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Abstract— In the last recent years, with the popularity of image 
compression techniques, many architectures have been 
proposed. Those have been generally based on the Forward and 
Inverse Discrete Cosine Transform (FDCT, IDCT). 
Alternatively, compression schemes based on discrete 
"wavelets" transform (DWT), used, both, in JPEG2000 coding 
standard and in H264-SVC (Scalable Video Coding) standard, 
do not need to divide the image into non-overlapping blocks or 
macroblocks. This paper discusses the DLMT (Discrete Lopez-
Moreno Transform) hardware implementation. It proposes a 
new scheme intermediate between the DCT and the DWT, 
comparing results of the most relevant proposed architectures 
for benchmarking. The DLMT can also be applied over a whole 
image, but this does not involve increasing computational 
complexity. FPGA implementation results show that the 
proposed DLMT has significant performance benefits and 
improvements comparing with the DCT and the DWT and 
consequently it is very suitable for implementation on WSN 
(Wireless Sensor Network) applications. 

I. INTRODUCTION 

The reasons for the DCT [1], [2] success are based on the 
following factors: a) its computational simplicity, b) it is easy 
to be implemented in hardware and c) the relative quality of 
its results. However, its main drawback is the yielding of so-
called "blocking artifacts" [3], [4], [5]. This effect is due to 
the implementation of the DCT over data blocks instead of 
applying it to the whole image (in the case of image 
compression standards 8x8pels blocks or 16xl6pels 
macroblocks); where the correlation among neighboring 
blocks or macroblocks is not eliminated. On the other hand, 
the application of quantization operation (forward and 
inverse) is a data loss coding technique. This effect is 
particularly significant when high compression ratios and low 
bit-rate are needed. 

The DWT [3],[6] transforms a time-domain discrete signal 
into time-frequency domain discrete signal. That is, by means 
the DWT a multiresolution analysis is achieved (time and 
frequency domains) and "blocking artifacts" do not arise, 
even though at high compression ratios. 

Similarly the Fourier Transform decomposes a signal in a 
summation of sinusoids at different frequencies; the DWT 
represents a signal as a superposition of several "wavelets". 
These are small "waves" that have their power concentrated 
in certain time windows. Although there is large literature 
explaining the physical meaning of the DWT (continuous or 

discrete) based on "wavelets", it would be explained as 
follow, when decreasing the analysis time (scale) of the 
signal, then the resolution in the frequency domain signal 
increases. Conversely, the increasing of the analysis time 
(scale in the time domain) reduces the resolution in the 
frequency domain. 

The major drawback of the DWT is its high computational 
cost, compared with the DCT [7], [8], [9], [10], [11]. On the 
other hand, systems based on DWT compression present their 
most effective performance when adapting the calculation 
algorithms to the type of signal (in the case of image 
compression, the type of the images and their spatial-
temporal characteristics). Furthermore, taking into account 
the calculation algorithms which have been proposed in [11], 
based on the use of multiple stages of signal filtering, some 
blurring effects and ringing at the edges of the image would 
arise. The lifting scheme proposed by Sweldends [12], and 
used in [13] and in [14] reduces the computational cost of the 
transform but the need of adapting the calculation algorithms 
to the type of signal is still necessary. 

The DLMT proposes a new scheme intermediate between 
the DCT and the DWT. Firstly, as discussed below, it is 
computationally very similar to the DCT and the quality of 
results obtained does not depend on the characteristics of the 
image being processed. Secondly, the DLMT uses quasi-
sinusoidal functions, so the emergence of blocking artifact 
blocks and their effects have a relative low importance. 

Finally, it is necessary to mention that the use of quasi-
sinusoidal functions has allowed to achieve a multiresolution 
control quite close to that obtained by a DWT, but without 
increasing the computational complexity of the 
transformation. In addition, as shown later, the DLMT can 
also be applied over a whole image, but this does not involve 
increasing computational complexity. In this case, however, 
the necessary calculations are increased; but, because of its 
simplicity, it would be easily implemented in hardware. 

II. THE DLMT 

The two dimensional DLMT-2D consists of a pair of 
mathematical transforms, forward and reverse [16] (FDLMT-
2D and IDLMT-2D). 

Traditionally, complex exponentials have been used for the 
Fourier series development. In the same way, it is also 
possible to develop functions in sine or cosine series (base 



sequences). This is the case of the DCT (Discrete Cosine 
Transform) and the DST (Discrete Sine Transform). 
According to [2] and [15] for a given function there are 8 
ways to develop in the form of cosine series and 8 ways to 
develop in sine series. They constitute a family of 16 
orthogonal transformations of real sequences, x(n). 

Accepting an implicit or virtual periodicity of x(n) [15] 
and, also, an even symmetry, according to [2], the period of 
x(n) will be 2N, where N is the number of values that 
comprise the signal x(n) in a 2N time-domain virtual period. 
Thus, the pair of transforms (Forward and Inverse) DLMT-
2D have been defined in [16]. 

The FDLMT-2D is quite similar to the FDCT-2D in the 
sense of the property of the low frequency energy compaction 
[15], [16]. However, the FDLMT-2D is much more efficient, 
as is discussed in [16]. This is due to the weighting functions 
are multiplied by their corresponding sine functions; thus sinc 
functions are obtained. They have very interesting properties 
both in the time-domain and in the frequency-domain. 

As it is demonstrated in [16] it is easily deductible that 
zeros of the sinc function, and therefore zeros of the pair of 
transformed FDLMT-2D and IDLMT-2D, depend on the 
value of N. That is, the size of one of the two dimensions of 
the signal x(i,j), (8x8pels block, 16x16pels macroblock, etc). 
2N is also the inherent or virtual periodicity of the signal to 
be processed, but also 4N, and 8N etc. This allows to control 
perfectly what it has been called scale (time-domain) of the 
signal (just at the introduction of this work), and its resolution 
in the frequency-domain. Since taking periods multiples of 
the inherent or virtual periodicity 2N or taking different 
values for N, it is possible to control the first zero of the sinc 
function. In other words, when increasing the value of N, the 
scale (time-domain) of the signal is also increasing; while the 
resolution (frequency-domain) is decreasing. Conversely, 
when decreasing the value of N the scale in the time-domain 
is decreasing while the resolution in the frequency-domain is 
increasing. This behavior is quite similar and the results are 
also comparable to those obtained by the DWT as discussed 
below. Also, in terms of pixel decorrelation and energy 
compaction when using sinc functions, in the frequency-
domain, an explicit linear filter-bank is obtained with a 
variable and controllable cut-off frequency. This cut-off 
frequency depends on the inherent periodicity 2N and on the 
DLMT indexes “i” and “j”. In summary, the proposed DLMT 
is biortogonal and multiresolution. 

III. FDLMT-2D AND IDLMT-2D PROCESSING 
ALGORITHMS 

In [16] the algorithm for calculating the FDLMT-2D and 
the IDLMT-2D that facilitates its implementation in hardware 
and software is proposed. Its study and its multi-resolution 
property demonstration will be done by a demonstrative 
hardware implementation example. 

The solution proposed in [16] is simple and it is presented 
in the case of the DLMT-2D by means of the property of 

separation of the two dimensions, because it is a biortogonal 
transformation. Therefore, the DLMT-2D is separable, being 
able to express directly the FDLMT-2D as: 

( ) [ ][ ( )][ ] (1) 

Where [C] is coefficient matrix and [CT] is the transposed 
matrix. 

On the other hand, the equation for calculating the inverse 
transformation can be derived: 

( ) [ ] [ ( )][Y (2) 

Those expressions are computationally very similar to 
those used traditionally (especially in hardware 
implementations) for the FDCT-2D and the IDCT-2D and 
much simpler than those used in the calculation of the DWT-
2D. Regarding the FDLMT-2D, to take advantage of that 
algorithm, pixels must be received in 8x8 pels blocks, row by 
row and in order to be able to compare results. 

The first row multiplications of the so-called post-matrix-
multiplication (pomm=[x(i,j)].[CT]) are calculated first for the 
8 pels of the first row and then for the following first row of 
next block and so on until the end of the picture line (see Fig. 
1). 

Row of intermediate-result matrix 

Fig. 1. Post-matrix-multiplication diagram (pomm=[x(ij)].[CT]) 

The second row of the first block is then calculated and so 
forth. This operation is carried out multiplying each incoming 
pels by all row coefficients, i.e. the first incoming pel is 
multiplied by the coefficients of the first row. The second 
incoming pel is multiplied by the coefficients of the second 
row, and so on. Then, those products are accumulated and a 
row of the intermediate-result matrix is obtained. These 
intermediate results are stored in a 2x8 data rows size 
memory. So, it is possible to read one of these rows while 
writing or updating the other. 

Data is read in that way in order to carry out the so-called 
pre-matrix-multiplication (prmm = [C].[pomm]), which is 
very similar to pomm from the processing algorithm point of 
view (see Fig. 2). 
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Fig. 2. Pre-matrix-multiplication diagram (prmm=[C].[pomm]). 

Concerning the IDLMT-2D, the same processing algorithm 
is accomplished. However, in this case pre-matrix-
multiplication is carried out first and then post-matrix-
multiplication. 

IV. HARDWARE ARCHITECTURE 

Each matrix multiplication described in the above 
processing algorithm section is carried out by a hardware 
processing block. These hardware blocks consist of eight 
multipliers, eight accumulators and one shift register with 
parallel load. The input data are multiplied by each 
coefficient of the corresponding row or column. Activating 
an enable signal, products are accumulated. When eight 
enable activations occurs the accumulated results are loaded 
in parallel into de shift register and the accumulators are 
loaded with new products. At the same time, when enable 
signal is activated the shift register is shifted showing a new 
result at the output (see Fig. 3). 
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Fig. 3. Processing block diagram 

The latency of those processing blocks therefore is only 
eight enable signal activations which, as discussed below, 
occur every four clock cycles. That is 4*8 = 32 clock cycles 
(in the tested system the clock was 50 MHz). The VHDL 
description of those processing blocks is: 

entity GenPre is 
generic 
( 

NbitIn : natural := 16; --Num.Bits of the input 
NbitC : natural := 18; --Num.Bits of the coefficients 
NbitOut : natural := 16; --Num.Bits of the output 
NvlComp : natural := 4; --Range of compressed matrix 

IniCont : natural := 6; --Initial value of the counter 
ClipMax : natural := 29 

;,• 

port 
( 

-- Input ports 
reset : in std_logic; 
clk : in std_logic; 
en : in std_logic; --Accumulators enable 
en_r : in std_logic; --Shift register enable 
data : in std_logic_vector(NbitIn-1 downto 0); 
Column_C : in vector; -- Input coefficients 
Int : in std_logic_vector(3 downto 0); 

-- Output ports 
count_C : out integer range 0 to 7; 
output : out std_logic_vector(NbitOut-1 downto 0) 

) ; 
end GenPre; 

In order to avoid overflow problems, results of the 
multipliers have to have a length of NbitIn+NbitC bits. For 
de same reason, the length of the accumulated results have to 
be NbitIn+NbitC+3. But memories cannot store any length of 
words. In the tested system intermediate memories was 16 
bits length per word and the final memory (for the entire 
transformed or recovered image) was 8 bits length per word. 
Moreover, coefficients are integer (positive or negative), and 
therefore accumulations can increment or decrement the final 
result. 

Fig. 4 shows the final processing architecture implemented, 
where FDLMT-2D and IDLMT-2D are performed 
consecutively. This allows to check results on the display in 
real time. This architecture has been also used for 
implementing the DCT-2D (FDCT and IDCT) that has 
enabled a comprehensive comparison of the results obtained 
by both algorithms, DLMT and DCT. 
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Fig. 4. Processing architecture. (RAM: FPGA internal memory). (SRAM: 
external memory). 

The whole system control is synchronized with the video cam 
vertical and horizontal sync signal. The state machine designed 
has 4 states (1 state takes 1 clock cycle) which are repeated 
cyclically: 

Data 
input 

Shift register 



• Cycle 1: Input FIFO Reading and SRAM updating 
for displaying. 

• Cycle 2: Pre and IPost blocks enable. 
• Cycle 3: Internal RAM updating 
• Cycle 4: SRAM Reading and VGA displaying. 

V. FPGA IMPLEMENTATION RESULTS 

The synthesis results obtained have shown that those 
FPGA with integrated hardware multiplier would be 
necessary in order to achieve real-time processing. The 
implemented algorithm (see [16]) is doing 32 multiplications 
by means of a typical pipelining architecture, which has a 
measured initial latency of 64 clock cycles. Therefore, using 
a 12.5MHz clock system, the elapsed time is 5.12Lisec. The 
development board used is a DE2 from ALTERA, which 
contains a CICLONE II (EP2C35F672C6) FPGA device with 
35 hardware 18x18bits multipliers. So, concerning resources 
consumption relevant data can be provided: Embedded 
multipliers (91%), logic elements (8%), memory (68%). 

The prototype platform used in [13] and [14] however is an 
ML507 development board, which contains a Xilinx Virtex 5 
(XCVFX70T) FPGA device with an embedded PowerPC 
processor, responsible of running the Evolutionary Algorithm 
described. In that implementation, one result is obtained each 
two cycles, so the computation time of the whole wavelet at 
150MHz clock cycle is 0,873msec. Also, the mutation 
process takes 2 minutes and only still images were used in 
those experiments. 

The DLMT then is a faster algorithm and at the same time 
better, or at least similar, results have been obtained. Besides, 
the DLMT does not need to be adapted to the image type as 
reported in [13] and [14]. In the same way, the DLMT 
improves the hardware cost because a medium size low-cost 
device can be used (e.g. Xilinx Spartan 3 family, ALTERA 
CICLONE II, etc). 

The DLMT-2D algorithm implemented needs a little bit 
larger memory to store coefficients matrix and coefficients 
inverse matrix; however no quantization process is necessary 
at all, as in the case of the DCT-2D. 

VI. ILLUSTRATIVE EXAMPLES 

In the following, results obtained using a training set of 
256x256pels grey-scale still image are presented (fingerprint. 
In [16] results obtained using lena, goldhill and baboon are 
also presented). Traditionally, the performance is evaluated 
by the PSNR (Peak Signal to Noise Ratio) [7], [9], [10] and 
the CR (Compression Ratio): 

(3) 
( ) 

Where Max. Val. is the maximum value of the input data (in 
the case of a luminance matrix it would be 235), Nboi is the 
Number of bits of the original image, Nbci is the number of 
bits of the compressed image and MSE is the Mean Square 
Error. 

¿ E f E j ( ( ) ( ))2 (4) 

Where x(i,j) is the input data matrix (8x8pels of luminance 
and 8bit per pel) and x'(i,j) is the processed data matrix. 

All the results can be compared to the Evolutionary 
Algorithm (EA) proposed in [13] and [14]. Where the best fit 
PSNR for a set of 80 test images is 36,1490dB and an 
average fit PSNR of 29,8079dB after 500 mutations is 
obtained. Those experiments were carried out using a training 
set of 256x256pels grey-scale still image with a 2 or 3-level 
DWT. As a result of that, 128x128pels or 64x64pels images 
were obtained. 

In the case of the DLMT depending on the image entropy 
and on the image block size (N=8 means 8x8pels block size. 
Some representative examples with 8x8pels, 16x16pels and 
the whole image 256x256pels are shown) compression rate 
from 68% to 75% can be achieved without any complex 
decimation algorithm which is really not needed. However, 
compressed image have been still scaled (here, scale has the 
same meaning than DWT level or decimation process) by 2 
or even by 4, in order to get 128x128pels or 64x64pels 
images respectively and to be able to compare these results 
although there is not a noticeable improvement. In those 
cases the PSNR decreases even to 22,50dB which are yet 
comparable to the results obtained in [13] and [14]. In all 
those experiments a very simple interpolation algorithm has 
been employed for recovering the original image size, based 
on the duplication of the neighbor pel. Consequently, it is 
clear that when using a little bit more sophisticated 
interpolation algorithm (e.g. median filtering) the PSNR is 
increasing significantly. 

It is clear that the scaling down process always harms the 
system performance. It is not really necessary because the 
DLMT itself reaches CR greater than 70% with a PSNR 
significantly higher than those supplied in [13] and [14]; even 
when applying over higher entropy images (e.g., baboon 
image) [16]. 
Fig. 5 shows a comparison between: a) original 256x256pels 
gray-scale fingerprint, b) recovered image after FDLMT-2D 
and IDLMT-2D processing with Scale=1. And no differences 
are noticed. 

(a) (b) 
Fig. 5. (a): Original image. (b): Recovered image 



Fig. 6 and Fig. 7 show the FDLMT-2D and IDLMT-2D 
processed scaled-down image (by 2 and by 4) and the 
interpolated ones, where some artifacts can be noticed in Fig. 
7-(b). 

(a) (b) 
Fig. 6. (a): Scaled-down image by 2. (b): Interpolated image 

V/JUfíffi I 
(a) (b) 

Fig. 7. (a): Scaled-down image by 4. (b): Interpolated image 

Finally, for a Lena 256x256pels gray-scale image the same 
experiments were carried out with similar results [16]. 

On the other hand, a 640x480pels (30fps) Toshiba 
TCM38230MD(A) video camera has been also used (not 
only still images). So, processing one pel per clock cycle, 
each frame takes 24.576Lisec. As a result of that, the 
maximum processing time is 29.696usec which is less than 
the inverse the video frame rate 1/30fps=33msec. 

Taking into account that the maximum available bandwidth 
in one of the most widely used WSNs (Zigbee) [17] is 
250Kbps and that the achieved FDLMT mean compression 
ratio is 75% [16]. 

TABLE I 

Image size formats and bit-rates (Emphasizing those suitable for ZigBee 
WMSNs) 

VGA 

VGA 

QVGA 

QVGA 

CIF 

CIF 

QCIF 

QCIF 

Frame 

rate 

30 

15 

30 

15 

30 

15 

30 

15 

Resolution 

640x480 

640x480 

320x240 

320x240 

352x288 

352x288 

176x144 

176x144 

Bit-rate 

3.7Mbps 

1.85Mbps 

921.6Kbps 

460.8Kbps 

1.2Mbps 

610Kbps 

304.4Kbps 

152.2Kbps 

Scaled by 2 

1.85 

Mbps 

921.6 

Kbps 

460.8Kbps 

240Kbps 

610Kbps 

305Kbps 

153Kbps 

76Kbps 

Scaled by 4 

921.6 

Kbps 

460.8 

Kbps 

240Kbps 

120Kbps 

305Kbps 

153Kbps 

76Kbps 

38Kbps 

Table 1 shows the image size formats able to be supported 
by that WMSN (Wireless Multimedia Sensor Networks) and 
the maximum bit rate (also when the pictures are scaling 
down by two or by four) when considering only 
monochromatic pictures (only luminance, Y, is processed). 

At the present an efficient low-cost hardware video coding 
architecture based on the DLMT for WSN is being just as a 
proof of concept, so no noticeable effort was made in 
optimizing hardware system implementation. No dynamic 
video scalability (spatial, temporal or quality) is considered. 
Our approach consists on having only one single bit stream 
adapted in terms of maximum quality, frame rate, resolution 
and available bandwidth for each WSN implementation. 
Some experiments will be carried out soon using WMSN 
based on [18] and [19]. Only the temporal scalability would 
be modified dynamically depending on the temporal entropy 
(whenever two consecutives frames were significantly 
different: what is defined as inter-frame entropy). 

VII. CONCLUSION 

This paper describes a new image coding scheme based on 
the DLMT. Just from the analysis of the previous results it 
can be derived that the FDLMT-2D has a better low 
frequency energy compaction than that obtained by the DWT. 
That makes the operation of quantization unnecessary (one of 
the sources of losses in image coding), which is typical in 
those coding systems based on the FDCT-2D. Nevertheless, 
in the case of the FDLMT-2D, the coefficient matrix can be 
divided by a constant (DLMT quantization), which is not 
strictly a quantization to improve the compression factor 
when applying RLE (Run-Length Encoding) and Huffman 
encoding. Besides, it would be possible to remove (or, at 
least, to simplify) the typical algorithm for reading the 
information (Zig-zag Scan), which would further improve the 
processing speed due to the simplification of the process. 

The DLMT used here attempts to exploit the effect of the 
processed block size (NxNpels) and/or the inherent 
periodicity of the FDLMT (See [16]). When increasing the 
value of N, the scale (time-domain) of the signal is also 
increasing while its resolution (frequency-domain) is 
decreasing (the cut-off frequency of the filter-bank 
decreases). So, when processing images with a high entropy 
(baboon and goldhill images [16]) the DLMT allows using 
smaller values of N (smaller scale, time-domain) and 
increasing resolution (frequency-domain) while maintaining 
good visual quality. At the same time it is even possible to 
increase the virtual periodicity (4N, 8N or 16N, etc) so; as a 
consequence of that, the CR approaches 75% and the PSNR 
exceeds 30dB, improving the energy compaction without 
using any lifting scheme or evolutionary scheme as in [13] 
and [14]. Finally, the experiments demonstrate that the 
DLMT is producing better results than the DCT when 
increasing block size and using a constant periodicity of 2N. 
This encouraging coding scheme is very suitable for 
implementation in hardware without a noticeable increase of 



the computational load and consequently for implementation 
on WSN applications. Further results will be reported. 

The current status of this work shows how a new approach 
to the compression schemes can be faced. No quantization 
operation, as in DCT-based image compression traditional 
schemes is necessary. There is not any image dependence, as 
in those based on DWT. No Evolutionary Algorithm is 
needed to achieve best results in terms of PSNR and 
computational load; even when an algorithm based on an 
optimized lifting scheme is used. The DLMT approach can 
be implemented on relative small FPGA devices at relative 
low clock frequencies which is a great advantage when faced 
low-power and low-cost solutions (e.g. H264-SVC based 
solutions). 
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