved 128 valid tagged
signals. Out of them, 92 belonged to pedestrians or
group of pedestrians, 23 to cars, and 13 to bikes. As
there were not enough examples to train and test, five
sets of 52 pedestrian signals were taken randomly from
the 92 ones, 13 cars were taken randomly from the 23
ones, and the 13 bikes have been used to train the
ANNs. The five sets of the remaining 40 pedestrian sig-
nals, 10 cars, and 0 bikes were used as test sets.

Multi-sensor MNIST

In order to test the proposed algorithms with enough
examples, the well-known MNIST database25 has been
chosen as an example application. To adapt this data-
base into our multi-sensor scenario, the following mod-
ifications and methodologies have been done:

� The 28 3 28 pixel images of the MNIST data-
base have been divided into four 14 3 14 sub-
images. This emulates four different sensors
catching the same event, but each one has only
partial information of the entire target. The
image has been divided as follows: the top left

corner of the image is the quadrant 1, quadrant
2 is the bottom left corner, quadrant 3 is the top
right corner, and quadrant 4 is the bottom right
one. Figure 4 shows an example.

� Each 14 3 14 sub-image is processed by a two-
layer MLP trained to classify its quadrant. Thus,
four estimations are obtained, each one with dif-
ferent global accuracy and class accuracy, due to
the fact that some quadrants will be more sensi-
tive to certain numbers than others.

� In order to test the adaptability of each algo-
rithm, different types of perturbations have been
added as noise on the image and as communica-
tion errors between stages.

The MNIST database is composed of two sets, one
for training stage and the other one to test the system.
The Train set contains 60,000 examples, whereas the
Test set only contains 10,000. The first-stage classifiers
were trained using three different subsets of 10,000
examples taken randomly from the Train set. We call
the rest of the examples, which belong to the Train set
but were not used to train the first stage, as the Train–

sets. The Train– sets were used to test the first stage
and to train the second stage, whereas the Test set was
used to test the first and second stages.

First stage: preprocessing individual
sensor data

The main focus of this article is on the algorithms
which aggregate data from all sensors. Therefore, data
from sensors are preprocessed with the same algorithm
for all the proposed experiments. A two-layer MLP
with an output per class has been chosen to implement
the first stage of the proposed scheme (see Figure 1).
Nevertheless, whatever other classifier could be chosen
for this propose.

Combination of the first-stage classifiers does not lit-
erally represent a combination of multiple solutions for
the same target. The outputs of the first stage have
been obtained by MLPs using different inputs. Each

Figure 4. 28 3 28 image of a handwritten 7 divided into four
14 3 14 images.

Figure 3. Deployment of a radar for measuring.
The low-cost radar is inside the circle.
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one uses only partial information or a different point
of view of the global target. It means that there is a
high likelihood to obtain different classifications for
the same target at each MLP in the first stage since
they have a huge dependency of received input (image
of each quadrant or signal from different oriented
radar). This implies that every partial solution is not
well-balanced, because these results do not only depend
on the internal functionality of the MLP but also on
the external information partially received from the tar-
get (image of each quadrant or signal from different
oriented radar).

MLP

The mathematical model of a neuron is shown in equa-
tions (1) and (2). This model performs a weighted sum
of the inputs and then applies an activation function to
the output. The activation function is usually a linear
function or a sort of saturation function like sigmoid
functions

ai =
XM

j= 1

wij � xj + bi ð1Þ

yi = f (ai) ð2Þ

with i= 1, . . . ,N , where xj is the input, wij is the
weight, bi is the bias, f () is the activation function, yi is
the output, M is the number of inputs, and N is the
number of neurons.

There are different families of ANNs. Each family
has different connections, activation functions, and
learning algorithms. In this work, MLPs have been
implemented, which only allow feedforward connec-
tions and are trained with supervised learning. They
have as many outputs as classes are needed to be classi-
fied. The output is trained to be 1 for the correspond-
ing class and –1 for the other classes. However, the
final output will be a set of values in the range [–1,1],
representing the confidence for each class.

The learning algorithm most used for training MLPs
is backpropagation. It is an approximate steepest des-
cent algorithm which uses the mean square error (MSE)
between the ANN output and the desired one as the fit-
ness function, where MSE = 1

n

Pn
i= 1 (ti � yi)

2, ti is the
desired output (target vector) and yi is the current ANN
output. The neuron weights are updated using the fol-
lowing formula

Dwij = � a � ∂e2

∂wij

ð3Þ

where e2 is the MSE and a 2 ½0, 1� is a scalar coefficient
called learning rate, which regulates how fast the ANN
learns.

A variation of the standard backpropagation, vari-
able learning rate,27 has been used for training. The
weight update is performed in batch mode. This means
that weight increments for each training example are
accumulated and then applied after all examples (in an
epoch). The learning rate is also updated at the end of
the epoch, following these rules:

1. If the new MSE is less than the previous one,
the learning rate is increased h times.

2. Else, if the new MSE is greater than the previ-
ous one, but no more than a certain percentage
z, the learning rate is maintained.

3. Else, the new MSE is greater than the previous
one plus a certain percentage of it (z), learning
rate is decreased r times, and also weights from
the previous epoch are recovered.

On the detection with radars application. Each radar signal
is, first, applied a FFT and the first 128 points are taken
(an example is shown in Figure 5); then it is classified
by a 2-layer MLP with 128 inputs, four hidden neurons,
and three output neurons. Each output neuron recog-
nizes a class: pedestrian, car, or bike.

Due to the lack of tagged examples, the first-stage
classification performance is very unstable (as shown in
the section Results). Therefore, five sets of classifiers
have been trained with different training sets generated
as described in section Example applications.

Figure 5. Radar parameter extraction: example of person
signal.
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As there is a big unbalance between classes on the
achieved tagged examples, the impact on the MSE of
each example is corrected proportionally to its class
abundance. Particularly, the squared error of each
example is multiplied by the total number of examples
of the training set (78) and divided by the number of
examples of its class on the training set (52 persons, 13
cars, and 13 bikes). Hence, on every epoch (as training
is performed in batch mode), the influence of each class
is balanced on the MSE, avoiding a tendency to classify
every input as the most abundant class.

The parameters for the first-stage training are as fol-
lows: 1500 iterations, z = 1:03, h= 1:04, r= 0:8, ran-
dom initial weights and bias with uniform distribution
in the range [–0.15,0.15], initial learning rate 10�5, and
both layer’s activation functions are sigmoid functions
between –1 and 1, and origin slope 1. In the learning
algorithm, the derivatives of the sigmoid functions have
been saturated with a minimum value of 0.1.

On the multi-sensor MNIST application. Each quadrant,
into which the input images are divided, is classified by
a two-layer MLP with 14 3 14 inputs, 40 hidden neu-
rons, and 10 output neurons. Each output neuron
recognizes a digit. This is a relatively small ANN com-
pared to the state-of-the-art ones used to solve
MNIST.25 It has been done by design to fit the MLPs
on embedded implementations, which have a limited
number of resources. Consequently, these networks
cannot be as effective as the MLPs implemented on
powerful machines.

In order to perform a fair comparison of algorithms,
three sets of classifiers have been trained with 10,000
different examples taken randomly from the Train set
of the MNIST database.

The parameters for the first-stage training are as fol-
lows: 5000 iterations, z = 1:03, h= 1:04, r= 0:8, ran-
dom initial weights and bias with uniform distribution
in the range [–0.15,0.15], initial learning rate 10�5, sig-
moid activation function between –1 and 1 (origin
slope 1) on the hidden layer, and saturated linear on –1
and +1 with slope 1 activation function on the output
layer. To improve convergence of the learning algo-
rithm, on the output layer, the activation function deri-
vative has been replaced by the derivative of the
sigmoid function and saturated with a minimum value
of 0.1. Note that, in this case, the sigmoid derivative of
the hidden layer has not been saturated. These para-
meters have been chosen after a non-exhaustive explo-
ration guided by the authors’ knowledge.

It should be noticed that these parameters have been
modified from the ones used in our previous experi-
ments reported in Villaverde et al.21 Particularly, the
iterations have been augmented from 1500 to 5000, the
activation functions have been optimized, and minor

changes are performed on the scripts that compute the
training. It can model two types of classifiers: a weak
one in the previous experiments21 and a strong one for
the new experiments.

Second stage: classifier ensemble

The second stage of the proposed system (see Figure 1
for more details about the general scheme) is based on
the main concept of classifier ensembles since it has to
combine the outputs coming from different classifiers
(MLP in this case). In particular, in this work, different
fusion approaches have been implemented to consider
the different outputs given by the first classification
stage. Another MLP and three different cooperative
algorithms are proposed: majority voting-based algo-
rithm, basic weighted voting-based algorithm, and sto-
chastic weighted voting-based algorithm.

Whereas the neural network requires a training stage
before the normal operation to adjust the internal
weights in order to provide the best results, the pro-
posed cooperative algorithms do not require any kind
of previous training. Besides, the weighted voting-based
algorithms are always updating the contribution of
each classifier to provide a result every time for each
input and also adapting itself to the system’s changes
(i.e. changes which affect the proper functionality of
one or more classifiers). Unlike the proposed neural
network and the majority voting algorithms, these ones
take into account the past behavior of the system. In
this way, they can decide which first-stage classifier is
giving the best results as time goes forward and, conse-
quently, give more importance to their contributions.

MLP-based algorithm on second stage

MLP has also been chosen as one of the algorithms to
compare. It is more computationally intensive than the
other proposed algorithms, but it can achieve better
accuracy when it is trained properly.

On the detection with radars application. Seven MLPs of
nine inputs (three from each radar), 12 hidden neurons,
and three output neurons have been trained with the
same training sets used to train the first-stage MLPs.
So, the test sets can be used for testing the second stage
too.

The training parameters for the second stage are as
follows: 700 iterations, z = 1:03, h= 1:04, r= 0:8, ran-
dom initial weights and bias with uniform distribution
in the range [–0.15,0.15], initial learning rate 10�5, and
both layer’s activation functions are sigmoid functions
between –1 and 1, and origin slope 1. In the learning
algorithm, the derivatives of the sigmoid functions have
been saturated with a minimum value of 0.1.

Villaverde et al. 7



On the multi-sensor MNIST application. Five MLPs of 40
inputs (10 from each quadrant), 15 hidden neurons,
and 10 outputs have been trained with each of the
remaining signals which belong to the training set but
were not used to train the first stage (Train– sets). As
there are three Train sets for the first stage, there are
also three Train– sets with 50,000 examples. Thus,
5 3 3 = 15 different MLPs for the second stage were
trained (five MLPs per each one of the Train– sets).

The training parameters are as follows: 4000 itera-
tions, z = 1:03, h= 1:04, r= 0:9, random initial
weights and bias with uniform distribution on range [–
0.15, 0.15], initial learning rate 10�7, sigmoid activation
function between –1 and 1, and origin slope 1, on the
hidden layer; and saturated linear on –1 and +1 (slope
1) activation function on the output layer. To improve
convergence of the learning algorithm, on the output
layer, the activation function derivative has been
replaced by the derivative of the sigmoid function and
saturated with a minimum value of 0.1. Note that, in
this case, the sigmoid derivative of the hidden layer has
not been saturated. These parameters have been chosen
after a non-exhaustive exploration guided by the
authors’ knowledge.

Majority voting-based algorithm

Majority voting can be classified as (1) unanimous, (2)
simple, and (3) plurality. Unanimous implies that all
classifiers agree. In case of simple majority, at least
more than 50% of classifiers agree. Finally, in plurality
voting, the solution is given by the most voted cate-
gory. In this work, plurality voting will be addressed as
the majority voting-based algorithm.

This is the simplest and the fastest proposed algo-
rithm. However, it has an important disadvantage since
this method produces ties, especially in the case of a an
even number of classifiers. When a tie happens, the
classifier does not provide a reliable solution.
Therefore, it can generate a high level of uncertainty.
Another disadvantage is produced when a first-stage
classifier starts to provide wrong results (i.e. due to a
change in the environment or to a internal failure). If
the system does not realize that situation, the hit rate
will get worse. This is due to the fact that the solution
does not depend on the previous behavior, but this
algorithm just analyzes the inputs and provides the
result using only this information. Therefore, it is a
non-adaptive methodology.

Basic weighted voting-based algorithm

Unlike the majority algorithm, the basic weighted vot-
ing weights each input to manage the contribution of

each classifier. The functionality is very similar to the
majority one. The solution is also the most voted cate-
gory but, in this case, contributions are weighted. These
classifiers which have demonstrated a higher reliability
will have more influence over the final decision. The
solution of every quadrant is compared to the final
solution; if they match, this means that the classifier
has contributed positively to the final decision, so its
weight will be increased by adding a fixed value d+ . In
contrast, if both results do not match, the weight of
that classifier will be decreased by subtracting a fixed
value d� to reduce its influence for the future activity.26

It means that the algorithm is continuously updating
the weights and therefore it can adapt the system to
external or internal changes, which affects the reliability
of the classifiers. Figure 6 shows the pseudocode of this
algorithm.

In this method, the fact that weights have to be
increased or decreased using a predefined fixed value is
the largest drawback. Although the increase can be a
little more higher than the decrease (or vice versa) to
avoid standstill, both parameters have to be predefined
by the programmer. Moreover, initial weights a0i

(i = 1, :::,N , where N is the number of classifiers) are
also important, and they have to be predefined too. All
these values have a very important influence over the
system evolution since the reliability of the system
depends on how its weights are evolving. In this work,
the predefined values have been a0 = 0:5 (all classifiers
have the same initial weight), d+ = 0:5, and
d�= 0:025.

Figure 6. Pseudocode for the basic weighted algorithm.
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Stochastic weighted voting-based algorithm

This algorithm also weights the influence of each classi-
fier. But unlike the basic weighting, in this case, weights
are calculated using a stochastic method. Therefore, the
programmer does not need to define how weights
evolve, because they are updated based on the Monte
Carlo method. Thus, this algorithm works similarly to
a particle filter since it computes, every time, a large
combination of weights (i.e. particles) in order to reach
a good solution. In this work, 200 particles have been
used. Initially, all particles are randomly distributed
and cover all the available space. Then, as the algorithm
proceeds, particles are continuously moving around the
valid ones. If there is a change in the environment, par-
ticles will move to another area of the space in order to
accomplish the new requirements and maintain more or
less the same level of accuracy. The final weights are
not given by a specific particle, but they are calculated
according the distribution of all particles (particularly,
by the geometric center of all particles).

The available space for particle location is limited,
and the coordinates of each one can vary only between
0 and 1. Although, at the first time, particles are ran-
domly distributed in all the space, for next launches,
they will be only distributed around the valid ones. In
this way, the convergence of the particles is searched to
find the best space of particles according to the solu-
tions given by the classifiers. The final weights will be
calculated as the geometric center of each coordinate of
every particle, where each coordinate represents the
weight of each classifier. Every particle is evaluated to
determine which ones are valid giving a final solution.
This result is compared with the result calculated using
the geometric center. If both results match, then that
particle is considered a valid combination, otherwise it

will be rejected. However, not all the particles are
equally valid. Some of them will have a strong contri-
bution and consequently, the final weight combination
will be closer to them. In order to find these particles, a
deeper analysis of them is required.

Once the weights provided by a particle are applied
to calculate the result for that particle, it is possible to
know which is the dispersion around the different cate-
gories. It means that when the weights given by a parti-
cle are applied, the result will be determined by the
category which has the highest contribution. However,
other categories could also have some contribution. As
these contributions are more similar, the result is less
reliable since the system cannot distinguish a single
solution well. In contrast, if one category obtains much
more contributions than the others, it means that the
result presents more confidence (g). Consequently, par-
ticles which provide a more distributed result among
the categories will have less particles around themselves
in the next launch. On the contrary, if the resulting
category provided by a specific particle has a higher
contribution regarding the others categories, then that
particle will have more of them around itself for the
next launch. Figure 7 shows an example for calculating
the final result of two specific particles, A and B, assum-
ing that both are valid particles (i.e. their final results
match the result calculated using the geometric center).
In this example, quadrants 1 and 3 classify the input as
category 8, and quadrants 2 and 4 identify the category
3. Taking into account the results given by the quad-
rants, when the particle A= ½0:81, 0:62, 0:54, 0:35� is
evaluated, its result is category 8, since the sum of con-
tributions of quadrants 1 and 3 is higher that the sum
of contributions for the others quadrants. In contrast,
although particle B= ½0:73, 0:38, 0:89, 0:46� provides
also the same category, its confidence is higher since the

Figure 7. Example of the final result calculation for two valid particles.
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difference between category 8 and 3 is higher in this
case, and therefore, there will be more particles around
particle B than around particle A in the next launch.
The pseudocode of this algorithm is shown in Figure 8.

In conclusion, this algorithm is also adaptive like the
basic weighted voting-based algorithm, but, unlike the
previous one, this takes its own decision about evolu-
tion of weights by itself. There is no need to predefine a
fixed value to reward or penalize the first-stage classi-
fiers. The algorithm decides how to do that by moving
the particles over the available space according to the
behavior of each one. Therefore rewards and penalties
will be different every time.

Perturbations

Different perturbations have been added to the Test set
of the multi-sensor MNIST application in order to
check the adaptability of the proposed algorithms.
These perturbations can affect the inputs or the link
between the first and the second stage. Sensor malfunc-
tions or image corruptions can cause some failures in
the input of the first stage. On the contrary, external
noise can affect the link between the first and the sec-
ond stage (especially if both stages are placed in differ-
ent locations). Consequently, the input of the second
stage may be corrupted or even the connection may be
lost. In this work, corruption in both first and third
quadrants has been studied to analyze the influence of
each one over the global system, representing failure
not only of one of the best quadrants but also of one of
the worst ones (see Table 2 for quadrant performances).

Initially, the image noise associated to different
quadrants was added to simulate the first case (image
noise). The first quadrant was corrupted with additive
Gaussian noise (adding a normal distribution noise
with mean 0 and standard deviation of 64), which is the
most frequently used. Then, the analysis was repeated
applying the same type of noise on the third quadrant
instead of the first one. On the contrary, some noise
was also added over the output of the first stage, there-
fore data received in the second one was partially cor-
rupted. Different situations were analyzed. Gaussian
noise with a standard deviation of 1 and 0.5 was applied
to study two different cases with different noise levels.
Besides, in order to simulate a disconnection, the input
of the second stage was replaced by the less worse case
possible. For the ANN, it is all outputs fixed to –1,
which represent ‘‘no-idea,’’ and a random assignment
for the rest of algorithms which have to vote an hypoth-
esis. Like the previous case, the first and the third quad-
rants were being corrupted separately.

Therefore, four different perturbations have been
analyzed. One of them as a image noise and the others
as noise in the link between the first and the second
stage. For each case, experiments were done when the

failures were associated not only to the first quadrant
but also to the third one.

Results of the pedestrian and car
detection application

The lack of tagged examples causes overfitting prob-
lems in the ANN training. Figure 9 shows the evolution
of the MSE of the train and test sets during a training
of a first-stage MLP. The overfitting problem is when
the MSE of the training set improves by learning each
training example with precision, whereas the ANN
loses generalization and the MSE of the test set
decreases. It appears when there are more learning
parameters (i.e. weight and bias) than training

Figure 8. Pseudocode for the stochastic weighted algorithm:
computer version.
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examples, after some training epochs. As more learning
parameters than training examples are present, the
sooner (i.e. at earlier epoch) appears the problem. In
this case, as there are few training examples, the size
and/or the training epochs are limited, and hence the
performance of the MLPs. Besides, it also causes the
training of the first stage MLPs to be very unstable
(getting very different results on each experiment).
Therefore, we have chosen five different situations of
the first-stage MLPs as examples of how the algorithms
may work instead of averaging them.

Table 1 shows the results on the test sets of the detec-
tion with the low-cost radars. As shown in the firsts
three rows of Table 1, there is not a clear tendency for

every test, therefore each test is analyzed as a particular
test to show how it affects the overall system (see sec-
tion Conclusions for example application I).

Results of the multi-sensor MNIST
application

Although, in this work, the first stage is not one of the
main issues to be dealt with, it plays an important role
in understanding the results of the second stage.
Therefore, first, an analysis of the MLPs of the first
stage is done in order to know the starting point. Then,
results for the ensemble classifier are shown to compare
the four cooperative algorithms explained above.

Besides accuracy, the other important issue dealt in
this work is the adaptability. Adaptive capabilities
allow us to maintain the system with a similar level of
accuracy although external or internal conditions affect
the system or their components. Therefore, in order to
demonstrate these capabilities, some perturbations
were introduced to analyze the system response.

Preprocessing MLPs

Due to the fact that images have been divided into four
quadrants, the accuracy of each one is different. In
order to know the behavior of each quadrant, different
data subsets of the MNIST database were tested.

Table 2 shows the accuracy for each quadrant on the
new experiments, whereas Table 3 shows the accuracy
on our previous experiments. In order to avoid outliers,
three experiments were developed for each case.
Therefore, values shown in these tables were obtained
as a median after the three experiments were carried
out under the same conditions but using different sub-
sets of samples. Besides, these tables also show not only
the global accuracy but also the values obtained for
each category. In this way, it is possible to discover
where the categories are more difficult to classify
(which turns to be the number ‘‘5’’).

A big improvement can be noticed from the previous
experiments to the newly optimized ones. We will take

Figure 9. Example of overfitting on the training of first-stage
MLP.
MSE (vertical) over epoch (horizontal). The upper line (blue) is the test

set and the lower line (orange) is the train set.

Table 1. Results in % of the detection with low-cost radars.

Test 1 Test 2 Test 3 Test 4 Test 5

Hits Ties Miss Hits Ties Miss Hits Ties Miss Hits Ties Miss Hits Ties Miss

Radar 1 82 0 18 76 0 24 86 0 14 78 0 22 84 0 16
Radar 2 78 0 22 84 0 16 80 0 20 84 0 16 82 0 18
Radar 3 94 0 6 86 0 14 86 0 14 84 0 16 88 0 12
ANN 97 0 3 92 0 8 90 0 10 88 0 12 87 0 13
Majority 94 0 6 90 4 6 94 0 6 90 4 6 92 6 2
Basic weighted 94 0 6 90 4 6 94 0 6 90 4 6 92 6 2
Stochastic weighted 94 0 6 90 0 10 94 0 6 92 0 8 96 0 4
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advantage of this fact to compare the second-stage
algorithms against this two different situations. On one
hand, our previous experiments represent a situation
with a low-accurate first stage.21 Let us call this first
stage as weak classifiers. On the other hand, the new
experiments have a first stage with higher accuracy.
Hence, let us call them as strong classifiers.

Comparing the global accuracy of the Test results
from the new experiments against the old ones using
equation (5) (see next subsection), we get 29.20% on
quadrant 1, 40.35% on quadrant 2, 46.94% on quad-
rant 3, and 28.47% on quadrant 4.

Cooperative algorithms and adaptive capabilities

Once the accuracy of each quadrant is known, data
fusion is analyzed. It implies to study how each algo-
rithm works in terms of accuracy and adaptation. As
mentioned before, in this work, four algorithms have
been presented.

The system evolution when a change affects it
denotes the system susceptibility and, consequently,
how it can maintain a certain level of accuracy when a
perturbation appears. Trained systems tend to be more
unstable when facing environmental changes. In con-
trast, they used to be more accurate since the training

stage provides them with some knowledge in advance.
As mentioned in subsection Perturbations, different
perturbations were applied in different parts of the sys-
tem independently. Table 4 shows (1) the accuracy for
each algorithm without any kind of noise and (2) how
this accuracy is affected when these perturbations are
applied. Table 5 shows the accuracy of our previous
experiments for the same cases.

Figures 10 and 11 show the influence of noise over
the non-perturbation case for each algorithms of both
new and previous data, respectively. They represent the
difference between the hit rates without any perturba-
tion and the hit rates when different perturbations were
applied using, in the first stage, the weak classifier (our
previous experiments) and the strong classifier (our
new experiments), respectively (applying equation 4).
The values of these hit rates are obtained from Tables 3
and 2. These two figures highlight the influence of the
accuracy of the first stage over the global result for
each algorithm. The ANN shows the most important
variation. When a weak classifier is used in the first
stage, the ANN of the second stage is more sensitive to
noise, as our previous results demonstrate. However,
for the new experiments, the ANNs of the first stage
are more accurate, therefore the ANN of the second
stage suffers less variation when the perturbations are

Table 2. Accuracy in % of the preprocessing classification from the new experiments.

Quadrant 0 1 2 3 4 5 6 7 8 9 Global

Train– 1 66 94 72 81 75 37 74 84 66 73 73
2 94 93 80 70 71 52 90 91 80 76 80
3 91 95 65 72 88 90 92 85 63 74 82
4 91 94 85 57 68 43 80 78 67 70 74

Test 1 69 95 74 84 78 36 76 82 68 72 74
2 94 94 80 74 71 49 88 92 80 76 80
3 92 97 67 76 88 91 91 83 59 77 82
4 93 94 85 61 71 43 80 77 64 74 75

For each class, the median of the three experiments (to avoid outliers) and for the global accuracy, the mean (of the three experiments) are given.

Table 3. Accuracy in % of the preprocessing classification from the previous experiments.21

Quadrant 0 1 2 3 4 5 6 7 8 9 Global

Train– 1 61 91 65 71 63 12 57 77 56 59 62
2 91 89 66 63 68 15 84 75 67 46 67
3 87 93 48 44 61 64 82 74 43 60 66
4 89 92 69 51 57 5 74 73 53 59 63

Test 1 65 93 67 73 65 11 62 75 58 60 64
2 92 90 64 65 68 15 82 75 66 45 67
3 87 93 50 49 63 61 82 72 40 62 66
4 93 91 72 55 58 6 76 73 52 64 65

For each class, the median of the three experiments (to avoid outliers) and for the global accuracy, the mean (of the three experiments) are given.
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applied. Although these effects are also presented for
the other algorithms, the influence is not as significant
as the ANN case

error=Hitsoriginal � Hitsperturb ð4Þ

In order to know how good the weighted algorithms
are, adaptive capabilities have been analyzed taking
into account the percentage of failures (miss + ties) of
every algorithm when the perturbations are applied.
These percentages are shown in Tables 6 and 7 and
have been obtained using the formula

u=
(Miss+ Ties� (Miss0+ Ties0)) � 100

Miss+ Ties
ð5Þ

where Miss+ Ties is the number of failures when no
perturbation is applied and Miss0+ Ties0 is the number
of failures when the perturbation is presented.

Figures 10 and 11 also provide this information;
however, we use equation (5) as an additional analysis
because when the hit rate is closer to 100%, it becomes
more difficult to improve it. Thus, using equation (5),

for a low failure rate, a small improvement becomes as
relevant as a big improvement for a high failure rate.

In order to obtain the ANN results, the second stage
MLP was trained five times per each one of the three
Train– sets (defined in subsection MLP-based algorithm
on second stage). The other algorithms do not need to
be trained. Then, each perturbation kind has been gen-
erated three times per each one of the three training
subsets. Finally, results has been averaged. Therefore,
results in Tables 4 and 5 are the mean of (1) 15 experi-
ments for the ‘‘No perturbation’’ case of ANN algo-
rithm, (2) 3 experiments for the ‘‘No perturbation’’ case
for the other algorithms, (3) 45 experiments for each
perturbation on ANN algorithm, and (4) 9 experiments
for each perturbation on the other algorithms.

A remarkable issue of these results is that two of the
proposed algorithms show some kind of uncertainty
due to the appearance of ties. When an algorithm gen-
erates not only hits and misses but also ties, it means
that it is not robust enough. Consequently, ties intro-
duce an important level of uncertainty in the system
since it is not possible to provide a specific solution.

Table 4. Accuracy and adaptability of the proposed algorithms for the second stage when the first stage has high accuracy (new
experiments).

ANN Majority Basic weighted Stochastic weighted

Hits Miss Hits Ties Miss Hits Ties Miss Hits Miss

No perturbation 96.21 3.79 84.14 11.68 4.18 87.36 5.62 7.02 89.22 10.78
Im. Q1 Gaussian 64 95.46 4.54 81.48 13.75 4.77 86.25 5.78 7.97 88.14 11.86
Im. Q3 Gaussian 64 95.54 4.46 81.88 13.43 4.69 86.26 6.07 7.67 88.23 11.77
Link Q1 discon. 94.01 5.99 70.91 24.18 4.91 83.64 8.52 7.84 86.08 13.92
Link Q3 discon. 92.60 7.40 65.81 28.41 5.79 82.10 10.67 7.23 85.07 14.93
Link Q1 Gaussian 0.5 94.95 5.05 81.48 14.17 4.35 86.31 5.89 7.80 88.22 11.78
Link Q3 Gaussian 0.5 95.20 4.80 82.06 13.71 4.23 86.53 6.16 7.31 88.41 11.59
Link Q1 Gaussian 1 90.65 9.35 76.55 18.95 4.50 85.23 5.79 8.97 87.05 12.95
Link Q3 Gaussian 1 91.38 8.62 75.22 19.99 4.79 84.51 7.04 8.45 86.74 13.26

Table 5. Accuracy and adaptability of the proposed algorithms for the second stage when the first stage has low accuracy (old
experiments).21

ANN Majority Basic weighted Stochastic weighted

Hits Miss Hits Ties Miss Hits Ties Miss Hits Miss

No perturbation 90.72 9.28 68.46 23.17 8.37 74.87 10.79 14.34 77.57 22.43
Im. Q1 Gaussian 64 88.01 11.99 61.05 29.08 9.87 72.25 11.21 16.54 75.10 24.90
Im. Q3 Gaussian 64 89.39 10.61 65.00 25.69 9.31 73.85 11.13 15.02 76.52 23.48
Link Q1 discon. 82.92 17.08 52.49 38.46 9.05 68.60 18.39 13.01 73.32 26.68
Link Q3 discon. 82.44 17.56 51.97 39.16 8.87 69.58 18.10 12.32 74.03 25.97
Link Q1 Gaussian 0.5 86.07 13.93 63.11 28.05 8.84 72.90 11.75 15.35 76.02 23.98
Link Q3 Gaussian 0.5 85.47 14.53 62.54 28.36 9.10 73.05 11.71 15.24 75.88 24.12
Link Q1 Gaussian 1 75.36 24.64 57.72 33.32 8.96 71.73 11.67 16.61 74.64 25.36
Link Q3 Gaussian 1 72.42 27.58 57.10 33.51 9.39 72.17 11.69 16.14 74.63 25.37
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These ties would be hits or misses, which depends on
the number of ties and on the number of involved cate-
gories. It could be an important factor to take into
account according to the application requirements.

In order to analyze the influence of the first stage
into the second stage, Table 8 shows the improvement
of the failure rates (ties + miss) when comparing the
new experiments (strong classifiers) against the old ones

Figure 10. Comparison graph for previous experiments (hits analysis).

Figure 11. Comparison graph for new experiments (hits analysis).

Table 6. Percentage of failure increase of the perturbations for the new experiments.

ANN Majority Basic weighted Stochastic weighted

Im. Q1 Gaussian 64 19.75 16.77 8.78 10.02
Im. Q3 Gaussian 64 17.73 14.25 8.70 9.18
Link Q1 discon. 58.23 83.42 29.43 29.13
Link Q3 discon. 95.39 115.64 41.61 38.50
Link Q1 Gaussian 0.5 33.37 16.77 8.31 9.28
Link Q3 Gaussian 0.5 26.61 13.11 6.57 7.51
Link Q1 Gaussian 1 146.73 47.86 16.77 20.13
Link Q3 Gaussian 1 127.47 56.24 22.55 23.01
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(weak classifiers). These percentages have been calcu-
lated using equation 5, but in this case, we use
Miss+ Ties as failures of the weak classifiers and
Miss0+ Ties0 as failures of the strong classifiers.

Discussion of results

Discussion of example application I: pedestrian and
car detection

As we have mentioned before, the samples obtained for
the pedestrian and car detection application are limited.
Therefore, the results of this application example are
not statistically relevant and consist of analyzing differ-
ent successful test cases.

In general, the second stage is able to obtain better
results than each radar individually. It means that the
ensemble improves the success rate of the individual
classifiers. However, in one case, the ensemble cannot
exceed the best individual rate. This effect happened in
the Test 1 (in Table 1) where most of the algorithms
are not able to improve the best individual radar result
(from Radar 3). Only the ANN improves a 3% of that
value. On the contrary, in Test 5, ANN shows worse
results than the best individual radar rate. However,
for this test, the best improvement is given by stochas-
tic weighted voting-based algorithm, which surpasses
8% of the best individual result. In all the other tests,
all the algorithms of the second stage are able to exceed
the best individual rate, therefore the classifier ensem-
ble can be a good alternative to improve the system
behavior.

In general, ANNs present good results when there
are enough samples to train. However, there are some
tests in which the ANN does not provide better results
than the other algorithms. This is due to the fact that
the number of samples in this application are very lim-
ited and, in consequence, the ANNs are not well-
trained. This means that the other algorithms can be
preferred than ANNs when the application cannot pro-
vide a huge number of tagged samples. Even majority
gives better results than ANN for tests number 3, 4,
and 5. However, in these cases, the best alternative is
the stochastic weighted voting-based algorithm, since it
provides the highest hit rate (due to its adaptive cap-
abilities) and also reduces the system uncertainty
because it does not present any tie.

It is important to notice that even if these results are
not statistically relevant, we have found examples in
which the classifier ensemble improves the best individ-
ual classifier (those improvements are between 3% and
8% depending on the cases), proving so, the usefulness
of a classifier ensemble with the tested algorithms in a
real application.

Discussion of example application II: multi-sensor
MNIST

All the results provided in this article have been
obtained through MATLAB simulations, although the
final implementations are intended to be executed in
embedded platforms (micro-controllers, digital signal
processors (DSPs), or field-programmable gate arrays
(FPGAs)). The estimated number of operations needed
to generate a decision from the four first-stage outputs
are as follows: 800 for the ANN (already trained), 18
for the majority, 26 for the basic weighted, and ;2800

for the stochastic weighted. These are rough estima-
tions of basic operations that may have different com-
plexities (e.g. increments, additions, multiplications,
comparisons, divisions, etc.). Depending on the imple-
mentation platform, different levels of parallelism can
be exploited, and each operation has a different execu-
tion time.

First of all, it is important to highlight that some
results were obtained previously21 for this application.
The differences between our first results and the new
ones are basically found in the first stage. In this work,
the ANNs of the first stage (preprocessing MLPs) have
been improved and therefore the results for the second
stage have also changed. As Tables 2 and 3 show, the
accuracy of the new ANNs is better than the previous
one for every quadrant for both Train– and Test sam-
ple sets. It implies more confidence data to be dealt in
the second stage and, consequently, high accuracy is
obtained in the new experiments. Improving the first
stage, the ANN for the second stage is able to suffer
less deterioration (see Figures 10 and 11). Results of
the preprocessing MLPs on the new experiments show
that the accuracy varies a 9% among all quadrants
since the best one has a hit rate of 82%, whereas the
worst one is around 73% (see Table 2). According to
these results, quadrants 2 and 3 are the best ones,
which coincides with the best ones in our previous
experiments.21 Besides, there are some categories more
complicated to classify than others. The most signifi-
cant case is obtained for category 5, since the lowest
values belong to that category. It means that when the
image represents the number five, all quadrants, except
the third one, have some difficulties to classify it cor-
rectly, which again coincides with the previous experi-
ments. This is one of the main reasons to choose
quadrant 3, instead of quadrant 2, to analyze the sys-
tem response when some perturbations are applied in
one of the best quadrants. In any case, the shown val-
ues indicate that all quadrants are not extremely accu-
rate since the hit rate does not exceed the 82% in any
case. It is due to the fact that dividing the image into
four quadrants, the information of each one is reduced
and, consequently, the difficulty to classify properly
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increases. This analysis concludes that all conclusions
of this work can be extensible to any other application
in which sensors are not so much accurate and the
combination of multiple of their partial solutions can
improve the system performance. In these terms, data
fusion improves the accuracy of the system, regardless
if the first stage is improved, as Tables 4 and 5 show,
even when perturbations affects the system (except in
some cases where majority voting algorithm is applied).
These results demonstrate that, in general, the analyzed
algorithms for cooperation are able to improve the
individual hit rates. However, each one has some
advantages and disadvantages and presents more or
less improvements.

The first stage classifier has a great influence on the
accuracy of the whole system. Using a strong classifier
in the first stage implies better general results because
when the accuracy of the first stage improves, the accu-
racy of the second stage also improves. As we have
defined before, Table 8 shows the percentage of failure
improvement comparing the previous experiments
(which use a weak classifier) with the new experiments
(which use a strong classifier). According to those val-
ues, when there is no perturbation in the system, the
ANN can improve a 59.17%, whereas the three
majority-based algorithms can improve around 50%.

The stochastic weighted is voted the best of the three
since it has 51.94% of failure improvement. This
demonstrates that the ANN of the second stage pro-
vides the highest improvement compared to the other
algorithms since it has been trained with more new reli-
able samples. Therefore, when an algorithm requires a
training stage before the commissioning, it can present
best result than other non-trained algorithms; however,
the second ones are able to work directly, also giving
good results. Therefore, depending on the application
requirements or limitation, we can choose one algo-
rithm or the other one.

On one hand, regarding to the system hit rate, the
ANN gives the best results. Its worst hit rate was
around 73% in case of the previous experiments (see
‘‘Link Q1 Gaussian 1’’ and ‘‘Link Q1 Gaussian 1’’ in
Table 5) which was improved in the new experiments
reaching around 91% for the same kind of noise (see
‘‘Link Q1 Gaussian 1’’ and ‘‘Link Q3 Gaussian 1’’ in
Table 4). In contrast, plurality majority presents the
worst hit rates in any case; in some cases, this algorithm
can only achieves a 55% or 60% of hits rates, especially
when the first stage is not good enough (see Table 4).
However, when a weighted algorithm is used, those val-
ues increase a lot compared with the plurality majority.
In particular, for the new experiments, stochastic

Table 7. Percentage of failure increase of the perturbations for the old experiments.

ANN Majority Basic weighted Stochastic weighted

Im. Q1 Gaussian 64 29.20 23.49 10.43 11.01
Im. Q3 Gaussian 64 14.33 10.97 4.06 4.68
Link Q1 discon. 84.05 50.63 24.95 18.95
Link Q3 discon. 89.22 52.28 21.05 15.78
Link Q1 Gaussian 0.5 50.11 16.96 7.84 6.91
Link Q3 Gaussian 0.5 56.57 18.77 7.24 7.53
Link Q1 Gaussian 1 165.52 34.05 12.53 13.06
Link Q3 Gaussian 1 197.20 36.02 10.74 13.11

Table 8. Percentage of failure improvement of the new experiments with respect to the previous ones, calculated using equation
(5).

ANN Majority Basic weighted Stochastic weighted

No perturbation 59.17 49.71 49.70 51.94
Im. Q1 Gaussian 64 62.16 52.45 50.45 52.37
Im. Q3 Gaussian 64 57.96 48.23 47.46 49.87
Link Q1 discon. 64.90 38.77 47.90 47.83
Link Q3 discon. 57.84 28.79 41.16 42.51
Link Q1 Gaussian 0.5 63.73 49.80 49.48 50.88
Link Q3 Gaussian 0.5 66.99 52.11 50.02 51.95
Link Q1 Gaussian 1 62.06 44.54 47.81 48.94
Link Q3 Gaussian 1 68.75 42.24 44.34 47.73
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weighted voting can almost reach 90% of hits when no
perturbation is applied (see Table 4), which only differs
by 6% when compared with the ANN. Moreover,
although the ANN continues getting better hit rates
when perturbations are applied, the stochastic weighted
voting does not have significant variations in presence
of those perturbations. It means that it is more stable
than ANNs for changing environments.

Therefore, regarding the system adaptation, we can
conclude that the ANN is highly sensitive to any
perturbations, especially when the accuracy of the
first stage is lower. When a weak classifier (previous
experiments)21 is used in the first stage instead of an
strong one (new experiments), the ANN of the second
stage suffers a significant deterioration. The error of
the ANN when Gaussian noise with standard devia-
tion 1 is applied can reach more than 15%–18% with
respect to the non perturbed situation when a weak
classifier is used in the first stage (see Figure 10).
However, these values can be minimized under 6%
when an strong classifier is used (see Figure 11). With
respect to other algorithms, they can also minimize the
error except when quadrant 3 suffers a link disconnec-
tion between both stages. In this case, the ANN is the
only algorithm that can minimize the error. In this situ-
ation, the ANN algorithm has much more information
than the other algorithms because when a disconnec-
tion is detected, the ANN can force all the input values
for that quadrant to ‘‘�1,’’ which implies ‘‘no-idea’’
and, consequently, the algorithm can combine all
inputs taking into account that the disconnected quad-
rant is not sure about its own results. However, the
other algorithms have no available information, and
they have to deal with a random value which will prob-
ably be wrong.

According to Table 8, the improvement that the
ANN can reach is between 57.84% and 68.75%,
whereas the stochastic weighted algorithm can only
improve between 42.51% and 52.77%. This is a conse-
quence of using a weak or strong classifier in the first
stage, because the ANN (which is a trained method) is
the most sensitive algorithm to any change in the first
stage. As we have mentioned before, although the
ANN has better hit rates in presence of perturbations
than the other algorithms, its deterioration when those
perturbations are presented shows a steep fall since the
percentage of failures grows significantly, as Tables 6
and 7 show. In fact, in presence of some link noise (i.e.
link Gaussian noise with standard deviation 1), the
increment of the failure rate is even more than three
times than the increment of the failure rate without per-
turbation. For example, when that noise is applied to
quadrant 1, the ANN failure rate increases 146.73% in
case of the new experiments and a 165.52% in case of
the previous experiments (see Tables 6 and 7). In con-
trast, the failure rate of weighted algorithms does not

exceed 38.50% for stochastic weighting and 41.61% for
basic weighting for the worst case, as Table 6 shows.
That is because ANNs are usually trained for general
cases (i.e. without so many perturbations). Thus, when
an unexpected perturbation appears, re-training will be
necessary to adapt to the system, which involves getting
new tagged examples of the perturbations.
Furthermore, re-training may be impossible for some
kind of applications or for sporadic perturbations.
Therefore, in general, weighted algorithms are better in
terms of adaptation than the ANN.

The ANN is also computationally very intensive. In
this sense, the best algorithm may be the plurality
majority, which is the simplest among all. It does
improve the best first stage hit rate (except in the rare
scenario of the Test 1 of the detection application with
radars, in which it at least equals this value) when there
are no perturbations. However, it does not obtain a sig-
nificant improvement, and its accuracy decreases signif-
icantly with perturbations, specially for disconnections
and intense noise on the link (Gaussian noise with stan-
dard deviation 1). The second computational effective
algorithm is the basic weighted, which also provides
balanced properties regarding accuracy and adaptability.

Conclusion and future lines

Conclusion

This article has compared four different algorithms for
getting the final classification in a two-staged classifier
ensemble. These algorithms have been applied to two
example applications. Through the first application, the
applicability of the classifier ensemble has been proven,
testing the four proposed algorithms in a real applica-
tion. On the contrary, through the second application,
the proposed algorithms have been tested against differ-
ent perturbations in order to measure their adaptability
to environmental changes. Moreover, the effect of
improving the accuracy of the first-stage classifiers has
been measured.

After the discussion of the results, it can be con-
cluded that

� ANNs show the best accuracy among all the
algorithms tested. However, they need to be
trained with enough labeled examples, which for
some applications will be unavailable or difficult
to get. They have high computational intensity,
and they are less adaptable than the weighted
algorithms.

� Majority shows the worst results in accuracy and
adaptability (actually, it is not an adaptive
method) and produces a lot of ties. It has been
compared to show a reference of the minimum
achievable improvement of an ensemble with the
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simplest algorithm. Nevertheless, it does improve
the first-stage accuracy while providing the mini-
mum computational intensity, which may be
required for some applications.

� Basic weighted shows intermediate and balanced
results for accuracy, adaptability, and computa-
tion intensity. However, its main drawback is
the ties generation, which produce a high level of
uncertainty. This situation is not suitable for
most of the applications since the unknown
results can interfere with the system reliability.

� Stochastic weighted shows the second best accu-
racy and the best adaptability. Although the hit
rates do not reach the ANN results, they do not
require any training before commissioning.
Moreover, it shows a high level of adaptation
because perturbations do not affect a lot due to
its adaptive capabilities. Its main drawback is its
high computational intensity. However, authors
expect that by improving the particle selection
stage, it will be possible to increase the hit rates
and even reduce the computational efforts.

Future lines

Future lines will address the improvement of the sto-
chastic weighted algorithm since it demonstrates low
uncertainty due to the fact that it does not produce any
tie, it also presents a high level of adaptation, and it
does not required any type of training. Although it
shows these great advantages, the main problem is its
hit rate. Therefore, future research efforts could tackle
this issue by changing the mode of particles selection or
even the way to evolve them. Nevertheless, as Table 4
shows, for some specific cases under certain perturba-
tions, the stochastic weighted algorithm can already
exceed the ANN hit rate (i.e. when quadrant 3 is per-
turbed with Gaussian noise with standard deviation of
1 over the input of the second stage for a low accuracy
first stage, old experiments). Therefore, if the stochastic
weighted algorithm is improved enough, it will be a
better option than ANNs for sensors data fusion in
critical applications with changing environments.
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