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Abstract

In this work we describe dicritical foliations in (C2, 0) at a triple point of the resolution dual
graph of an analytic plane branch C using its semiroots. In particular, we obtain a constructive
method to present a one-parameter family Cu of separatrices for such foliations. As a by-product

e relate the contact order between a special member of Cu and C with analytic discrete invariants
of plane branches.
© 2024 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The aim of this work is to describe a construction of foliations in (C2, 0) with a
dicritical component in one of the bifurcation divisor of the reduction of singularities of
an irreducible plane curve (branch).
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Previous works deal with the construction of dicritical foliations. For instance, in [7],
t is proved the existence of absolutely dicritical foliations for any configuration of the
xceptional divisor, that is, given a morphism σ : M → (C2, 0) composition of a finite
umber of punctual blow-ups, there exists a germ of foliation F in (C2, 0) such that the
ransformed foliation σ ∗F is completely transversal to the exceptional divisor σ−1(0).

oreover, the foliation F has a meromorphic first integral. In [6], the authors present a
ay to construct logarithmic dicritical foliations (weak logarithmic models) which share

ome properties with a given foliation. More precisely, a weak logarithmic model L for
foliation F is a logarithmic foliation such that the reduction of the singularities of L

s longer than the one of F and coincides with it outside a “escape set” of non-singular
oints for F placed at dicritical components. Note that, this escape set depends on the
nalytic type of the curves defined by the equations used to write the 1-form which gives
he logarithmic foliation as shown in [6, Example 19].

Our approach here is different from the works previously mentioned. The main tools
f our construction are the concept of the semiroots of a branch C, which codify part
f the topological data of the curve, and a result concerning a special way to express a
olomorphic 1-form in Ω1 (Azevedo’s Lemma).

Semiroots of a plane branch C are particular branches that allow us to determine the
opological class of the curve. Zariski in [24] considered semiroots in order to relate
he characteristic exponents of C and the minimal generators of the value semigroup
ssociated to the branch. In [1], Abhyankar and Moh introduced particular semiroots
approximate roots) that can be used in an effective criterion of irreducibility of elements
n C{x, y}.

The other ingredient is the Azevedo’s Lemma (see [2], Chapter 5, Proposition 2): given
,m ∈ Z>0, any 1-form ω ∈ Ω1 can be expressed as ω = H1 · (nxdy − mydx) + d H2,
ith H1, H2 ∈ C{x, y}. This particular way to express a 1-form has been used by other

uthors on topics related to plane curves, vector fields, etc. For instance, Loray in [17]
resents normal forms for cuspidal singularities of analytic vector fields that correspond
particular case of Azevedo’s Lemma. Bayer and Hefez (see [3]) use such expression as
tool to describe (up to analytic equivalence) plane branches such that the Milnor and
jurina numbers differ by one or two.

In this work, we consider C := {F = 0} a plane branch, where F ∈ C{x}[y] is a
eierstrass polynomial, with value semigroup Γ minimally generated by {v0, . . . , vg}.
set {F0, F1, . . . , Fg+1 := F} is an extended system of semiroots of F , if Fi ∈ C{x}[y]

s monic, degy Fi =
v0

GC D(v0,...,vi ) for 1 ≤ i ≤ g and dimC
C{x,y}

⟨F,Fi ⟩
= vi for 0 ≤ i ≤ g (see

ection 3).
For each pair (i, j), with 0 ≤ i < j ≤ g, we set ωi j = vi Fi d F j − v j F j d Fi ∈ Ω1 and

consider the singular foliation Fω defined by

ω = H1ωi j + d H2, (1)

where H1, H2 ∈ C{x, y} \ ⟨F⟩. Note that, for i = 0, j = 1, v0 = n and v1 = m we get
he expression given in Azevedo’s Lemma.

In Section 3, we present the main results of this paper, Theorem 3.7 and Corollary 3.8.
e give a necessary and sufficient condition to assure that the foliation Fω, with ω as

n (1), has a dicritical component in the last triple point of the resolution dual graph of
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C. This condition is given in terms of the intersection multiplicities of F with H1 and
H2. Moreover, in the proof of this theorem we have a constructive method to describe
a family of parameterizations for the separatrices in such dicritical component up to the
desired order as illustrated in Example 3.10. The presented method in Theorem 3.7 does
not make use of blowing up which is normally considered to present dicritical foliations.

Dicritical foliations and analytic invariants of irreducible plane curves are closely
related. More precisely, given a parameterization ϕ(t) = (x(t), y(t)) of the irreducible
plane curve C and a 1-form ω, we define the value of ω by ν(ω) = ordt (ϕ∗(ω)) + 1

here ϕ∗(ω) = ω(ϕ(t)). The set of differential values Λ of C is given by

Λ = {ν(ω) : ω ∈ Ω1
}.

his analytic invariant is one of the main ingredients in the analytic classification of
ranches (see [15,16]). When ω = 0 defines a foliation F = Fω in (C2, 0) and C is not

an invariant curve (separatrix) of F , the value ν(ω)−1 coincides with the tangency order
τ0(F , C) of the foliation F with the curve C (see [4,8]). If we consider a hamiltonian 1-
form ω = dg, with g ∈ C{x, y} a non unit, then ν(dg) = (C,D)0, where (C,D)0 denotes
the intersection multiplicity at the origin of the curves C and D, with D := {g = 0}.

ence, we have that Γ \ {0} ⊆ Λ where Γ is the value semigroup associated to the curve
C. Moreover, there exists a finite subset L = {ℓ1, . . . , ℓk} ⊂ Λ such that any ℓ ∈ Λ can

e expressed as ℓ = ℓi + γ for some γ ∈ Γ and ℓi ∈ L , that is, the set Λ is a finitely
enerated Γ -monomodule.

Let us consider a set of 1-forms {ω1, . . . , ωk} such that ν(ωi ) = ℓi . If the curve C has
nly one Puiseux pair, then the foliations defined by the 1-forms ωi = 0 are dicritical in
he triple point of the resolution dual graph of the curve C (see [9] where properties of
hese 1-forms are described).

From the results in [8,10], we have that, if the foliation F defined by ω = 0 is a
on-dicritical second type foliation (see [18]), then τ0(F , C) = ν(ω) − 1 = (SF , C)0 − 1,
here SF is the curve of separatrices of F . Thus, if ω is a 1-form such that ν(ω) ∈ Λ\Γ ,

he foliation defined by ω = 0 is either dicritical or it is not a second type foliation.
In Section 4, we explore 1-forms expressed as ω = H1ωi j +d H2 and their connection

ith the analytic invariant Λ. We show that the value of ω is related with the contact
etween the branch and a special separatrix C⋆ of Fω (see Theorem 4.4). In particular,
or curves C with semigroup ⟨v0, v1⟩, we show that the set Λ can be determined using
icritical foliations defined by H1ω01 + d H2, or equivalently, by H1 and the special
eparatrix C⋆ (see Corollary 4.7). The separatrix C⋆ is closely related to the concept
f analytic semiroot introduced by Cano, Corral and Senovilla-Sanz in [9] were, as we
entioned before, geometrical properties are presented for Λ. In addition, Proposition 4.9

hows how to compute the Zariski invariant λ of C, that is λ = min(Λ \ Γ ) − v0,
onsidering dicritical foliations in the first triple point of the resolution dual graph of
that extends a result by Gómez–Martı́nez presented for branches with value semigroup
inimally generated by two elements.

. Notations

In this section we present some classic notations. For the results about Plane Curve
heory and Foliation Theory we indicate [5,12], respectively. We denote by C{x, y} the

2
bsolutely convergent power series ring at the origin in C .
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A germ of an analytic plane curve CF in (C2, 0) is the (germ of) zero set of a
educed element F ∈ C{x, y} in a neighborhood at the origin. Without loss of generality
by a change of coordinates) we can consider F ∈ C{x}[y] a Weierstrass polynomial

F(x, y) = yn
+
∑n

i=1 Ai (x)yn−i where n is the multiplicity of F , denoted by mult(F).
If F is irreducible, we can assume that y = 0 is the tangent cone of the branch CF

and this implies that mult(Ai (x)) > i for 1 ≤ i ≤ n. By Newton–Puiseux theorem
we can obtain η

(
x

1
n

)
=
∑

k>n ck x
k
n ∈ C

{
x

1
n

}
such that F

(
x, η

(
x

1
n

))
= 0 and the

et of roots of F (in a neighborhood at the origin) is
{
η
(
α · x

1
n

)
; α ∈ Un

}
, where

n = {α ∈ C; αn
= 1}. In particular, we have

F(x, y) =

∏
α∈Un

(
y − η

(
α · x

1
n

))
. (2)

By a Tschirnhausen transformation, i.e. by the change of coordinates (x, y) →(
x, y −

1
n A1(x)

)
, we can assume that A1(x) = 0, or equivalently ck = 0 for all k ≡ 0

mod n in η
(

x
1
n

)
.

Putting t = x
1
n we obtain a Puiseux parameterization for CF :

ϕ(t) =

⎛⎝tn,
∑
k≥β1

ck tk

⎞⎠ , (3)

where β1 = min{k; k ̸≡ 0 mod n and ck ̸= 0}. Moreover, we will assume that such
parameterization is primitive, that is, ϕ(t) cannot be reparameterized by a power of a new
variable or equivalently the greatest common divisor of all exponents in ϕ(t) is equal to
1.

In what follows we consider plane branches, that is, plane curves defined by an
irreducible Weierstrass polynomial as (2).

There are two sequences (ei ) and (βi ) of integers associated to CF and obtained by
any Puiseux parameterization of CF :

β0 = e0 = n;

β j = min{i; i ̸≡ 0 mod e j−1 and ci ̸= 0};

e j = GC D(e j−1, β j ) = GC D(β0, . . . , β j ).

The elements in the increasing finite sequence (βi )
g
i=0 are called characteristic exponents

associated to the branch and such sequence completely characterizes the topological type
of the curve as an immersed germ in (C2, 0). The local topology of plane branches can
also be determined by the value semigroup ΓF associated to the curve CF . More explicitly,

ΓF = {I (F,G); G ∈ C{x, y}} ⊂ N := N ∪ {∞},

where I (F,G) = (CF , CG)0 is the intersection multiplicity of CF and CG at the origin
that can be computed by

I (F,G) = dimC
C{x, y}

⟨F,G⟩
= ordt (ϕ∗(G)),

and ϕ∗(G) := G(ϕ(t)) for a parameterization ϕ(t) of C as (3).
F
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Notice that given F ∈ C{x}[y] with degy(F) = mult(F) = v0 > 1 any G ∈ C{x, y}

can be expressed, by Weierstrass Division Theorem, as G = QF + H with H ∈ C{x}[y]
and degy(H ) < v0. As I (F, QF + H ) = I (F, H ) we get

ΓF = {I (F, H ); H ∈ C{x}[y] with degy(H ) < v0}.

Zariski (in [24]) showed that the value semigroup ΓF is minimally generated by the
set of integers {v0, v1, . . . , vg}, inductively defined by

v0 = β0 = n, v1 = β1 and vi = ni−1vi−1 + βi − βi−1 (4)

or

vi =

i−2∑
j=0

e j − e j+1

ei−1
β j+1 + βi (5)

or i = 2, . . . , g where n0 = 1 and ni =
ei−1

ei
. It follows from the definition of ni

hat n = n0 · n1 · . . . · ng . We denote ΓF = ⟨v0, v1, . . . , vg⟩ and sometimes it would be
onvenient to consider βg+1 = vg+1 = ∞.

The value semigroup ΓF admits a conductor µF , that is, µF +N ⊆ ΓF and µF − 1 ̸∈

F . For plane branches, µF coincides with the Milnor number of CF and

µF = dimC
C{x, y}

⟨Fx , Fy⟩
=

g∑
l=1

(nl − 1)vl − v0 + 1. (6)

In this paper we consider germs of holomorphic singular foliations of codimension
one in (C2, 0) locally given by ω = 0, where

ω = A(x, y)dx + B(x, y)dy ∈ Ω1
:= Ω1

C2,0 = C{x, y}dx + C{x, y}dy

ith A, B ∈ C{x, y}, A(0, 0) = B(0, 0) = 0 and GC D(A, B) = 1. Such a foliation will
e denoted by Fω and its singular locus Sing(Fω) is locally given by the common zeros
f A and B.

An analytic plane branch CF defined by F = 0 is called a separatrix (or an invariant
urve) of a foliation Fω if ω ∧ d F = F · G · dx ∧ dy, where G ∈ C{x, y}. In particular
F \ Sing(Fω) is a leaf of Fω.

If ϕ(t) is a parameterization of CF we can define the C-linear map

ϕ∗
: Ω1

→ C{t}
ω = Adx + Bdy ↦→ ϕ∗(A)x ′(t) + ϕ∗(B)y′(t) (7)

nd we have that ϕ∗(ω) = 0 if and only if ω∧d F
dx∧dy ∈ ⟨F⟩, that is, CF is a separatrix of Fω.

A singular foliation Fω is called dicritical if there is a finite sequence of blowing-
ps with nonsingular invariant centers, such that this process leads to an irreducible
omponent Ei of the exceptional divisor E that is generically transversal to the strict
ransform of Fω. For codimension one foliations in (C2, 0), the dicritical condition is
quivalent to the property of having infinitely many transversal invariant curves through
lmost any point in Ei , or in other words there are infinitely germs of analytic curves
separatrices) containing the origin and invariant by the foliation. In this case we say that
ω is dicritical in Ei or in the point Qi of the resolution dual graph G(CF ) corresponding

o E .
i
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In the next section, we will consider particular plane branches CFi such that I (F, Fi ) =

vi in order to define dicritical foliations in specific components of the exceptional divisor
obtained by the canonical resolution of CF .

3. Semiroots and dicritical foliations

Azevedo, in his thesis (see [2], Chapter 5, Proposition 2), exhibits a particular way to
express any 1-form in Ω1 as we present below:

Lemma 3.1 (Azevedo). Given any n,m ∈ Z>0 and ω ∈ Ω1, there exist H1, H2 ∈ C{x, y}

such that

ω = H1 · (nxdy − mydx) + d H2. (8)

Proof. The proof is constructive and allow us to obtain H1 and H2 satisfying (8). Given
any ω = Adx + Bdy ∈ Ω1 it is possible to prove that there exist H1 =

∑
i, j≥0 ai j x i y j

and H2 =
∑

i, j≥0 bi j x i y j such that (H2)x = A + my H1 and (H2)y = B − nx H1. To do
this, we integrate the first equation in x and substitute in the second one. Thus we obtain
a recursive expression to determine the coefficients ai j and bi j , and consequently H1 and
H2 (see [2], Chapter 5, Lemma 1 or [3], Proposition 2). ■

In some cases, the expression (8) can be useful to determine separatrices of Fω directly
from numerical data of H1 and H2. The following example illustrates such a situation.

Example 3.2. In (8), let us consider H1 = ya and H2 = e · xb with a, b ∈ Z≥0, b ̸= 0,
e ∈ C∗ and n(b − 1) ̸= m(a + 1), that is, ω = ya

· (nxdy − mydx) + d(e · xb). It is
immediate that x = 0 is a separatrix of Fω. Moreover, by some computations, we get
that a monomial germ ϕ(t) = (tα, ctβ) with c ̸= 0 parameterizes a separatrix of Fω if
and only if

α = a + 1, β = b − 1, and ca+1
= −

(a + 1)be
n(b − 1) − m(a + 1)

.

otice that ϕ(t) is not necessarily a primitive parameterization.
Similarly we can obtain the description of monomial separatrices for foliations defined

y Fω considering H1 and H2 given by other possible monomials.

In the sequel we will take 1-forms given by a similar expression in Azevedo’s Lemma
ut considering semiroots of an irreducible Weierstrass polynomial F ∈ C{x}[y].

Let CF be an irreducible plane curve defined by F ∈ C{x}[y] with semigroup
F = ⟨v0, . . . , vg⟩. By the minimality of the generators set {v0, . . . , vg}, any element

G ∈ C{x, y} such that I (F,G) = vi is irreducible. As y = 0 is the tangent cone of CF ,
t follows that I (F, x) = v0.

A set {Fi ; 1 ≤ i ≤ g + 1} ⊂ C{x}[y] of monic polynomials satisfying

(i) degy Fi = n0 · . . . · ni−1 =
v0

ei−1
;

(ii) I (F, F ) = v
i i
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is called a system of semiroots of F . We say that {F0 := x, F1, . . . , Fg+1 := F} is an
xtended system of semiroots of F and Fi is an ith semiroot2 of F , for 0 ≤ i ≤ g +1.
oreover, for i ̸= 0 we have that the semigroup and the characteristic exponents of CFi

see [21]) are

ΓFi =

⟨
v0

ei−1
, . . . ,

vi−1

ei−1

⟩
and

{
β0

ei−1
, . . . ,

βi−1

ei−1

}
. (9)

If {F0 = x, F1, . . . , Fg, Fg+1 = F} is an extended system of semiroots of F , then
we have that {F0 = x, F1, . . . , Fk, Fk+1} is an extended system of semiroots of Fk+1

(see [21]).
We can obtain a system of semiroots of F ∈ C{x}[y] by several ways, for instance

considering the approximate roots introduced by Abhyankar and Moh (see [1] or [21])
or taking representatives for elements in a minimal Standard Basis of C{x,y}

⟨F⟩
(see [14]).

In what follows we will consider a particular system of semiroots following Zariski’s
pproach (see [24]) obtained by a parameterization ϕ(t) = (tβ0 ,

∑
k≥β1

ck tk) of CF .
Let us denote

ϕi (t) =

(
t
β0

ei−1 , ηi (t)
)

:=

⎛⎝t
β0

ei−1 ,
∑

β1≤k<βi

ck t
k

ei−1

⎞⎠ ,
or i = 1, . . . , g + 1, where ϕ1(t) = (t, 0).

roposition 3.3 (Zariski, [24]). If Fi ∈ C{x}[y] is the minimal polynomial of ηi (x
ei−1
β0 )

ver C((x)) where 1 ≤ i ≤ g + 1, then {F0 := x, F1, . . . , Fg+1 := F} is an extended
system of semiroots of F. In particular, ϕi is a Puiseux parameterization of CFi , for
= 1, . . . , g + 1.

Proof. Denoting by mi =
β0

ei−1
=

v0
ei−1

, we have that the minimal polynomial Fi ∈

{x}[y] of ηi

(
x

1
mi

)
over C((x)) is given (as in (2)) by

Fi (x, y) =

∏
α∈Umi

(y − ηi (α · x
1

mi )) (10)

with Umi = {α ∈ C;αmi = 1}, for i = 1, . . . , g +1 (see, for instance, [24]). In particular
egy Fi =

v0
ei−1

and I (F, Fi ) = vi (see the proof of Lemma 5.1). Therefore, Fi is an i th
emiroot of F . ■

In this work we take the extended system of semiroots of F obtained as in the above
roposition and we call it the canonical system of semiroots of F .

As an immediate consequence of the classical Euclidian division algorithm, it is
ossible to obtain a decomposition of any element H ∈ C{x}[y] in terms of a system of
emiroots of F .

2 Some authors (see [21] for instance) consider the i th semiroot of F for 0 ≤ i ≤ g as a monic polynomial
F ∈ C{x}[y] satisfying deg F =

v0 and I (F, F ) = v .
i y i ei i i+1
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Proposition 3.4 (See [1] or [21]). If {F0 = x, F1, . . . , Fg+1 = F} is an extended system
of semiroots of F ∈ C{x}[y] then any H ∈ C{x}[y] has a unique expansion given by

H =

∑
δ=(δ0,...,δg+1)

uδF δ0
0 F δ1

1 F δ2
2 . . . F

δg+1
g+1 , (11)

where uδ ∈ C,

0 ≤ δi < ni =
ei−1

ei
for i ∈ {1, . . . , g}, 0 ≤ δg+1 ≤

[
degy H
degy F

]
(12)

nd [r ] denotes the integral part of r ∈ R. Moreover, the order in t of the terms

ϕ∗(F0)δ0 · ϕ∗(F1)δ1 · ϕ∗(F2)δ2 · . . . · ϕ∗(Fg)δg

re two by two distinct, where ϕ is a parameterization of CF .

By the previous result, if H =
∑

δ uδF δ0
0 F δ1

1 · . . . · F
δg+1
g+1 then

I (F, H ) = min
δ

{ g∑
i=0

δivi ; δ = (δ0, . . . , δg, 0) with uδ ̸= 0

}
.

Remark 3.5. Notice that the expansion (11) is not necessarily a finite sum and it is a bit
different of the expansion presented in [21]. In fact, according to Corollary 5.4 of [21]
any H ∈ C{x}[y] has a unique expansion given by a finite sum

H =

∑
(δ1,...,δg+1)

hδ1,...,δg+1 F δ1
1 F δ2

2 . . . F
δg+1
g+1 ,

with hδ1,...,δg+1 ∈ C{x} and δi , 1 ≤ i ≤ g + 1, satisfying the conditions (12). Writing
hδ1,...,δg+1 =

∑
δ=(δ0,...,δg+1) uδF δ0

0 with uδ ∈ C we get the expansion (11). Recall that an
th semiroot for us corresponds to an (i − 1)th semiroot in [21] for 1 ≤ i ≤ g + 1.

Considering the canonical embedded resolution π : M → (C2, 0) of CF and G(CF )
the dual graph associated to it, we have that the semiroot Fi is a curvette3 with respect
to a component of the exceptional divisor E corresponding to the i th-endpoint of G(CF )
(see Fig. 1). In particular, the extended system of semiroots appears as coordinates in the
embedded resolution process of CF (see [21]). We denote by Ti the i th triple point in the
dual graph G(CF ) that appears in the canonical resolution process, or equivalently, the
first triple point after that Fi is desingularized, which we indicate by F̃i .

Given the canonical system of semiroots {F0 = x, F1, . . . , Fg+1 = F} for each
0 ≤ i < j ≤ g we consider Fi j the singular foliation defined by

ωi j = vi Fi d F j − v j F j d Fi . (13)

Notice that Fi j defines the same foliation that d
(

F
αi
j

F
α j
i

)
where αi =

vi
GC D(vi ,v j ) ,

α j =
v j

GC D(vi ,v j ) and therefore Fi j is dicritical with separatrices given by aFαi
j −bF

α j
i = 0

for all (a : b) ∈ P1
C.

3 A curvette with respect to the component Ei of the exceptional divisor E is the image in (C2, 0) of a
smooth curve in M meeting E transversely in a single point which lies on no other component of E .
i
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Fig. 1. Dual graph for F0 · F1 · . . . · Fg · Fg+1.

xample 3.6. Let CF be the plane branch defined by

F = (y2
− x3

− 2x2 y + x4)3
− 48x8(y2

− x3
− 2x2 y + x4) − 64x11

− 64x13

ith Puiseux parameterization ϕ(t) = (t6, t9
+ t12

+ 2t13).
The value semigroup of CF is Γ = ⟨6, 9, 22⟩ and the canonical system of semiroots

or it is

F0 = x, F1 = y, F2 = y2
− x3

− 2x2 y + x4 and F3 = F.

e have that ω01 = 6xdy − 9ydx admits separatrices given by ay2
− bx3

= 0,
02 = 6xd F2 − 22F2dx with separatrices aF3

2 − bx11
= 0 and ω12 = 9yd F2 − 22F2dy

ith separatrices aF9
2 − by22

= 0, for (a : b) ∈ P1
C.

In what follows we consider 1-forms given in a particular expression that generalizes
8). More specifically, we take ω = H1 · ωi j + d H2 where ωi j is given as (13) and
dmitting that ω defines a foliation Fω. We present a simple criterion which assures that
ω is dicritical at the i th triple point Ti of the dual graph of CF and we describe a family
f separatrices for it.

Our strategy is to consider initially the case 1 ≤ i < j = g. The other situations are
articular cases of this result by changing F by a semiroot F j+1 with 0 ≤ j < g.

In order to obtain the results we use some technical lemmas that are presented in
ection 5.

Given a plane branch CF with F ∈ C{x}[y] as (2) and Puiseux parameterization given
y ϕ(t) =

(
tβ0 ,

∑
l≥β1

cl t l
)

, we consider the family of plane branches CFa determined
y parameterizations

ϕa(t) =

⎛⎝tβ0 ,
∑

β1≤l<βg

cl t l
+

∑
l≥βg

al t l

⎞⎠ (14)

here al are parameters that can be assume values in C and aβg nonvanishing. Notice
hat the coefficient cl of t l with β1 ≤ l < βg in ϕa(t) is precisely the coefficient of t l in
he parameterization ϕ(t) of CF and they are considered constant.

It is immediate that ΓFa = ΓF and {F0, F1, . . . , Fg, Fa} is an extended system
f semiroots for CFa . Moreover, if degy(H ) < degy(F) = degy(Fa) we can write

H =
∑

u F δ0
· . . . · F δg

∈ C{x}[y] as (11) and I (F, H ) = I (F , H ).
δ δ 0 g a
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Theorem 3.7. Let Fω be the singular holomorphic foliation defined by ω = H1ωig+d H2
for some 0 ≤ i < g, where H j ∈ C{x}[y], degy H j < degy F = v0 with j = 1, 2, H1 ̸= 0
and H2 ∈ ⟨x, y⟩. Then the foliation Fω is dicritical in the last triple point Tg of the dual
graph G(CF ) if and only if

I (F, H1) + vi + vg < I (F, H2).

oreover, the separatrices of Fω whose strict transform intersects transversally the
omponent of the exceptional divisor corresponding to the triple point Tg of G(CF ) are
lane branches parameterized by

ψu(t) =

⎛⎝tβ0 ,
∑

β1≤ j<βg

c j t j
+ utβg +

∑
j>βg

s j (u)t j

⎞⎠ ,
ith u ∈ C∗ and s j (u) ∈ C(u).

roof. Assume that the foliation Fω is dicritical in the last triple point Tg of the
ual graph G(CF ). The separatrices of Fω corresponding to the triple point Tg have
arameterizations as given in (14) and consequently, they satisfy the same properties
s the curve CFa described above. Hence, if ψ(t) is a parameterization of a branch of
his dicritical component, then we have that

ψ∗ω ≡ 0.

ote that, the first terms which appear in ψ∗ω are given by

ψ∗ω = k1t I (F,H1)(υi tυiυgtυg−1
− υgtυgυi tυi −1

+ · · · )dt

+ (k2 I (F, H2)t I (F,H2)−1
+ · · · )dt

ith k1, k2 non-zero constants. Hence, if I (F, H2) ≤ I (F, H1) + υi + υg , then ψ∗ω ̸≡ 0
gainst the hypothesis.

Now, assume that I (F, H1) + vi + vg < I (F, H2). Let ϕa(t) be the family of
arameterizations given in (14). Thus ϕ∗

a (ω) = ϕ∗
a (H1)ϕ∗

a (ωig) + ϕ∗
a (d H2). Denoting

:= aβg we will show that it is possible to take ai = si (u) ∈ C(u) for every i > βg such
hat ϕ∗

a (ω) = 0.
As degy H j < degy F , by Proposition 3.4, if H j ̸= 0 then we can write H j =

δ j
bδ j F

δ j0
0 · . . . · F

δ jg
g with bδ j ∈ C and there exist non-negative integers γ j0, . . . , γ jg

or j = 1, 2 such that

I (F, H j ) = I (F, F
γ j0
0 · . . . · F

γ jg
g ).

Denoting Coeff(R(t), tk) the coefficient of tk in R(t) ∈ C{t}, by Lemma 5.6, for any
≥ I (F, H1) + vi + vg we obtain that

Coeff(ϕ∗

a (H1ωig), tk) = pk(aβg , . . . , akig−1) + rk · a
γ1g
βg

· akig (15)

ith rk ∈ C∗ and kig := k − I (F, H1) − vi − vg + βg + 1.
For each

∏g
l=0 F δ2l

l in H2, let us denote

mδ2 = max
0≤l≤g

{l; δ2l ̸= 0} and Iδ2 = I

(
F,

g∏
F δ2l

l

)
.

l=0
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As Coeff(ϕ∗
a (d H2), tk) =

∑
δ2

Coeff(d(bδ2
∏g

l=0 F δ2l
l (ϕa)), tk), by Corollary 5.4, for

≥ Iδ2 we get

Coeff(d(bδ2

g∏
l=0

F δ2l
l (ϕa)), tk) ∈ C[aβg , . . . , aθδ2 ] with θδ2 := k − Iδ2 + βmδ2

+ 1.

But βmδ2
≤ βg and Iδ2 ≥ I (F, H2) > I (F, H1) + vi + vg for any δ2, so

θδ2 = k − Iδ2 + βmδ2
+ 1 < k − I (F, H1) − vi − vg + βg + 1 = kig

nd, by (15), we obtain that

Coeff(ϕ∗

a (H1)ϕ∗

a (ωig) + ϕ∗

a (d H2), tk) = Pk(aβg , . . . , akig−1) + rk · a
γ1g
βg

· akig ,

or some polynomial Pk(aβg , . . . , akig−1) (admitting H2 = 0).
Remark that ordt (ϕ∗

a (ω)) ≥ min{ordt (ϕ∗
a (H1ωig)), ordt (ϕ∗

a (d H2))} ≥ I (F, H1) + vi +

g . In this way, ϕ∗
a (ω) = ϕ∗

a (H1)ϕ∗
a (ωig) +ϕ∗

a (d H2) = 0 is equivalent to solve the system

Pk(aβg , . . . , akig−1) + rk · a
γ1g
βg

· akig = 0

or all k ≥ I (F, H1) + vi + vg . Such a solution exists and it can be obtained by the
ecurrence relation

akig = −
Pk(aβg , . . . , akig−1)

rk · a
γ1g
βg

, (16)

since rk, aβg ∈ C∗.
In particular, taking k = I (F, H1) + vi + vg =: k0 in the above expression we get

aβg+1 = −

(
rk0 · a

γ1g
βg

)−1
· Pk0 (aβg ) ∈ C(aβg )

we vanish the coefficient of tk0 in ϕ∗
a (ω).

Using the previous recurrence relation, we can vanish all terms in ϕ∗
a (ω) setting the

parameters ai in ϕa(t) as a rational function in C(aβg ). Hence, considering the parameter
u := aβg ∈ C \ {0} we get the family of parameterizations

ψu(t) :=

⎛⎝tβ0 ,
∑

β1≤ j<βg

c j t j
+ utβg +

∑
j>βg

s j (u)t j

⎞⎠ ,
with s j (u) := a j ∈ C(u) obtained in (16) and satisfying ψ∗

u (ω) = 0. As ψu(t) defines a
family of plane branches with the same characteristic exponents of CF , every element in
the family is topologically equivalent to CF . This allows us to conclude that the foliation
defined by ω = 0 is dicritical in the last triple point Tg of the dual graph G(CF ). ■

If we change F by a semiroot F j+1 for 0 ≤ j < g in the previous theorem, then we
can describe 1-forms that define dicritical foliations in any triple point T j of the dual
graph G(CF ).

As before, we consider {F0, F1, . . . , Fg, Fg+1 = F} the canonical system of semi-
roots of F , ΓF = ⟨v0, v1, . . . , vg⟩ and {β0, β1, . . . , βg} the value semigroup and the
characteristic exponents of C , respectively.
F
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Corollary 3.8. Let Fω be the singular holomorphic foliation defined by ω = H1ωi j +

H2 for some 0 ≤ i < j ≤ g, where Hl ∈ C{x}[y], degy Hl < degy F j+1 =
v0
e j

with
= 1, 2, H1 ̸= 0 and H2 ∈ ⟨x, y⟩. The foliation Fω is dicritical in the triple point T j of

he dual graph G(CF ) if and only if

I (F, H1) + vi + v j < I (F, H2).

oreover, Fω admits a family of separatrices parameterized by

ψu(t) =

⎛⎜⎜⎝t
β0
e j ,

∑
β1≤l<β j

cl t
l

e j + ut
β j
e j +

∑
l>

β j
e j

sl(u)t l

⎞⎟⎟⎠ , (17)

with u ∈ C∗ and sl(u) ∈ C(u).

Proof. Notice that {F0, F1, . . . , F j , F j+1} is the canonical system of semiroots for F j+1.
So, by (9), the value semigroup and the characteristic exponents of CF j+1 are respectively,

F j+1 = ⟨
v0
e j
, . . . ,

v j
e j

⟩ and
{
β0
e j
, . . . ,

β j
e j

}
, where e j = GC D(v0, . . . , v j ). In addition,

I (F j+1, Fl) =
vl
e j

=
I (F,Fl )

e j
for every 0 ≤ l ≤ j .

By Proposition 3.4 any Hl ∈ C{x}[y] with degy Hl < degy F j+1 and l = 1, 2
can be expressed by Hl =

∑
δ bδl F δl0

0 · . . . · F
δl j
j ∈ C{x, y} with I (F j+1, Hl) =

I (F j+1, Fγl0
0 · . . . · F

γl j
j ) for some non-negative integers γl0, . . . , γl j . So,

I (F j+1, Hl) = γl0 ·
v0

e j
+ · · · + γl j ·

v j

e j
=
γl0 · v0 + · · · + γl j · v j

e j
=

I (F, Hl)
e j

.

Consequently, I (F j+1, H1) +
vi
e j

+
v j
e j
< I (F j+1, H2) if and only if I (F, H1) + vi + v j <

I (F, H2).
Hence, with similar arguments as in the previous theorem, we get that if Fω is

icritical in the triple point T j , then the condition I (F j+1, H1) +
vi
e j

+
v j
e j
< I (F j+1, H2)

must be fulfilled.
Considering the family given by parameterizations

ϕa(t) =

⎛⎜⎜⎝t
β0
e j ,

∑
β1≤l<β j

cl t
l

e j +

∑
l≥

β j
e j

al t l

⎞⎟⎟⎠ (18)

with a β j
e j

̸= 0 and proceeding with the same analysis on the coefficients of ϕ∗
a (ω) as in

he previous theorem, in order to obtain ϕ∗
a (ω) = 0, for all k ≥ I (F j+1, H1) +

vi
e j

+
v j
e j

e must have

Pk

(
a β j , . . . , aki j −1

)
+ rk · a

γ1 j
β j

· aki j = 0 (19)

e j e j
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where ki j := k − I (F j+1, H1) −
vi
e j

−
v j
e j

+
β j
e j

+ 1 and rk ∈ C∗. Hence, we obtain the
recurrence relation

aki j = −

(
rk · a

γ1 j
β j
e j

)−1

· Pk

(
a β j

e j

, . . . , aki j −1

)
.

In this way, the corollary follows from the previous theorem considering the curve
F j+1 , u := a β j

e j

∈ C∗ and al = sl(u) ∈ C(u) for l > β j
e j

. ■

Notice that Theorem 3.7 and Corollary 3.8 give us a constructive and effective method
o present dicritical foliations in a given triple point in the dual graph of a plane branch
nd to describe parameterizations for the separatrices in such dicritical component up to
he desired order.

emark 3.9. Given ω = H1ωi j + d H2 satisfying the hypothesis of the previous
orollary and I (F, H1) =

∑ j−1
l=0 γ1lvl , that is, γ1 j = 0 then, in (19), we obtain

Pk(a β j
e j

, . . . , aki j −1) + rk · aki j = 0 and consequently, ai is a polynomial in a β j
e j

for any

>
β j
e j

, since rk is a non-zero constant. In this case, we obtain an extra separatrix for Fω
taking a β j

e j

with a (not necessarily primitive) parameterization

ψ0(t) =

⎛⎜⎜⎝t
β0
e j ,

∑
β1≤l<β j

cl t
l

e j +

∑
l>

β j
e j

sl(0)t l

⎞⎟⎟⎠
and not topologically equivalent to CF j+1 .

It is immediate that any irreducible factor H ∈ C{x, y} of H1 and H2 define a
separatrix for Fω. In addition, if Fi (respectively F j ) divides H2, then Fi (respectively
F j ) is a separatrix for Fω.

The following examples illustrate the above results.

Example 3.10. Let us consider the plane branch CF with semigroup Γ = ⟨6, 9, 22⟩ as
n Example 3.6. Recall that the characteristics exponents of CF are β0 = 6, β1 = 9 and
2 = 13.

• Notice that ζ1 = (6xy)dy − (9y2
+ 5x4)dx = y · ω01 − d(x5) satisfies

24 = 9 + 6 + 9 = I (F, H1) + v0 + v1 < I (F, H2) = 30,

consequently by Corollary 3.8, Fζ1 is dicritical admitting a family of separatrices
in the first triple point of G(CF ) parameterized by

ψu(t) =

(
t2, ut3

+
5

6u
t5

−
25

72u3 t7
+

125
432u5 t9

+

∑
i≥11

q1,i (u)t i

)
with q1,i (u) ∈ C[u−1]. Moreover, by Example 3.2, Fζ1 also admits the separatrices
(0, t),

(
t,

√
15 t2

)
and

(
t,−

√
15 t2

)
.
3 3
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• Taking ζ2 = x(12y2
− 12x2 y + x5)dy + 2y(2x3

+ 10x2 y + x4
− 11y2

+ 3x5)dx =

y · ω02 + d(x6 y) we have

37 = 9 + 6 + 22 = I (F, H1) + v0 + v2 < I (F, H2) = 45.

So, by Theorem 3.7, Fζ2 is a dicritical foliation in the last triple point of G(CF ).
Moreover, the family

ψu(t) =

⎛⎝t6, t9
+ t12

+ ut13
−

u2

2
t17

+

(
−

15
32

+
u3

2

)
t21

−
1
44

t24
+

∑
i≥25

q2,i (u)t i

⎞⎠
with q2,i (u) ∈ C[u] describe separatrices for Fζ2 . Others separatrices for Fζ2 are
(0, t), (t, 0) and, by Remark 3.9, ψ0(t) =

(
t6, t9

+ t12
−

15
32 t21

−
1
44 t24

+
∑

i≥9 q2,i

(0)t3i ), that is,(
t2, t3

+ t4
−

15
32

t7
−

1
44

t8
+

∑
i≥9

q2,i (0)t i

)
.

• Considering

ζ3 =

(
2x(11x3

− 11x4
− 2y2) + y

(
227
10

x3
+

33
5

y2
−

99
10

x2 y +
33
10

x4
))

dy

+ xy
(

33
20

y + 9x
)

(−3x − 4y + 4x2)dx

we can write ζ3 = x · ω12 + d
( 33

20 y2 F2
)

with F2 = y2
− x3

− 2x2 y + x4. As

37 = 6 + 9 + 22 = I (F, H1) + v1 + v2 < I (F, H2) = 2 · 9 + 22 = 40

the previous results ensure that Fζ3 is dicritical in the last triple point of G(CF ) and

ψu(t) =

(
t6, t9

+ t12
− ut13

+
35
18

u2t17
+

473
180

ut19
−

748
189

u2t20
+

∑
i≥21

q3,i (u)t i

)
define separatrices for Fη3 . By Remark 3.9, the curves (t, 0) and ψ0(t) = (t2, t3

+t4)
(that is, the curve defined by F2 = y2

− x3
− 2x2 y + x4) are also separatrices for

Fζ3 .

Let CF be the plane branch with semigroup Γ = ⟨6, 9, 22⟩ as in Example 3.6 and

ζ = (6xy)dy − (9y2
+ 4x3)dx = y · ω01 − d(x4).

n this case 24 = 9 + 6 + 9 = I (F, H1) + v0 + v1 = I (F, H2) and the foliation Fζ is
ot dicritical. The unique separatrix of the foliation Fζ is the curve x = 0. Note that Fζ
s not a second type foliation: there is a saddle–node singularity in one of the corners of
ts reduction of singularities (see [18]).

. Analytical invariants of CF and dicritical foliations

As before, CF is a plane branch defined by a Weierstrass polynomial F ∈ C{x}[y]
ith mult(F) = v admitting a parameterization ϕ(t) = (x(t), y(t)). Considering
0
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ϕ∗
: C{x, y} → C{t} defined by ϕ∗(H ) = H (x(t), y(t)) we have that kerϕ∗

= ⟨F⟩

nd I mϕ∗
= C{x(t), y(t)}. So, we obtain the exact sequence of C-algebras

{0} → ⟨F⟩ ↪→ C{x, y} → C{x(t), y(t)} → {0}.

n this way, the local ring of CF is O :=
C{x,y}

⟨F⟩
∼= C{x(t), y(t)} ⊂ C{t} =: O where O

enotes the integral closure of O in its field of fractions.
Let ν : O → Z≥0 ∪ {∞} be the discrete normalized valuation given by ν(p(t)) =

ordt (p(t)) for p(t) ∈ C{t} (ν(0) = ∞) and denote ν(H ) = ν(ϕ∗(H )) for H ∈ C{x, y}.
In this way, the value semigroup of CF is given by ΓF = ν(O). In addition, the conductor
ideal (O : O) := {h ∈ O; hO ⊆ O} of O in O satisfies (O : O) = ⟨tµF ⟩, that is, if
p(t) ∈ C{t} is such that ν(p(t)) ≥ µF , then there exists H ∈ C{x, y} with ϕ∗(H ) = p(t).
he integer µF is called the conductor of ΓF .

If H ∈ ⟨x, y⟩ by (7) we get ordt (ϕ∗(d H )) = ν(H )−1, that is, ordt (ϕ∗(d H ))+1 ∈ ΓF .
n this way, given ω ∈ Ω1 such that ϕ∗(ω) ̸= 0 we define the value of ω as ν(ω) :=

rdt (ϕ∗(ω)) + 1. Setting ν(ω) = ∞ if ϕ∗(ω) = 0, we define

ΛF :=
{
ν(ω); ω ∈ Ω1}

⊇ ΓF \ {0}.

emark 4.1. The set ΛF ⊂ N is an analytic invariant for CF and it is the main ingredient
for the analytic classification of plane branches presented in [15] (see [16] for an extended
version).

In particular, the set ΛF allows us to identify terms in a parameterization of CF that can
be eliminated by change of parameter and coordinates. More specifically, by Proposition
1.3.11 and Theorem 1.3.9 in [16], given a plane branch CF with Puiseux parameterization(

tv0 ,
∑

i>v0
ai t i

)
if there exists ω = Adx + Bdy ∈ Ω1 with ν(ω) = k + v0, A ∈ ⟨x, y⟩

2

nd B ∈ ⟨x2, y⟩ then CF is analytically equivalent to a plane branch with parameterization
tv0 ,

∑
i>v0

bi t i
)

where bi = ai for i < k and bk = 0.

We can define ΛF by means the O-module of Kähler differentials of O (or CF ), that
is,

ΩO := ΩO/C =
Odx + Ody

O(Fx dx + Fydy)
∼=

Ω1

F(CF )
,

where F(CF ) := F · Ω1
+ C{x, y} · d F .

If η ∈ F(CF ) then ϕ∗(η) = 0 and ϕ∗(ω + η) = ϕ∗(ω) for any ω ∈ Ω1. Thus, given
ω = ω+F(CF ) ∈ ΩO we can define ϕ∗(ω) := ϕ∗(ω) and ν(ω) := ν(ω). For any singular

lane branch, the torsion submodule T := {ω ∈ ΩO; hω = 0 for some h ∈ O \ {0}} ⊂

O is non trivial and we can rewrite T = {ω ∈ ΩO; ϕ∗(ω) = 0}. In particular, we have
ΩO
T

∼= ϕ∗(ΩO) = ϕ∗(Ω1) ⊂ C{t} and ΛF = {ν(ω); ω ∈ ΩO \T } (see Section 7.1 in [13]
and [14]).

There exists a finite subset L = {ℓ1, . . . , ℓk} ⊂ ΛF such that any ℓ ∈ ΛF can
be expressed as ℓ = ℓi + γ for some γ ∈ ΓF and ℓi ∈ L , that is, the set ΛF

s a finitely generated ΓF -monomodule. A set G = {ω1, . . . , ωk} ⊂
ΩO
T such that

(ωi ) = ν(ωi ) = ℓi ∈ L is a set of generators for ΩO
T as O-module and it is called

a Standard Basis of ΩO .
T
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Fixing a minimal set of generators L for ΛF , that is, L is a set of generators for ΛF (as
ΓF -monomodule) and ℓi ̸∈ ℓ j +ΓF for ℓi , ℓ j ∈ L and i ̸= j , we call G = {ωi ; ν(ωi ) ∈ L}

Minimal Standard Basis for ΩO
T . In [14] we provide an algorithm to compute a

minimal) Standard Basis G for ΩO
T by means a parameterization ϕ(t) and in Section

.3 of [13] we describe a method to obtain G using F .

emark 4.2. The set ΛF determines and it is determined by the values of elements in
he Jacobian ideal JF := ⟨Fx , Fy⟩ in O. In fact, we have the isomorphism (as O-module)

Ψ : OFy + OFx → ϕ∗(ΩO) ∼=
ΩO
T

AFy + B Fx ↦→ ϕ∗(Adx − Bdy).

Notice that 0 = d F = Fx dx + Fydy ∈ ΩO then given ω = Adx − Bdy ∈ ΩO we
have that

Fyω = (AFy + B Fx )dx − Bd F = (AFy + B Fx )dx (in ΩO).

s F ∈ C{x}[y] is a Weierstrass polynomial with mult(F) = v0, then ν(Fy) = µF+v0−1
see Corollary 7.16 in [12]) and ν(dx) = v0. Thus, by the above expression, we get
(AFy + B Fx ) = ν(Fyω) − v0 = µF − 1 + ν(ω). In this way,

ν(JF ) = ν(OFx + OFy) = µF − 1 + ΛF .

ol, in [20], generalizes this result for a reduced complete intersection curve.

Notice that if ℓ is an element of a minimal set of generators L for ΛF , then any ω =

Adx+Bdy ∈ Ω1 such that ν(ω) = ℓ defines a foliation, that is, GC D(A, B) = 1. Indeed,
f A = A1G and B = B1G with G ∈ ⟨x, y⟩ then ℓ = ν(ω) = ν(G) + ν(A1dx + B1dy)
hat is a contradiction by minimality of L .

Let ω = P1dx + P2dy ∈ Ω1. By the Weierstrass Division Theorem we can express
P2 = Q2 Fy + A2 and P1 − Q2 Fx = Q1 F + A1, where Q1, Q2 ∈ C{x, y}, A1, A2 ∈

{x}[y], degy(A1) < degy(F) = v0 and degy(A2) < degy(Fy) = v0 − 1. Thus

ω = P1dx + P2dy = A1dx + A2dy + F Q1dx + Q2d F.

s F Q1dx + Q2d F ∈ F(CF ) we get ν(ω) = ν(A1dx + A2dy) and consequently

ΛF = {ν(Adx +Bdy); A, B ∈ C{x}[y] with degy(A) < v0 and degy(B) < v0−1}.

(20)

Using Corollary 3.8, we can relate elements of ΛF with the contact of CF and a curve
orresponding to a particular element of the family ψu(t) as in (17).

For commodity to the reader we recall some results concerning the contact and the
ntersection multiplicity of plane curves (see [12] or [22]).

Consider two irreducible plane curves CF and CG with Puiseux parameterizations given
espectively by (tv0 , φ(t)) and (tv

′
0 , φ′(t)). The contact c(CF , CG) of CF and CG is defined

y

c(CF , CG) = max
γ,δ

ordt (φ(γ tv
′
0 ) − φ′(δtv0 ))
v0v

′

0

where γ, δ ∈ C with γ v0 = 1 = δv
′
0 .
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In what follows we take parameterizations of CF and CG such that the maximum in
he previous expression is achieved.

Remark that, by definition, the series φ(tv
′
0 ) and φ′(tv0 ) coincide up to the order

(CF , CG)v0v
′

0 − 1. In addition, for any irreducible plane curve CH we have that

c(CF , CH ) ≥ min{c(CF , CG), c(CH , CG)}

and the two smallest numbers among these three coincide.
Let βi , ei , ni and vi be the integers defined at the beginning of Section 2, related to

he branch CF . We indicate by β ′

i , e′

i , n′

i and v′

i the respective integers for CG .
The contact of two branches CF and CG is related to the intersection multiplicity

I (F,G) in the following way (see [19]):
If c(CF , CG) < β1

v0
, then I (F,G) = c(CF , CG)v0v

′

0. Moreover βq
v0

≤ c(CF , CG) < βq+1
v0

for some q ∈ {1, . . . , g} if and only if
I (F,G)
v′

0
=

nqvq + v0 · c(CF , CG) − βq

n0 · . . . · nq
. (21)

Let us consider ω = H1ωi j + d H2 with 0 ≤ i < j ≤ g satisfying the hypothesis of
orollary 3.8, that is, ω defines a dicritical foliation in the j th triple point of the dual
raph of CF and Fω admits a family of separatrices parameterized by ψu(t) as (17).

Let Fu ∈ C{x}[y] be the irreducible Weierstrass polynomial such that Fu(ψu(t)) = 0.
n particular, CFu and CF j+1 are topologically equivalent and consequently they admit the

ame characteristic exponents
{
β ′

0 :=
β0
e j
, . . . , β ′

j :=
β j
e j

}
and the same value semigroup

v′

0 :=
v0
e j
, . . . , v′

j :=
v j
e j

⟩.

Remark 4.3. Notice that
β ′

j
v′0

=
β j
v0

≤ c(CF , CFu ) ≤
β j+1
v0

for any u ∈ C∗ and, by (17),
β ′

j
v′0

=
β j
v0

= c(CF , CFu ) if and only if u ̸= cβ j . In fact, if β j+1
v0

< c(CF , CFu ) then in ψu(t)

we should have a term with exponent
β j+1v

′
0

v0
=

β j+1
e j

̸∈ Z≥0, that is an absurd.

By above remark, for any u ̸= cβ j we conclude, by (21), that

I (F, Fu) =
v′

0n jv j

n0 · . . . · n j
=
v′

0n jv j
v0
e j

=
v′

0n jv j

v′

0
= n jv j .

So, for u = cβ j the curve CFu has a special behavior. In order to simplify the notations
e denote

ψ⋆(t) := ψcβ j
(t) and F⋆ := Fcβ j

. (22)

If F is not a separatrix of ω, that is, ∞ ̸= ν(ω) ∈ ΛF , then we can relate c(CF , CF⋆ )
and ν(ω).

Theorem 4.4. Given ω = H1ωi j + d H2 with 0 ≤ i < j ≤ g such that I (F, H1) + vi +

v j < I (F, H2), where Hl ∈ C{x}[y], degy Hl < degy F j+1 =
v0
e j

for l = 1, 2, H1 ̸= 0
and H2 ∈ ⟨x, y⟩ we have

c(CF , CF⋆ ) =
ν(ω) − I (F, H1) − vi − v j + β j

.

v0
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Proof. Given ω = A(x, y)dx + B(x, y)dy ∈ Ω1, φ(t) = (x(t), y(t)) ∈ C{t} × C{t} and
∈ Z>0 we denote

(ωφ)(t) = A(x(t), y(t))x ′(t) + B(x(t), y(t))y′(t) = φ∗(ω);

(ωφ)(tn) = A(x(tn), y(tn))x ′(tn) + B(x(tn), y(tn))y′(tn);

ω(φ(tn)) = A(x(tn), y(tn))(x(tn))′ + B(x(tn), y(tn))(y(tn))′ = ntn−1(ωφ)(tn).

onsequently,

Coeff((ωφ)(tn), tkn) = Coeff((ωφ)(t), tk)
ntn−1Coeff((ωφ)(tn), tkn) = Coeff(ω(φ(tn)), tn(k+1)−1). (23)

By the proof of Corollary 3.8, for any member of the family ϕa(t), given in (18), we
btain that Coeff((ωϕa)(t), tk) ∈ C[aβ ′

j
, . . . , aϵ] where ϵ = k − I (F j+1, H1) + β ′

j − v′

j −

′

i + 1. So, by (23), the coefficients of terms with order up to ϵ in ϕa(t), or equivalently,
he coefficients of terms with order up to v0ϵ in ϕa(tv0 ) determine all coefficients of terms
ith order up to

ϵ + I (F j+1, H1) − β ′

j + v′

j + v′

i − 1 in (ωϕa)(t);
v0(ϵ + I (F j+1, H1) − β ′

j + v′

j + v′

i − 1) in (ωϕa)(tv0 );
v0(ϵ + I (F j+1, H1) − β ′

j + v′

j + v′

i ) − 1 in ω(ϕa(tv0 )).

As ψ⋆(tv0 ) is a member of the family ϕa(tv0 ) and Coeff((ωψ⋆)(t), tk) = 0 for all
, by (23), we have that Coeff((ωψ⋆)(tv0 ), tk) = 0 for all k. But ψ⋆(tv0 ) and ϕ(tv

′
0 )

oincide up to the order v0v
′

0c(CF , CF⋆ ) − 1 and 0 ̸= Coeff(ψ⋆(tv0 ), tv0v
′
0c(CF ,CF⋆ )) ̸=

Coeff(ϕ(tv
′
0 ), tv0v

′
0c(CF ,CF⋆ )), then

0 = Coeff(ω(ψ⋆(tv0 )), tk) = Coeff(ω(ϕ(tv
′
0 )), tk)

for all

k < v0(v′

0c(CF , CF⋆ ) + I (F j+1, H1) − β ′

j + v′

j + v′

i ) − 1 = v0v
′

0c(CF , CF⋆ )

+ v′

0(I (F, H1) − β j + v j + vi ) − 1,

recall that v′

l =
vl
e j

, β ′

l =
βl
e j

for 0 ≤ l ≤ j and I (F,H1)
e j

= I (F j+1, H1).

Moreover, we get Coeff(ω(ϕ(tv
′
0 )), tk) ̸= 0 for k = v0v

′

0c(CF , CF⋆ )+v
′

0(I (F, H1)−β j +

j + vi ) − 1. So, by (23), k = v′

0(ordt ((ωϕ)(t))) + v′

0 − 1, that is, k = v′

0(ordt ((ωϕ)(t)) +

) − 1 = v′

0ν(ω) − 1.
In this way, v′

0ν(ω) − 1 = k = v0v
′

0c(CF , CF⋆ ) + v′

0(I (F, H1) − β j + v j + vi ) − 1, that
s,

c(CF , CF⋆ ) =
ν(ω) − I (F, H1) − vi − v j + β j

v0
.

■

Let us illustrate the previous theorem.
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Example 4.5. Let CF be a plane branch with semigroup Γ = ⟨6, 9, 22⟩ and Puiseux
arameterization ϕ(t) = (t6, t9

+ t12
+ 2t13) as in Example 3.10.

Considering ζ1 = y · ω01 − d(x5) we have ν(ζ1) = 27. In this case u = cβ1 = 1,

ψ⋆(t) =

(
t2, t3

+
5
6

t5
−

25
72

t7
+ h.o.t.

)
and

c(CF , CF⋆ ) =
ν(ζ1) − I (F, y) − v0 − v1 + β1

6
= 2.

For ζ2 = y · ω02 + d(x6 y) we have ν(ζ2) = 41, u = cβ2 = 2,

ψ⋆(t) =
(
t6, t9

+ t12
+ 2t13

− 2t17
+ h.o.t.

)
and

c(CF , CF⋆ ) =
ν(ζ2) − I (F, y) − v0 − v2 + β2

6
=

17
6
.

Given ζ3 = x · ω12 + d
( 33

20 y2 F2
)

we get ν(ζ3) = 41, u = −cβ2 = −2,

ψ⋆(t) =

(
t6, t9

+ t12
+ 2t13

+
70
9

t17
+ h.o.t.

)
and

c(CF , CF⋆ ) =
ν(ζ3) − I (F, x) − v1 − v2 + β2

6
=

17
6
.

By (21) we can determine the intersection multiplicity I (F, F⋆) by means the contact
c(CF , CF⋆ ) and consequently, by Theorem 4.4, we can relate I (F, F⋆) and ν(ω).

Corollary 4.6. With the previous notations, we have

I (F, F⋆) = ν(ω) − I (F, H1) + (n j − 1)v j − vi .

In particular, if g = 1 then ν(ω) = I (F, H1 · F⋆) − (µF − 1).

Proof. By Remark 4.3, we have β j
v0
< c(CF , CF⋆ ) ≤

β j+1
v0

.

If c(CF , CF⋆ ) ̸=
β j+1
v0

, by (21), we get

I (F, F⋆) = v′

0 ·

(
n jv j + v0 · c(CF , CF⋆ ) − β j

n0 · . . . · n j

)
= ν(ω)− I (F, H1)+(n j −1)v j −vi ,

where the last equality is obtained by Theorem 4.4 remembering that n0 · . . . · n j =
v0
e j

=

v′

0.
If c(CF , CF⋆ ) =

β j+1
v0

, then by previous theorem we have β j+1 = ν(ω) − I (F, H1) −

vi −v j +β j that is, by (4), ν(ω)− I (F, H1)+ (n j −1)v j −vi = v j+1. On the other hand,
by (21), we obtain

I (F, F⋆) = v′

0 ·

(
n j+1v j+1 + β j+1 − β j+1

n0 · . . . · n j+1

)
= v j+1

hat gives us the result.
In particular, if g = 1, we have i = 0 and j = g = 1. So, by (6) we have

ν(ω) = I (F, H1 · F⋆) − (n1 − 1)v1 + v0 = I (F, H1 · F⋆) − (µF − 1). ■

If the value semigroup of CF is ΓF = ⟨v0, v1⟩, that is, g = 1 then Lemma 3.1 ensures
that any 1-form η = Adx + Bdy ∈ Ω1 can be written as η = P ω + d P with
1 01 2
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P1, P2 ∈ C{x, y}. Considering Pi = Qi F+Hi such that Qi ∈ C{x, y} with Hi ∈ C{x}[y]
nd degy(Hi ) < degy(F) = v0 we have η = H1ω01 +d H2 + F · (Q1ω01 +d Q2)+ Q2d F .

In this way, for any η ∈ Ω1 there exists ω = H1ω01 + d H2 with Hi ∈ C{x}[y]
nd degy(Hi ) < degy(F) = v0 for i = 1, 2 such that ν(η) = ν(ω). Moreover, if
(ω) ∈ ΛF \ ΓF then

I (F, H2) = ν(d H2) ≥ ν(H1 · ω01) = I (F, H1) + ν(ω01) > I (F, H1) + v1 + v0.

hat is, if ν(ω) ∈ ΛF \ ΓF and ω defines a foliation, then ω satisfies the hypothesis of
heorem 3.7.

orollary 4.7. Let CF be a plane branch with value semigroup ΓF = ⟨v0, v1⟩. If an
lement ℓ ∈ ΛF \ ΓF belongs to a minimal set of generators for ΛF , then there exists a
icritical foliation Fω in the triple point of G(CF ) defined by ω = H1 · ω01 + d H2 ∈ Ω1

ith ν(ω) = ℓ. In particular,

ν(ω) + µF − 1 = I (F, H1 · F⋆) = I
(

F,
ω ∧ d F
dx ∧ dy

)
,

here F⋆ is defined in (22).

roof. By previous comments, if ℓ ∈ ΛF \ΓF belongs to a minimal set of generators for
F , then there exists ω ∈ Ω1 with ν(ω) = ℓ, satisfying the hypothesis of Theorem 3.7,

hat is, Fω defines a dicritical foliation in the triple point of G(C f ). In particular, by
orollary 4.6 and Remark 4.2, we get ν(ω) + µF − 1 = I (F, H1 · F⋆) = I

(
F, ω∧d F

dx∧dy

)
.

■

The above result guarantees that for plane branches with value semigroup ΓF =

⟨v0, v1⟩, the minimal generators for ΛF , distinct of v0 and v1, can be obtained considering
icritical foliations in the triple point of G(CF ).

The previous corollary was obtained by Cano, Corral and Senovilla-Sanz in [9] by
ther methods.

.1. The Zariski invariant of CF

Now we return to the general case, that is, plane branches CF with value semigroup
F = ⟨v0, . . . , vg⟩ with g ≥ 1. Without loss of generality, we can assume that CF is

defined by a Weierstrass polynomial F ∈ C{x}[y] satisfying e1 = GC D(v0, v1) < v0 =

I (F, x) < v1 = I (F, y).
In [23], Zariski shows that λ := min(ΛF \ ΓF ) − v0 can be computed directly by a

uiseux parameterization (tβ0 ,
∑

i≥β1
ci t i ) of CF . More precisely,

λ = min{i; ci ̸= 0 and i + v0 ̸∈ ΓF }.

n addition, he proves that ΛF \ ΓF = ∅ if and only if CF is analytically equivalent to
G with G = yv0 − xv1 with GC D(v0, v1) = 1. In this case we put λ = ∞.

The exponent λ is called the Zariski invariant of CF . Notice that if λ ̸= ∞ then
v = β < λ ≤ β and λ+ v is a minimal generator for Λ .
1 1 2 0 F
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In what follows we present an alternative way to obtain the Zariski invariant of a
plane branch using dicritical foliations in the first triple point of the dual graph G(CF )
s described in Corollary 3.8.

emma 4.8. If λ is the Zariski invariant of a plane branch CF with semigroup
F = ⟨v0, . . . , vg⟩, then there exist H1, H2 ∈ C{x}[y] with degy Hl < n1 =

v0
e1

, H1

unit and v0 + v1 < I (F, H2) such that ν(H1ω01 + d H2) = λ+ v0.

roof. If λ = ∞ then ΛF = ΓF \ {0} with Γ = ⟨v0, v1⟩, that is, e1 = GC D(v0, v1) = 1
nd in this case v0 + v1 < ν(ω01) ∈ ΓF \ {0}. Then, by (20), there exists G1 ∈

x, y⟩ ∩ C{x}[y] with degyG1 < v0 such that ν(ω01) = ν(dG1) < ν(ω01 − dG1) ∈ ΓF .
In the same way, we obtain G2, . . . ,Gs ∈ ⟨x, y⟩ ∩ C{x}[y] satisfying µF ≤ ν(ω01 −
s
i=1 dG i ) ∈ ΓF consequently, as (O : O) = ⟨tµF ⟩, there exists G ∈ ⟨x, y⟩ ∩ C{x}[y]

uch that ϕ∗(dG) = ϕ∗(ω01 −
∑s

i=1 dG i ), that is, ω = ω01 − d(G +
∑s

i=1 G i ) satisfies
∗(ω) = 0 or equivalently ω∧d F

dx∧dy ∈ ⟨F⟩. Hence, the result is obtained taking H1 = 1 and
H2 = −(G +

∑s
i=1 G i )

If ∞ ̸= λ + v0 = ν(η), then by Lemma 3.1, we can express η = A1ω01 + d A2 with
A1, A2 ∈ C{x, y}. Considering a 2-semiroot F2 ∈ C{x}[y] (recall that F2 = F if e1 = 1)
we write Ai = Bi F2 + Hi , degy Hi < degy F2 =

v0
e1

and

η = H1ω01 + d H2 + B2d F2 + F2 · (d B2 + B1ω01).

As λ ≤ β2, it follows by (4) that λ + v0 < v2 ≤ ν(B2d F2 + F2 · (d B2 + B1ω01)). So,
+ v0 = ν(ζ ) where ζ := H1ω01 + d H2 and, without loss of generality H2 can be

onsidered a non unit, that is, H2 ∈ ⟨x, y⟩.
We must have I (F, H2) > I (F, H1) + v0 + v1. Indeed, if I (F, H2) ≤ I (F, H1) + v0 +

1 < ν(H1ω01), then λ + v0 = ν(ζ ) = ν(d H2) ∈ ΓF that is a contradiction, because
+ v0 ∈ ΛF \ ΓF .
Notice that I (F, H2) > v0 + v1 implies that H2 ∈ ⟨y2

⟩ + ⟨x, y⟩
3. In particular,

H2)x ∈ ⟨x, y⟩
2 and (H2)y ∈ ⟨x2, y⟩.

Since ζ = (v1 y H1 + (H2)x )dx + (−v0x H1 + (H2)y)dy, if H1 ∈ ⟨x, y⟩ then ζ is
xpressed as Mdx +Ndy with M ∈ ⟨x, y⟩

2 and N ∈ ⟨x2, y⟩. In this way, by Remark 4.1,
he exponent ν(ζ ) − v0 = λ could not be the Zariski invariant of CF . So, H1 is a unit
nd we get the result considering ζ = H1ω01 + d H2. ■

As λ+v0 is a minimal generator for ΛF , any ω ∈ Ω1 such that ν(ω) = λ+v0 defines a
oliation. In this way, by the above lemma and Corollary 3.8, we can compute the Zariski
nvariant for a plane branch CF considering dicritical foliations in the first triple point of

G(CF ) defined by H1ω01+d H2 with H1, H2 ∈ C{x}[y] with degy Hl < n1 =
v0
e1

, H1 a unit
nd v0 +v1 < I (F, H2), or equivalently, dicritical foliations defined by w01 + H−1

1 d H2 =

01+ P1dx + P2dy with ν(P1dx + P2dy) = ν(H−1
1 d H2) = ν(d H2) = I (F, H2) > v0+v1.

Given P1dx + P2dy ∈ Ω1 and considering a 2-semiroot F2 ∈ C{x}[y] of F we may
rite

P = G · (F ) + Q and P − G · (F ) = G F + Q
2 2 2 y 2 1 2 2 x 1 2 1
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with G1,G2 ∈ C{x, y}, Q1, Q2 ∈ C{x}[y] with degy Q1 < degy F2 =
v0
e1

and
egy Q2 < degy(F2)y =

v0
e1

− 1. In this way, we get

w01 + P1dx + P2dy = w01 + Q1dx + Q2dy + G2d F2 + F2G1dx .

If ν(w01 + P1dx + P2dy) = λ+v0, then ν(Q1dx + Q2dy) > v0 +v1 and ν(w01 + Q1dx +

Q2dy) = λ+ v0, because ν(G2d F2 + F2G1dx) ≥ v2 > β2 + v0 ≥ λ+ v0.
Notice that the condition ν(Q1dx + Q2dy) > v0 + v1 is equivalent to consider

Q1 ∈ ⟨x, y⟩
2, multx Q1(x, 0) > v1

v0
and Q2 ∈ ⟨x2, y⟩. In this way, by the previous lemma

and the above comments, λ+ v0 = ν(ω) with ω belonging to the set

D1 =

{
ω01 + Q1dx + Q2dy; Q1 ∈ ⟨x, y⟩

2, Q2 ∈ ⟨x2, y⟩ with
degy Q1 <

v0
e1
, degy Q2 <

v0
e1

− 1 and multx Q1(x, 0) > v1
v0

}
.

Moreover, we have the following result:

roposition 4.9. For any plane branch CF as considered in this subsection

λ = max{ν(ω) − v0; ω ∈ D1}

= max
{

I
(

F,
ω ∧ d F
dx ∧ dy

)
− (µF + v0 − 1); ω ∈ D1

}
.

n particular, λ is determined considering foliations Fω with ω ∈ D1.

roof. By the above comments, there exists ω = ω01 + Q1dx + Q2dy ∈ D1 such that
(ω) = λ+ v0.

The case λ = ∞ is immediate. So, let us consider λ ̸= ∞.
Suppose that there exists η = Adx + Bdy ∈ D1 such that ν(η) > λ+ v0.
If ν(η) ∈ ΛF \ ΓF , by Proposition 1.3.13 in [16], we have that A ∈ ⟨x, y⟩

2 and
B ∈ ⟨x2, y⟩, but this contradicts the fact that η ∈ D1.

If ν(η) ∈ ΓF , by Lemma 1.3.12 in [16], there exists A1dx + B1dy ∈ Ω1 with
A1 ∈ ⟨x, y⟩

2 and B1 ∈ ⟨x2, y⟩ such that ν(η) = ν(A1dx + B1dy) < ν(η− A1dx − B1dy).
roceeding in this way we obtain P1 ∈ ⟨x, y⟩

2 and P2 ∈ ⟨x2, y⟩ such that η − P1dx −

P2dy ∈ D1 satisfies

ν(η − P1dx − P2dy) ∈ ΛF \ ΓF or ν(η − P1dx − P2dy) = ∞.

s before ν(η− P1dx − P2dy) ∈ ΛF \ΓF contradicts the fact that η− P1dx − P2dy ∈ D1.
n the other hand, if ν(η − P1dx − P2dy) = ∞, as η ∈ D1 there exist Q1 ∈ ⟨x, y⟩

2

nd Q2 ∈ ⟨x2, y⟩ with multx Q1(x, 0) > v1
v0

such that η = ω01 + Q1dx + Q2dy, then
ω01 = (P1 − Q1)dx + (P2 − Q2)dy with P1 − Q1 ∈ ⟨x, y⟩

2 and P2 − Q2 ∈ ⟨x2, y⟩, that
is an absurd.

Hence, λ + v0 = max{ν(ω); ω ∈ D1} and, by Remark 4.2, ν(ω) + µF − 1 =

ν
(
ω∧d F
dx∧dy

)
= I

(
F, ω∧d F

dx∧dy

)
that concludes the proof. ■

For plane branches with semigroup ⟨v0, v1⟩, the previous result was obtained by
Gómez–Martı́nez in [11], where foliations defined by an element in D1 are called
dicritical cuspidal foliations.
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5. Technical lemmas

In what follows, given S(t) =
∑

i≥i0
ai t i

∈ C{t} we denote Coeff(S(t), tk) := ak , that
s, the coefficient of tk in S(t). In particular, if H ∈ C{x, y} and ψ(t) = (t i0 ,

∑
i≥i1

di t i )
then Coeff(ψ∗(H ), tk) depends polynomially on the coefficients di1 , . . . , dik for some

k ≥ i1. In this case, we write Coeff(ψ∗(H ), tk) = p(di1 , . . . , dik ) ∈ C[di1 , . . . , dik ]. If

k < i1 then we assume that C[di1 , . . . , dik ] is C.
Let CF be a plane branch with semigroup ΓF = ⟨v0, v1, . . . , vg⟩ and a canonical

ystem of semiroots {F0, F1, . . . , Fg, Fg+1 = F} as in Proposition 3.3 with

ϕi (t) =

⎛⎝t
β0

ei−1 ,
∑

β1≤ j<βi

c j t
j

ei−1

⎞⎠ and ϕ(t) =

⎛⎝tβ0 ,
∑
j≥β1

c j t j

⎞⎠
parameterizations of CFi i = 1, . . . , g and CF = CFg+1 , respectively.

Lemma 5.1. For each k ≥ vi and i = 1, . . . , g, we have Coeff(ϕ∗(Fi ), tk) ∈

[cβ1 , . . . , ck−vi +βi ] of degree 1 in ck−vi +βi .

roof. For 1 ≤ i ≤ g, we take Fi as in (10), then we have

ϕ∗(Fi ) =

∏
α∈Umi

⎛⎝∑
j≥β1

c j t j
−

∑
β1≤ j<βi

c jα
j

ei−1 t j

⎞⎠
=

∏
α∈Umi

⎛⎝ ∑
β1≤ j<βi

c j (1 − α
j

ei−1 )t j
+

∑
j≥βi

c j t j

⎞⎠ .
Denoting Gs = {α ∈ C; α

es
ei−1 = 1}, for 0 ≤ s < i , we get

{1} = G i−1 ⊂ G i−2 ⊂ · · · ⊂ G1 ⊂ G0 = {α ∈ C; α
e0

ei−1 = 1} = Umi .

Notice that for each j satisfying β0 ≤ j < βs+1 and α ∈ Gs \Gs+1 we have α
j

ei−1 = 1,
ince es divides j . Thus∑

β1≤ j<βi

c j (1 − α
j

ei−1 )t j
+

∑
j≥βi

c j t j

=

{
cβs+1 (1 − α

βs+1
ei−1 )tβs+1 + h.o.t. if α ∈ Gs \ Gs+1

cβi t
βi + h.o.t. if α ∈ G i−1 = {1},

ith α
βs+1
ei−1 ̸= 1 if α ∈ G \ G (see [12], Lemma 6.8).
s s+1
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w

(

It follows that

ϕ∗(Fi ) =

⎛⎝i−2∏
l=0

∏
α∈Gl\Gl+1

(
(1 − α

βl+1
ei−1 )cβl+1 tβl+1 + h.o.t.

)⎞⎠
·

∏
α∈Gi−1

(cβi t
βi + h.o.t.)

=

i−2∏
l=0

(
bl t

el −el+1
ei−1

βl+1
+ h.o.t.

)
·
(
cβi t

βi + h.o.t.
)

=

(
i−2∏
l=0

bl

)
cβi t

vi + h.o.t.,

(24)

here bl :=
∏
α∈Gl\Gl+1

(1 −α
βl+1
ei−1 )cβl+1 ̸= 0 for l = 0, . . . , i − 2 since cβi ̸= 0, it is easy

to verify that ♯(Gs \ Gs+1) =
es−es+1

ei−1
for 0 ≤ s ≤ i − 1, and the last equality follows by

5) since
∑i−2

l=0
el−el+1

ei−1
βl+1 + βi = vi . In fact, this is a proof that I (F, Fi ) = vi .

In addition, by the previous analysis, we obtain Coeff(ϕ∗(Fi ), tk) ∈ C[cβ1 , . . . , cρ]
with k =

1
ei−1

∑i−2
l=0(el − el+1)βl+1 + ρ, that is, ρ = k − vi + βi and Coeff(ϕ∗(Fi ), tk) is

a polynomial of degree one in ck−vi +βi . More explicitly, we get

Coeff(ϕ∗(Fi ), tk) = Pik(cβ1 , . . . , ck−vi +βi −1) +

(
i−2∏
l=0

bl

)
ck−vi +βi (25)

where Pik(cβ1 , . . . , ck−vi +βi −1) is a homogeneous polynomial. ■

In what follows we consider the family CFa of plane branches topologically equivalent
to CF parameterized as (14), that is

ϕa(t) =

⎛⎝tβ0 ,
∑

β1≤l<βg

cl t l
+

∑
l≥βg

al t l

⎞⎠ ,
where cl is the coefficient of t l in ϕ(t), then it is constant for β1 ≤ l < βg and al is a
complex parameter for l ≥ βg with aβg nonvanishing.

It is immediate that ΓFa = ΓF = ⟨v0, v1, . . . , vg⟩, {F0, F1, . . . , Fg, Fa} and
{F0, F1, . . . , Fg, F} are the canonical system of semiroots of Fa and F , respectively.
In particular, I

(
F,
∏g

i=0 Fγi
i

)
= I

(
Fa,

∏g
i=0 Fγi

i

)
for any nonnegative integers γi .

Remark 5.2. As cl is constant for β1 ≤ l < βg , by Lemma 5.1 or more precisely by
(25), we obtain

Coeff(ϕ∗

a (Fi ), tk) = pik(aβg , . . . , ak−vi +βi −1) + δik · ak−vi +βi

with δik ∈ C∗ for any k ≥ vi and 1 ≤ i ≤ g. In particular, we get

Coeff(ϕ∗(d F ), tk) = (k + 1) · (p (a , . . . , a ) + δ · a ).
a i i,k+1 βg k−vi +βi i,k+1 k−vi +βi +1
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Moreover, for k < vi + βg − βi we have Coeff(ϕ∗
a (Fi ), tk) is constant, that is, it does

ot depend on the parameters al for l ≥ βg , and by (24)

Coeff(ϕ∗

a (Fi ), tvi ) =

{
δi if i < g
δg · aβg if i = g,

or some δi , δg ∈ C∗.

The next lemmas are variations of Lemma 5.1.

emma 5.3. Given H =
∏ j

i=0 Fγi
i with γ j ̸= 0 for some 0 ≤ j ≤ g, we get

Coeff(ϕ∗
a (H ), tk) ∈ C[aβg , . . . , ak−I (F,H )+β j ] for k ≥ I (F, H ). In particular,

Coeff(ϕ∗

a (H ), t I (F,H )) =

{
δ j H if j < g
δgH · aγg

βg
if j = g,

for some δ j H , δgH ∈ C∗.

Proof. Since F0 = x , if j = 0 then H = Fγ0
0 and I (F, H ) = I (Fa, H ) = γ0 · v0 with

ϕ∗
a (H ) = ϕ∗

a (Fγ0
0 ) = tγ0v0 and we get the result.

Notice that for any γl > 0 with l ̸= 0, we may rewrite

ϕ∗

a (H ) = ϕ∗

a (Fγ0
0 ) · ϕ∗

a (Fγ1
1 ) · . . . · ϕ∗

a (Fl) · ϕ∗

a (Fγl−1
l )   · . . . · ϕ∗

a (F
γ j
j ). (26)

In order to determine ϵ ∈ N such that Coeff(ϕ∗
a (H ), tk) ∈ C[aβg , . . . , aϵ] it is sufficient

o analyze for each l, the product of a term of order γ in ϕ∗
a (Fl) and all the initial terms

f factors in (26) such that k = γ +
∑ j

i=0 γivi − vl , that is, γ = k −
∑ j

i=0 γivi + vl =

− I (F, H ) + vl , since I (F, H ) = I (Fa, H ).
In this way, we can determine ϵ considering

j∏
i=0
i ̸=l

(
Coeff(ϕ∗

a (Fi ), tvi )
)γi

·
(
Coeff(ϕ∗

a (Fl), tvl )
)γl−1

·Coeff(ϕ∗

a (Fl), tk−I (F,H )+vl ). (27)

By Remark 5.2, the expression (27) is polynomial in C[aβg , . . . , aγ−vl+βl ] =

[aβg , . . . , ak−I (F,H )+βl ] of degree one in ak−I (F,H )+βl . Thus

ϵ = max
0≤l≤ j

{k − I (F, H ) + βl; γl ̸= 0} = k − I (F, H ) + β j .

By (27) and the previous remark, we have

Coeff(ϕ∗

a (H ), tk) = pk H (aβg , . . . , ak−I (F,H )+β j −1)

+

{
δk H · ak−I (F,H )+β j if j < g

δkK · aγg−1
βg

· ak−I (F,H )+βg if j = g

or some δk H ∈ C∗. In particular,

Coeff(ϕ∗

a (H ), t I (F,H )) =

{
δ j H if j < g
δgH · aγg

βg
if j = g,

or some δ , δ ∈ C∗. ■
j H gH
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As an immediate consequence of Lemma 5.3 we obtain the following result.

orollary 5.4. If H =
∏ j

i=0 Fγi
i with γ j ̸= 0 for some 0 ≤ j ≤ g, then for any

> I (F, H ) we get Coeff(ϕ∗
a (d H ), tk) ∈ C[aβg , . . . , ak−I (F,H )+β j +1].

Now we analyze ϕ∗
a (ωig) for a 1-form ωig = vi Fi d Fg − vg Fgd Fi , considered in (13)

ith 0 ≤ i < g. Notice that, by Remark 5.2, we get ordtϕ
∗
a (ωig) ≥ vi + vg .

emma 5.5. For k ≥ vi + vg we have

Coeff(ϕ∗

a (ωig), tk) = qik(aβg , . . . , ak−vi −vg+βg ) + rik · ak−vi −vg+βg+1,

ith rik ∈ C∗.

roof. The highest order of a term in ϕa(t) that contributes with the term of order k
n viϕ

∗
a (Fi )ϕ∗

a (d Fg) is determined by considering the product of the initial term δi · tvi

f ϕ∗
a (Fi ) with the term of order k − vi in ϕ∗

a (d Fg) or the product of the initial term
g · δg · aβg tvg−1 of ϕ∗

a (d Fg) with the term with order k − vg + 1 in ϕ∗
a (Fi ).

By Remark 5.2, Coeff(ϕ∗
a (Fi ), tk−vg+1) ∈ C[aβg , . . . , ak−vi −vg+βi +1] and

oeff(ϕ∗
a (d Fg), tk−vi ) = (k − vi + 1) · (pg,k−vi +1(aβg , . . . , ak−vi −vg+βg ) + δg,k−vi +1 ·

k−vi −vg+βg+1). In this way,

Coeff(ϕ∗

a (Fi ), tvi ) · Coeff(ϕ∗

a (d Fg), tk−vi ) ∈ C[aβg , . . . , ak−vi −vg+βg+1]

nd Coeff(ϕ∗
a (d Fg), tvg−1) · Coeff(ϕ∗

a (Fi ), tk−vg+1) ∈ C[aβg , . . . , ak−vi −vg+βi +1].
Moreover, with the notation of Remark 5.2 and denoting e := δi · δg,k−vi +1 ̸= 0, we

et

Coeff(viϕ
∗

a (Fi d Fg), tk) = Q1k(aβg , . . . , ak−vi −vg+βg ) + vi · (k − vi + 1) · e

· ak−vi −vg+βg+1.

n a similar way, Coeff(vgϕ
∗
a (Fgd Fi )) = Q2k(aβg , . . . , ak−vi −vg+βg ) + vg · vi · e ·

k−vi −vg+βg+1. Hence,

Coeff(ϕ∗

a (ωig), tk) = qik(aβg , . . . , ak−vi −vg+βg ) + rik · ak−vi −vg+βg+1,

here qik = Q1k − Q2k ∈ C[aβg , . . . , ak−vi −vg+βg ] and rik := e · vi · (k − vi − vg + 1)
= 0. ■

In the next result, we determine the coefficient of a term in ϕ∗
a (H · ωig), for any

H ∈ C{x}[y] expressed according to Proposition 3.4, that is, H =
∑

δ eδF δ0
0 F δ1

1 · · · F δg
g

ith eδ ∈ C∗ and such that I (F, H ) = I (F, Fγ0
0 Fγ1

1 · · · Fγg
g ), for some non-negative

ntegers γ0, γ1, . . . , γg .

emma 5.6. If H =
∑

δ eδF δ0
0 F δ1

1 · · · F δg
g is as in (11) with I (F, H ) = I (F, Fγ0

0 Fγ1
1 · · ·

Fγg
g ), then for k ≥ I (F, H ) + vi + vg we get

Coeff(ϕ∗

a (H · ωig), tk) = pk(aβg , . . . , akig−1) + rk · aγg
βg

· akig

with k := k − I (F, H ) − v − v + β + 1 and some r ∈ C∗.
ig i g g k
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Proof. The coefficient of tk in ϕ∗
a (H ·ωig) is obtained by the sum of products of a term

of order s1 in ϕ∗
a (H ) and a term of order s2 of ϕ∗

a (ωig) such s1 + s2 = k. In this way,
o prove the lemma it is sufficient to analyze such a product for the maximum possible
alue for s1 or s2.

For each element eδF δ0
0 F δ1

1 · · · F δg
g we set

mδ := max
0≤l≤g

{l; δl ̸= 0} and Iδ := I

(
F,

g∏
l=0

F δl
l

)
= I

(
Fa,

g∏
l=0

F δl
l

)
. (28)

Case (1) s1 = I (F, H ) = I (Fa, H ) and s2 = k − I (F, H ), that is, the maximum
ossible value for s2.

Notice that Coeff(ϕ∗
a (H ), t I (F,H )) = Coeff(

∏g
l=0 ϕ

∗
a (Fγl

l ), t I (F,H )) and, by Lemma 5.3,
it is constant if mγ < g and equal to eH · aγg

βg
with eH ∈ C∗ for mγ = g. On the other

hand, by previous lemma Coeff(ϕ∗
a (ωig), tk−I (F,H )) = p(aβg , . . . , akig−1) + r · akig where

ig := k − I (F, H ) − vi − vg + βg + 1 and r ∈ C∗. Hence, Coeff(ϕ∗
a (H ), t I (F,H )) ·

oeff(ϕ∗
a (ωig), tk−I (F,H )) is expressed as

pk(aβg , . . . , akig−1) + rk · aγg
βg

· akig (29)

with rk := r · eH ̸= 0.
Case (2) s1 = k − vi − vg and s2 = vi + vg that is, the maximum possible value for

s1.
As k ≥ I (F, H ) + vi + vg , if k = I (F, H ) + vi + vg then we must have s1 = I (F, H )

and s2 = k − I (F, H ), that is, we are in the previous case. So, we can assume that
k > I (F, H ) + vi + vg .

Notice that Coeff(ϕ∗
a (H ), tk−vi −vg ) =

∑
δ eδCoeff(

∏g
l=0 ϕ

∗
a (F δl

l ), tk−vi −vg ). By
Lemma 5.3 and by (28), we get

Coeff

( g∏
l=0

ϕ∗

a (F δl
l ), tk−vi −vg

)
∈ C[aβg , . . . , ak−vi −vg−Iδ+βmδ

].

Moreover, by Lemma 5.5, we have Coeff(ϕ∗
a (ωig), tvi +vg ) ∈ C[aβg , aβg+1]. As Iδ ≥

I (F, H ) and k > I (F, H ) + vi + vg we have that

max
δ

{k − vi − vg − Iδ + βmδ , βg + 1} < kig.

Considering the above cases we conclude that Coeff(ϕ∗
a (H · ωig), tk) is given as (29).

■

CRediT authorship contribution statement

Nuria Corral: Investigation, Writing – original draft, Writing – review & editing.
Marcelo E. Hernandes: Investigation, Writing – original draft, Writing – review &
editing. M.E. Rodrigues Hernandes: Investigation, Writing – original draft, Writing

– review & editing.



28 N. Corral, M.E. Hernandes and M.E. Rodrigues Hernandes / Expo. Math. 42 (2024) 125591

b
p
s
r
E
a
r

D

A

a
d
e

R

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may
e considered as potential competing interests: Nuria Corral reports financial support was
rovided by Spanish State Agency of Research. Marcelo E. Hernandes reports financial
upport was provided by Spanish State Agency of Research. Maria Elenice R. Hernandes
eports financial support was provided by Spanish State Agency of Research. Marcelo
. Hernandes reports financial support was provided by CNPq- Brazil. If there are other
uthors, they declare that they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

We are grateful to Prof. Felipe Cano for all conversations and suggestions. The last two
uthors would like to express their gratitude to the ECSING-AFA group from Universidad
e Valladolid for its hospitality during the year 2013, when the seminal ideas of this work
merged.

eferences

[1] S.S. Abhyankar, T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation, J.
Reine Angew. Math. 260 (1973) 47–83, 261, (1973) 29-54.

[2] A.C.P. Azevedo, The Jacobian Ideal of a Plane Algebroid Curve Ph. D. Thesis, Purdue University,
1967.

[3] V. Bayer, A. Hefez, Algebroid plane curves whose Milnor and Tjurina numbers differ by one or two,
Bull. Braz. Math. Soc. 32 (1) (2001) 63–81.

[4] C. Camacho, A. Lins Neto, P. Sad, Topological invariants and equidesingularisation for holomorphic
vector fields, J. Differential Geom. 20 (1) (1984) 143–174.

[5] F. Cano, D. Cerveau, J. Déserti, Théorie Élémentaire des Feuilletages Holomorphes Singuliers,
Collection Échelles, Belin, 2013.

[6] F. Cano, N. Corral, Dicritical logarithmic foliations, Publ. Mat. 50 (2006) 87–102.
[7] F. Cano, N. Corral, Absolutely dicritical foliations, Int. Math. Res. Not. IMRN (8) (2011) 1926–1934.
[8] F. Cano, N. Corral, R. Mol, Local polar invariants for plane singular foliations, Expo. Math. 37 (2)

(2019) 145–164.
[9] F. Cano, N. Corral, D. Senovilla-Sanz, Analytic semiroots for plane branches and singular foliations,

Bull. Braz. Math. Soc. (N.S.) 54 (2) (2023) Paper (27).
[10] N. Corral, Jacobian and polar curves of singular foliations, in: F. Cano, J.L. Cisneros-Molina, L.
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