# Available online at www.sciencedirect.com
& ScienceDirect EXPOSITIONES

PR " MATHEMATICAE
ELSEVIER Expositiones Mathematicae 42 (2024) 125591

www.elsevier.com/locate/exmath

Dicritical foliations and semiroots of plane branches

Nuria Corral®*, Marcelo E. Hernandes",
M.E. Rodrigues Hernandes""'

2 Departamento de Matemditicas, Estadistica y Computacion, Universidad de Cantabria, Av. de los Castros
s/n, 39005, Santander, Spain

b Departamento de Matemdtica, Universidade Estadual de Maringd, Av. Colombo,

5790, 87020-900, Maringd PR, Brazil

Received 18 April 2024; accepted 5 July 2024

Abstract

In this work we describe dicritical foliations in ((Cz, 0) at a triple point of the resolution dual
graph of an analytic plane branch C using its semiroots. In particular, we obtain a constructive
method to present a one-parameter family C, of separatrices for such foliations. As a by-product
we relate the contact order between a special member of C,, and C with analytic discrete invariants
of plane branches.
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1. Introduction

The aim of this work is to describe a construction of foliations in (C?, 0) with a
dicritical component in one of the bifurcation divisor of the reduction of singularities of
an irreducible plane curve (branch).
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Previous works deal with the construction of dicritical foliations. For instance, in [7],
it is proved the existence of absolutely dicritical foliations for any configuration of the
exceptional divisor, that is, given a morphism o : M — (C?, 0) composition of a finite
number of punctual blow-ups, there exists a germ of foliation F in (C2, 0) such that the
transformed foliation o*F is completely transversal to the exceptional divisor o ~!(0).
Moreover, the foliation F has a meromorphic first integral. In [6], the authors present a
way to construct logarithmic dicritical foliations (weak logarithmic models) which share
some properties with a given foliation. More precisely, a weak logarithmic model £ for
a foliation F is a logarithmic foliation such that the reduction of the singularities of £
is longer than the one of F and coincides with it outside a “escape set” of non-singular
points for F placed at dicritical components. Note that, this escape set depends on the
analytic type of the curves defined by the equations used to write the 1-form which gives
the logarithmic foliation as shown in [6, Example 19].

Our approach here is different from the works previously mentioned. The main tools
of our construction are the concept of the semiroots of a branch C, which codify part
of the topological data of the curve, and a result concerning a special way to express a
holomorphic 1-form in 2! (Azevedo’s Lemma).

Semiroots of a plane branch C are particular branches that allow us to determine the
topological class of the curve. Zariski in [24] considered semiroots in order to relate
the characteristic exponents of C and the minimal generators of the value semigroup
associated to the branch. In [1], Abhyankar and Moh introduced particular semiroots
(approximate roots) that can be used in an effective criterion of irreducibility of elements
in C{x, y}.

The other ingredient is the Azevedo’s Lemma (see [2], Chapter 5, Proposition 2): given
n,m € Z-o, any 1-form w € 2! can be expressed as w = H, - (nxdy — mydx) + d H,,
with Hy, H, € C{x, y}. This particular way to express a 1-form has been used by other
authors on topics related to plane curves, vector fields, etc. For instance, Loray in [17]
presents normal forms for cuspidal singularities of analytic vector fields that correspond
a particular case of Azevedo’s Lemma. Bayer and Hefez (see [3]) use such expression as
a tool to describe (up to analytic equivalence) plane branches such that the Milnor and
Tjurina numbers differ by one or two.

In this work, we consider C := {F = 0} a plane branch, where F € C{x}[y] is a

Weierstrass polynomial, with value semigroup I' minimally generated by {vo, ..., v,}.
Aset {Fy, F1, ..., Fgy1 = F} is an extended system of semiroots of F, if F; € C{x}[y]
is monic, degy Fi = Gepni— ™ for 1 <i < g and dim¢ %*Ff)} =v; for0 <i < g (see

Section 3).
For each pair (7, j), with 0 <i < j < g, we set w;; = v; F;dF; —v;F;dF; € 2" and
consider the singular foliation F,, defined by

a)=H1w,-‘,~+dH2, (1

where H;, H, € C{x, y}\ (F). Note that, fori =0, j = 1, vp = n and v = m we get
the expression given in Azevedo’s Lemma.

In Section 3, we present the main results of this paper, Theorem 3.7 and Corollary 3.8.
We give a necessary and sufficient condition to assure that the foliation F,, with w as
in (1), has a dicritical component in the last triple point of the resolution dual graph of
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C. This condition is given in terms of the intersection multiplicities of F with H; and
H,. Moreover, in the proof of this theorem we have a constructive method to describe
a family of parameterizations for the separatrices in such dicritical component up to the
desired order as illustrated in Example 3.10. The presented method in Theorem 3.7 does
not make use of blowing up which is normally considered to present dicritical foliations.

Dicritical foliations and analytic invariants of irreducible plane curves are closely
related. More precisely, given a parameterization ¢(t) = (x(¢), y(¢)) of the irreducible
plane curve C and a 1-form w, we define the value of w by v(w) = ord,(¢*(w)) + 1
where ¢*(w) = w(p(t)). The set of differential values A of C is given by

A=) : we ')

This analytic invariant is one of the main ingredients in the analytic classification of
branches (see [15,16]). When @ = 0 defines a foliation F = F,, in (C2, 0) and C is not
an invariant curve (separatrix) of JF, the value v(w)— 1 coincides with the tangency order
70(F, C) of the foliation F with the curve C (see [4,8]). If we consider a hamiltonian 1-
form w = dg, with g € C{x, y} a non unit, then v(dg) = (C, D)y, where (C, D), denotes
the intersection multiplicity at the origin of the curves C and D, with D := {g = 0}.
Hence, we have that I"\ {0} € A where I is the value semigroup associated to the curve
C. Moreover, there exists a finite subset L = {£;, ..., ¢;} C A such that any ¢ € A can
be expressed as £ = ¢; + y for some y € I' and ¢; € L, that is, the set A is a finitely
generated /'-monomodule.

Let us consider a set of 1-forms {wy, ..., wx} such that v(w;) = ¢;. If the curve C has
only one Puiseux pair, then the foliations defined by the 1-forms w; = 0 are dicritical in
the triple point of the resolution dual graph of the curve C (see [9] where properties of
these 1-forms are described).

From the results in [8,10], we have that, if the foliation F defined by w = 0 is a
non-dicritical second type foliation (see [18]), then 7o(F,C) = v(w) — 1 = (Sx,C)y — 1,
where Sr is the curve of separatrices of F. Thus, if w is a 1-form such that v(w) € A\ T,
the foliation defined by w = 0 is either dicritical or it is not a second type foliation.

In Section 4, we explore 1-forms expressed as w = Hjw;; +d H, and their connection
with the analytic invariant A. We show that the value of w is related with the contact
between the branch and a special separatrix C, of F, (see Theorem 4.4). In particular,
for curves C with semigroup (v, v1), we show that the set A can be determined using
dicritical foliations defined by Hjwy + dH,, or equivalently, by H; and the special
separatrix C, (see Corollary 4.7). The separatrix C, is closely related to the concept
of analytic semiroot introduced by Cano, Corral and Senovilla-Sanz in [9] were, as we
mentioned before, geometrical properties are presented for A. In addition, Proposition 4.9
shows how to compute the Zariski invariant A of C, that is A = min(A \ I') — vy,
considering dicritical foliations in the first triple point of the resolution dual graph of
C that extends a result by Gomez—Martinez presented for branches with value semigroup
minimally generated by two elements.

2. Notations
In this section we present some classic notations. For the results about Plane Curve

Theory and Foliation Theory we indicate [5,12], respectively. We denote by C{x, y} the
absolutely convergent power series ring at the origin in C2.
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A germ of an analytic plane curve Cr in (C?,0) is the (germ of) zero set of a
reduced element F' € C{x, y} in a neighborhood at the origin. Without loss of generality
(by a change of coordinates) we can consider F € C{x}[y] a Weierstrass polynomial
F(x,y)=y"+ Y., Ai(x)y"~" where n is the multiplicity of F, denoted by mult(F).

If F is irreducible, we can assume that y = 0 is the tangent cone of the branch Cp
and this implies that mult(A;(x)) > i for 1 < i < n. By Newton—Puiseux theorem

we can obtain 7 (x%) = ton cxn € C {xnl} such that F (x, n (x%)) = 0 and the

set of roots of F (in a neighborhood at the origin) is {n (a ~x%>; o e U,,}, where
U, = {a € C; «" = 1}. In particular, we have
1
Feoyy =TT (v =n(a-x7)). @)
aeUy

By a Tschirnhausen transformation, i.e. by the change of coordinates (x,y) —
(x, y— %Al(x)), we can assume that A;(x) = 0, or equivalently ¢, = 0 for all k =0
1

mod n in n xﬁ>.

. 1 . . o
Putting + = x» we obtain a Puiseux parameterization for Cp:

o) = 1" ar*|, 3)
k=P
where f; = min{k; k # 0 mod n and ¢, # 0}. Moreover, we will assume that such

parameterization is primitive, that is, ¢(¢) cannot be reparameterized by a power of a new
variable or equivalently the greatest common divisor of all exponents in ¢(¢) is equal to
1.

In what follows we consider plane branches, that is, plane curves defined by an
irreducible Weierstrass polynomial as (2).

There are two sequences (¢;) and (3;) of integers associated to Cr and obtained by
any Puiseux parameterization of Cp:

Bo = eo = n;

Bj =min{i; i 0 mod ej_; and ¢; # 0};

ej =GCD(ej_1,B;) =GCD(po, ..., B)).
The elements in the increasing finite sequence (f;);_, are called characteristic exponents
associated to the branch and such sequence completely characterizes the topological type

of the curve as an immersed germ in (C2, 0). The local topology of plane branches can
also be determined by the value semigroup [’y associated to the curve Cr. More explicitly,

I'r ={I(F,G); G € C{x,y}} ¢ N:=NU {oo},

where I(F, G) = (Cr, Cg)o is the intersection multiplicity of Cr and Cg at the origin
that can be computed by

Clx, y}
(F,G)
and ¢*(G) := G(p(t)) for a parameterization ¢(t) of Cr as (3).

I(F,G)=dimc

= ord(¢*(G)),
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Notice that given F € C{x}[y] with deg,(F) = mult(F) = vo > 1 any G € C{x, y}
can be expressed, by Weierstrass Division Theorem, as G = QF + H with H € C{x}[y]
and deg,(H) < vo. As I(F, QF + H) = I(F, H) we get

I'e ={I(F, H); H e C{x}[y] with deg,(H) < vo}.

Zariski (in [24]) showed that the value semigroup I'r is minimally generated by the

set of integers {vg, v1, ..., vg}, inductively defined by
vw=p=n vi=p and v =ni_1vi1+Bi — Bi- 4)
or
-2,
j — €j+1
vi=Yy L—L2B 4B )
=0 €i—1
fori = 2,...,¢g where np = 1 and n; = e’e;‘ It follows from the definition of n;
that n = ng-ny-...-n,. We denote I'r = (vg, vy, ..., v,) and sometimes it would be

convenient to consider By4 = Vg41 = 00.
The value semigroup I'r admits a conductor wp, thatis, urp+N C I'r and up —1 ¢
I'r. For plane branches, g coincides with the Milnor number of Cr and

8
:Z(n,—l)vl—vo—i—]. (6)
=1

In this paper we consider germs of holomorphic singular foliations of codimension
one in (C?, 0) locally given by @ = 0, where

w = A(x, y)dx + B(x, y)dy € 2" .= 9«1:2 o = Cfx, yldx + C{x, y}dy

with A, B € C{x, y}, A(0,0) = B(0,0) =0 and GCD(A, B) = 1. Such a foliation will
be denoted by F,, and its singular locus Sing(F,) is locally given by the common zeros
of A and B.

An analytic plane branch Cr defined by F = 0 is called a separatrix (or an invariant
curve) of a foliation F, if o AdF = F -G -dx Ady, where G € C{x, y}. In particular
Cr \ Sing(F,) is a leaf of F,.

If ¢(t) is a parameterization of Cr we can define the C-linear map

Q* 0! — C{1 7
w = Adx + Bdy +— @*(A)x'(t)+ ¢*(B)Yy'(¢) )
and we have that ¢*(w) = 0 if and only if % € (F), that is, C is a separatrix of F,,.

A singular foliation F,, is called dicritical if there is a finite sequence of blowing-
ups with nonsingular invariant centers, such that this process leads to an irreducible
component E; of the exceptional divisor E that is generically transversal to the strict
transform of F,,. For codimension one foliations in (C?, 0), the dicritical condition is
equivalent to the property of having infinitely many transversal invariant curves through
almost any point in E;, or in other words there are infinitely germs of analytic curves
(separatrices) containing the origin and invariant by the foliation. In this case we say that
Fo is dicritical in E; or in the point Q; of the resolution dual graph G(Cr) corresponding
to E;.
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In the next section, we will consider particular plane branches Cr, such that I(F, F;) =
v; in order to define dicritical foliations in specific components of the exceptional divisor
obtained by the canonical resolution of Cp.

3. Semiroots and dicritical foliations

Azevedo, in his thesis (see [2], Chapter 5, Proposition 2), exhibits a particular way to
express any 1-form in 2! as we present below:

Lemma 3.1 (Azevedo). Given any n,m € Z-y and w € 2!, there exist H,, H, € C{x, y}
such that

w = Hj - (nxdy — mydx) + dH,. (8)

Proof. The proof is constructive and allow us to obtain H; and H, satisfying (8). Given
any @ = Adx + Bdy € Q' it is possible to prove that there exist Hy = ), ;- @ijx'y’
and Hy =), ;- bijx"y’ such that (H,), = A +myH, and (H,), = B — nxH,. To do
this, we integrate the first equation in x and substitute in the second one. Thus we obtain
a recursive expression to determine the coefficients a;; and b;;, and consequently H; and
H, (see [2], Chapter 5, Lemma 1 or [3], Proposition 2). W

In some cases, the expression (8) can be useful to determine separatrices of F,, directly
from numerical data of H; and H,. The following example illustrates such a situation.

Example 3.2. In (8), let us consider H; = y* and H, = e - x” with a, b € Zso, b # 0,
e c C*and n(b — 1) # m(a + 1), that is, w = y* - (nxdy — mydx) + d(e - x%). Tt is
immediate that x = 0 is a separatrix of F,. Moreover, by some computations, we get
that a monomial germ ¢(r) = (¢*, ct?) with ¢ # 0 parameterizes a separatrix of F, if
and only if

(a + Dbe
nb—1)—m@+1)’
Notice that ¢(¢) is not necessarily a primitive parameterization.

Similarly we can obtain the description of monomial separatrices for foliations defined
by F, considering H;, and H, given by other possible monomials.

a=a+1, B=b—1, and “' =

In the sequel we will take 1-forms given by a similar expression in Azevedo’s Lemma
but considering semiroots of an irreducible Weierstrass polynomial F € C{x}[y].

Let Cr be an irreducible plane curve defined by F € C{x}[y] with semigroup
I'r = (vy, ..., vg). By the minimality of the generators set {vo, ..., v,}, any element
G € C{x, y} such that I(F, G) = v; is irreducible. As y = 0 is the tangent cone of Cp,
it follows that I(F, x) = vy.

Aset {F;; 1 <i<g+4 1} C C{x}[y] of monic polynomials satisfying

vy .
ei—1’

(i) degyFi =ng-...-nj_ =
(i) I(F, F;) = v
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is called a system of semiroots of F. We say that {Fy :=x, F|,..., Foyy := F}is an
extended system of semiroots of F and F; is an ith semiroot’ of F, for 0 <i < g+1.
Moreover, for i # 0 we have that the semigroup and the characteristic exponents of Cp,
(see [21]) are

v Vi i
FF,.=<—0,...,’—1> and {ﬁb} ©)
€i—1 €i—1 €i—1 €i—1
If {Fo =x,F,...,F,, Feuy = F} is an extended system of semiroots of F, then
we have that {Fy = x, Fy, ..., Fi, Fr+1} is an extended system of semiroots of Fj;
(see [21]).

We can obtain a system of semiroots of F' € C{x}[y] by several ways, for instance
considering the approximate roots introduced by Abhyankar and Moh (see [1] or [21])
or taking representatives for elements in a minimal Standard Basis of Ciﬁ’f’} (see [14]).

In what follows we will consider a particular system of semiroots following Zariski’s
approach (see [24]) obtained by a parameterization ¢(t) = (¢, Zki 81 cet®) of Cp.

Let us denote

2o fo_ &
@i(t) = (lg” , Th'(t)) = |1, Z et |,

Bi<k<pi

fori =1,...,g+ 1, where ¢;(¢) = (¢, 0).

¢i—1

Proposition 3.3 (Zariski, [24]). If F; € C{x}[y] is the minimal polynomial of n;(x Po
over C((x)) where 1 <i < g+ 1, then {Fy = x, Fi,..., Fer1 = F} is an extended
system of semiroots of F. In particular, ¢; is a Puiseux parameterization of Cg,, for
i=1,...,g+ 1L

Proof. Denoting by m; = & = 0 we have that the minimal polynomial F; €

€j—1 €ji—1

C{x}[y] of n; (x’"%) over C((x)) is given (as in (2)) by

1
Fite, )= ] &= ma-xm)) (10)
DtEUmi
with Uy, = {a € C; o™ =1}, fori =1, ..., g+ 1 (see, for instance, [24]). In particular

deg,F; = e”—fl and I(F, F;) = v; (see the proof of Lemma 5.1). Therefore, F; is an ith
semiroot of . W

In this work we take the extended system of semiroots of F obtained as in the above
proposition and we call it the canonical system of semiroots of F.

As an immediate consequence of the classical Euclidian division algorithm, it is
possible to obtain a decomposition of any element H € C{x}[y] in terms of a system of
semiroots of F.

2 Some authors (see [21] for instance) consider the ith semiroot of F for 0 <i < g as a monic polynomial
F; € C{x}[y] satisfying deg, F; = 17? and I(F, F}) = vjy1.
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Proposition 3.4 (See [1] or [21]). If {Fo =x, Fi, ..., For1 = F} is an extended system
of semiroots of F € C{x}[y] then any H € C{x}[y] has a unique expansion given by

H= Y wFCF'F .. F (11)
§=(80++8g11)

where ug € C,

12)

€

i— deg, H
058[<nl-:e_lforie{l,...,g},OS(SgH5[ €8y ]

deg,F

and [r] denotes the integral part of r € R. Moreover, the order in t of the terms
P (F0) - 9 (F)’ - 9*(F2) - .- g™ (F)'*

are two by two distinct, where ¢ is a parameterization of Cr.

. . 5
By the previous result, if H = Y, us FQ"Fi' - ... - F5y! then

8
I(F, H)=min{ Y §vi: §=(%.....8.0) with us # 0} )

iz
Remark 3.5. Notice that the expansion (11) is not necessarily a finite sum and it is a bit
different of the expansion presented in [21]. In fact, according to Corollary 5.4 of [21]
any H € C{x}[y] has a unique expansion given by a finite sum

_ 31 d Sg+1
H = E /’l,sl _____ 5g+1F1 F, "'Fg+1’

_____ 5,1 € Cl{x}and §;, 1 <i < g+ 1, satisfying the conditions (12). Writing
bes1 = 25:(50 Sgr1) ungo with us € C we get the expansion (11). Recall that an

.....

ith semiroot for us corresponds to an (i — 1)th semiroot in [21] for 1 <i < g + 1.

Considering the canonical embedded resolution 7 : M — (C2,0) of Cr and G(Cr)
the dual graph associated to it, we have that the semiroot F; is a curvette® with respect
to a component of the exceptional divisor E corresponding to the ith-endpoint of G(Cr)
(see Fig. 1). In particular, the extended system of semiroots appears as coordinates in the
embedded resolution process of Cr (see [21]). We denote by 7; the ith triple point in the
dual graph G(Cr) that appears in the canonical resolution process, or equivalently, the
first triple point after that F; is desingularized, which we indicate by F,.

Given the canonical system of semiroots {Fy = x, Fy,..., Fei 1 = F} for each
0 <i < j < g we consider F;; the singular foliation defined by
w[j:v[EdFj—UijdE. (13)
FY .
Notice that F;; defines the same foliation that d <F+J> where o; = m,

o = m and therefore ;; is dicritical with separatrices given by aF;"' —b Fl.aj =0
for all (a : b) € ]P’%:.

3 A curvette with respect to the component E; of the exceptional divisor E is the image in (C2,0) of a
smooth curve in M meeting E; transversely in a single point which lies on no other component of E.
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Fy Fot1
/ ‘Tl TQ JT3 T!,Zfl Tg J
bﬁgl
R Fy
> F,

Fig. 1. Dual graph for Fo- Fy-...- Fg - Fgyy.

Example 3.6. Let Cr be the plane branch defined by
F=0"—x>=2x2y 4+ x*% —48x%(y* — x* — 2x%y + x*) — 64x!! — 64x "

with Puiseux parameterization ¢(t) = (¢5, 17 + ¢!2 + 2¢13).

The value semigroup of Cr is I' = (6,9, 22) and the canonical system of semiroots
for it is

Fh=x, Fi=y, F2:y2—x3—2x2y+x4 and F; = F.

We have that wy; = 6xdy — 9ydx admits separatrices given by ay? — bx? = 0,
wop = 6xd Fy — 22F>dx with separatrices aF; — bx'! = 0 and w1, = 9yd F, — 22F>dy
with separatrices an9 —by?? =0, for (a:b) € IF’(IC.

In what follows we consider 1-forms given in a particular expression that generalizes
(8). More specifically, we take w = H; - w;; + dH, where w;; is given as (13) and
admitting that o defines a foliation F,,. We present a simple criterion which assures that
Fo is dicritical at the ith triple point 7; of the dual graph of C and we describe a family
of separatrices for it.

Our strategy is to consider initially the case 1 <i < j = g. The other situations are
particular cases of this result by changing F by a semiroot F;;; with 0 < j < g.

In order to obtain the results we use some technical lemmas that are presented in
Section 5.

Given a plane branch Cr with F € C{x}[y] as (2) and Puiseux parameterization given

by ¢(t) = (tﬁO, le 81 cztl), we consider the family of plane branches Cr, determined
by parameterizations

ga)= 1M, Y et + > at (14)

B1=l<Bg [>Bg

where a; are parameters that can be assume values in C and ag, nonvanishing. Notice
that the coefficient ¢; of #/ with 8; <1 < Be in @, (t) is precisely the coefficient of ! in
the parameterization ¢(t) of Cr and they are considered constant.

It is immediate that I'r, = I'r and {Fy, Fi,..., F,, F,} is an extended system
of semiroots for Cr,. Moreover, if deg,(H) < deg,(F) = deg,(F,) we can write
H=Y,usF...- Fs* € Clx}[yl as (11) and I(F, H) = I(F,, H).
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Theorem 3.7. Let F,, be the singular holomorphic foliation defined by w = Hyw;g+d H>
for some 0 <i < g, where H; € C{x}[y], deg, H; < deg, F =vowith j = 1,2, H #0
and H, € (x,y). Then the foliation F,, is dicritical in the last triple point T, of the dual
graph G(Cp) if and only if

I(F, Hy) 4 v + v, < I(F, Hy).

Moreover, the separatrices of F, whose strict transform intersects transversally the
component of the exceptional divisor corresponding to the triple point T, of G(Cr) are
plane branches parameterized by

Yu) = (17, D et +utfe+ Y s |
Bi=j<Bg J>Bg
with u € C* and sj(u) € C(u).

Proof. Assume that the foliation F,, is dicritical in the last triple point 7, of the
dual graph G(Cr). The separatrices of F, corresponding to the triple point 7, have
parameterizations as given in (14) and consequently, they satisfy the same properties
as the curve Cr, described above. Hence, if ¥ (¢) is a parameterization of a branch of
this dicritical component, then we have that

Yo =0.
Note that, the first terms which appear in {*w are given by
w*w — kltl(F,Hl)(Uitu,- Uglvg_l _ Ugtugvitv[—l 4. )dl
+ (I (F, Hy)t" =1 4o
with ki, k, non-zero constants. Hence, if I(F, Hy) < I(F, H;) 4+ v; + v,, then ¥*w # 0
against the hypothesis.

Now, assume that I(F, H\) + vi + v, < I(F, H»). Let ¢,(t) be the family of
parameterizations given in (14). Thus ¢}(w) = ¢ (H)¢)(wie) + ¢i(dH,). Denoting
u := ag, we will show that it is possible to take a; = s;(u) € C(u) for every i > B, such
that ¢} (w) = 0.

As deg,H; < deg,F, by Proposition 3.4, if H; # 0 then we can write H; =

Zaj b(;j Fg'i oL F;jg with bgj € C and there exist non-negative integers yjo, ..., Vjq
for j = 1,2 such that
I(F,H))=I(F,F)°-...- F).

Denoting Coeff(R(z), t*) the coefficient of ¥ in R(t) € C{t}, by Lemma 5.6, for any
k > I(F, Hy) + v; + v, we obtain that
Coeff(p) (Hwig), 1*) = pr(p,, -, Q1) +re - ap’ - ay, (15)
with r, € C* and kig =k —I(F, H)—v; — Vg +,3g, + 1.
For each [7_, F,Bz’ in H,, let us denote
g
ms, = max{l; 8y #0} and Iy, =1 (F HFI'S”) .
0

o<i<
=l=g =
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As Coeff(p*(dHy), t*) = s, Coeff(d(bs, 15, Ff”(goa)), t%), by Corollary 5.4, for
k > I5, we get

8
Coeff(d(bs, [ | F/* (9a)). 1*) € Clag,. ..., ag, 1 with 65, =k — I, + B, + 1.
=0

But ﬂmsz < Bg and Is, > I(F, Hy) > I(F, Hy) 4+ v; + v, for any 85, so
952:](—]52+ﬂm(32 +1 <k—1(F,H1)—Ui—Ug+/3g+l:kl-g
and, by (15), we obtain that

Coeff(p(H))g!(wig) + ¢l (d Hy), 1) = Pi(ag,, ..., age—1) + 1 'GZ;g - a

ig’
for some polynomial Pi(ag,, ..., ax,-1) (admitting H, = 0).

Remark that ord, (¢} (w)) > min{ord,(¢}(H w;g)), ord(¢}(d Hy))} = I(F, H\) + v; +
vg. In this way, ¢} (w) = @i (H )@, (wig) +¢i(d Hy) = 0 is equivalent to solve the system

¥
Pk(aﬂgs "'aakig—l)+rk 'aﬂ:,g 'akig =0
for all k > I(F, Hy) + v; + v,. Such a solution exists and it can be obtained by the
recurrence relation
Pilag,, ..., ax,—1)

iy, = , (16)
g e - a;;g

since ry, ag, € C*.
In particular, taking k = I(F, H;) + v; + v, =: ko in the above expression we get

-1
v
Ape+1 = — (rko 'aﬂ;g) - Prylag,) € Clag,)

we vanish the coefficient of %0 in i (w).

Using the previous recurrence relation, we can vanish all terms in ¢} (w) setting the
parameters a; in @,(t) as a rational function in C(ag, ). Hence, considering the parameter
u = ag, € C\ {0} we get the family of parameterizations

Yu() = (17, 3" i) futPe+ Y sy |
B1<j<Bg J>Bg
with s;(u) := a; € C(u) obtained in (16) and satisfying ¥ (w) = 0. As ¥, (¢) defines a
family of plane branches with the same characteristic exponents of Cg, every element in
the family is topologically equivalent to Cr. This allows us to conclude that the foliation
defined by w = 0 is dicritical in the last triple point T, of the dual graph G(Cr). W

If we change F by a semiroot F;; for 0 < j < g in the previous theorem, then we
can describe 1-forms that define dicritical foliations in any triple point 7; of the dual
graph G(Cp).

As before, we consider {Fy, F1, ..., F,, Fey1 = F} the canonical system of semi-
roots of F, I'r = (vo, vy, ..., V) and {Bo, B1, ..., B} the value semigroup and the
characteristic exponents of C, respectively.



12 N. Corral, M.E. Hernandes and M.E. Rodrigues Hernandes / Expo. Math. 42 (2024) 125591

Corollary 3.8. Let F, be the singular holomorphic foliation defined by w = Hyw;; +
dH, for some 0 < i < j < g, where H € C{x}[y], deg, H, < deg, Fj;1 = Z—O with
l=1,2, H #0 and H, € (x, V). The foliation F,, is dicritical in the triple pomt T; of
the dual graph G(CF) if and only if

I(F, H)) +v; +v; < I(F, Hy).

Moreover, F,, admits a family of separatrices parameterized by

wn =19, ¥ cw+uw+2s;<u)t : (17)

s <i<p; 1=t

with u € C* and s;(u) € C(u).

Proof. Notice that {Fy, Fy, ..., Fj, Fj;1} is the canonical system of semiroots for Fj.
So, by (9), the value semigroup and the characteristic exponents of C F;,, are respectively,
Ip,, = (z(/’,...,:—-/’) and {ﬁ? ﬁ/} where ¢; = GCD(vy, ..., v;). In addition,
I(Fjp, F)y=24 = '(F IR for every 0 <1 < j.

By Proposmon ’%4 any H, € C{x}[y] with deg, H, < deg, F;+; and [ = 1,2
can be expressed by H, = Y ;b F, g’o s Ff” € Cfx,y} with I(Fj41, H) =
I(Fjy1, FJO - ... F;/lj) for some non-negative integers ¥, - . ., ¥;. SO,

Vo v;  vio-vo+---+wyi-v;  I(F, Hy)
I(Fiy. H)=vio-—+-+yj-—~= L = .
€j ¢j ¢j ¢j

Consequently, 1(Fj4(, Hy) + :—’/ + Z—/’ < I(Fjy1, Hy) if and only if I(F, H)) +v; +v; <
I(F, Hy). '

Hence, with similar arguments as in the previous theorem, we get that if F, is
dicritical in the triple point 7, then the condition I(F;4, Hi) 4 ;- + z—’ < I(Fjt1, Hy)

J J

must be fulfilled.

Considering the family given by parameterizations

Qalt) = t - c;t“L + ) at (18)

ﬁ1 <i<p,

with ap; # 0 and proceeding with the same analysis on the coefficients of ¢;(®) as in

¢j
the previous theorem, in order to obtain ¢}(w) = 0, for all k > I(F;;1, Hy) + ;’—’ + Z—’
’ J J
we must have

e;

Pk ((lﬂj, ...,akij1> +ry - a;ljf 'akij =0 (19)

ej T
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where k;; ==k — I(Fj4, Hy) — :—’ — z—’ + f—’ + 1 and r; € C*. Hence, we obtain the
. J J J
recurrence relation

-1
Yij
Clki].=— rk-aﬁj 'Pk a&,...,akij,l .
G “

In this way, the corollary follows from the previous theorem considering the curve
CpH,u::aﬁj e C* and a; = s;(u) € C(u) for [ > f—’ |
- J
J
Notice that Theorem 3.7 and Corollary 3.8 give us a constructive and effective method
to present dicritical foliations in a given triple point in the dual graph of a plane branch
and to describe parameterizations for the separatrices in such dicritical component up to

the desired order.

Remark 3.9. Given w = Hw;; + dH, satisfying the hypothesis of the previous

corollary and I(F, H)) = Z{;Ol yuvs, that is, y;; = 0 then, in (19), we obtain

Pi(a Biseees akl.j,l) + 1 ag; = 0 and consequently, g; is a polynomial in a B for any
j €j

i> f—’ since ry is a non-zero constant. In this case, we obtain an extra separatrix for JF,

taking ag; with a (not necessarily primitive) parameterization

€

!

yot) = | 155 C Y a4 ) sy

,31<l</3] ]>ﬁ
€j

and not topologically equivalent to Cr, .

It is immediate that any irreducible factor H € C{x, y} of H, and H, define a
separatrix for F,. In addition, if F; (respectively F;) divides H,, then F; (respectively
F;) is a separatrix for F,.

The following examples illustrate the above results.

Example 3.10. Let us consider the plane branch Cr with semigroup I' = (6,9, 22) as
in Example 3.6. Recall that the characteristics exponents of Cr are 8y = 6, 81 = 9 and

B> = 13.
e Notice that ¢; = (6xy)dy — (9y% + 5x%)dx = y - wy1 — d(x°) satisfies
24=9~|—6+9= I(F, H1)+v0+v1 < I(F, H2)=30,

consequently by Corollary 3.8, F, is dicritical admitting a family of separatrices
in the first triple point of G(Cr) parameterized by

5 25 125
2 3 7
V() = | 12, ut> + —¢° t—}—Eq,t
® ( 6u 72u3 432 3 bt 1) )

with g, ;(u) € C[u~"]. Moreover, by Example 3.2, F;, also admits the separatrices
©, 1), ( L5 2) and (r, —{Tﬁtz).
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e Taking & = x(12y% — 12x2y + x2)dy + 2y(2x> + 10x%y + x* — 11y? + 3x7)dx =
y - o + d(x%y) we have

37 =9+6+422=I(F, H) + vy + va < I(F, Hy) = 45.

So, by Theorem 3.7, F, is a dicritical foliation in the last triple point of G(Cr).
Moreover, the family

Yut) = (1007 + 12 e — Cor g (CB o L Y @it
2 3272 44 ’

i>25

with ¢, ;(u) € C[u] describe separatrices for F;,. Others separatrices for F;, are
(0,1), (,0) and, by Remark 3.9, yro(r) = (¢, 1° + 1'% — 2 — L Y g
(0)£3), that is,

15 1 .

2 .3 4 7 8 i
to,t t"— —t'— —t RO
( + 0 a4 +i§>9 42,i(0) )

e Considering

227 33 99 33
= (2 113_114_22 =3 2272 -4 d
3 (x( X X y)+y<10x4r5y IOXy+10x y

33
+xy <%y + 9x> (—=3x — 4y + 4x%)dx

we can write {3 = x - iz +d (£y?F,) with F, = y2 —x3 — 2x%y + x*. As
37=64+9422=I(F,H)+vi+v, <I(F,H)=2-94+22=40
the previous results ensure that F, is dicritical in the last triple point of G(Cr) and

35 473 748 )
6,9 12 13 2,17 19 2,20 i
O =102+ —urB 4+ T o - St
Yu (1) ( + u +18u +180u 50" +,~>22:1% (u) )
define separatrices for ;. By Remark 3.9, the curves (¢, 0) and ¥o(t) = (£%, £3+1%)
(that is, the curve defined by F> = y> — x> — 2x%y 4 x*) are also separatrices for
Frse
Let Cr be the plane branch with semigroup I' = (6,9, 22) as in Example 3.6 and
¢ = (6xy)dy — (9y* +4x’)dx = y - wo; — d(x*).

In this case 24 =946+ 9 = I(F, H)) + vo + vi = I(F, H,) and the foliation F; is
not dicritical. The unique separatrix of the foliation F; is the curve x = 0. Note that F;,
is not a second type foliation: there is a saddle—node singularity in one of the corners of
its reduction of singularities (see [18]).

4. Analytical invariants of Cr and dicritical foliations

As before, Cr is a plane branch defined by a Weierstrass polynomial F' € C{x}[y]
with mult(F) = vy admitting a parameterization ¢(t) = (x(¢), y(¢)). Considering
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¢* : C{x,y} — C{t} defined by ¢*(H) = H(x(t), y(t)) we have that ker¢p* = (F)
and Img* = C{x(¢), y(t)}. So, we obtain the exact sequence of C-algebras

{0} > (F) = C{x, y} = C{x(@®), y(®)} — {0}.

In this way, the local ring of Cr is O = CE’E;} = C{x(1), y(t)} € C{r} = O where O
denotes the integral closure of O in its field of fractions.

Letv: O — Zso U {oo} be the discrete normalized valuation given by v(p(?)) =
ord,(p(t)) for p(t) € C{t} (v(0) = o00) and denote v(H) = v(p*(H)) for H € C{x, y}.
In this way, the value semigroup of Cr is given by I'r = v(O). In addition, the conductor
ideal (O : O) := {h € ©; hO C O} of O in O satisfies (O : O) = (t*F), that is, if
p(t) € C{t} is such that v(p(¢)) > up, then there exists H € C{x, y} with ¢*(H) = p(¢).
The integer wr is called the conductor of I'g.

If H € (x,y) by (7) we get ord,(¢p*(dH)) = v(H)—1, that is, ord,(¢*(dH))+1 € I'F.
In this way, given @ € £2! such that ¢*(w) # 0 we define the value of w as v(w) =
ord,(¢*(w)) + 1. Setting v(w) = oo if p*(w) = 0, we define

Ap = {v(@); we '} 2 T'r\ {0}

Remark 4.1. The set Az C N is an analytic invariant for Cr and it is the main ingredient
for the analytic classification of plane branches presented in [15] (see [16] for an extended
version).

In particular, the set A allows us to identify terms in a parameterization of Cr that can
be eliminated by change of parameter and coordinates. More specifically, by Proposition
1.3.11 and Theorem 1.3.9 in [16], given a plane branch Cr with Puiseux parameterization
(t”o, Zi>v0 a,f) if there exists w = Adx + Bdy € 2! with v(w) =k + vy, A € (x, y)?
and B € (x?, y) then Cr is analytically equivalent to a plane branch with parameterization
(t”o, Y, bm’) where b; = a; for i < k and by = 0.

We can define Ar by means the O-module of Kihler differentials of O (or Cr), that
is,

Odx+0dy n!
O(Fudx 4 Fydy) — F(Cr)’

where F(Cr) := F - 2! + C{x, y} - dF.

If n € F(Cr) then ¢*(n) = 0 and ¢*(w + ) = ¢*(w) for any w € N2'. Thus, given
w = w+ F(Cr) € 2o we can define ¢p*(w) := ¢*(w) and v(w) := v(w). For any singular
plane branch, the torsion submodule T := {w € {20; hw = 0 for some h € O\ {0}} C
o is non trivial and we can rewrite 7 = {@ € 20; ¢*(w) = 0}. In particular, we have
&7_2 = 0" (o) = e*(2Y) C C{t} and Ar = {v(®@); ® € 2o\ T} (see Section 7.1 in [13]
and [14]).

o = No;c =

There exists a finite subset L = {£1,...,£;} C Ap such that any £ € Ap can
be expressed as £ = ¢; + y for some y € [r and ¢; € L, that is, the set Ag
is a finitely generated I'r-monomodule. A set G = {wy,..., o} C 970 such that

v(w;) = v(w;) = ¢; € L is a set of generators for 970 as O-module and it is called

a Standard Basis of 97‘9



16 N. Corral, M.E. Hernandes and M.E. Rodrigues Hernandes / Expo. Math. 42 (2024) 125591

Fixing a minimal set of generators L for Af, that is, L is a set of generators for Af (as
I'r-monomodule) and ¢; & £;4+1F for £;,£; € Land i # j, wecall G = {w;; v(w;) € L}

a Minimal Standard Basis for 97‘9 In [14] we provide an algorithm to compute a

(minimal) Standard Basis G for 97‘9 by means a parameterization ¢(¢) and in Section

7.3 of [13] we describe a method to obtain G using F.

Remark 4.2. The set Ar determines and it is determined by the values of elements in
the Jacobian ideal Jp := (Fy, F,) in O. In fact, we have the isomorphism (as O-module)

V: OF,+0F, — ¢*"(f0)= 970
AF,+ BF, +— ¢"(Adx — Bdy).
Notice that 0 = dF = F.dx + F,dy € {lo then given v = Adx — Bdy € {lp we
have that

Fyw = (AF, + BF,)dx — BdF = (AF, + BF,)dx (in 20).

As F e C{x}[y] is a Weierstrass polynomial with mult(F) = v, then v(Fy) = pp+vo—1
(see Corollary 7.16 in [12]) and v(dx) = vy. Thus, by the above expression, we get
V(AF, + BF,) = v(Fyw) — vo = ur — 1 + v(w). In this way,

v(JF) = W(OF, + OF,) = ur — 1 + Ar.
Pol, in [20], generalizes this result for a reduced complete intersection curve.

Notice that if £ is an element of a minimal set of generators L for A, then any w =
Adx+Bdy € 2! such that v(w) = £ defines a foliation, that is, GCD(A, B) = 1. Indeed,
if A= A;G and B = B|G with G € (x, y) then £ = v(w) = v(G) + v(Adx + Bidy)
that is a contradiction by minimality of L.

Let w = Pidx + P,dy € £2'. By the Weierstrass Division Theorem we can express
P, = Ob)F, + Ay and P, — O>F, = O\F + Ay, where 01, Q> € C{x,y}, A1, Ay €
Clx}lyl, degy(A1) < degy(F) = vy and deg,(A,) < deg,(Fy) = vo — 1. Thus

w = Pidx + P,dy = Aidx 4+ Axdy + FQdx + Q,dF.
As FQidx + Q,dF € F(Cr) we get v(w) = v(Ajdx + Axdy) and consequently

Ap = {v(Adx+Bdy); A, B € C{x}[y] with deg,(A) < vy and deg,(B) < vo—1}.
(20)

Using Corollary 3.8, we can relate elements of A with the contact of Cr and a curve
corresponding to a particular element of the family ¥, (¢) as in (17).

For commodity to the reader we recall some results concerning the contact and the
intersection multiplicity of plane curves (see [12] or [22]).

Consider two irreducible plane curves Cr and C; with Puiseux parameterizations given
respectively by (™, ¢(¢)) and (t”é, @' (t)). The contact ¢(Cr, Cg) of Cr and Cg is defined
by

d[ v/ — /6 )
c(Cr,Cg) = max ord,(¢(yt’0) — ¢'(81™))

VoY,

where y, 6 € C with y" =1 = 8%,
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In what follows we take parameterizations of Cr and Cg such that the maximum in
the previous expression is achieved.

Remark that, by definition, the series d)(t”O) and ¢'(t"0) coincide up to the order
c(Cr, Cg)vovy — 1. In addition, for any irreducible plane curve Cy we have that

c(Cr, Cy) = min{c(Cr, Cg), c(Cq, Cg)}

and the two smallest numbers among these three coincide.

Let B;, e;, n; and v; be the integers defined at the beginning of Section 2, related to
the branch Cr. We indicate by g/, e, n; and v the respective integers for Cg.

The contact of two branches Cr and Cg is related to the intersection multiplicity
I(F, G) in the following way (see [19]):

If ¢(Cr,Cs) < ’3—(; then I(F, G) = c(Cr, Cg)vov,. Moreover ﬁq < c¢(Cr,Cg) < ﬂ‘l’)—gl
for some g € {1, ..., g} if and only if

I(F,G)  ngug+ v - c(Cr,Cs) — By

/
Vo no-...-ny

2n

Let us consider v = Hjw;; + dH, with 0 < i < j < g satisfying the hypothesis of
Corollary 3.8, that is, w defines a dicritical foliation in the jth triple point of the dual
graph of Cr and F, admits a family of separatrices parameterized by ¥, () as (17).

Let F, € C{x}[y] be the irreducible Weierstrass polynomial such that F,(,(¢)) = 0.
In particular, Cr, and Cp; ;41 are topologically equivalent and consequently they admit the

same characteristic exponents {,30 f b, ,8} = ’:—’} and the same value semigroup
J J
— Y% ("]
(vo ej,...,vj.—ej).

Remark 4.3. Notice that —,; = ’3—(’) < c(Cr,Cp,) < E for any u € C* and, by (17),
f—é = ﬂ] = ¢(Cr, Cr,) if and only if u # cg;. In fact, if ﬂf“ < ¢(Cr, Cg,) then in ¥, (1)
we should have a term with exponent ﬂ’t% = ﬁé—}“ & Zzo, that is an absurd.

By above remark, for any u # cp; we conclude, by (21), that

’ ’ !

v\ v; Vv, vpn;v;

0"V 0"V 0"jYj
I(F, F,) = =

no-...-nj 2o N ‘
J
So, for u = cg; the curve Cp, has a special behavior. In order to simplify the notations
we denote
Y(t) == 1/fc,gj (t) and F, = Fcﬂj. (22)

If F is not a separatrix of w, that is, co # v(w) € AF, then we can relate ¢(Cr, Cr,)
and v(w).

Theorem 4.4. Given w = H\w;j +dH, with 0 <i < j < g such that I(F, Hy) + v; +
v; < I(F, Hy), where H; € C{x}[yl], deg, H, < deg, Fjy1 = ?forl =1,2, H #0
J
and Hy € (x,y) we have
v(w) = I(F, H) —v; —v; + B;
Vo ’

c¢(Cr,Cr,) =
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Proof. Given w = A(x, y)dx + B(x, y)dy € 2!, ¢(t) = (x(¢), y(t)) € C{t} x C{t} and
n € Z-y we denote

(@P)(1) = A(x (), yO)x'(t) + B(x(2), y(1))y'(t) = ¢™(w);
(@P)(t") = A(x ("), y(t"))x'(t") + B(x ("), y(")y'(t");

o(¢(1") = A ("), yE")EEM) + B, yd")(y (™) = nt"~ (@)™
Consequently,

Coeff((we)(t™), t*") = Coeff((wd)(1), *)

nt"=1Coeff((w)(t"), t*") = Coeff(w(p(1")), t"*+D-1), (23)

By the proof of Corollary 3.8, for any member of the family ¢,(¢), given in (18), we
obtain that Coeff((wg,)(1), t*) € Clag, ...,ac] where € =k — I(Fj11, Hy) + ,3; — v} -
v/ + 1. So, by (23), the coefficients ofj terms with order up to € in ¢,(¢), or equivalently,
the coefficients of terms with order up to vge in ¢,(¢0) determine all coefficients of terms
with order up to

€+ 1(Fju H) = B+ 0+ v/ =1 in (0g)1);
vo(€ + I(Fj1, H) — B+ v +v) — 1) in (0@a)(t™);
vo(€ + I (Fjy1, H)) — B + v +v) — 1 in o(@a(1™)).

As ¥, (t%) is a member of the family ¢,(¢*0) and Coeff((wi/,)(t), t*) = 0 for all
k, by (23), we have that Coeff((wy,)(t"), t*) = 0 for all k. But ¥, (") and (p(t”(/))
coincide up to the order vovyc(Cr,Cr,) — 1 and 0 # Coeff(1/, ('), t”OUéC(CF’CF*)) *
Coeff(g(1%), 1"0%¢CF-CR)) then

0 = Coeff(w(y,(t")), t*) = Coeff(w(p(t*0)), t*)
for all

k < vo(vye(Cr, Cr,) + I(Fjy1, Hy) — B + v} +v) — 1 = vovpe(Cr, Cr,)
+ v (I(F, H) — B; +v; +v;) — 1,
recall that v; = :—i_, B = f—; for 0 </ < j and %/Hl) = I(Fj41, Hy).

Moreover, we get Coeff(a)((p(t“(,))), t*) #£ 0 for k = vovyc(Cr, Cr)+v (I (F, H)—B;+
vj+v;) — L. So, by (23), k = vy(ord,((wp)(1))) + vy — 1, that is, k = vj(ord,(we)(t)) +
1) -1 =) — 1.

In this way, vyv(w) — 1 = k = vovjc(Cr, Cr,) + vy(I(F, H)) — B; +vj +v;) — 1, that
is,

v(w) — I(F, H) —vi —v; + B

c(Cr,Cr,) = ”
0

Let us illustrate the previous theorem.



N. Corral, M.E. Hernandes and M.E. Rodrigues Hernandes / Expo. Math. 42 (2024) 125591 19

Example 4.5. Let Cr be a plane branch with semigroup I' = (6,9, 22) and Puiseux
parameterization ¢(1) = (t°,1° + t'? 4 2¢3) as in Example 3.10.
Considering ¢; = y - wg; — d(x°) we have v(¢;) = 27. In this case u = cpg =1,
5 25
1/!,(([) = <t27 t3 + gts — ﬁlﬂ + h.O.t.) and
v(&) — I(F,y) —vo—v1 + B
6

For &, = v - wya + d(x°%y) we have v(5) =41, u = cp, =2,
Y() = (% +t"” +2t" -2t + h.ot.) and
c(Cr.Cr) = V(&) — I(F, y)6 w—vth %
Given &3 =x - wip +d (;—Syng) we get v(53) =41, u = —cp, = =2,

=2

C(CF, CF*) =

70
V() = <z6, 242 4 3t17 + h.o.t.) and

V(@) —I(F.x)—vi—wun+p 17
6 6
By (21) we can determine the intersection multiplicity /(F, F,) by means the contact
¢(Cr, Cr,) and consequently, by Theorem 4.4, we can relate I(F, F,) and v(w).

c(Cr,Cr,) =

Corollary 4.6. With the previous notations, we have
I(F,F,)=v(w)— I(F,H)+ (nj — Dv; —v;.
In particular, if g = 1 then v(w) = I(F, Hy - F,) — (up — 1).

Proof. By Remark 4.3, we have Bi ¢(Cr,Cp,) < ﬁj—“.

vo vo

If (Cr. Cr,) # "L, by (21), we get

Yy .c(Cr,Cr) — B;
I(F, F) = v6-<n’v’ v oG Cr.) ﬁ’) = v(w)—I(F, H)~+(n;—1)v; —v;,
ny-...-nj
where the last equality is obtained by Theorem 4.4 remembering that ng-...-n; = 2—" =

j
vy,

If ¢(Cr,Cpr,) = ﬂ{)—;l then by previous theorem we have B = v(w) — I(F, H;) —
v; —v; + B; that is, by (4), v(w) — I(F, H))+(nj —1)v; —v; = v;41. On the other hand,
by (21), we obtain

=Vj+

I(F,F*)zv{).(”f“ 1t By ﬂf“)

no-...-nNjqp
that gives us the result.

In particular, if g = 1, we have i = O and j = g = 1. So, by (6) we have
vw)=I1(F,H -F)—(m—Dvi+v=I1FH -F)—(ur—-1. R

If the value semigroup of Cr is 'y = (vg, v;), that is, g = 1 then Lemma 3.1 ensures
that any 1-form n = Adx 4+ Bdy € £2' can be written as n = Pjwy; + d P> with
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Py, P, € C{x, y}. Considering P, = Q; F+ H; such that Q; € C{x, y} with H; € C{x}[y]
and deg,(H;) < deg,(F) = vo we have n = Hiwo1 +dHy + F - (Q1wo1 +d 02)+ Q2d F.

In this way, for any n € 2! there exists w = Hywo + dH, with H; € C{x}[y]
and deg,(H;) < deg,(F) = vg for i = 1,2 such that v(n) = v(w). Moreover, if
v(w) € Ap \ I'r then

I(F, Hy) = v(dHy) > v(H; - wo1) = I(F, Hy) + v(wor) > I(F, Hy) + v; + vp.

that is, if v(w) € A \ I'r and w defines a foliation, then w satisfies the hypothesis of
Theorem 3.7.

Corollary 4.7. Let Cr be a plane branch with value semigroup I'r = (vg, v1). If an
element £ € Ap \ I'r belongs to a minimal set of generators for Ap, then there exists a
dicritical foliation F,, in the triple point of G(Cr) defined by w = H, - wy, +dH, € !
with v(w) = L. In particular,

wANdF
v(w)+MF—1=1(F,H1-F*)=1<F )

“dx Ady
where F, is defined in (22).

Proof. By previous comments, if £ € Ap\ ['r belongs to a minimal set of generators for
Ap, then there exists @ € 2! with v(w) = ¢, satisfying the hypothesis of Theorem 3.7,
that is, F,, defines a dicritical foliation in the triple point of G(Cy). In particular, by

Corollary 4.6 and Remark 4.2, we get v(w) + jup — 1 = I(F, Hy - F.) = I (F %)
m

The above result guarantees that for plane branches with value semigroup I'r =
(vg, v1), the minimal generators for A, distinct of vy and vy, can be obtained considering
dicritical foliations in the triple point of G(Cr).

The previous corollary was obtained by Cano, Corral and Senovilla-Sanz in [9] by
other methods.

4.1. The Zariski invariant of Cr

Now we return to the general case, that is, plane branches Cp with value semigroup
I'r = (vo,...,vy) with g > 1. Without loss of generality, we can assume that Cr is
defined by a Weierstrass polynomial F' € C{x}[y] satisfying ¢; = GC D(vg, v1) < vy =
I(F,x) <v, =I(F,y).

In [23], Zariski shows that A := min(Afr \ I'r) — vy can be computed directly by a
Puiseux parameterization (%, Ziz 8 c;t") of Cr. More precisely,

A=min{i; ¢; #0and i + vy &€ ['F}.

In addition, he proves that Ar \ I'r = @ if and only if Cr is analytically equivalent to
Cg with G = y" — x"1 with GC D(vy, v;) = 1. In this case we put A = oo.

The exponent A is called the Zariski invariant of Cr. Notice that if A # oo then
vy = B1 <A < B and A + vy is a minimal generator for Ap.
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In what follows we present an alternative way to obtain the Zariski invariant of a
plane branch using dicritical foliations in the first triple point of the dual graph G(Cr)
as described in Corollary 3.8.

Lemma 4.8. [If A is the Zariski invariant of a plane branch Cg with semigroup
I'r = (vo, ..., vg), then there exist Hy, Hy € C{x}[y] with deg,H < n| = z—‘l’, H,
a unit and vy + vy < I(F, Hy) such that v(Hywy + d Hy) = A + vg.

Proof. If A = oo then Ar = I'r \ {0} with I" = (vg, v;), that is, e; = GC D(vg, v1) = 1
and in this case vop + v; < v(wg;) € I'r \ {0}. Then, by (20), there exists G| €
(x, y) N C{x}[y] with deg,G1 < vp such that v(wo1) = v(dG1) < v(wey —dG1) € .

In the same way, we obtain G, ..., Gy € (x, y) N C{x}[y] satisfying ur < v(wp; —
>i_1dG;) € I'r consequently, as (O : O) = (t#F), there exists G € (x, y) N C{x}[y]
such that ¢*(dG) = ¢*(wo1 — Y_;_, dG)), that is, ® = wy; — d(G + Y_;_, G;) satisfies
¢*(w) = 0 or equivalently (‘j’XAAddFy € (F). Hence, the result is obtained taking H; = 1 and
Hy=—(G+3);_,G)

If oo # A + vy = v(n), then by Lemma 3.1, we can express n = Ajwo; + dA; with
Ay, Ay € C{x, y}. Considering a 2-semiroot F, € C{x}[y] (recall that F;, = F ife; = 1)

we write A; = B;F, + H;, deg,H; < deg,F; = 3—? and

n = Hwy +dH; + BydF> + F> - (d By + Biowo).

As A < B, it follows by (4) that A + vy < vy < V(BodF, + F, - (dBy + Biwo)). So,
A+ vy = v(¢) where ¢ = Hywy + dH, and, without loss of generality H, can be
considered a non unit, that is, H, € (x, y).

We must have I(F, Hz) > [(F, Hl) + vo + vy. Indeed, if I(F, H2) < ](F, H1)+ vo +
vy < v(Hywp), then A + vg = v(¢) = v(dH,) € I'r that is a contradiction, because
A+ € AF \ I'r.

Notice that I(F, Hy) > vy + v, implies that H, € (y*) + (x,y)>. In particular,
(H2)s € (x, ) and (Hy)y € (x2, ).

Since { = (viyH; + (Hy) )dx + (—voxHy + (Hp),)dy, if H; € (x,y) then ¢ is
expressed as Mdx+ Ndy with M € (x, y)> and N € (x?, y). In this way, by Remark 4.1,
the exponent v({) — vy = A could not be the Zariski invariant of Cr. So, H; is a unit
and we get the result considering ¢ = Hywy +dH,. N

As A4y is a minimal generator for Ay, any w € 2! such that v(w) = A+, defines a
foliation. In this way, by the above lemma and Corollary 3.8, we can compute the Zariski
invariant for a plane branch Cr considering dicritical foliations in the first triple point of
G(Cr) defined by Hywo1+d H, with Hy, H, € C{x}[y] withdeg,H, < n; = Z—?, H; a unit
and vo+v; < I(F, H,), or equivalently, dicritical foliations defined by wo; + H| YiH, =
wo1 + Pidx + P>dy with v(Pidx + P,dy) = v(Hl_lde) =v(dH,) = I(F, Hy) > vy+v;.

Given Pidx + P>dy € 2! and considering a 2-semiroot F, € C{x}[y] of F we may
write

P, =Gy -(F2)y+ 0y and Py — Gy - (F2), = G F2 + O
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with Gi,G, € Cfx,y}, Q1,02 € C{x}[y] with deg, Q1 < deg,F» = E—? and
deg,Qr < degy(F), = Z—? — 1. In this way, we get

wo1 + Pidx + Pady = wo; + Qi1dx + Qrdy + GLdF> + F>,Gqdx.

If v(wo; + Pidx + Prdy) = A+ vy, then v(Q1dx + Q»rdy) > vo+v; and v(wg; + Q1dx +
0>dy) = A + vy, because V(God F, + F>2Gdx) > vy > By + v > A + vp.

Notice that the condition v(Q1dx + Q»dy) > vy + vy is equivalent to consider
0 € (x,y)?, mult,Qy(x,0) > 2 and Q; € (x?, y). In this way, by the previous lemma
and the above comments, A + vo = v(w) with w belonging to the set

D, — {wm + Q1dx + Qody; Q1 € (x,y)?, Q2 € (x*,y) with ) }

deg, Q1 < 2, deg,0y < Z—? — 1 and mult, Q(x,0) > &

1 vo

Moreover, we have the following result:

Proposition 4.9. For any plane branch Cg as considered in this subsection

A = max{v(w) — vy; w € D}

= 1| F —CU/\ —( F —1) eD
max WE + v ) .
’d.X/\dy 0 @ !

In particular, ) is determined considering foliations JF, with w € D;.

Proof. By the above comments, there exists w = wy; + Q1dx + Q»dy € D such that
v(w) = A + vo.

The case A = oo is immediate. So, let us consider A # oo.

Suppose that there exists n = Adx + Bdy € D; such that v(n) > X + vo.

If v(n) € Ap \ I'r, by Proposition 1.3.13 in [16], we have that A € (x, y)> and
B € (x2, y), but this contradicts the fact that 5 € D;.

If v(in) € I'r, by Lemma 1.3.12 in [16], there exists Ajdx + Bijdy € ' with
A € (x,y)? and B; € (x2, y) such that v() = v(A,dx + Bidy) < v(n — A dx — Bidy).
Proceeding in this way we obtain P; € (x, y)> and P, € (x2, y) such that n — P;dx —
P>dy € D satisfies

v(in — Pidx — Pydy) € Ap\I'r or v(n— Pidx — P,dy) = oco.

As before v(n— Pydx — P,dy) € Ap\ I'r contradicts the fact that n — Pidx — P,dy € D;.
On the other hand, if v(n — Pidx — P,dy) = o0, as n € D; there exist Q; € (x,y)?
and Q, € (x?,y) with mult, Q1(x,0) > z—(l) such that n = w1 + Q1dx + Q»dy, then
wor = (P — Qdx + (P, — Q2)dy with Py — Q) € (x, y)* and P, — Q; € (x%, y), that
is an absurd.

Hence, A + vy = max{v(w); o € D;} and, by Remark 4.2, v(w) + ur — 1 =

v (;uxAAddi) =1 ( F, ZUXAAd d@ ) that concludes the proof. W

For plane branches with semigroup (vg, v;), the previous result was obtained by
Gomez—Martinez in [11], where foliations defined by an element in D; are called
dicritical cuspidal foliations.
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5. Technical lemmas

In what follows, given S(t) = Zizio a;t" € C{t} we denote Coeff(S(¢), t*) := ay, that
is, the coefficient of ¢* in S(z). In particular, if H € C{x, y} and ¥ (¢) = (£, >, dith)

then Coeff(y*(H), t*) depends polynomially on the coefficients d;,, ..., d; for some
i > i;. In this case, we write Coeff(y*(H), t*) = pld;,,....dy) € Cld;, ..., d;]. If
iy < i then we assume that C[d;,, ..., d;]is C.
Let Cr be a plane branch with semigroup I'r = (v, vi,...,vs) and a canonical
system of semiroots {Fy, Fi, ..., Fg, Fe11 = F} as in Proposition 3.3 with
_Bo_ v )
pi(t) = [re-1, Z cjtei-1 and (1) = | tP, Z cjt!
B1<j<Bi J=B1
parameterizations of Cr, i =1,...,g and Cr =C Feirs respectively.

Lemma 5.1. For each k > v, and i = 1,...,g, we have Coeff(¢*(F;), ) e

Cleg,, ..., Ck—vj+p;] of degree 1 in ci_y;1p;.

Proof. For 1 <i < g, we take F; as in (10), then we have

90*(Fz)= l_[ ZCjtj— Z C‘jdﬁtj

a€Un; \JjzPB Br1=<j<Bi
=TI X2 c—ani/+3 ¢!
acUn; \B1=j<Bi jzBi

Denoting G, = {a € C; ozﬁ =1}, for 0 <s < i, we get
_€0_
{1}=G;_1CcGi,C---CG CGy={xeC; a-! =]}=Uml..

L
Notice that for each j satisfying By < j < By4+1 and a € G4\ Gy we have a “i-1 = 1,
since e, divides j. Thus

Z cj(l —af-1)t) + chtj
Bi=j<Bi izBi
Bs

+1
_ Jeg (I —aci- P+l + hot. if a € Gy \ Gyy1
cpthi + h.o.t. ifae G ={1},

Bs+1

with a -1 # 1 if o € Gy \ Gy4 (see [12], Lemma 6.8).
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It follows that

=2 i1
O (F;) = l_[ H (1 —aci-t )c,ggmtﬂ’+1 + h.o.t.)

=0 aeG\G4

1_[ (cﬂl.tﬁ" + h.o.t.)

aeGi_q
i-2 e (24)
_ 1_[ b %ﬂlﬂ Bi
= it i +h.o.t.) - (cpt” + h.o.t.)
=0
i—2
= (Hbl) Cﬁitvi + h.o.t.,
=0

Bi+1
where b; == ]_[aeGl\GHl(l —afi-1)cg., #0forl =0,...,i—2since cg # 0, it is easy

to verify that (G, \ Gy1) = % for 0 < s <i — 1, and the last equality follows by
(5) since Yj2 S | + B; = v;. In fact, this is a proof that I(F, F;) = v;.

€ji—1

In addition, by the previous analysis, we obtain Coeff(¢p*(F;), = Cleg,, ..., cpl
with k = +1 iZo(er — er )Biy1 + p, that is, p = k — v; + B; and Coeff(¢*(F;), 1*) is
a polynomial of degree one in cx_,g,. More explicitly, we get

i-2
Coeff(p*(F;), t*) = Pulcp,s - -+ s Chovjipy—1) + <l_[ bz) Ch—vj+5; (25)
=0
where Pii(cg,, ..., Ck—v,+p,—1) is @ homogeneous polynomial. W

In what follows we consider the family Cy, of plane branches topologically equivalent
to Cr parameterized as (14), that is

gat) =1, Y et + > ai' ],

Bi=l<pBy =g

where ¢; is the coefficient of 7/ in @(t), then it is constant for 1 </ < B, and a; is a
complex parameter for / > B, with ag, nonvanishing.

It is immediate that Iy, = I'r = {(vo,vi,...,0), {Fo, F1,..., F,, F,} and
{Fo, Fi, ..., Fy, F} are the canonical system of semiroots of F, and F, respectively.
In particular, I (F, [T5_, F/") =1 (F., [T5_, F}") for any nonnegative integers ;.

Remark 5.2. As ¢ is constant for §; <[ < B, by Lemma 5.1 or more precisely by
(25), we obtain

Coeff(p}(F;), t*) = Pir(apys - -+ s Ap—v;48—1) + ik * Ak—v;+p;
with §;; € C* for any k > v; and 1 <i < g. In particular, we get

Coeff(p}(dF;), t*) = (k + 1) - (Pik+1(apys - - s Qk—v ) + Si k41 * Qk—v;+i+1)-
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Moreover, for k < v; + B, — Bi we have Coeff(¢}(F;), t*) is constant, that is, it does
not depend on the parameters a; for [ > B, and by (24)

. 5 ifi<g
* A Uiy — !
Coeff(p, (F;), t") = {58 ag, ifi=g,

for some §;, §, € C*.

The next lemmas are variations of Lemma 5.1.
Lemma 5.3. Given H = {20 F,.Vi with y; # 0 for some 0 < j < g, we get
Coeff(p}(H), *) e (C[a,gg, e, ak,I(p,H)Jrﬁj] for k = I(F, H). In particular,

djm ifj<g
Coeff(pX(H), t'FH)y = 1/ S
o¢ ((pa( ) ) agH a;’i lf] =g,
for some 8;p, 8,y € C*.

Proof. Since Fy = x,if j =0 then H = FJO and I(F,H) = I(F,, H) = y - vo with
@i(H) = @}(F}*) = 1" and we get the result.
Notice that for any y; > 0 with [ # 0, we may rewrite

Gi(H) = QL) - 92 (F) - i (R - @i (F - g (FD). (26)
—_—
In order to determine € € N such that Coeff(¢)(H), *) e (C[aﬂg, ..., ac] it is sufficient

to analyze for each /, the product of a term of order y in ¢;(F) and all the initial terms
of factors in (26) such that k =y + Y/_ y;v; — v, thatis, y =k — Y/_ vivi + v =
k— I(F, H)+ v, since I(F, H) = I(F,, H).
In this way, we can determine € considering
J
[ (Coefitg;(F). 1)) (Coeftpy (), "))~ - Coeff(}(Fy), 1~/ 27)

i=0
i#l

By Remark 5.2, the expression (27) is polynomial in Clag,,...,a,—y+s] =
(C[aﬁg, ey ak_[(F,H)_,_ﬂl] of degree one in Qk—I(F,H)+p; - Thus

€ = maxtk — I(F, H)+ Bi; vi # 0} =k — I(F, H) + B;.
<l<j

By (27) and the previous remark, we have

Coeff(¢}(H), t*) = Per(agg,s oy Qk—1(F,H)+Bj—1)

SkH * Ak—I(F,H)+8; ifj<g
+ yg—l PP
Skk “dg. Gk I(F.H)+py if j=g
for some 8;y € C*. In particular,
Sin if j<g
* I(F.H) _ J%J

Coeff(p,(H), t )= {Sgﬁ .a/;;i if =g,

for some 8y, 8,57 € C*. M
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As an immediate consequence of Lemma 5.3 we obtain the following result.

Corollary 54. If H = {:0 F"" with y; # 0 for some 0 < j < g, then for any

1

k > I(F, H) we get Coeff(¢*(dH), t*) € Clag,, - - - s Ak—1(F,H)+Bj+1]-

Now we analyze ¢} (w;¢) for a 1-form w;, = v; Fid Fy, — vg Fod F;, considered in (13)
with 0 <i < g. Notice that, by Remark 5.2, we get ord; ¢} (wig) = v; + vg.

Lemma 5.5. For k > v; + v, we have
Coeff(¢} (w;g), 1) = Gir(@Bys -+ - s Ak—v;—vg+pe) T Tik * Ahk—v;—vg+Bg+15

with ry € C*.

Proof. The highest order of a term in ¢,(¢) that contributes with the term of order k
in v;@X(F;)@i(dF,) is determined by considering the product of the initial term §; - ¢
of ¢;(F;) with the term of order kK — v; in ¢}(dF,) or the product of the initial term
Vg - O -a,ggt”g’1 of ¢}(dFg) with the term with order kK — v, + 1 in ¢} (F;).

By Remark 5.2, Coeff(p}i(F;),t* "t e  Clag,,....a—v-v4p+1] and
Coeff(@}(dFy), t*7) = (k — v; + 1) - (Pgk—v4+1(apys - - -+ Gmvj—vgtpe) + Sgk—vj41 -
Ak —v;—vg+p,+1)- In this way,

Coeff(p} (F;), t") - Coeff(g; (d Fy), vy e Clag,, - - - s Qk—v;—vg+po+1]

and Coeff(g}(d Fy), 1"s~") - Coeff(p}(F}), t*"*Y) € Clag,, .. ., Gx—v;—vgrp4+1]-
Moreover, with the notation of Remark 5.2 and denoting e := §; - §g x—y,+1 # 0, we
get

Coeff(v; @ (Fid Fy), 1) = Qul@pys - . Gvy—vgip,) + i - (k—vi+1) - e
*Qk—v;—vg+Bg+1-

In a similar way, Coeff(vep;(FedF;)) = Qoulapg,, ..., Ak—vj—vg+p,) T Vg = Vi - € -
A—v; —vg++1- Hence,

Coeff(¢} (w;g), 1) = Qi @By, - - s Ak—v;—vg+pe) T Tik * Ak—v;—vg+Bg+15
where gix = Qi — Qu € Clag,, ..., Gk—v;—vy+p,] and rig := € - v; - (kK —v; —vg + 1)
£0.

In the next result, we determine the coefficient of a term in ¢}(H - w;,), for any
H e C{x}[y] expressed according to Proposition 3.4, that is, H = > ; eaFgo Ffl F;”'
with es € C* and such that I(F, H) = I(F, FJ°F]" --- F;*), for some non-negative

integers o, Vi, - - -, Ve-

Lemma5.6. If H =Y yesFF" - Fy is as in (11) with I(F, H) = I(F, F"F!" ...
Fgg), then for k > I(F, H) + v; + v, we get

Coeff(@}(H - wig), 1*) = pilag,, ..., ar—1) +ri - ag - ag,,
with kig ==k — I(F, H) — v; — vy + B, + 1 and some r, € C*.
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Proof. The coefficient of t* in ¢*(H - w;,) is obtained by the sum of products of a term
of order s; in ¢}(H) and a term of order s, of ¢’ (w;i,) such s; + s, = k. In this way,
to prove the lemma it is sufficient to analyze such a product for the maximum possible
value for s; or s,.

For each element es Fo' F}' - - F;g we set

— . — : o) _ : o1
my = Orgflfxg{l, 8 #0) and Is:=1 <F111F, =1 F[,,QFZ ) (28)

Case (1) sy = I(F,H) = I(F,, H) and s, = k — I(F, H), that is, the maximum
possible value for s,.

Notice that Coeff(¢:(H), t'F1) = Coeff([]5_, ¢ (F"), t"F) and, by Lemma 5.3,
it is constant if m, < g and equal to ey -a;i with ey € C* for m,, = g. On the other
hand, by previous lemma Coeff(¢}(w;,), t*~'F) = p(ag, . ..., ay;—1) + 1 - ay,, where
kic = k — I(F,H) — v; — v + B, + 1 and r € C*. Hence, Coeff(¢}(H),t'"H)) .
Coeff(p}(w;g), t* 1)) is expressed as

prlag,, .-, ak,-gq) + 1y ~a;§ * Ay, 29)

with r, :=r -eg # 0.

Case (2) s; =k —v; — v, and s, = v; + v, that is, the maximum possible value for
S1.

As k> I(F, H)+v; +vg, if k = I(F, H)+v; + v, then we must have s; = I(F, H)
and s, = k — I(F, H), that is, we are in the previous case. So, we can assume that
k> I(F, H)+v; + v,.

Notice that Coeff(p(H), t*%=v) = > esCoeff([]5_, <p;“(Fla’), tk=vi—ve) By
Lemma 5.3 and by (28), we get

8

S, —vi—

Coeff <1_[ (p:(Fl ]), tk vi Ué’) € (C[a,gg, ey ak,vi,vg,15+/gm5 ]
=0

Moreover, by Lemma 5.5, we have Coeff(goj(wig),t”i+vg) € (C[a,gg,aﬂg+1]. As Iy >
I(F,H)and k > I(F, H) + v; + v, we have that
m(sax{k —V; — Vg — Is + By, By + 1} < kig.

Considering the above cases we conclude that Coeff(¢}(H - w;g), t¥) is given as (29).
|

CRediT authorship contribution statement

Nuria Corral: Investigation, Writing — original draft, Writing — review & editing.
Marcelo E. Hernandes: Investigation, Writing — original draft, Writing — review &
editing. M.E. Rodrigues Hernandes: Investigation, Writing — original draft, Writing
— review & editing.



28 N. Corral, M.E. Hernandes and M.E. Rodrigues Hernandes / Expo. Math. 42 (2024) 125591
Declaration of competing interest

The authors declare the following financial interests/personal relationships which may
be considered as potential competing interests: Nuria Corral reports financial support was
provided by Spanish State Agency of Research. Marcelo E. Hernandes reports financial
support was provided by Spanish State Agency of Research. Maria Elenice R. Hernandes
reports financial support was provided by Spanish State Agency of Research. Marcelo
E. Hernandes reports financial support was provided by CNPq- Brazil. If there are other
authors, they declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

We are grateful to Prof. Felipe Cano for all conversations and suggestions. The last two
authors would like to express their gratitude to the ECSING-AFA group from Universidad
de Valladolid for its hospitality during the year 2013, when the seminal ideas of this work
emerged.

References

[1] S.S. Abhyankar, T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation, J.
Reine Angew. Math. 260 (1973) 47-83, 261, (1973) 29-54.

[2] A.C.P. Azevedo, The Jacobian Ideal of a Plane Algebroid Curve Ph. D. Thesis, Purdue University,
1967.

[3] V. Bayer, A. Hefez, Algebroid plane curves whose Milnor and Tjurina numbers differ by one or two,
Bull. Braz. Math. Soc. 32 (1) (2001) 63-81.

[4] C. Camacho, A. Lins Neto, P. Sad, Topological invariants and equidesingularisation for holomorphic
vector fields, J. Differential Geom. 20 (1) (1984) 143-174.

[S] E Cano, D. Cerveau, J. Déserti, Théorie Elémentaire des Feuilletages Holomorphes Singuliers,
Collection Echcllcs, Belin, 2013.

[6] F. Cano, N. Corral, Dicritical logarithmic foliations, Publ. Mat. 50 (2006) 87-102.

[7] F. Cano, N. Corral, Absolutely dicritical foliations, Int. Math. Res. Not. IMRN (8) (2011) 1926-1934.

[8] F. Cano, N. Corral, R. Mol, Local polar invariants for plane singular foliations, Expo. Math. 37 (2)
(2019) 145-164.

[9] E. Cano, N. Corral, D. Senovilla-Sanz, Analytic semiroots for plane branches and singular foliations,
Bull. Braz. Math. Soc. (N.S.) 54 (2) (2023) Paper (27).

[10] N. Corral, Jacobian and polar curves of singular foliations, in: F. Cano, J.L. Cisneros-Molina, L.
Diing Trang, J. Seade (Eds.), Handbook of Geometry and Topology of Singularities V: Foliations,
Springer, 2024, pp. 223-280.

[11] O. Go6mez-Martinez, Zariski invariant for non-isolated separatrices through Jacobian curves of
pseudo-cuspidal dicritical foliations, J. Singul. 23 (2021) 236-270.

[12] A. Hefez, Irreducible plane curve singularities, in: D. Mond, M.J. Saia (Eds.), Real and Complex
Singularities, in: Lecture Notes in Pure and Appl. Math., Vol. 232, Marcel Dekker, N.Y, 2003, pp.
1-120.


http://refhub.elsevier.com/S0723-0869(24)00058-6/sb1
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb1
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb1
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb2
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb2
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb2
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb3
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb3
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb3
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb4
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb4
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb4
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb5
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb5
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb5
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb6
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb7
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb8
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb8
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb8
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb9
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb9
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb9
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb10
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb10
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb10
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb10
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb10
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb11
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb11
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb11
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb12
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb12
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb12
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb12
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb12

[13]

[14]
[15]

[16]

[17]

[18]
[19]
[20]
(21]

[22]
[23]

[24]

N. Corral, M.E. Hernandes and M.E. Rodrigues Hernandes / Expo. Math. 42 (2024) 125591 29

A. Hefez, M.E. Hernandes, Computational Methods in the Local Theory of Curves, Mathematical
Publications. 230. Coléquio Brasileiro de Matematica. Instituto de Matematica Pura e Aplicada (IMPA),
Rio de Janeiro, 2001.

A. Hefez, M.E. Hernandes, Standard bases for local rings of branches and their module of differentials,
J. Symb. Comput. 42 (2007) 178-191.

A. Hefez, M.E. Hernandes, The analytic classification of plane branches, Bull. Lond. Math. Soc. 43
(2) (2011) 289-298.

A. Hefez, M.E. Hernandes, The analytic classification of irreducible plane curve singularities, in: J.L.
Cisneros-Molina, D.T. L&, J. Seade (Eds.), Handbook of Geometry and Topology of Singularities II,
Springer, 2021, pp. 1-65.

F. Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, J.
Differential Equations 158 (1999) 152-173.

J.-F. Mattei, E. Salem, Modules formels locaux de feuilletages holomorphes, ArXiv:math/0402256.
M. Merle, Invariants polaires des courbes planes, Invent. Math. 41 (1977) 103-112.

D. Pol, On the values of logarithmic residues along curves, Ann. L'Inst. Fourier 68 (2) (2018) 725-766.
P. Popescu-Pampu, Approximate roots, in: Valuation Theory and Its Applications, Vol. 33, AMS, 2003,
pp. 285-321.

C.T.C. Wall, Singular Points of Plane Curves, Cambridge University Press, 2004.

O. Zariski, Characterization of plane algebroid curves whose module of differentials has maximum
torsion, Proc. Natl. Acad. Sci. USA 56 (1966) 781-786.

O. Zariski, Le probleme des modules pour le branches planes, in: Cours donné au Centre de
Mathématiques de L'Ecole Polytechnique, in: University Lecture Series, Vol. 39, AMS, 2006, English
translation by Ben Lichtin: The Moduli Problem for Plane Branches.


http://refhub.elsevier.com/S0723-0869(24)00058-6/sb13
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb13
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb13
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb13
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb13
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb14
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb14
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb14
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb15
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb15
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb15
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb16
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb16
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb16
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb16
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb16
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb17
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb17
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb17
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://dx.math/0402256
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb19
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb20
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb21
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb21
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb21
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb22
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb23
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb23
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb23
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb24
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb24
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb24
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb24
http://refhub.elsevier.com/S0723-0869(24)00058-6/sb24

	Dicritical foliations and semiroots of plane branches
	Introduction
	Notations
	Semiroots and dicritical foliations
	Analytical invariants of CF and dicritical foliations
	The Zariski invariant of CF

	Technical Lemmas
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


