
512
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

PAPER

VHDL vs. SystemC: Design of Highly Parameterizable Artificial
Neural Networks

David ALEDO†a), Member, Benjamin CARRION SCHAFER††, and Félix MORENO†, Nonmembers

SUMMARY This paper describes the advantages and disadvantages
observed when describing complex parameterizable Artificial Neural Net-
works (ANNs) at the behavioral level using SystemC and at the Register
Transfer Level (RTL) using VHDL. ANNs are complex to parameterize
because they have a configurable number of layers, and each one of them
has a unique configuration. This kind of structure makes ANNs, a pri-
ori, challenging to parameterize using Hardware Description Languages
(HDL). Thus, it seems intuitively that ANNs would benefit from the raise
in level of abstraction from RTL to behavioral level. This paper presents the
results of implementing an ANN using both levels of abstractions. Results
surprisingly show that VHDL leads to better results and allows a much
higher degree of parameterization than SystemC. The implementation of
these parameterizable ANNs are made open source and are freely available
online. Finally, at the end of the paper we make some recommendation for
future HLS tools to improve their parameterization capabilities.
key words: VHDL, SystemC, high-level synthesis (HLS), artificial neural
network (ANN)

1. Introduction

With the increase time to market pressure, companies are re-
lying on third party IPs (3PIPs), which are often highly pa-
rameterizable to create their complex digital circuits. They
are also dedicating much effort to develop modules in-house
which can be re-used in future projects. Artificial Neural
Networks (ANNs) do not escape this trend. Thus, it makes
sense to have highly parameterizable ANN descriptions that
can be used in multiple different applications. Some param-
eters include, the number of layers, number of neurons and
activation function.

ANNs have gained tremendous importance recently.
They belong to the group of artificial intelligence (AI) be-
cause they have the capability of learning. Their name
comes from the fact that they are biologically inspired on
a simple model of a neuron, connected in a network sim-
ilar to the brain ones. ANNs have an enormous amount
of parallelism, making them excellent candidates for hard-
ware (HW) acceleration. This allows the full exploitation
of this parallelism while being extremely energy efficient
compared to using general purpose solutions. The latest
A11 Bionic application processor or Apple is one example,

Manuscript received April 19, 2018.
Manuscript revised September 21, 2018.
Manuscript publicized November 29, 2018.
†The authors are with the CEI, Universidad Politécnica de

Madrid, Spain.
††The author is with Department of Electrical and Computer

Engineering, University of Texas at Dallas, USA.
a) E-mail: david.aledo@upm.es

DOI: 10.1587/transinf.2018EDP7142

which includes a dedicated hardware module for the ANN.
Typical speed-ups between 30-200x over SW implementa-
tions have been reported [1].

Traditional Hardware Description Languages (HDLs)
like VHDL and Verilog, provide mechanisms to parameter-
ize descriptions. One most notorious examples includes the
use of generics in VHDL. Nevertheless, one additional trend
that is happening to further speed-up the design of ICs, is to
raise the level of abstraction from Register Transfer Level
(RTL) to behavioral level. This implies that software de-
scriptions initially intended to be compiled on a fixed archi-
tecture are synthesized through High-Level Synthesis (HLS)
into an RTL description that can effectively execute it. All
modern commercial HLS tools can take SystemC as input.
SystemC is a C++ class that allows to model concurrency
and has been standardize by the IEEE [2], [3].

Raising the level of abstraction has numerous advan-
tages. One that can be applied to ANNs is that it allows, in
theory, a much wider set of parameterization compared to
low-level HDLs. Thus, using C-based VLSI design should
lead to the designer of easier and more efficient ANNs.
Whereas Ad-Hoc optimizations are described in a low ab-
straction level in order to take advantage of low-level de-
tails. Hence, these descriptions are difficult to reuse. The
high-level descriptions are more general, therefore they are
more likely to be reused.

This work presents our experience creating highly pa-
rameterizable ANNs using VHDL and SystemC. Both levels
of abstractions will be compared and the different configura-
tion parameters exposed. Finally we make some recommen-
dations of how to enhance the way HLS tools parameterize
behavioral descriptions for synthesis. In particular the con-
tributions of this work can be summarized as:

• Study the key parameters that allow the description of
highly parametrizable, and thus, re-usable, ANNs in
SystemC and VHDL.
• Present experimental results, which quantify the effect

of these parameters on the number of ANN configura-
tions and quality of the ANNs.
• Propose suggestions when designing at behavioral

level to improve configurability.
• Open source release of the ANNs described in Sys-

temC and RTL.

It should be noted that the main aim of this work is not
to develop a specific ANN, but to understand the trade-offs
and limitations between the different levels of abstractions

Copyright c⃝ 2019 The Institute of Electronics, Information and Communication Engineers



ALEDO et al.: VHDL VS. SYSTEMC
513

when designing complex IPs like ANNs.
The contents of this paper are organized as follows.

First, a summary of related work on HW ANNs is given in
Sect. 2. Then, background information about ANNs is given
in Sect. 3. Then, the implementation at the RTL (VHDL) is
shown on Sect. 4. Basic knowledge of VHDL is expected by
the reader. Nevertheless, advanced and key points of VHDL
are explained. Section 5 is divided on three parts. The first,
introduces main concepts of HLS, the second one describes
SystemC, and the third one shows the ANN description in
SystemC. The next section compares both approaches and
analysis the two methodologies in Sect. 6. The last section
summarizes and concludes the presented work.

2. Related Work

Although the ANN implementation into an FPGA is used in
this paper as an application example of a complex param-
eterizable design for the methodology and language anal-
ysis, it is still a hot-topic. A large variety of ANN hard-
ware implementations have been published targeting FP-
GAs, ASICs, or both [4]–[6]. In most of this previous work,
the ANN is described at the RT-level, using either VHDL or
Verilog. More recent work use HLS to construct the ANNs.
Some examples include [7]–[14], of which [15], [16] make
use of SystemC.

The contribution of this paper in not only the improved
level of configurability of the ANN, but also the analysis and
comparison of both design methodologies (Behavioral vs.
RTL); and more important, the points of improvement for
future HLS tools, as a conclusion of this analysis. Achieving
a good level of configurability at the RTL, as will be shown
in Sect. 4, is not complicated. A good example is [17]. In
this previous work, the authorts parameterize an ANN in a
similar way using generics and generate statements. How-
ever, our VHDL IP includes three kinds of layers in order to
make it even more flexible in terms of area vs. performance
trade-off. In [18], the authors also use a parameterizable
VHDL IP to perform a DSE with their own tool.

In addition in [19], the authors have a parameterizable
SystemC-TML code for DSE and simulation, however they
have to convert it to synthesizable SystemC for the selected
configuration. In [20] successfully parameterize layers for
HLS using templates, however they need to instantiate each
layer separately with their own scalar parameters, i.e. the
number of layers is not a parameter. So, the code of the IP
must be modified if a different number of layers is needed.
Another solution is to have a tool that parses an even higher-
level description, such as graphical based one or using Caffe
like the re-Vision stack from Xilinx [21]. This approach is
useful when the tool is also used for training the ANN or
carrying an automated DSE like in our previous exploration
work [22]. This last approach is gaining popularity as it
fully abstracts the details of the ANN away from the user.
Other examples include [23]–[27], which propose easy to
use frameworks to generate ANNs. Nevertheless, to have
a parameterizable ready-to-use IP is convenient. For exam-

ple, for inserting it directly on the FPGA programming tool
like Vivado without needing to call an external tool to re-
write the IP code every time that it is reconfigured. Besides,
it allows to make changes or add new functionality directly
into the source code, and reuse the code in other projects.
On the other hand, frameworks obscure the source code or
make it inaccessible.

In summary, much work in the area of hardware im-
plementations of ANNs is currently being done. We believe
that this work is complementary to this previous work as it
not only describes in detailed how to design highly flexible
ANNs at the behavioral and RT-Level, but also compares
both approaches and finally exposes some of the limitations
in current methodologies, making suggestions on how to re-
lieve these.

3. Artificial Neuronal Network (ANN) Background

The mathematical model of a neuron is shown in Eq. (1).
This model performs a weighted sum of the inputs and then
applies an activation function to the output. The activation
function is usually a linear function or a sort of saturation
function like sigmoid functions.

yi = f

 M∑
j=1

wi j · x j + bi

 , (1)

with i = 1, . . . ,N, where x j are the inputs, wi j the weights,
bi the bias, f () the activation function, yi the outputs, M the
number of inputs, and N the number of neurons.

One neuron alone can do very few things, but com-
bined together, they can perform complicated tasks. As in a
brain, neurons are grouped by layers and connected in a way
that the outputs of a layer become inputs for the next layer.
Certain kind of ANNs called Recurrent Neural Networks
(RNN) allow feedback connections, although both of the
implementations described on this paper only allow feed-
forward connections. Every neuron in a layer uses the same
activation function. Figure 1 shows a general feedforward
ANN architecture. The small nodes represent the inputs of
the network, and the large ones perform the Eq. (1).

The last layer is called output layer, since is the one
which generates the network’s outputs. The other layers are
usually called hidden layers.

ANNs need to be trained. During the training phase,
input examples are presented to the network, and a learning
algorithm updates the neuron weights in order to complete
the task or improve results. Regarding the information pro-
vided along the training examples, the ANN learning can be

Fig. 1 General 2 layer feedforward ANN.



514
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

classified as supervised, unsupervised, or reinforcement.
For supervised learning, the desired outputs of each

training input example are needed. This enables the learn-
ing algorithm to compare the desired outputs with the out-
puts obtained outputs from the ANN, and adjust the weights
accordingly.

For the case of unsupervised learning, no information
at all is provided with the input examples. The weights
are updated following some rules that depend on internal
characteristics of the input data. A typical application of
this type of learning mechanisms is clustering, and the most
representative ANNs of this kind of ANN are the Self-
Organizing Maps (SOMs).

Finally, reinforcement learning does also not have the
desired outputs for an input example, but only a measure of
how good or bad the results are.

There are different families/types of ANNs. Each fam-
ily has different connections, activation functions, and train-
ing methods. The ANN family targeted in this work is a
multi-layer perceptron (MLP), which uses supervised train-
ing and only feedforward connections. On the context of
deep learning, which has gain grater popularity in the last
years, this kind of ANNs are called fully connected lay-
ers and they are the last layers of a Convolutional Neural
Network (CNN). To achieve a full CNN, convolutional and
pooling layers should be added. These layers have similar
characteristics than the MLPs and hence, the same conclu-
sions apply to them.

Backpropagation [28] is the most popular supervised
learning algorithm for MLP. It is an approximate steepest
descent algorithm which uses the mean square error (MSE)
between the ANN output and the desired one as the fitness
function. Where MS E= 1

n

∑n
i=1(ti − yi)2), ti is the desired

output (target vector), and yi is the current ANN output. The
neurons’ weights are updated using the following formula:

∆wi j = − α ·
∂e2

∂wi j
, (2)

where e2 is the MSE, and α ∈ [0, 1] is a scalar coeffi-
cient called learning rate which regulates how fast the ANN
learns.

In this analysis, we omit the ANN training part as this
is an iterative process and focus on the implementation of
the ANN.

4. RTL Implementation with VHDL

The objective of this work is to describe an ANN as general
as possible in order to be able to reuse it on different applica-
tions. From the ANN algorithm described on Sect. 3, the fol-
lowing parameters, listed on Table 1, have been identified as
the main parameters that allow the parameterizations of the
ANN. It should be noted that the ANN described in this sec-
tion has been made fully available on OpenCores.org [29].

These parameters can be categorize in two main
groups: The first affect the complete ANN and include
Nlayer, NbitW, NumIn, NbitIn, and NbitOut. Hence, they

Table 1 List of the VHDL ANN IP generics.

Parameter Type Description

Nlayer integer Number of layers

NbitW naturala Bit width of weights and biases

NumIn natural Number of inputs to the network

NbitIn natural Bit width of the inputs

NumN int vectorb Number of neurons in each layer

l type stringc Layer type of each layer

f type stringd Activation function type of each layer

LSbit int vectorb LSB of the output of each layer

NbitO int vectorb Bit width of the outputs of each layer

NbitOut natural Bit width of the network output

a NbitW should be a multiple of 8 due to memory alignment.
b int vector is an array of integers defined on the package lay-

ers pkg.vhd.
c l type string must contain as layer types as number of layers, sep-

arated by spaces. Each layer type is a two character string “SP”,
“PS”, or “PP”.

d f type string must contain as activation function types as number
of layers, separated by spaces. Each layer type is a six character
string.

are scalars. The second group affect each layer separately
and include NumN, l type, f type, LSbit, and NbitO. Thus,
they are vectors. NbitW, NbitIn, Lsbit, NbitO, and NbitOut
configure fixed point data formats, while the other parame-
ters configure the ANN’s structure and functionality.

As shown from Fig. 1, the main components of an ANN
are the layers and neurons. Thus, the main effort is in pa-
rameterizing the RTL description, such that each layer can
be uniquely configured through static parameters instead of
having to specify each layer and within each layer, each neu-
ron, separately. This can be achieved in VHDL using gener-
ics, which are passed to the entity when instantiated. These
generics are in turn used in for-generate statements in the
architecture to generate the particular ANN layer.

Figure 2 shows a VHDL code snippet using a for-
generate statement for instantiating one module Num-
ber of instances times. The loop counter of the for-generate
(i) statement (“for i in 0 to 2 generate”) is an integer con-
stant named i with values 0 to Number of instances. Every
iteration is concurrent and thus, is equivalent to copy and
paste the code for each iteration replacing i by the appropri-
ate loop iteration value.

Thanks to the generics, the constant array types, and
the fact that the for-generate loop counters are constant,
each entity instance can be configured separately. In Fig. 2
for example, every instance of the entity module is config-
ured with the same global parameter and is connected to
the same clk signal. But, each one is configured with a dif-
ferent element of the array parameter and is connected to a
different element of the array signal.

Another interesting feature of VHDL and how VHDL
descriptions are synthesized is the calculation of constants.
In order to optimize HW designs, every value known at syn-
thesis time can save all the logic needed for its computation.
Results of operations with constants are treated as constants



ALEDO et al.: VHDL VS. SYSTEMC
515

Fig. 2 VHDL for-generate statement.

as well, even when functions are applied (as long as this
functions do not use any run-time values). As opposite to
SW compilers, which leave these computations to when the
code is executed†. This is mainly the case to increase the
flexibility in SW albeit a slighter larger object codes.

One of the main drawbacks of RTL synthesis against
HLS, is the fixed architecture. On RTL abstraction every
clock cycle data calculation or movement is detailed. There-
fore, trade offs between area and performance have to been
decided a priori and coded explicitly. This means that have
to be decided which calculations will be parallelized and
which ones will be serialized to reuse resources. If a fu-
ture application needs another trade off, old code can not be
reused and has to be rewritten.

In order to give some flexibility on the ANN area
versus performance trade off, three kinds of layers have
been designed: Serial-input Parallel-output (“SP”), Parallel-
input Serial-output (“PS”), and Parallel-input Parallel-
output (“PP”).

• The “SP” layer type is an array of Multiplier-and-
Accumulators (MACs). Its resource utilization de-
pends on the number of neurons, and its latency de-
pends on the number of inputs. This is the most com-
mon implementation and is perfect for first processing
layers which receive inputs serially.
• The “PS” layer type implements one neuron that is

reused to calculate all neurons of the layer. Its re-
source utilization depends on the number of inputs, and
its latency depends on the number of neurons plus the
logarithm to the base 2 of the number of inputs (be-
cause the adder tree). A drawback of this layer type
is that there is no perfect mapping of the multipliers
and the adder tree into embedded MACs like Xilinx’s
DSP48Es. They have one multiplier and one adder,
configurable to perform different operations like MAC,
but to combine all multipliers with the adder tree adders
is not possible, causing more DSPs utilization. Never-

†This is true for earlier versions of C++ than C++11. How-
ever, even in C++11 and newer versions, static time constant cal-
culation must be specified on the code through the key word “con-
stexpr”. Thus, already existing functions (like library ones) can not
be used for this propose.

Fig. 3 Block diagram of the architecture around one layer. This is re-
peated Nlayer times.

theless, this layer type is good for output layers which
need serial outputs.
• The “PP” layer type is the full parallel implementation

of a layer, achieving the maximum performance at ex-
penses of the largest resource utilization.

When serial-input and serial-output is needed, this can
be automatically accomplished by inserting a serializer after
a “SP” layer or a parallelizer before a “PS” layer. A serial-
izer is a shift register with parallel load, and a parallelizer is
a shift register with parallel unload.

All neurons in a layer have the same activation func-
tion. The selected activation function is inserted selectively
between layers. If a parallel output precedes a serial input,
a serializer is inserted before a single activation function
block. If a serial output precedes a parallel input, one activa-
tion function block is inserted before the parallelizer. Only
when a parallel output precedes a parallel input, an array
of parallel activation function blocks is inserted. Figure 3
shows the configurable architecture around one layer.

This high configurable architecture is achieved by mak-
ing use of VHDL’s for-generate and if-generate statements.
However, programming this degree of flexibility requires a
large designer effort and it still has its limitations (each op-
tion has to be coded as a different submodule). Reaching the
point where to write a new design for a new option is easier
than making a more complex description.

5. HLS with SystemC

5.1 High-Level Synthesis

HLS takes an untimed behavioral description, and trans-



516
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 4 For loop and its rolled (left), partial unrolled (middle), and unrolled (right) implementations.

forms it in an efficient RTL description that can execute
it [30]. The main steps of HLS are allocation, scheduling
and binding. In particular, allocation specifies the hardware
resources that are necessary to implement the particular de-
scription. Scheduling determines for each operation the time
at which it should be performed such that no precedence
constraint is violated. Binding provide a mapping from each
operation to a specific functional unit and from each variable
to a register.

HLS is intended to reduce the productivity gap between
algorithm specification and HW design. Traditional HW
design is usually perform at RTL with HDLs like VHDL
and Verilog, whereas algorithm specifications are usually
done with high-level languages like C, C++, Matlab or
Python. So, manual translation is needed, which is a time-
consuming and error-prone process. HLS partially autom-
atizes this process. It is not yet a silicon compiler who
transforms whatever algorithm into a chip without manual
refinement, although it almost significantly reduces this pro-
ductivity gap. In particular, guidance through the optimiza-
tions are needed, and translation from standard C/C++ algo-
rithm descriptions into synthesizable C like descriptions is
still needed. Nevertheless, this translation is more straight-
forward than translating C/C++ to VHDL or Verilog, thus
easier, faster, and less error prone.

Furthermore, HLS can synthesize one description into
different RTL architectures. E.g. two of the main features
of HLS to obtain different architectures are array mapping
and loop unrolling (Fig. 4). Arrays can be synthesized as
RAM/ROM memory blocks, register benches, or even as
shift registers or FIFOs. If there are no data dependen-
cies between loop iterations, a loop can be unrolled to
achieve a parallel implementation with maximum perfor-
mance but larger area. Alternatively, it can be kept sequen-
tial to allow reuse of the hardware described inside the loop
body, achieving minimum area, with the obvious trade-off
of larger latencies. Besides, it can be partially unrolled by
instantiating different level of parallel copies of the loop’s
hardware, and reusing them serially to complete the remain-
ing loop iterations. These synthesis knobs enable the gener-
ation of designs with unique trade-offs, e.g. area vs. perfor-
mance without the need to modify the behavioral description
at all.

Thus, HLS enables to perform Design Space Explo-
ration (DSE), and allows its automation.

First generations of HLS tools used HDL as input

sources, but they were a commercial failure due to the rea-
sons explained in [31]. Present HLS tools uses C/C++ based
languages, however from all of them, only SystemC is stan-
dard for HLS through the synthesizable subset [3]. Although
HLS tools accepts ANSI C++, like Vivado and CatapultC,
their synthesizable subsets and some C++ translations into
HW (data types, interfaces,. . . ) are not standard. Thus, only
SystemC is portable among HLS tools. Thus, this work fo-
cuses on implementation of ANNs using SystemC as input
language for HLS.

5.2 SystemC

SystemC is a C++ library to model hardware. It has two
main advantages compared to ANSI-C/C++. First it allows
to model concurrency through modules, threads and meth-
ods and secondly it contains standard data types (integer and
fixed point).

The first version of SystemC was just another RTL lan-
guage. It defined the simulation kernel, modules, signals
and fixed point data types. However, as RTL languages
VHDL and Verilog are more powerful. Nevertheless, cur-
rent version of SystemC includes higher-level abstraction
elements which make SystemC capable of targetting a wide
range of abstraction levels. This is very useful for simula-
tion and validation.

Although all the C++ and SystemC features can be
used for simulations and validation, Accellera has defined
a synthesizable subset for HLS that restricts the supported
syntax [3]. E.g. dynamic memory allocation is not allowed,
as well as recursion or floating point number representa-
tions.

SystemC descriptions has a slight lower abstraction
level than C++ descriptions for HLS (at least than the Vi-
vados’s ones). C/C++ are truly untimed algorithm descrip-
tions. No concurrency is explicitly described, so synchro-
nization is not needed. Data dependencies and concurrency
is extracted by the tool, thus designer rely on the tool and
its C/C++ extensions. SystemC allows designers explicitly
describe concurrency and synchronization, giving more con-
trol on HLS at expenses of reducing slightly the abstraction
level. This has its advantages and drawbacks.

When abstraction level increases code reusability be-
comes more important, as has been point out on the intro-
duction. Furthermore, since high-level abstraction descrip-
tions do not lock the micro-architectures, they can be more



ALEDO et al.: VHDL VS. SYSTEMC
517

easily reused to generate micro-architectures of unique area
vs. performance trade-off.

However, configurability is a weak point of SystemC.
Due to the fact that SystemC is a C++ library, its parameter-
ization mechanisms are defined by the ANSI C++ standard.
Although it might seem counterintuitive, because C++ is
well known as one of the most flexible languages, the C++
standard was created for software development. Although
SystemC is a good adaptation of a software language to a
hardware description language, which has successfully ad-
dressed most of these differences, parameterization still has
some issues related with this fact which becomes visible
when designing ANNs with SystemC.

The main parameters that can be used to parameterize a
module in SystemC are: macros, templates, and constructor
parameters. In particular:

• Macros: The #define preprocessor directive can define
scalar global parameters. An advantage of macro pa-
rameters is they can be used in conjunction with #if
preprocessor directives. Like VHDL if-generate state-
ments, #if can be used to skip from synthesis those
parts of the code which may produce errors for the se-
lected configuration.
• Templates: the C++ template parameters can be con-

figured independently for different instances of the
same module. Thus, it seems that C++ templates are
the best option to parameterize modules like VHDL
generics do. However they have some limitations ex-
plained below.
• Constructor parameters: as SystemC modules are

classes, they have constructor functions which may
have parameters. The problem of constructor param-
eters (as any function parameters) is that from the C++
point of view they are variables known at run time. For
this reason, constructor parameters are not synthesiz-
able [3].

The main drawback of the C++ templates is they can-
not interact with the preprocessor. They define parameters
known at compiler time that can be used as constants and
to perform some compiler-time optimizations, but they can-
not be used to take decisions at synthesis time. This implies
that C/C++macros based on #if preprocessor statements are
needed, like VHDL generics are used on if-generate and for-
generate statements. It is important to notice that there is not
a #for preprocessor statement nor anything similar in C++.
If templates are used on C conditional statements (e.g. if,
switch), compilers and HLS tools might try to process code
blocks that will never be active for the selected configura-
tion. Some C++ compilers and HLS tools are smart enough
to avoid processing these blocks of code. However, this fea-
ture is not a requirement, so there is not guarantee of these
code blocks will not cause any compiler/synthesis error in
any tool.

Another important limitation is that array elements or
string literals cannot be used to pass values to template pa-
rameters.

Fig. 5 Macro to select the number of neurons of the layer n.

Besides, there are also some limitations on the data
types which templates can accept. Arrays and user defined
types are tricky to add properly. [32] shows how to add this
kind of template parameters, but this syntax is complex and
it is not sure if every HLS tool will synthesize it correctly.

Furthermore, C++ has no arrays of constants. A C++
const array is a read-only address of an array, but its ele-
ments are treated as variables (known only at run time) even
if they are addressed by constant indexes.

5.3 ANN Description

The SystemC source code files of the ANN are freely avail-
able as one of the benchmkars in the S2Cbench benchmark
suite [33]. They were used into a two-tier automatic ex-
plorer [22], capable of first find the smallest ANN config-
uration (for a given maximum error), and then perform the
micro-architecture automatic DSE.

Parameters should be carefully decided to be macros or
templates, taking into account if they will be used on an #if
or they will configure parallel blocks separately.

Authors have solved the absence of array of constants
by defining macros like the one shown in Fig. 5. This kind
of macros calculate the needed parameters. They can be
used in those places where only a constant expression can be
used like e.g. array length definitions or as template values.
However, they lead to excessively long expressions when
replacing long arrays.

Layers have been implemented as one template func-
tion. Concurrence of layers could be explicitly expressed
implementing them as sc modules or sc threads. Imple-
menting them as functions allows HLS tools to extract their
concurrency. The layer function template is simply de-
scribed with two nested for loops.

For regular parallel structures, i.e. every block has the
same configuration, a for statement can instantiate a config-
urable number of them. The for iterator is a variable, thus,
it can not be used to give values to template parameters or
calculate them, but it can be used to give values to inputs,
calculate them, or select the outputs (from an array).

A fixed number of parallel separately configured blocks
should be instantiated one by one.

Parallel instantiation of separately configured blocks a
configurable number of times, has been addressed by au-
thors through two methods. The first one relies on the ex-
plorer (or whatever other meta-program that can edit the
source code) to write the configured number of calls to the
layer function into the source code. The second method
uses #if preprocessor statements to hide the calls not needed.
This second method does not need an external program, but
is limited by the number of layers which can be config-
ured. By implementing a maximum number of calls, the
not needed ones can be hidden, but the drawback is that new



518
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

ones cannot be added without editing the source code.

6. Analysis

The main differences between software and hardware devel-
opment that affects parameterization are preprocessor fea-
tures, parameter types, and when decisions are taken. The
C++ preprocessor is quite limited, avoiding iterations ex-
pressly. Iterations are loops or recursions. Although C++
define templates, as it was shown above, they do not pro-
vide always enough flexibility as generics of VHDL does.
Function parameters are known at run time. Typically in
software, most of the decisions are taken at run time, provid-
ing software programs huge flexibility at expenses of slight
bigger object code (which most of the times this increase on
the code is neglected). On the other hand, on hardware de-
sign every optimization that can be done on synthesis time
has a great impact.

Summarizing and putting together analysis of VHDL
and SystemC ANN descriptions, the main points of im-
provement for future HLS tools are:

Calculation of constant values during synthesis
time: whereas VHDL synthesis tools can calculate constant
values even applying functions, SystemC only can use con-
stant expressions. In VHDL, the result of a function which
has been called with constant values and do not use inter-
nally any run-time data, is treated as well as a constant. Al-
lowing to use this result in such places where only a constant
can be used, like length definition of an array, and to perform
optimizations. All these computations are skipped from run
time, hence no extra logic is inferred. However, C and C++
functions cannot distinguish constant parameters known at
compiler-time from variable parameters only known at run-
time, so they treated all of them as variable values, carrying
out all computations at run time.

Parameter types: VHDL only uses one kind of pa-
rameter: the generics. They can be of whatever type, in-
cluding array and user defined types, and they can be used
on if-generate and for-generate statements (which are pro-
cessed at synthesis time). As opposite, SystemC uses two
synthesizable kind of parameters: macros which can inter-
act with the preprocessor but are limited to global scalars or
string literals; and templates that can be set independently
for different instances of the same element, but they have
the following issues:

• They cannot interact with the preprocessor, so they
cannot be used to take decisions at synthesis time. If
they are used on C conditional statements (if, switch,
etc.), compilers and HLS tools may try to process the
code blocks that never will be active for the selected
configuration, so there is not guarantee of these code
blocks will not cause any compiler/synthesis error in
any tool.
• Although they can define more parameters types, ar-

rays and user defined types still cannot be guaranteed
that every HLS tool will synthesize them correctly. Be-

sides, array elements or string literals cannot be used to
give value to template parameters.

Further, C++ does not have constant array of constants,
neither anything equivalent to a const of an array type in
VHDL. A C++ const array is a read-only address of an ar-
ray, but its elements are treated as variables (known only at
run time) even if they are addressed by constant indexes.

For-generate: There is not a #for preprocessor state-
ment neither anything similar in C++. Because as it was
mentioned above, C/C++ preprocessor avoids iterations ex-
pressly. The VHDL for-generate statement is very useful for
instantiating parallel modules of the same type without hav-
ing to copy and paste code. Furthermore, it allows configur-
ing the number of copies. Furthermore in addition, combin-
ing it with the generic arrays, each module copy can be set
with different parameter configurations.

7. Results of Implementation

On this section are shown results from the implementation
of the described IPs with the authors available synthesis
tools: ISE, Vivado and CWB. In order to show the flexi-
bility and robustness of our proposed IPs, two different ap-
plications are used in this work, described in detailed in the
next subsections. The results obtained with our explorer that
are already shown on [22] are not presented here.

7.1 Application 1: Classification of Handwritten Digits

This first example application is based on the popular
MNIST database [34]. Although in order to make it suitable
for embedded computing, the images have been reduced to
quarter in both directions by averaging every 8×8 block. So,
the inputs to this network are 7×7=49 pixel images.

The outputs of this example are ten values which each
one should stand at its maximum to select its assigned digit,
and zero in other case. This implies that the output layer of
this ANN has a fixed size of 10 neurons.

Table 2 shows how different tools (ISE and Vivado)
synthesize the same codes. The parameters for the VHDL
IP are Nlayer 2, NbitW 16, NumIn 49, NbitIn 8, NumN
{20 10}, l type “SP PS”, LSbit {12 12}, NbitO {12 8}, and
NbitOut 8. The design with “linear” hidden layer has f type
“linear linear” and the design with “siglut” hidden layer has
f type “siglut linear”. All of them has been synthesized for
a Zynq XC7Z010, which is the SoC in the ZYBO develop-
ment board. It can be seen that even being the two tools
from the same vendor, Vivado uses far more resources than
ISE when a “siglut” layer is present. The functionality that
both results have is exactly the same, because that is what
the language (VHDL) assures. QoR depends on the syn-
thesis tool. In this case the reason is that Vivado does not
recognize the sigmoid look-up-table as a ROM, and uses a
great amount of LUTs, registers and muxes to implement
the same functionality.

Table 3 shows an example of DSE carried out on Vi-
vado HLS for the same configuration than the example of



ALEDO et al.: VHDL VS. SYSTEMC
519

Table 2 Resource utilization of VHDL IP for “linear” and “siglut” hidden layer, synthesized with
ISE and Vivado.

“linear” ISE “linear” Vivado “siglut” ISE “siglut” Vivado
ANN SP PS ANN SP PS ANN SP PS ANN SP PS

Slice LUTs (17600) 2080 1267 804 1305 519 786 2067 1245 812 10780 9979 801
- as Logic (17600) 1104 627 468 969 519 450 1091 605 476 10444 9979 465
- as Memory (6000) 976 640 336 336 0 336 976 640 336 336 0 336
Slice Registers (35200) 871 590 281 1425 628 797 852 570 281 1606 808 797
F7 Muxes (8800) 64 64 0 3316 3284 32
F8 Muxes (4400) 16 16 0 1092 1076 16
BRAM (60) 0 0 0 5 5 0 20 0 0 5 5 0
DSP48E1 (80) 45 20 25 40 20 20 45 20 25 40 20 20

Table 3 Resource utilization of SystemC IP on ZYBO.

Lat. Slices Reg. LUTs DSPs BRAM
unroll complete 140 1577 3758 3600 40 5
unroll factor 10 199 1202 3283 2995 20 15
unroll factor 5 321 1078 3387 2393 10 10
unroll factor 4* 376 949 2841 2437 8 9
unroll factor 2* 1176 930 2803 1679 4 9
VHDL IP (ISE) 68 852 2067 45 20

Table 2 with “siglut” hidden layer. It has been added the
solution produced by ISE for the VHDL IP. It can be seen
how for the same configuration, HLS can produce different
solutions for the trade-off resources vs latency whereas RTL
synthesis produces a single optimized fixed architecture. It
must be noticed that the VHDL IP uses streaming ports for
the ANN data, so input and output buffers are not necesary.
On the contrary, the SystemC codes describes such buffers
to allow generation of different input and output interfaces.
Reading and writing these buffers takes around 60 clock cy-
cles. Hence, the VHDL IP solution is equivalent to the un-
roll complete version. Solutions marked with * may present
timing issues.

Figure 6 shows other DSE for another two ANNs. In
this case, inputs are 14×14=196 pixel images, and they have
3 layers. The middle layer kind is changed to get extra
pareto-optimal architectures.

7.2 Example Application 2: Auto-Encoder

The second application is an auto-encoder for image cod-
ing. An auto-encoder is a MLP with as many outputs as
inputs, and a narrow hidden layer. When the auto-encoder
is trained, inputs are also used as desired outputs. Data is
forced to pass through the narrow hidden layer and then
reconstructed with minimal error compared to the original
data. Thereby, data through the narrow hidden layer is
turned to be a compressed representation of the input.

Like other image coding techniques, the full image is
divided into blocks, to which the coder is applied individu-
ally. In this case, the images are divided into 8×8 blocks,
thus, the inputs and output layer have 64 neurons.

This example shows how a little optimized ANN can
be fitted onto a low-cost SoC. Figure 7 shows a system im-
plemented on a ZYBO development board [35], which con-
tains an auto-encoder with the following parameters: Nlayer

Fig. 6 Latency (horizontal) vs. number of DSPs (vertical). Note: extra
latency of 196+10 has been added to VHDL designs to compensate Sys-
temC buffers.

Fig. 7 Auto-encoder on ZYBO. The left picture on the monitor is the
original, and the right one has been processed by the auto-encoder.

2, NbitW 16, NumIn 64, NbitIn 8, NumN {8 64}, l type “SP
PS”, f type “linear linear”, LSbit {12 12}, NbitO {12 8}, and
NbitOut 8. And Fig. 8 is the configuration window of the
ANN IP in Vivado showing the previous configuration.



520
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 8 Configuration window of the ANN IP in Vivado.

8. Conclusion

Table 4 summarizes pros and cons of VHDL and SystemC.
The analysis of the different parameterization mecha-

nisms in VHDL and SystemC has been carried out based on
the design of an ANN IP. The resultant source codes from
both methodologies are freely available on [29] (VHDL)
and [33] (SystemC). As a result of these analysis, we
conclude that SystemC’s parameterization mechanisms are
more complex and less flexible then VHDL’s ones.

Although the VHDL description allows some flexibil-
ity to generate ANN’s with different trade-offs, SystemC
can generate a larger variety of different architectures from
the same configuration (as it is shown on Fig. 6). There-
fore, we believe that the best overall alternative to create
re-usable IPs would combine the synthesis possibilities of
HLS with a parameterization mechanism as robust and flex-
ible of VHDL’s generics. Whereas the increase on the level
of abstractions allow to generate different architectures for
the same algorithm within the same code, a good parame-
terization allows to implement more flexible algorithms that
avoid to re-write the code for different options.

As traditional RTL synthesis tools can address some of
the SystemC HLS weak points, we hope that future HLS
tools will address these issues. It is contradictory that low-
level of abstractions tools can parameterize better complex
descriptions like ANNs, but that tools with higher-level of
abstraction cannot. Precisely because parameterization be-
comes more important when the level of abstraction rises.

Regarding the preprocessor issues, one possible solu-
tion may be to allow a pre-processing stage during synthesis.
As SystemC define three phases for the simulation: elabora-
tion, execution, and cleanup; the elaboration phase could be

Table 4 Summary of pros and cons of VHDL and SystemC.

Pros Cons
VHDL - Ad-Hoc optimizations can

take advantage of low-level
details.
- Flexible and efficient pa-
rameterization.

- More code lines and de-
sign time.
- Bigger gap between algo-
rithm design and RTL de-
sign.
- Fixed architecture. Re-
design needed for different
area vs performance trade-
offs.

SystemC -Less code lines and design
time.
- Smaller gap between algo-
rithm design and HLS de-
sign.
- Easier and faster DSE.

- Parameterization mecha-
nisms (inherited from C++)
are inefficient and not flexi-
ble for hardware synthesis.

used for synthesis-time calculations. The elaboration phase
is where every statement is executed prior to the sc start()
call. If synthesis is divided in two phases, the first one can
compute the C++ statements in a less restrictive way to get
a set of values known at the end of this phase, let us call
them post-elaboration constants, and to program the system
structure instantiating modules using if and for statements.
Note that this may imply to allow the creation of dynamic
objects during this phase. This also open the possibility of
using constructor parameters.

Acknowledgments

This work was partially supported by the Consejo Social
de la Universidad Politécnica de Madrid; and the Universi-
dad Politécnica de Madrid under the grant RR01/2015 (Pro-
grama Propio).

References

[1] O. Pell and O. Mencer, “Surviving the end of frequency scaling
with reconfigurable dataflow computing,” SIGARCH Comput. Ar-
chit. News, New York, NY, USA, pp.60–65, ACM, Dec. 2011.

[2] “IEEE standard for standard systemc language reference manual,”
Jan. 2012.

[3] “Systemc synthesizable subset version 1.4.7,” https://accellera.org/
images/downloads/standards/systemc/SystemC Synthesis Subset 1
4 7.pdf, 2016.

[4] J. Misra and I. Saha, “Artificial neural networks in hardware: A sur-
vey of two decades of progress,” Neurocomputing, vol.74, no.1-3,
pp.239–255, Dec. 2010. Artificial Brains.

[5] A.R. Omondi and J.C. Rajapakse, eds., FPGA implementations of
neural networks, Springer, 2006.

[6] J. Zhu and P. Sutton, “FPGA implementations of neural networks: A
survey of a decade of progress,” in Field Programmable Logic and
Application, pp.1062–1066, Springer Berlin Heidelberg, 2003.

[7] M. Nigri, P. Treleaven, and M. Vellasco, “Silicon compilation of
neural networks,” CompEuro ’91. Advanced Computer Technology,
Reliable Systems and Applications, 5th Annual European Computer
Conference, Proceedings., pp.541–546, May 1991.

[8] E.M. Ortigosa, A. Cańas, E. Ros, P.M. Ortigosa, S. Mota, and J.
Dı́az, “Hardware description of multi-layer perceptrons with differ-
ent abstraction levels,” Microprocessors and Microsystems, vol.30,
no.7, pp.435–444, Nov. 2006.

[9] G. Smaragdos, S. Isaza, M.F. van Eijk, I. Sourdis, and C. Strydis,

http://dx.doi.org/10.1145/2082156.2082172
http://dx.doi.org/10.1145/2082156.2082172
http://dx.doi.org/10.1145/2082156.2082172
http://dx.doi.org/10.1109/ieeestd.2012.6134619
http://dx.doi.org/10.1109/ieeestd.2012.6134619
http://dx.doi.org/10.1016/j.neucom.2010.03.021
http://dx.doi.org/10.1016/j.neucom.2010.03.021
http://dx.doi.org/10.1016/j.neucom.2010.03.021
http://dx.doi.org/10.1007/0-387-28487-7
http://dx.doi.org/10.1007/0-387-28487-7
http://dx.doi.org/10.1007/978-3-540-45234-8_120
http://dx.doi.org/10.1007/978-3-540-45234-8_120
http://dx.doi.org/10.1007/978-3-540-45234-8_120
http://dx.doi.org/10.1109/cmpeur.1991.257444
http://dx.doi.org/10.1109/cmpeur.1991.257444
http://dx.doi.org/10.1109/cmpeur.1991.257444
http://dx.doi.org/10.1109/cmpeur.1991.257444
http://dx.doi.org/10.1016/j.micpro.2006.03.004
http://dx.doi.org/10.1016/j.micpro.2006.03.004
http://dx.doi.org/10.1016/j.micpro.2006.03.004
http://dx.doi.org/10.1016/j.micpro.2006.03.004
http://dx.doi.org/10.1145/2554688.2554790


ALEDO et al.: VHDL VS. SYSTEMC
521

“Fpga-based biophysically-meaningful modeling of olivocerebel-
lar neurons,” Proc. 2014 ACM/SIGDA International Symposium
on Field-programmable Gate Arrays, FPGA ’14, pp.89–98, ACM,
2014.

[10] N. Farrugia, F. Mamalet, S. Roux, F. Yang, and M. Paindavoine,
“A parallel face detection system implemented on fpga,” 2007 IEEE
International Symposium on Circuits and Systems, pp.3704–3707,
May 2007.

[11] C. Torres-Huitzil, B. Girau, and A. Gauffriau, “Hardware/software
codesign for embedded implementation of neural networks,” Proc.
3rd Int. Conf. Reconfigurable Computing: Architectures, Tools and
Applications, ARC’07, Berlin, Heidelberg, pp.167–178, Springer-
Verlag, 2007.

[12] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S.
Vrudhula, J.s. Seo, and Y. Cao, “Throughput-optimized OpenCL-
based FPGA accelerator for large-scale convolutional neural net-
works,” Proc. 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’16, New York, NY, USA,
pp.16–25, ACM, 2016.

[13] M. Bettoni, G. Urgese, Y. Kobayashi, E. Macii, and A. Acquaviva,
“A convolutional neural network fully implemented on fpga for em-
bedded platforms,” 2017 New Generation of CAS (NGCAS), pp.49–
52, Sept. 2017.

[14] G. Lacey, G.W. Taylor, and S. Areibi, “Deep learning on fpgas: Past,
present, and future,” arXiv preprint arXiv:1602.04283, 2016.

[15] D. Lettnin, A. Braun, M. Bodgan, J. Gerlach, and W. Rosenstiel,
“Synthesis of embedded SystemC design: A case study of digital
neural networks,” Proceedings Design, Automation and Test in Eu-
rope Conference and Exhibition, vol.3, pp.248–253, IEEE Computer
Society, 2004.

[16] S. Chtourou and O. Hammami, “Design space exploration of Sys-
temC SOM implementation,” Information and Communications
Technology, 2005. Enabling Technologies for the New Knowledge
Society: ITI 3rd International Conference on, pp.159–169, Dec.
2005.

[17] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and imple-
mentation of parameterized fpga-based general purpose neural net-
works for online applications,” IEEE Trans. Ind. Informat., vol.7,
no.1, pp.78–89, Feb. 2011.

[18] M. Baharani, H. Noori, M. Aliasgari, and Z. Navabi, “High-level de-
sign space exploration of locally linear neuro-fuzzy models for em-
bedded systems,” Fuzzy Sets and Systems, vol.253, no.Supplement
C, pp.44–63, 2014. Theme: Fuzzy Modeling and Clustering.

[19] M. van Eijk, C. Galuzzi, A. Zjajo, G. Smaragdos, C. Strydis, and
R. van Leuken, “Esl design of customizable real-time neuron net-
works,” 2014 IEEE Biomedical Circuits and Systems Conference
(BioCAS) Proceedings, pp.671–674, Oct. 2014.

[20] E.J. Kreinar, “RFNoC neural network library using Vivado HLS,”
Proc. GNU Radio Conference, vol.2, no.1, p.7, 2017.

[21] “revision zone,” https://www.xilinx.com/products/design-tools/
embedded-vision-zone.html.

[22] B. Carrion Schafer, D. Aledo, and F. Moreno, “Application specific
behavioral synthesis design space exploration: Artificial neural net-
works. a case study,” 2017 Euromicro Conference on Digital System
Design (DSD), pp.129–136, Aug. 2017.

[23] M.K. Hamdan and D. Rover, “Vhdl generator for a high performance
convolutional neural network fpga-based accelerator,” ReConFig,
pp.1–7, Dec. 2017.

[24] H. Zeng, C. Zhang, and V. Prasanna, “Fast generation of high
throughput customized deep learning accelerators using fpgas,” Re-
ConFig, pp.1–7, Dec. 2017.

[25] H. Sharma, J. Park, D. Mahajan, E. Amaro, J.K. Kim, C. Shao, A.
Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to fpgas,” 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp.1–12, Oct. 2016.

[26] S.I. Venieris and C.S. Bouganis, “fpgaconvnet: A framework for
mapping convolutional neural networks on fpgas,” 2016 IEEE 24th

Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp.40–47, May 2016.

[27] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun,
W. Zhang, and J. Cong, “Fp-dnn: An automated framework for
mapping deep neural networks onto fpgas with rtl-hls hybrid tem-
plates,” 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp.152–159,
April 2017.

[28] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal
representations by error propagation,” Tech. Rep., DTIC Document,
1985.

[29] D. Aledo and F. Moreno, “ANN,” https://opencores.org/project/
artificial neural network, June 2016.

[30] D.D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded sys-
tem design: modeling, synthesis and verification, Springer Science
& Business Media, 2009.

[31] G. Martin and G. Smith, “High-level synthesis: Past, present, and
future,” IEEE Design Test of Computers, vol.26, no.4, pp.18–25,
July 2009.

[32] http://en.cppreference.com/w/cpp/language/template parameters.
[33] The Hong Kong Polytechnic University, DARClab, “S2CBench

v.1.1,” 2015. http://sourceforge.net/projects/s2cbench/.
[34] Y. LeCun, C. Cortes, and C.J.C. Burges, “The MNIST database of

handwritten digits,” http://yann.lecun.com/exdb/mnist.
[35] “Zybo,” https://reference.digilentinc.com/reference/programmable-

logic/zybo/start.

David Aledo received the BEng degree in in-
dustrial engineering (electrical engineering) and
the MSc degree in industrial electronics from
Universidad Politécnica de Madrid (UPM), in
2011 and 2013 respectively. He is Ph.D. student
and researcher in Centro de Electrónica Indus-
trial of UPM. His research interests include dig-
ital electronic design on FPGAs, digital signal
processing, high-level synthesis, artificial neural
networks, and wireless sensor networks.

Benjamin Carrion Schafer completed his
Ph.D. at the University of Birmingham, U.K. in
2002. He is professor at Department of Elec-
trical and Computer Engineering, University of
Texas at Dallas, USA. His research interests in-
clude reconfigurable computing, thermal-aware
VLSI design and high-level synthesis. He was
also a member of Accellera’s SystemC synthe-
sizable user group committee, leading the ef-
fort to standardize a synthesizable subset of Sys-
temC.

Félix Moreno was born in Valladolid, Spain,
in 1959. He received the MSc and Ph.D. degrees
in telecommunication engineering from Univer-
sidad Politécnica de Madrid (UPM), in 1986 and
1993, respectively. Currently, he is Associate
Professor of Electronics at UPM. His research
interests are focused on evolvable hardware,
high-performance reconfigurable and adaptive
systems, hardware embedded intelligent archi-
tectures, and digital signal processing systems.

http://dx.doi.org/10.1145/2554688.2554790
http://dx.doi.org/10.1145/2554688.2554790
http://dx.doi.org/10.1145/2554688.2554790
http://dx.doi.org/10.1145/2554688.2554790
http://dx.doi.org/10.1145/2554688.2554790
http://dx.doi.org/10.1109/iscas.2007.378647
http://dx.doi.org/10.1109/iscas.2007.378647
http://dx.doi.org/10.1109/iscas.2007.378647
http://dx.doi.org/10.1109/iscas.2007.378647
http://dx.doi.org/10.1007/978-3-540-71431-6_16
http://dx.doi.org/10.1007/978-3-540-71431-6_16
http://dx.doi.org/10.1007/978-3-540-71431-6_16
http://dx.doi.org/10.1007/978-3-540-71431-6_16
http://dx.doi.org/10.1007/978-3-540-71431-6_16
http://dx.doi.org/10.1145/2847263.2847276
http://dx.doi.org/10.1145/2847263.2847276
http://dx.doi.org/10.1145/2847263.2847276
http://dx.doi.org/10.1145/2847263.2847276
http://dx.doi.org/10.1145/2847263.2847276
http://dx.doi.org/10.1145/2847263.2847276
http://dx.doi.org/10.1109/ngcas.2017.16
http://dx.doi.org/10.1109/ngcas.2017.16
http://dx.doi.org/10.1109/ngcas.2017.16
http://dx.doi.org/10.1109/ngcas.2017.16
http://dx.doi.org/10.1109/date.2004.1269239
http://dx.doi.org/10.1109/date.2004.1269239
http://dx.doi.org/10.1109/date.2004.1269239
http://dx.doi.org/10.1109/date.2004.1269239
http://dx.doi.org/10.1109/date.2004.1269239
http://dx.doi.org/10.1109/itict.2005.1609622
http://dx.doi.org/10.1109/itict.2005.1609622
http://dx.doi.org/10.1109/itict.2005.1609622
http://dx.doi.org/10.1109/itict.2005.1609622
http://dx.doi.org/10.1109/itict.2005.1609622
http://dx.doi.org/10.1109/tii.2010.2085006
http://dx.doi.org/10.1109/tii.2010.2085006
http://dx.doi.org/10.1109/tii.2010.2085006
http://dx.doi.org/10.1109/tii.2010.2085006
http://dx.doi.org/10.1016/j.fss.2013.12.006
http://dx.doi.org/10.1016/j.fss.2013.12.006
http://dx.doi.org/10.1016/j.fss.2013.12.006
http://dx.doi.org/10.1016/j.fss.2013.12.006
http://dx.doi.org/10.1109/biocas.2014.6981815
http://dx.doi.org/10.1109/biocas.2014.6981815
http://dx.doi.org/10.1109/biocas.2014.6981815
http://dx.doi.org/10.1109/biocas.2014.6981815
http://dx.doi.org/10.1109/dsd.2017.56
http://dx.doi.org/10.1109/dsd.2017.56
http://dx.doi.org/10.1109/dsd.2017.56
http://dx.doi.org/10.1109/dsd.2017.56
http://dx.doi.org/10.1109/reconfig.2017.8279827
http://dx.doi.org/10.1109/reconfig.2017.8279827
http://dx.doi.org/10.1109/reconfig.2017.8279827
http://dx.doi.org/10.1109/reconfig.2017.8279792
http://dx.doi.org/10.1109/reconfig.2017.8279792
http://dx.doi.org/10.1109/reconfig.2017.8279792
http://dx.doi.org/10.1109/micro.2016.7783720
http://dx.doi.org/10.1109/micro.2016.7783720
http://dx.doi.org/10.1109/micro.2016.7783720
http://dx.doi.org/10.1109/micro.2016.7783720
http://dx.doi.org/10.1109/fccm.2016.22
http://dx.doi.org/10.1109/fccm.2016.22
http://dx.doi.org/10.1109/fccm.2016.22
http://dx.doi.org/10.1109/fccm.2016.22
http://dx.doi.org/10.1109/fccm.2017.25
http://dx.doi.org/10.1109/fccm.2017.25
http://dx.doi.org/10.1109/fccm.2017.25
http://dx.doi.org/10.1109/fccm.2017.25
http://dx.doi.org/10.1109/fccm.2017.25
http://dx.doi.org/10.1109/fccm.2017.25
http://dx.doi.org/10.21236/ada164453
http://dx.doi.org/10.21236/ada164453
http://dx.doi.org/10.21236/ada164453
http://dx.doi.org/10.1007/978-1-4419-0504-8_7
http://dx.doi.org/10.1007/978-1-4419-0504-8_7
http://dx.doi.org/10.1007/978-1-4419-0504-8_7
http://dx.doi.org/10.1109/mdt.2009.83
http://dx.doi.org/10.1109/mdt.2009.83
http://dx.doi.org/10.1109/mdt.2009.83

