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Abstract

We study some families of projections in the J-sums of Banach spaces J(®) and J (D)
introduced by Bellenot. As an application, we show that, under some conditions, J(®) and
J (®) are subprojective, i.e., every closed infinite-dimensional subspace of either of them
contains a complemented infinite-dimensional subspace.
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1 Introduction

In[15], Lindenstrauss showed that for every separable Banach space X there exists a separable
Banach space Y with a monotone shrinking basis and a surjective operator Q from Y * onto X
such that Y** =iy (Y) & Q*(X™), where iy : Y —> Y** is the canonical embedding (hence
Y** >~ Y @ X*). This extended a previous result by James for Banach spaces with a monotone
boundedly complete basis [13], and the same result was later obtained for weakly compactly
generated spaces in [8].

Bellenot gave a general construction in [4] subsuming both results. Given a sequence of
Banach spaces (X,, || - [|,)nen, Withdim X = 0 and a sequence of operators ® = (¢,)neN,
with ¢, 0 X —> Xy41 and [, ]l < 1 for every n € No, and denoting TT = [, oy, Xn.
he defined a quantity ||x||; for every x = (x,)nen, € II that is similar to the norm in the
classical James space J, and considered the Banach spaces f(dD) ={xell:|x|l;y < oo}
and J(®) = {x € J(®) : limy [|xn]l, = 0}. With this construction, J(®)** is isometric
to J (®) if all of the (X)), are reflexive and, given a weakly compactly generated Banach
space X, the (X,),eN can be chosen so that J (®)** = j(dJ) and J (®)™*/J(®) is isometric
to X [4, Corollary 1.4].
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The main advantage of Bellenot’s work over its predecessors is that it provides a con-
struction of the space J(®), with an explicit definition of its norm, which allows to study
the properties of J(®) and J (®) for a given starting sequence (X} ),cN. This was used in
[1] to find a space J(®) such that J(®)**/J(P) = ¢; and a tauberian operator T in that
J (@) whose second conjugate is not tauberian, answering a question by Kalton and Wilansky
[14]. Bellenot’s construction was also used in [22, Remark 4.5] to study the duality between
certain operator ideals, and in [7] to show that the Kottman’s constant of a Banach space and
its second dual can be different.

Here we study some families of projections in the spaces J (@) and J (@) and prove that, if
each X, is subprojective, then every closed infinite-dimensional subspace of J () contains
an infinite-dimensional subspace complemented in J (®), so J (D) itself is subprojective; as
a consequence, for every separable Banach space X there exists some subprojectlve J(D)
such that J(®)**/J () is 1s0metrlc to X. If furthermore the quotient J (D)/J(D) is sub-
projective or the quotient map J(®) — J(®)/J (D) is strictly singular, then also J(®)
is subprojective. We also give conditions for J(®) to be complemented or not in J (®) and
describe several examples illustrating the scope of these results.

Given an operator 7: X — Y between two Banach spaces X and Y, its kernel will be
denoted by N(T) and its range will be denoted by R(T). T is called strictly singular if
there is no closed infinite-dimensional subspace M of X such that the restriction 7’|y is an
isomorphism. A Banach space X is called subprojective if every closed infinite-dimensional
subspace of X contains an infinite-dimensional subspace complemented in X. Subprojective
spaces were introduced by Whitley to find conditions for the conjugate of an operator to
be strictly singular [23]. Finite-dimensional spaces are trivially subprojective, and £, (1 <
p < 00),coand L, (2 < p < o0) are subprojective but L, (1 < p < 2) and C([0, 1]) are
not [23, Theorems 3.2 and 3.4, Corollary 3.6]; also subspaces and products of subprojective
spaces are still subprojective. There has been a surge in attention to these spaces after a recent
systematic study [18], such as to obtain some positive solutions to the perturbation classes
problem for semi-Fredholm operators, which has a negative solution in general [9] but there
are some positive answers when one of the spaces is subprojective [10] [12].

2 Definitions and basic facts

LetNo = NU {0} and pp = { S C Ny : S non-empty, finite }. In the sequel, (X, || - II,,)nen,
is a sequence of Banach spaces with dim Xo = 0 and ® = (¢,)ncn, is a sequence of
operators ¢, : X,, —> X,4+1 such that ||¢, || < 1 forevery n € Ng. If n < m € Np, we will
write ¢! = ¢y—1 0+ 0 Ppy1 0 Py Xy —> Xy, with the convention that ¢} = Iy, is the
identity on X,,; in particular, ¢"*! = ¢, for every n € Ny and ¢/"*! = ¢, o ¢ for every
n <m e Ny.
Denote IT = []
define

neN X, and, given x = (X)peNy € Tand S ={pp < --- < pr} € o,

k _ ,\ 12
ox,8) = (leé’:,. (Xpry) = Xp, ||p,.)
i=1

k 12
005.8) = (108 G = 3 I, + B, )
i=1

and ||x||; = (l/f) SUpPge,, p(x, S). Note thato (-, S) and p( -, S) are seminorms in IT and

that p(x, $)2 = o (x, $)% + ||xpk||pk, soo(x,S) < p(x,S). Also, o(x,S) = 0if S has a
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single element, o (x, SUT)? = o (x, §)>+o(x, T)? ifmax S = min T and o (x, SUT)? >
o(x,8)?%+0o(x, T)?ifmax S <minT.

Definition [4] The J-sum J(®) is defined as the completion of the normed space of the
finitely non-zero sequences in IT with || - || ;.

Proposition 2.1 [4, p. 98, Remarks 3 and 4] Each X, can be identified isometrically with the
subspace of sequences (x,),eN, € J(®) such that x,, = 0 forn # m. With this identification,

Zf’:gﬂxi I, = [P x I,

(X)neN is a bimonotone decomposition for J(®), i.e.,
for every (x,)nen, € J(®) and p, q, r € Ny.

In particular, [|(xp)nenglly = sup,en|di; xi ||J = lim, >0 x ||j for every
(xn)neNo € J(D).
Define now

J(@) ={xel:|xlly <oo},

which can be identified with (Xn)klehéll’ the set of all sequences (x;),en € II such that

(Z;’zl Xi)neN is bounded [4, p. 96], [16, Proposition 1.b.2]. This identification makes for
slightly simpler notation than the direct use of (X ")52\1%'
The space of eventually constant sequences is

Q(P) = { (xp)nen, € I : thereisn € N such that ¢, (x,,) = xpp1forallm > n}.

Clearly Q(®) C f(dD) and [|(xy)nengll@ = lim, [|x,]l, defines a seminorm on 2 (®),
as |l¢nll < 1 for every n_ € Np. We denote the completion of the normed space
(Q(®)/ker| - o, I - l) by Q(P).

Theorem 2.2 [4, Theorem 1.1]

(i) QU®) is dense in J (D).
(ii) The unique extension ©: f(dD) — Q(®) of the natural map Q(P) — Q(®) is a
quotient map with kernel J(®).
(iii) Ifeach X, is reflexive, then J (®)** = J (@), hence J(®)** ) J (D) is isometric to (D).

In particular, J(®) can be identified with

{ Cdneniy € J(®) : xulln —> 0},

Remark 2.3 1t is worth noting that the choice of the £-norm in the definition of o and p
above is not essential to the construction of J(®); all of the results below hold equally well
for any £4-norm with 1 < ¢ < co.

3 Estimates for disjoint sequences

We will adopt the following definition: If A, B are non-empty subsets of Ny, we will write
A << Bifthere existsn € Nsuchthata < n < b forevery a € A and b € B; equivalently,
min B — max A > 2.

Definition Let / C Ny be an interval. We define P; : f(CD) — f(@) as

Py ((xn)neNo) = (X X1 (n))neNy-
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Each Py is well defined and a projection with || Pr|| < 1 due to the following result with
m = 0.

Proposition 3.1 Let I C N be an interval, let x = (x,)nen, € I such that x, = 0 for every
né¢l, letm <minl andlet S € p. Then p(x, S) < p(x, {m} U (SNI)).

Proof Let S = SN[min I, o0) C S;then p(x, S) < p(x, {m}US). Indeed, if S C S, then the
elements in S\ S do not contribute to p(x, S) except for the possible effect of their presence
on the first element of S‘, and then {m} has the same effect; and, if § = S’, then the addition
of {m} only prepends a (non-negative) term to p(x, S).

Now, the elements in S beyond the maximum of 7, if any, do not contribute to p (x, §) either,
except for the fact that the last term in p(x, §) may become smaller (as every | ¢, | < 1).In
any case, p(x, S) §p(x,{m}US‘) < px,{m}uSnNIi). ]

As a consequence, if I C Ny is a finite interval and x € R(Py), then SUPge p(x, S)is
attained for some S C [0, max /].

If n € Ny, we define the projection P, = Py,... » (as opposed to Pj,;, which gives the
identification of X, described in Proposition 2.1); in particular, Py = Py = 0.

Recall that a sequence (x;),cN is said to satisfy an upper (resp., lower) p-estimate for
1 < p < oo if there exists a constant M < oo such that | Z;”zl Xj ||p <M Z;f’zl llx; 1P
(resp., M H Z;":l Xj ||p > Z’}?:l [l [17). The following results show that sequences in f(dD)
with disjoint supports admit an upper 2-estimate, and also a lower 2-estimate if the supports
are furthermore not adjacent.

Proposition 3.2 [4, Theorem 1.1(1ll)] Let I, I, ..., I,  Nq be disjoint intervals and let
. 2
xj € R(Pp,) forevery j € {1,2,...,m}. Then I> T:lxj ||J <35 ;”:1 [l 113

Proposition3.3 Let Iy << I < --- << I, € Ng be non-empty intervals and let x; €
. 2
R(Py;) for every j € {1,2,...,m}. Then 2| Z;’Ll xj ||J > Z;”:l [l 113

Proof Define y = (yn)nen, = Z?’lej € J(®),lete > 0and n; = 0 and pick nj €

(max I; 1, min I;) for every j € {2, ..., m}, which is possible because I; | << I;; note
that y,;, = O forall j € {1,2,...,m}.
Forevery j € {1,...,m}, there exists S; € g such that p(x;, $;)? > 2|x; |3 —&/m and,

by Proposition 3.1, we may assume n; € §; C {n;} U I;. Let then m; = max §;, so
2 _ 2 2 _ 2 2
o, 8j)° =0, S)" + lym;lm, =0, )"+ oy, {n;,m;})

and there exists some S’j (either §; itself or {n;, m;}) such that o (y, §j)2 > %p(y, Sj)z,
withmaxS'j_l =mj_| <nj= minS‘j if j > l.Let S = U;"zl S'j; then

m m
- - ~ 1
2 2 2 2 2
2yl = p(y, $)* =0y, S) ZE o(y,Sj) ZEE p(y,S;)

j=1 j=1
1 m 1 m m
=32 P@)$)% = 2 3 IG5 —e/m) = 3 Ixjl5 — e
j=1 j=1 j=1
As this is true for all & > 0, it follows that 2| y||3 > PRy Bt jlI3 indeed. o
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4 Stepping projections

We will write A for the set of all sequences (o) ,en, in No such that e, < a1 and o, <n
for every n € Ny and, given @ = (an)neN, € A, we define a linear map Qy: IT — IT as

Qa((xn)neNo) = (qbg,l (xan))nEN()'

Lemma4.1 Leta = (an)neN, € A, letx € f(dD) and let S € ©. Then
p(Qu(x),S) < p(x,{ap:peS}.

Proof Write x = (x)neN, € f(CD) and let y, = ¢; (xq,) for every n € Ny, so that

Ou(x) = (}’n)neNU-
Let p < g be two consecutive elements of S. Then

165G = ¥allg = 165 (@L (xa,)) — B8 (e )lg
= 64, ($ap (X)) — 82, (xa,)lg
= 64, (Bas (Xa,) — Xa,)lg

67
= ||¢az (Xa,) = X, llays

in particular, ||¢;’, p)—yqlly = 0ifa), = a. Additionally, for the final term of p(Q (x), S),
if p = max S, we also have

1yplp = 162, Ga)llp < 3, la

soindeed p(Qy(x), S) < p(x,{ap : p € S). O

Proposition 4.2 Let o € A. Then Q, f(<I>) — f(@) is a bounded linear operator

and | Qq |l < 1.

| i)

Proof Q is clearly linear and || Qq (x)||; < ||x||s for every x € f(dD) by Lemma4.1. 0O

Definition Let A € N. We define a projection Q4 : f(d>) — f(d)) as Q4 = Qgq, where
as = (an)neN, is given by a, = max(({0}UA) N[0, n]). If n € Ng, we define the projection
On = Qq1,....n) (as opposed to Qy,)); in particular, Q¢ = Qy = 0.

IfA={a1 <ax <...} S N,and Ag = {0}UA, then Q 4 ((x1)neNy) = (Ym)meN, 1S given
by ym = ¢} (x4), where a = max Ag N [0, m], for every m € N, so Q 4(x) depends only on
those components x, for whichn € A,and N(Qa) = { (Xp)nen, : x4, = Oforeveryn € A}.
If (1}) jen is a sequence of non-empty intervals of N such that /; << I forevery j € N
and A = N\ UJEN I;,then N(Q 4) is isomorphic to 52((R(P1,))jeN) in the natural way due
to Propositions 3.2 and 3.3.

If ¥ = (tm)meny € J(®) and 1 € N, then

0n(x) = (X1, X25 oy Xne1, Xy BT 00), @22 (), ),

so Q, is a projection (clearly an = (,) and the set of eventually constant sequences can be
written as Q(®) = |J,,cy R(Qy), which is dense in J (), but this can be stated in a better
form.

Proposition 4.3 Ler x € f(dD). Then Q,(x) — X
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Proof The result is immediate for the set of eventually constant sequences Q(®) =
Unen R(Qn), as (Q,(x))nen is eventually constant for x € €(®P), which is dense in f(dD)
by Theorem 2.2. In fact, the proof of the denseness of 2 (®P) in J (®) in [4, Theorem 1.1(I)]
essentially proves this. O

Given n € N, both P, and Q,, are projections that depend only on the first » components
of x, so they have the same kernel, and their ranges are different but isometric.

Proposition 4.4 Letm € N. Then Q,, Py, = Q. and Py, Qy = Py, and, for every x € f(<1>),
| P CONl g = 11 Qm ()l

Proof The identities Q,, Py = O, and P, Q. = Py folloyv from the fact that both P, (x)
and Q,,(x) depend only on the first m components of x € J(P) and leave them untouched,
and then

19m s = 11Qm P ()l s = 1P (ONls = 1P Q)7 = [|Qm ()l

from [Py |l = Tand [[Qnl < 1. o

5 Subspaces of J(P) and ](cb)

As already mentioned in Theorem 2.2, J(®)™* can be identified with J (®) when every X,
is reflexive. However, even if this is not the case, J(®)** can be identified isometrically
with f(dD**), where ®** = (¢*),en,, [4, p- 97], and then f(d>) can be seen to embed
isometrically into J (®**) = J(P)™ by way of the natural inclusion of each X, into X},
where each x € J(®) is identified with the weak* limit of (P, (x))nen in J (P)** (if every
X, is reflexive, then simply ®** = ®).

Proposition 5.1 Let Y be a subprojective Banach space, let T : X —> Y be an operator and
let M be a closed infinite-dimensional subspace of X such that T |y is not strictly singular.
Then M contains an infinite-dimensional subspace complemented in X.

Proof T|j is not strictly singular, so there exists some infinite-dimensional subspace N of M
such that T'|y is an isomorphism. As Y is subprojective, we can further refine N to assume
that 7 (N) is complemented in Y, and then Y = T(N) @ Z implies X = N & T-1(Z),so0N
is complemented in X. O

The following result effectively shows that J(®) is subprojective whenever all of the
X, are subprojective. It does a little more than this, as it proves that every closed infinite-
dimensional subspace of J(®) contains an infinite-dimensional subspace complemented
inJ (®), and not just in J(P), which has some implications that will be discussed later.
Also, the result contains an analogue if all of the X, are hereditarily ¢, as then J(®) too is
hereditarily ¢»; a Banach space X is called hereditarily ¢, if every subspace of X contains a
further subspace that is isomorphic to £;. This is already hinted at in [4] and proved in [19,
20, Lemma 3] when each X, is finite-dimensional, and is included here because the heavy
part of the proof is the same.

Theorem 5.2 (i) If each X, is subprojective, then every closed infinite-dimensional sub-
space of J(®) contains an infinite-dimensional subspace complemented in J(®P);
(ii) if each X,, is hereditarily £>, then J (D) is hereditarily £;
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(iii) if each X, is subprojective and hereditarily £, then every Flosed infinite-dimensional
subspace of J(®) contains a copy of £5 complemented in J (D).

Proof Let M be a closed infinite-dimensional subspace of J(®). If O, is not strictly
singular for some n € N, then R(Q,) is isometric to R(P,) by Proposition 4.4, in turn
isomorphic to @}_; X;, so, respectively for each case,

(i) M contains an infinite-dimensional subspace complemented in J(®) by Proposi-
tion 5.1, since R(Q,,) is isomorphic to B_, X;, which is subprojective [ 18, Proposition 2.2];
or

(ii) M contains an infinite-dimensional subspace N such that Q, |y is an isomorphism,
where R(Q,) is isomorphic to @;_; X;, so N contains a copy of ¢, as being hereditarily £,
is a three-space property [6, Theorem 3.2.d]; or

(iii) both of the above apply, so M contains a copy of £, by (ii) and then said copy contains
a further copy of ¢» complemented in J (D) by (1).

Otherwise, assume that Q| is strictly singular for every n € N, in any of the cases (i),
(ii) or (iii). Then, for every n € N and ¢ > 0, there exists x € M such that ||x|| = 1 and
1Q,(x)]l < &, and then there is m > n + 1 such that || P,,—1(x) — x|| < &. By induction,
starting with an arbitrary n; € N, there exist a sequence (ng)ren of elements in N and a
sequence (xi)reN of norm-one elements in M such that || O, (xi) |l < 2_"/6, Nyl > np+1
and || Py —1 (o) — xill < 2_k/6 for every k € N.

Foreach k € N, define Ty = Py, —1(I — Qp,) and note that, given y = (yn)nen, € f(d>)
and m € N, then

= & On)s i me <m < ngyy

| m
Te()m = iO, otherwise

so Tx(y) depends only on components [ny, ng41) of y and its value lies in the range of
Py ni.1)- As a consequence, it is easy to check that each Ty is a projection with || T || < 2
and that T;7; = 0if i # j. If we further define A = {ny : k € N} and Iy = (n, ng41) for
each k € N, it holds that

Tk = Poyy—1( — Qnp) = P (I — Q) = Pr(I — Qa)

for every k € N.

Let zx = Ti(xx) = Puy—1(I — Qn)(xx) € R(Pp) for every k € N; then ||zx —
Xl < 1Py —1 () = Xl + 1 Payesy—1 Qo 0| < 27576 427K /6 = 275 /3 < 1/6, s0
5/6 < llzkll < 7/6 for every k € N. If we take x;/ € J(®)* such that ||x{|| < 6/5 and
(x,f, zx) = 1 for each k € N, then, for every x € f(dD) and k € N, Proposition 3.3 yields

k
Y T
i=1

k

k
Yo T = Y 2T w15 < 4
i=1

2
i=1 J

2
=4
J

k
Y P = 0a)()
i=1

= 4| Py, (I = QA)(X)||2J < 16]|x||?,

so S(x) = ((x,f, Ti(x)))ken defines a bounded operator S: f(dD) — ¢ which maps, for
every j € N,

S(zj) = (g, Te@)Niken = (x5, 8jk2j)keN = €
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As the operator £, —> f(CD) that takes (o,),en tO fo;l anz, (hence each ¢ to z;) is
bounded by Proposition 3.2, it follows that Z = [zx : k € N] is isomorphic to £, and
complemented in J (D).

Finally, let K : J(®) —> J(®) be the operator defined as K (x) = > o (x}", Tk (x)) (x —
zx). as in [5]; then [|x (|| Ty [l llxx — x|l < $27* for every k € N, so 0%, [lxf |11 Tl lxx —
2kl < % < 1, which makes K well defined and U = I 4+ K an isomorphism on f(dD), with
K(zk) = xx —zk and U(zx) = x¢ forevery k € N,and then U(Z) = [xx : ke N]C M isa
copy of £> complemented in J(®). o

Corollary 5.3 J(®) is subprojective if and only if each X, is subprojective.

Theorem 5.2 does not hold for subspaces of J (®), as its proof relies on the fact that
P,(x) —> X for x € J(®), which does not extend to J(®). In fact, the comments after

Proposition 6.2 show a particular case in which J(®) is subprojective but J (®) is not,
because it contains a (complemented) copy of L. However, the fact that any closed infinite-
dimensional subspace of J (®) contains another infinite-dimensional subspace complemented
inJ (®), and not merely in J (), allows to show that J (®) is subprojective when additional
conditions on J (®P)/J (D) are met.

Lemma 5.4 Let X be a Banach space and let M and N be closed subspaces of X such that
M NN =0and M + N is not closed. Then there exists an automorphism U : X —> X such
that U(M) N N is infinite-dimensional.

Proof Consider the product M x N with the product norm ||(x, y)|| = ||x|| + ||y|l and the
operator T: M x N —> X defined as T (x, y) = x —y; then R(T) = M + N is not closed, so
there exist normalised sequences (x,)nen in M and (y,)nen in N such that || x,, — y, || < 27"
for every n € N. Since any weak cluster point of (x,),cy must be in M N N = 0, by passing
to a subsequence [2, Theorem 1.5.6] we can assume that (x,),cN is a basic sequence and
that there exists a sequence (x;;),eN in X* such that (x, x;) = §;; forevery i, j € N
and > 02  [lx¥] llxn — ynll < 1. Then K(x) = > o2, (x}¥, x)(x, — yn) defines an operator

n=1
K: X — X with ||K| < land U = I — K is an automorphism on X that maps U (x,) = y,
for every n € N, so U(M) N N is infinite-dimensional. ]

Proposition 5.5 If J (®) and f(<I>)/J(q)) are both subprojective, then f(dD) is subprojective.
Note that subprojectivity is not a three-space property, in general [18, Proposition 2.8].

Proof Let M be a closed infinite-dimensional subspace of J (®). If M N J(D) is infinite-
dimensional, then it contains another infinite-dimensional subspace complemented in J (®)
by Theorem 5.2.

Otherwise, it MNJ (®) is finite-dimensional, we can assume that MNJ (®) = 0 by passing
to a further subspace if necessary. If M + J(®) is closed, let Q: f(dJ) — f(CD)/J(d>)
be the natural quotient operator induced by J(®); then Q|ys is an isomorphic embedding
into J (®)/J (D), which is subprojective, so M contains an infinite-dimensional subspace
complemented in J (@) by Proposition 5.1.

We are left with the case where M N J(®) = 0 and M + J(P) is not closed. By
Lemma 5.4, there exists an automorphism U : J(CD) — J(CD) such that U(M) N J (D)
is infinite-dimensional. Let N be an infinite-dimensional subspace of U (M) N J(P) com-
plemented in J (®), which exists again by Theorem 5.2. then U “I(N) € M and is still
complemented in J (D). O
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Proposition 5.6 If J(®) is subprojective and the quotient map f(dJ) — f(dD)/J(GD) is
strictly singular, then J (®) is subprojective.

Proof Let M be a closed infinite-dimensional subspace of J (®). If M N J(P) is infinite-
dimensional, then it contains another infinite-dimensional subspace complemented in J (®)
by Theorem 5.2.

Otherwise, if M N J(P) is finite-dimensional, we can assume that M N J(®) = 0 by
passing to a further subspace if necessary, and then the strict singularity of the quotient map
implies that M + J (®) cannot be closed. As in Proposition 5.5, by Lemma 5.4, there exists
an automorphism U : J () — J (®) such that U (M) N J (D) is infinite- dlmenswnal Let N
be an infinite-dimensional subspace of U (M) N J(®) complemented in J (®), which exists
again by Theorem 5.2; then U™ L(N) € M and is still complemented in J (D). ]

A Banach space X is called superprojective if every closed infinite-codimensional sub-
space of X is contained in an infinite-codimensional subspace complemented in X [23] (see
also [11]). There is a perfect duality between subprojectivity and superprojectivity for reflex-
ive Banach spaces, in that a reflexive Banach space is subprojective if and only if its dual is
superprojective. This does not extend to the non-reflexive case: cq is subprojective while £;
is not superprojective [23], and ¢ is subprojective but it has a predual Y that is not super-
projective [11]. It is still unclear whether the superprojectivity of a Banach space implies the
subprojectivity of its dual or predual. In light of Corollary 5.3 and Proposition 5.5, it makes
sense to ask whether J(®) would be superprojective if so were every X,,, or what additional
conditions on the X, would be required.

Question. If every X, is superprojective, is J (®) superprojective?

The proof of Theorem 5.2 relies on the fact that sequences in J(®) with skipped disjoint
supports generate (complemented) copies of £, due to Propositions 3.2 and 3.3. If the supports
are disjoint but not skipped then only Proposition 3.2 applies, so a disjoint sequence can
generate subspaces other than ;. However, the J-sum never introduces copies of £, for
p > 2. This is already proved in [19, 20, Lemma 5] when every X, is finite-dimensional, but
this condition can be relaxed to the case where no X, contains a copy of £,. If the construction
of J(®) is done with an arbitrary 1 < g < oo instead of 2, it is also known that J (®) does
not contain a copy of any £, for p > q if every X, is finite-dimensional [21, Lemma 3]; as
mentioned in Remark 2.3, the results below extend to this case as well, so no space J (D)
constructed using any 1 < g < oo contains a copy of £, for p > g unless one of the X,
already does.

Lemma 5.7 Let (my)ren be a strictly increasing sequence of positive integers, let mg = 0
and let x* € R((I = Pyy_)Qumy) for every k € N. Then 2| X5, x5 = S5 1272

Proof For every k € N, write xk = (xff)neNo and note that Py, , Qm, = Qmy Pmy_;» as
mi—1 < mg, so x¥ € R((I — Py ) Om) = R(Qm (I — Pyy_,)). As a consequence, by
Proposition 3.1 and Lemma 4.1,

sup p(x*, 8) = sup p(x*, {my—1} U (S N (mp—1, me))),
Sep Sep

so there exists some S € g such that my_1 € S C [my_1, my] and ,o(xk, $H? = 2||xk ||3;

since x,’;k_l = 0, letting p = max S < my, we have

2068015 = p(ek, )2 =0 () + lIxp 15 = 0 (xF, ) + o (*, fmu—1, p)?,
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so there exists some Sy € g (either S or {my_1, p}) such that my_ € Sy C [my—1, mg] and
o (¥, 517 = IX4]5.

Fix now k € N and consider G(Zf‘:l xt, S.,-)2 for a given j € {1, ..., k}. For any two
elementsn < p € §;,

k

k
¢,€’<Z ) Zx = (on(x)) —x}),
i=1

i=1
where, fori < j, we have xte R(Qm;),som; <mj_1 <n < pand
O (x)) — Xty = @) (@), (1)) — P, (xhy) =0
and, for i > j, we have x! € R(I — Py;_),son < p<mj <m;_jand
or (x) )—x = ¢n (0) —

so only i = j matters and
k

¢,€’<Z ) Zx Zm(x)—x):qs,i’(x,{)—x{;,

i=1

hence

~
M~
XN
=
L
N—
(38
Vv
Q
/\
™~
Rﬁ.
iC-
e
N—
[\
\%
M~
Q
P
N
><~
o
~—
[¥*)

k k

j 2 i 112
Yol st =) x5
j=1 j=1

Proposition 5.8 Let p > 2. If no X, contains a copy of £, then neither does f(CID).

Proof Assume otherwise and let (x; )< be a sequence in J (®) equivalent to the unit vector
basis of £,,.

Then, for every j, m € Ng and & > 0, R(P,) =~ @7, X; does not contain copies of £,
as not containing copies of £, is a three-space property [6, Theorem 3.2.d], s0 Py |[x;:j<i] 1S
strictly singular, since [x; : j < i]1is still isomorphic to £,. Therefore, there exist k € N with
k>jandy e [x; : j <i <k]suchthat|y|; =1and|P,(y)|; < &/2, and then there
exists n > m such that ||(I — Q,)(I — Py)(y)|l; < &/2 by Proposition 4.3, which leads to
ly = Onl — Py S NI1PaIs + 11y — Pu(y) — O — Pu)W)s <&,

By induction, given a sequence (&, ), N of positive real numbers and starting withmg = 0,
there exist a strictly increasing sequence (m,,), <N of positive integers and a sequence (y,),eN
of norm-one elements of f(dD) that is a blocking of (x,),en such that [y, — Qp, (I —
P, )y < &, for every n € N; in particular, (y,).cn is still equivalent to the unit
vector basis of £,,. Choosing a sequence (¢n)nen that converges to 0 fast enough, we can then
assume that (z,),en = (an I = Py, _ 1)(y,,))n N is also still equivalent to the unit vector
basis of £, where each z,, € R(an - Py, l)) ((I Py, 1)an) But then, for any
n € N, we would have

HI

i=1

Z lzi 113
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by Lemma 5.7, which is not possible for a sequence equivalent to the unit vector basis of £,
with p > 2. O

For example, let (p,,),en be a strictly increasing sequence in (2, co) and let p = lim, p,.
Taking X, = £, and letting ¢, : £,, —> £, be the natural inclusion, then J(®)/J(P)
is isomorphic to £, (or cq if p = oo) as || x|l p, — ||x||,,, so the quotient map J(d>) —
J(@)/J(®) is str1ct1y singular by Proposition 5. 8 and J(®) is subprojective by Proposi-
tion 5.6.

6 The dense subspace chain case

Let (Z, || - ||) be a Banach space. In this section, we will assume that each X, is a closed
subspace of Z such that UneN X, is dense in Z and X,, € X, 4+ for every n € Ny, each
Il - II,, is the restriction of || - || to X, and each ¢, is the natural inclusion of X, into X,,41.
We will write J(X,,) = J(®), J(X,,) = J(®) and Q(X,,) = Q(P) for this particular case.

Under these conditions, the mapping S': J (X)) —> Z defined as S ((xn),,eNO) = lim, x,
is a surjective bounded linear operator with kernel J(X,) and the induced quotient map
j(Xn)/J(Xn) —> Z is an isometry [4, Corollary 1.3].

Proposition 6.1 If Z is subprojective, then J (Xp) is subprojective.

Proof Each X, C Z is subprojective [23, Lemma 3.1] and f(Xn)/J(X”) is isomorphic to Z,
hence subprojective, so J(X,) is subprojective by Corollary 5.3 and Proposition 5.5. O

Given that the construction of J (X},) is made so that the quotient J (Xn)/J(X,)isisometric
to Z, it is natural to ask whether the quotient is complemented, that is, whether J (X, =
J(X,) & (JA(X,l)/J(X,,)) = J(X,) @ Z. For some spaces Z, this will be impossible; for
instance, Z = cq as a subspace of f(Xn) = J(X,,)™ would make £, embed into f(Xn)
[16, Proposition 2.e.8], which is separable (2(X,) is dense in J (X1)). On the other hand,
for Z = ¢, the complementation is immediate, as ¢; is always complemented as a quotient
[16, Proposition 2.£.7]. For other spaces, we have the following.

Proposition 6.2 Let (Z,),eN be an unconditional Schauder decomposition of Z that satisfies
a lower 2-estimate and such that X, = ®7_, Z; and let (T},)neN be the sequence of aggregate
projections associated with (Z,,)neN (so R(T,) = X, and T,(2) — Z for every z € Z).
Then the linear map T : Z — J(X,l) defined as T (z) = (T, (z))neN is well defined and an
embedding into J(X,,), and J(X,) = J(X,) ® R(T) ~ J(X,) & Z.

Proof Let K < oo be the suppresion constant of (Z,),en and let M < oo be such that
SENzl? < M||Zf»‘=1 Zi ||2 if (z;)%_, are disjoint with respect to (Z,),en, in that each z;
belongs to a different Z;. Letz € Zand S ={po < --- < px } € ; then

k

PT@), 9 =Y Ty @) = Ty @ + I Tp @I
i=1
k

2
Z pi (@) —Tp, (Z))

+ 1T, ()12

2
M||Tpy(2) — Tp D" + 1T DI
M1<2||z||2+1<2||z||2 (M+DK?||z))?

A
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SO Z"(z) IS f(X,,) and |[T(D)|ly < ~(M+1)/2K|z||. If we define the operator
S: J(X,) — Z given by S((xn),,eN) = lim, x,, as before, then ST is clearly the iden-

tity on Z, so T'S is a projection on f(X,,) with kernel J(X;,) and range R(T). O

This applies, for instance, if Z = £, for 1 < p < 2, and (Z,),en is the decomposition
associated to the unit vector basis, which is unconditional and satisfies a lower 2-estimate [17,
Theorem 1.£.7], orto Z = L, for I < p < 2 with the decomposition associated to the Haar

basis (or any other unconditional basis) [3, p. 128]; in all of these cases, f(Xn) ~ J(X,)BPZ.
On the other hand, if Z contains a copy of £, for p > 2 but no X, contains a copy

of £, then J (X») does not contain copies of £, by Proposition 5.8 and J (X,,) cannot contain
J(X)/J(X,) = Zasa subspace, so the quotient cannot be complemented. In particular, this
happens for Z = £, itself, with p > 2, and its canonical finite-dimensional decomposition.
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