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Abstract
We study some families of projections in the J -sums of Banach spaces J (�) and Ĵ (�)

introduced by Bellenot. As an application, we show that, under some conditions, J (�) and
Ĵ (�) are subprojective, i.e., every closed infinite-dimensional subspace of either of them
contains a complemented infinite-dimensional subspace.
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1 Introduction

In [15], Lindenstrauss showed that for every separableBanach space X there exists a separable
Banach space Y with a monotone shrinking basis and a surjective operator Q from Y ∗ onto X
such that Y ∗∗ = iY (Y ) ⊕ Q∗(X∗), where iY : Y −→ Y ∗∗ is the canonical embedding (hence
Y ∗∗ � Y ⊕X∗). This extended a previous result by James for Banach spaces with amonotone
boundedly complete basis [13], and the same result was later obtained for weakly compactly
generated spaces in [8].

Bellenot gave a general construction in [4] subsuming both results. Given a sequence of
Banach spaces (Xn, ‖ · ‖n)n∈N0 with dim X0 = 0 and a sequence of operators� = (φn)n∈N0

with φn : Xn −→ Xn+1 and ‖φn‖ ≤ 1 for every n ∈ N0, and denoting � = ∏
n∈N0

Xn ,
he defined a quantity ‖x‖J for every x = (xn)n∈N0 ∈ � that is similar to the norm in the
classical James space J , and considered the Banach spaces Ĵ (�) = {x ∈ � : ‖x‖J < ∞}
and J (�) = {x ∈ Ĵ (�) : limn ‖xn‖n = 0}. With this construction, J (�)∗∗ is isometric
to Ĵ (�) if all of the (Xn)n∈N are reflexive and, given a weakly compactly generated Banach
space X , the (Xn)n∈N can be chosen so that J (�)∗∗ ≡ Ĵ (�) and J (�)∗∗/J (�) is isometric
to X [4, Corollary 1.4].
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The main advantage of Bellenot’s work over its predecessors is that it provides a con-
struction of the space J (�), with an explicit definition of its norm, which allows to study
the properties of J (�) and Ĵ (�) for a given starting sequence (Xn)n∈N. This was used in
[1] to find a space J (�) such that J (�)∗∗/J (�) = �1 and a tauberian operator T in that
J (�)whose second conjugate is not tauberian, answering a question byKalton andWilansky
[14]. Bellenot’s construction was also used in [22, Remark 4.5] to study the duality between
certain operator ideals, and in [7] to show that the Kottman’s constant of a Banach space and
its second dual can be different.

Here we study some families of projections in the spaces Ĵ (�) and J (�) and prove that, if
each Xn is subprojective, then every closed infinite-dimensional subspace of J (�) contains
an infinite-dimensional subspace complemented in Ĵ (�), so J (�) itself is subprojective; as
a consequence, for every separable Banach space X there exists some subprojective J (�)

such that J (�)∗∗/J (�) is isometric to X . If furthermore the quotient Ĵ (�)/J (�) is sub-
projective or the quotient map Ĵ (�) −→ Ĵ (�)/J (�) is strictly singular, then also Ĵ (�)

is subprojective. We also give conditions for J (�) to be complemented or not in Ĵ (�) and
describe several examples illustrating the scope of these results.

Given an operator T : X −→ Y between two Banach spaces X and Y , its kernel will be
denoted by N (T ) and its range will be denoted by R(T ). T is called strictly singular if
there is no closed infinite-dimensional subspace M of X such that the restriction T |M is an
isomorphism. A Banach space X is called subprojective if every closed infinite-dimensional
subspace of X contains an infinite-dimensional subspace complemented in X . Subprojective
spaces were introduced by Whitley to find conditions for the conjugate of an operator to
be strictly singular [23]. Finite-dimensional spaces are trivially subprojective, and �p (1 ≤
p < ∞), c0 and L p (2 ≤ p < ∞) are subprojective but L p (1 ≤ p < 2) and C([0, 1]) are
not [23, Theorems 3.2 and 3.4, Corollary 3.6]; also subspaces and products of subprojective
spaces are still subprojective. There has been a surge in attention to these spaces after a recent
systematic study [18], such as to obtain some positive solutions to the perturbation classes
problem for semi-Fredholm operators, which has a negative solution in general [9] but there
are some positive answers when one of the spaces is subprojective [10] [12].

2 Definitions and basic facts

Let N0 = N ∪ {0} and ℘ = { S ⊂ N0 : S non-empty, finite }. In the sequel, (Xn, ‖ · ‖n)n∈N0

is a sequence of Banach spaces with dim X0 = 0 and � = (φn)n∈N0 is a sequence of
operators φn : Xn −→ Xn+1 such that ‖φn‖ ≤ 1 for every n ∈ N0. If n ≤ m ∈ N0, we will
write φm

n = φm−1 ◦ · · · ◦ φn+1 ◦ φn : Xn −→ Xm , with the convention that φn
n = IXn is the

identity on Xn ; in particular, φn+1
n = φn for every n ∈ N0 and φm+1

n = φm ◦ φm
n for every

n ≤ m ∈ N0.
Denote � = ∏

n∈N0
Xn and, given x = (xn)n∈N0 ∈ � and S = { p0 < · · · < pk } ∈ ℘,

define

σ(x, S) =
( k∑

i=1

∥
∥φ

pi
pi−1(xpi−1) − xpi

∥
∥2
pi

)1/2

ρ(x, S) =
( k∑

i=1

∥
∥φ

pi
pi−1(xpi−1) − xpi

∥
∥2
pi

+ ‖xpk‖2pk
)1/2

and ‖x‖J = (1/
√
2) supS∈℘ ρ(x, S). Note that σ( · , S) and ρ( ·, S) are seminorms in � and

that ρ(x, S)2 = σ(x, S)2 + ‖xpk‖2pk , so σ(x, S) ≤ ρ(x, S). Also, σ(x, S) = 0 if S has a
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single element, σ(x, S ∪ T )2 = σ(x, S)2 + σ(x, T )2 if max S = min T and σ(x, S ∪ T )2 ≥
σ(x, S)2 + σ(x, T )2 if max S ≤ min T .

Definition [4] The J -sum J (�) is defined as the completion of the normed space of the
finitely non-zero sequences in � with ‖ · ‖J .

Proposition 2.1 [4, p. 98, Remarks 3 and 4] Each Xm can be identified isometrically with the
subspace of sequences (xn)n∈N0 ∈ J (�) such that xn = 0 for n �= m.With this identification,
(Xn)n∈N is a bimonotone decomposition for J (�), i.e.,

∥
∥
∑p+q

i=p+1 xi
∥
∥
J ≤ ∥

∥
∑p+q+r

i=1 xi
∥
∥
J

for every (xn)n∈N0 ∈ J (�) and p, q, r ∈ N0.

In particular, ‖(xn)n∈N0‖J = supn∈N
∥
∥
∑n

i=1 xi
∥
∥
J = limn

∥
∥
∑n

i=1 xi
∥
∥
J for every

(xn)n∈N0 ∈ J (�).
Define now

Ĵ (�) = {
x ∈ � : ‖x‖J < ∞ }

,

which can be identified with (Xn)
LIM
n∈N, the set of all sequences (xn)n∈N ∈ � such that

(
∑n

i=1 xi )n∈N is bounded [4, p. 96], [16, Proposition 1.b.2]. This identification makes for
slightly simpler notation than the direct use of (Xn)

LIM
n∈N.

The space of eventually constant sequences is

	(�) = { (xn)n∈N0 ∈ � : there is n ∈ N such that φm(xm) = xm+1for allm ≥ n }.
Clearly 	(�) ⊂ Ĵ (�) and ‖(xn)n∈N0‖	 = limn ‖xn‖n defines a seminorm on 	(�),
as ‖φn‖ ≤ 1 for every n ∈ N0. We denote the completion of the normed space
(	(�)/ker‖ · ‖	, ‖ · ‖	) by 	̃(�).

Theorem 2.2 [4, Theorem 1.1]

(i) 	(�) is dense in Ĵ (�).
(ii) The unique extension 
 : Ĵ (�) −→ 	̃(�) of the natural map 	(�) −→ 	̃(�) is a

quotient map with kernel J (�).
(iii) If each Xn is reflexive, then J (�)∗∗ = Ĵ (�), hence J (�)∗∗/J (�) is isometric to 	̃(�).

In particular, J (�) can be identified with
{
(xn)n∈N0 ∈ Ĵ (�) : ‖xn‖n −→

n
0

}
.

Remark 2.3 It is worth noting that the choice of the �2-norm in the definition of σ and ρ

above is not essential to the construction of Ĵ (�); all of the results below hold equally well
for any �q -norm with 1 < q < ∞.

3 Estimates for disjoint sequences

We will adopt the following definition: If A, B are non-empty subsets of N0, we will write
A << B if there exists n ∈ N such that a < n < b for every a ∈ A and b ∈ B; equivalently,
min B − max A ≥ 2.

Definition Let I ⊆ N0 be an interval. We define PI : Ĵ (�)−→ Ĵ (�) as

PI
(
(xn)n∈N0

) = (xnχI (n))n∈N0 .
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Each PI is well defined and a projection with ‖PI ‖ ≤ 1 due to the following result with
m = 0.

Proposition 3.1 Let I ⊆ N be an interval, let x = (xn)n∈N0 ∈ � such that xn = 0 for every
n /∈ I , let m < min I and let S ∈ ℘. Then ρ(x, S) ≤ ρ(x, {m} ∪ (S ∩ I )).

Proof Let S̃ = S∩[min I ,∞) ⊆ S; then ρ(x, S) ≤ ρ(x, {m}∪ S̃). Indeed, if S̃ � S, then the
elements in S \ S̃ do not contribute to ρ(x, S) except for the possible effect of their presence
on the first element of S̃, and then {m} has the same effect; and, if S = S̃, then the addition
of {m} only prepends a (non-negative) term to ρ(x, S).

Now, the elements in S̃ beyond themaximumof I , if any, donot contribute toρ(x, S) either,
except for the fact that the last term in ρ(x, S) may become smaller (as every ‖φn‖ ≤ 1). In
any case, ρ(x, S) ≤ ρ(x, {m} ∪ S̃) ≤ ρ(x, {m} ∪ (S ∩ I )). ��

As a consequence, if I ⊂ N0 is a finite interval and x ∈ R(PI ), then supS∈℘ ρ(x, S) is
attained for some S ⊆ [0,max I ].

If n ∈ N0, we define the projection Pn = P{1,...,n} (as opposed to P{n}, which gives the
identification of Xn described in Proposition 2.1); in particular, P0 = P∅ = 0.

Recall that a sequence (xn)n∈N is said to satisfy an upper (resp., lower) p-estimate for
1 < p < ∞ if there exists a constant M < ∞ such that

∥
∥
∑m

j=1 x j
∥
∥p ≤ M

∑m
j=1 ‖x j‖p

(resp., M
∥
∥∑m

j=1 x j
∥
∥p ≥ ∑m

j=1 ‖x j‖p). The following results show that sequences in Ĵ (�)

with disjoint supports admit an upper 2-estimate, and also a lower 2-estimate if the supports
are furthermore not adjacent.

Proposition 3.2 [4, Theorem 1.1(III)] Let I1, I2, …, Im ⊆ N0 be disjoint intervals and let
x j ∈ R(PI j ) for every j ∈ {1, 2, . . . ,m}. Then ∥

∥∑m
j=1 x j

∥
∥2
J ≤ 3

∑m
j=1 ‖x j‖2J .

Proposition 3.3 Let I1 << I2 << · · · << Im ⊆ N0 be non-empty intervals and let x j ∈
R(PI j ) for every j ∈ {1, 2, . . . ,m}. Then 2∥∥∑m

j=1 x j
∥
∥2
J ≥ ∑m

j=1 ‖x j‖2J .

Proof Define y = (yn)n∈N0 = ∑m
j=1 x j ∈ Ĵ (�), let ε > 0 and n1 = 0 and pick n j ∈

(max I j−1,min I j ) for every j ∈ {2, . . . ,m}, which is possible because I j−1 << I j ; note
that yn j = 0 for all j ∈ {1, 2, . . . ,m}.

For every j ∈ {1, . . . ,m}, there exists S j ∈ ℘ such that ρ(x j , S j )
2 > 2‖x j‖2J −ε/m and,

by Proposition 3.1, we may assume n j ∈ S j ⊆ {n j } ∪ I j . Let then m j = max S j , so

ρ(y, S j )
2 = σ(y, S j )

2 + ‖ym j ‖2m j
= σ(y, S j )

2 + σ(y, {n j ,m j })2

and there exists some S̃ j (either S j itself or {n j ,m j }) such that σ(y, S̃ j )
2 ≥ 1

2ρ(y, S j )
2,

with max S̃ j−1 = m j−1 < n j = min S̃ j if j > 1. Let S̃ = ⋃m
j=1 S̃ j ; then

2‖y‖2J ≥ ρ(y, S̃)2 ≥ σ(y, S̃)2 ≥
m∑

j=1

σ(y, S̃ j )
2 ≥ 1

2

m∑

j=1

ρ(y, S j )
2

= 1

2

m∑

j=1

ρ(x j , S j )
2 >

1

2

m∑

j=1

(
2‖x j‖2J − ε/m

)
>

m∑

j=1

‖x j‖2J − ε.

As this is true for all ε > 0, it follows that 2‖y‖2J ≥ ∑m
j=1 ‖x j‖2J indeed. ��

123



Projections in the J-sums of Banach spaces Page 5 of 13   162 

4 Stepping projections

We will write 
 for the set of all sequences (αn)n∈N0 in N0 such that αn ≤ αn+1 and αn ≤ n
for every n ∈ N0 and, given α = (αn)n∈N0 ∈ 
, we define a linear map Qα : �−→ � as

Qα

(
(xn)n∈N0

) = (
φn

αn
(xαn )

)
n∈N0

.

Lemma 4.1 Let α = (αn)n∈N0 ∈ 
, let x ∈ Ĵ (�) and let S ∈ ℘. Then

ρ(Qα(x), S) ≤ ρ(x, {αp : p ∈ S }).

Proof Write x = (xn)n∈N0 ∈ Ĵ (�) and let yn = φn
αn

(xαn ) for every n ∈ N0, so that
Qα(x) = (yn)n∈N0 .

Let p < q be two consecutive elements of S. Then

‖φq
p(yp) − yq‖q = ‖φq

p(φ
p
αp

(xαp )) − φq
αq

(xαq )‖q
= ‖φq

αq
(φ

αq
αp (xαp )) − φq

αq
(xαq )‖q

= ‖φq
αq

(φ
αq
αp (xαp ) − xαq )‖q

≤ ‖φαq
αp (xαp ) − xαq ‖αq ;

in particular, ‖φq
p(yp)−yq‖q = 0 ifαp = αq . Additionally, for the final term ofρ(Qα(x), S),

if p = max S, we also have

‖yp‖p = ‖φ p
αp

(xαp )‖p ≤ ‖xαp‖αp ,

so indeed ρ(Qα(x), S) ≤ ρ(x, {αp : p ∈ S }). ��

Proposition 4.2 Let α ∈ 
. Then Qα| Ĵ (�)
: Ĵ (�) −→ Ĵ (�) is a bounded linear operator

and ‖Qα‖ ≤ 1.

Proof Qα is clearly linear and ‖Qα(x)‖J ≤ ‖x‖J for every x ∈ Ĵ (�) by Lemma 4.1. ��
Definition Let A ⊆ N. We define a projection QA : Ĵ (�)−→ Ĵ (�) as QA = QαA where
αA = (αn)n∈N0 is given by αn = max(({0}∪ A)∩[0, n]). If n ∈ N0, we define the projection
Qn = Q{1,...,n} (as opposed to Q{n}); in particular, Q0 = Q∅ = 0.

If A = {a1 < a2 < . . .} ⊆ N, and A0 = {0}∪A, then QA((xn)n∈N0) = (ym)m∈N0 is given
by ym = φm

a (xa), where a = max A0 ∩ [0,m], for every m ∈ N, so QA(x) depends only on
those components xn for which n ∈ A, and N (QA) = { (xn)n∈N0 : xn = 0 for every n ∈ A }.
If (I j ) j∈N is a sequence of non-empty intervals of N0 such that I j << I j+1 for every j ∈ N

and A = N\ ⋃
j∈N I j , then N (QA) is isomorphic to �2((R(PI j )) j∈N) in the natural way due

to Propositions 3.2 and 3.3.
If x = (xm)m∈N0 ∈ Ĵ (�) and n ∈ N, then

Qn(x) = (x1, x2, . . . , xn−1, xn, φ
n+1
n (xn), φ

n+2
n (xn), . . .),

so Qn is a projection (clearly Q 2
n = Qn) and the set of eventually constant sequences can be

written as 	(�) = ⋃
n∈N R(Qn), which is dense in Ĵ (�), but this can be stated in a better

form.

Proposition 4.3 Let x ∈ Ĵ (�). Then Qn(x) −→
n

x.

123



  162 Page 6 of 13 M. González, J. Pello

Proof The result is immediate for the set of eventually constant sequences 	(�) =⋃
n∈N R(Qn), as (Qn(x))n∈N is eventually constant for x ∈ 	(�), which is dense in Ĵ (�)

by Theorem 2.2. In fact, the proof of the denseness of 	(�) in Ĵ (�) in [4, Theorem 1.1(I)]
essentially proves this. ��

Given n ∈ N, both Pn and Qn are projections that depend only on the first n components
of x , so they have the same kernel, and their ranges are different but isometric.

Proposition 4.4 Let m ∈ N. Then Qm Pm = Qm and PmQm = Pm and, for every x ∈ Ĵ (�),
‖Pm(x)‖J = ‖Qm(x)‖J .

Proof The identities QmPm = Qm and PmQm = Pm follow from the fact that both Pm(x)
and Qm(x) depend only on the first m components of x ∈ Ĵ (�) and leave them untouched,
and then

‖Qm(x)‖J = ‖QmPm(x)‖J ≤ ‖Pm(x)‖J = ‖PmQm(x)‖J ≤ ‖Qm(x)‖J

from ‖Pm‖ ≤ 1 and ‖Qm‖ ≤ 1. ��

5 Subspaces of J(8) and Ĵ(8)

As already mentioned in Theorem 2.2, J (�)∗∗ can be identified with Ĵ (�) when every Xn

is reflexive. However, even if this is not the case, J (�)∗∗ can be identified isometrically
with Ĵ (�∗∗), where �∗∗ = (φ∗∗

n )n∈N0 , [4, p. 97], and then Ĵ (�) can be seen to embed
isometrically into Ĵ (�∗∗) ≡ J (�)∗∗ by way of the natural inclusion of each Xn into X∗∗

n ,
where each x ∈ Ĵ (�) is identified with the weak∗ limit of (Pn(x))n∈N in J (�)∗∗ (if every
Xn is reflexive, then simply �∗∗ = �).

Proposition 5.1 Let Y be a subprojective Banach space, let T : X −→ Y be an operator and
let M be a closed infinite-dimensional subspace of X such that T |M is not strictly singular.
Then M contains an infinite-dimensional subspace complemented in X.

Proof T |M is not strictly singular, so there exists some infinite-dimensional subspace N ofM
such that T |N is an isomorphism. As Y is subprojective, we can further refine N to assume
that T (N ) is complemented in Y , and then Y = T (N ) ⊕ Z implies X = N ⊕ T−1(Z), so N
is complemented in X . ��

The following result effectively shows that J (�) is subprojective whenever all of the
Xn are subprojective. It does a little more than this, as it proves that every closed infinite-
dimensional subspace of J (�) contains an infinite-dimensional subspace complemented
in Ĵ (�), and not just in J (�), which has some implications that will be discussed later.
Also, the result contains an analogue if all of the Xn are hereditarily �2, as then J (�) too is
hereditarily �2; a Banach space X is called hereditarily �2 if every subspace of X contains a
further subspace that is isomorphic to �2. This is already hinted at in [4] and proved in [19,
20, Lemma 3] when each Xn is finite-dimensional, and is included here because the heavy
part of the proof is the same.

Theorem 5.2 (i) If each Xn is subprojective, then every closed infinite-dimensional sub-
space of J (�) contains an infinite-dimensional subspace complemented in Ĵ (�);

(ii) if each Xn is hereditarily �2, then J (�) is hereditarily �2;
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(iii) if each Xn is subprojective and hereditarily �2, then every closed infinite-dimensional
subspace of J (�) contains a copy of �2 complemented in Ĵ (�).

Proof Let M be a closed infinite-dimensional subspace of J (�). If Qn |M is not strictly
singular for some n ∈ N, then R(Qn) is isometric to R(Pn) by Proposition 4.4, in turn
isomorphic to

⊕n
i=1 Xi , so, respectively for each case,

(i) M contains an infinite-dimensional subspace complemented in Ĵ (�) by Proposi-
tion 5.1, since R(Qn) is isomorphic to

⊕n
i=1 Xi , which is subprojective [18, Proposition 2.2];

or
(ii) M contains an infinite-dimensional subspace N such that Qn |N is an isomorphism,

where R(Qn) is isomorphic to
⊕n

i=1 Xi , so N contains a copy of �2 as being hereditarily �2
is a three-space property [6, Theorem 3.2.d]; or

(iii) both of the above apply, so M contains a copy of �2 by (ii) and then said copy contains
a further copy of �2 complemented in Ĵ (�) by (i).

Otherwise, assume that Qn |M is strictly singular for every n ∈ N, in any of the cases (i),
(ii) or (iii). Then, for every n ∈ N and ε > 0, there exists x ∈ M such that ‖x‖ = 1 and
‖Qn(x)‖ < ε, and then there is m > n + 1 such that ‖Pm−1(x) − x‖ < ε. By induction,
starting with an arbitrary n1 ∈ N, there exist a sequence (nk)k∈N of elements in N and a
sequence (xk)k∈N of norm-one elements in M such that ‖Qnk (xk)‖ < 2−k/6, nk+1 > nk +1
and ‖Pnk+1−1(xk) − xk‖ < 2−k/6 for every k ∈ N.

For each k ∈ N, define Tk = Pnk+1−1(I −Qnk ) and note that, given y = (yn)n∈N0 ∈ Ĵ (�)

and m ∈ N, then

Tk(y)m =
{
ym − φm

nk (ynk ), if nk < m < nk+1

0, otherwise

so Tk(y) depends only on components [nk, nk+1) of y and its value lies in the range of
P(nk ,nk+1). As a consequence, it is easy to check that each Tk is a projection with ‖Tk‖ ≤ 2
and that Ti Tj = 0 if i �= j . If we further define A = { nk : k ∈ N } and Ik = (nk, nk+1) for
each k ∈ N, it holds that

Tk = Pnk+1−1(I − Qnk ) = PIk (I − Qnk ) = PIk (I − QA)

for every k ∈ N.
Let zk = Tk(xk) = Pnk+1−1(I − Qnk )(xk) ∈ R(PIk ) for every k ∈ N; then ‖zk −

xk‖ ≤ ‖Pnk+1−1(xk) − xk‖ + ‖Pnk+1−1Qnk (xk)‖ < 2−k/6 + 2−k/6 = 2−k/3 ≤ 1/6, so
5/6 < ‖zk‖ < 7/6 for every k ∈ N. If we take x∗

k ∈ J (�)∗ such that ‖x∗
k ‖ < 6/5 and

〈x∗
k , zk〉 = 1 for each k ∈ N, then, for every x ∈ Ĵ (�) and k ∈ N, Proposition 3.3 yields

k∑

i=1

∣
∣〈x∗

i , Ti (x)〉
∣
∣2 ≤

k∑

i=1

2‖Ti (x)‖2J ≤ 4

∥
∥
∥
∥

k∑

i=1

Ti (x)

∥
∥
∥
∥

2

J

= 4

∥
∥
∥
∥

k∑

i=1

PIi (I − QA)(x)

∥
∥
∥
∥

2

J

= 4
∥
∥Pnk+1(I − QA)(x)

∥
∥2
J ≤ 16‖x‖2J ,

so S(x) = (〈x∗
k , Tk(x)〉)k∈N defines a bounded operator S : Ĵ (�) −→ �2 which maps, for

every j ∈ N,

S(z j ) = (〈x∗
k , Tk(z j )〉)k∈N = (〈x∗

k , δ jk z j 〉)k∈N = e j
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As the operator �2 −→ Ĵ (�) that takes (αn)n∈N to
∑∞

n=1 αnzn (hence each e j to z j ) is
bounded by Proposition 3.2, it follows that Z = [zk : k ∈ N] is isomorphic to �2 and
complemented in Ĵ (�).

Finally, let K : Ĵ (�) −→ Ĵ (�) be the operator defined as K (x) = ∑∞
k=1〈x∗

k , Tk(x)〉(xk−
zk), as in [5]; then ‖x∗

k ‖‖Tk‖‖xk − zk‖ < 4
52

−k for every k ∈ N, so
∑∞

k=1 ‖x∗
k ‖‖Tk‖‖xk −

zk‖ < 4
5 < 1, which makes K well defined and U = I + K an isomorphism on Ĵ (�), with

K (zk) = xk − zk and U (zk) = xk for every k ∈ N, and then U (Z) = [xk : k ∈ N] ⊆ M is a
copy of �2 complemented in Ĵ (�). ��
Corollary 5.3 J (�) is subprojective if and only if each Xn is subprojective.

Theorem 5.2 does not hold for subspaces of Ĵ (�), as its proof relies on the fact that
Pn(x) −→

n
x for x ∈ J (�), which does not extend to Ĵ (�). In fact, the comments after

Proposition 6.2 show a particular case in which J (�) is subprojective but Ĵ (�) is not,
because it contains a (complemented) copy of L1. However, the fact that any closed infinite-
dimensional subspaceof J (�) contains another infinite-dimensional subspace complemented
in Ĵ (�), and not merely in J (�), allows to show that Ĵ (�) is subprojective when additional
conditions on Ĵ (�)/J (�) are met.

Lemma 5.4 Let X be a Banach space and let M and N be closed subspaces of X such that
M ∩ N = 0 and M + N is not closed. Then there exists an automorphism U : X −→ X such
that U (M) ∩ N is infinite-dimensional.

Proof Consider the product M × N with the product norm ‖(x, y)‖ = ‖x‖ + ‖y‖ and the
operator T : M×N −→ X defined as T (x, y) = x− y; then R(T ) = M+N is not closed, so
there exist normalised sequences (xn)n∈N in M and (yn)n∈N in N such that ‖xn − yn‖ < 2−n

for every n ∈ N. Since any weak cluster point of (xn)n∈N must be in M ∩ N = 0, by passing
to a subsequence [2, Theorem 1.5.6] we can assume that (xn)n∈N is a basic sequence and
that there exists a sequence (x∗

n )n∈N in X∗ such that 〈x∗
i , x j 〉 = δi j for every i , j ∈ N

and
∑∞

n=1 ‖x∗
n‖ ‖xn − yn‖ < 1. Then K (x) = ∑∞

n=1〈x∗
n , x〉(xn − yn) defines an operator

K : X −→ X with ‖K‖ < 1 andU = I −K is an automorphism on X that mapsU (xn) = yn
for every n ∈ N, so U (M) ∩ N is infinite-dimensional. ��
Proposition 5.5 If J (�) and Ĵ (�)/J (�) are both subprojective, then Ĵ (�) is subprojective.

Note that subprojectivity is not a three-space property, in general [18, Proposition 2.8].

Proof Let M be a closed infinite-dimensional subspace of Ĵ (�). If M ∩ J (�) is infinite-
dimensional, then it contains another infinite-dimensional subspace complemented in Ĵ (�)

by Theorem 5.2.
Otherwise, ifM∩J (�) is finite-dimensional,we can assume thatM∩J (�) = 0 bypassing

to a further subspace if necessary. If M + J (�) is closed, let Q : Ĵ (�) −→ Ĵ (�)/J (�)

be the natural quotient operator induced by J (�); then Q|M is an isomorphic embedding
into Ĵ (�)/J (�), which is subprojective, so M contains an infinite-dimensional subspace
complemented in Ĵ (�) by Proposition 5.1.

We are left with the case where M ∩ J (�) = 0 and M + J (�) is not closed. By
Lemma 5.4, there exists an automorphism U : Ĵ (�) −→ Ĵ (�) such that U (M) ∩ J (�)

is infinite-dimensional. Let N be an infinite-dimensional subspace of U (M) ∩ J (�) com-
plemented in Ĵ (�), which exists again by Theorem 5.2. then U−1(N ) ⊆ M and is still
complemented in Ĵ (�). ��
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Proposition 5.6 If J (�) is subprojective and the quotient map Ĵ (�) −→ Ĵ (�)/J (�) is
strictly singular, then Ĵ (�) is subprojective.

Proof Let M be a closed infinite-dimensional subspace of Ĵ (�). If M ∩ J (�) is infinite-
dimensional, then it contains another infinite-dimensional subspace complemented in Ĵ (�)

by Theorem 5.2.
Otherwise, if M ∩ J (�) is finite-dimensional, we can assume that M ∩ J (�) = 0 by

passing to a further subspace if necessary, and then the strict singularity of the quotient map
implies that M + J (�) cannot be closed. As in Proposition 5.5, by Lemma 5.4, there exists
an automorphismU : Ĵ (�) −→ Ĵ (�) such thatU (M)∩ J (�) is infinite-dimensional. Let N
be an infinite-dimensional subspace of U (M) ∩ J (�) complemented in Ĵ (�), which exists
again by Theorem 5.2; then U−1(N ) ⊆ M and is still complemented in Ĵ (�). ��

A Banach space X is called superprojective if every closed infinite-codimensional sub-
space of X is contained in an infinite-codimensional subspace complemented in X [23] (see
also [11]). There is a perfect duality between subprojectivity and superprojectivity for reflex-
ive Banach spaces, in that a reflexive Banach space is subprojective if and only if its dual is
superprojective. This does not extend to the non-reflexive case: c0 is subprojective while �1
is not superprojective [23], and �1 is subprojective but it has a predual Y that is not super-
projective [11]. It is still unclear whether the superprojectivity of a Banach space implies the
subprojectivity of its dual or predual. In light of Corollary 5.3 and Proposition 5.5, it makes
sense to ask whether J (�) would be superprojective if so were every Xn , or what additional
conditions on the Xn would be required.

Question. If every Xn is superprojective, is J (�) superprojective?
The proof of Theorem 5.2 relies on the fact that sequences in Ĵ (�) with skipped disjoint

supports generate (complemented) copies of �2, due toPropositions 3.2 and3.3. If the supports
are disjoint but not skipped then only Proposition 3.2 applies, so a disjoint sequence can
generate subspaces other than �2. However, the J -sum never introduces copies of �p for
p > 2. This is already proved in [19, 20, Lemma 5] when every Xn is finite-dimensional, but
this condition can be relaxed to the casewhere no Xn contains a copy of �p . If the construction
of J (�) is done with an arbitrary 1 < q < ∞ instead of 2, it is also known that Ĵ (�) does
not contain a copy of any �p for p > q if every Xn is finite-dimensional [21, Lemma 3]; as
mentioned in Remark 2.3, the results below extend to this case as well, so no space Ĵ (�)

constructed using any 1 < q < ∞ contains a copy of �p for p > q unless one of the Xn

already does.

Lemma 5.7 Let (mk)k∈N be a strictly increasing sequence of positive integers, let m0 = 0
and let xk ∈ R((I − Pmk−1)Qmk ) for every k ∈ N. Then 2

∥
∥∑k

i=1 x
i
∥
∥2
J ≥ ∑k

i=1 ‖xi‖2J .

Proof For every k ∈ N, write xk = (xkn )n∈N0 and note that Pmk−1Qmk = Qmk Pmk−1 , as
mk−1 < mk , so xk ∈ R((I − Pmk−1)Qmk ) = R(Qmk (I − Pmk−1)). As a consequence, by
Proposition 3.1 and Lemma 4.1,

sup
S∈℘

ρ(xk, S) = sup
S∈℘

ρ
(
xk, {mk−1} ∪ (S ∩ (mk−1,mk])

)
,

so there exists some S ∈ ℘ such that mk−1 ∈ S ⊆ [mk−1,mk] and ρ(xk, S)2 = 2‖xk‖2J ;
since xkmk−1

= 0, letting p = max S ≤ mk , we have

2‖xk‖2J = ρ(xk, S)2 = σ(xk, S)2 + ‖xkp‖2p = σ(xk, S)2 + σ(xk, {mk−1, p})2,
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so there exists some Sk ∈ ℘ (either S or {mk−1, p}) such that mk−1 ∈ Sk ⊆ [mk−1,mk] and
σ(xk, Sk)2 ≥ ‖xk‖2J .

Fix now k ∈ N and consider σ
(∑k

i=1 x
i , S j

)2 for a given j ∈ {1, . . . , k}. For any two
elements n < p ∈ S j ,

φ
p
n

( k∑

i=1

xin

)

−
k∑

i=1

xip =
k∑

i=1

(
φ
p
n (xin) − xip

)
,

where, for i < j , we have xi ∈ R(Qmi ), so mi ≤ m j−1 ≤ n < p and

φ
p
n (xin) − xip = φ

p
n (φn

mi
(ximi

)) − φ
p
mi (x

i
mi

) = 0

and, for i > j , we have xi ∈ R(I − Pmi−1), so n < p ≤ m j ≤ mi−1 and

φ
p
n (xin) − xip = φ

p
n (0) − 0 = 0

so only i = j matters and

φ
p
n

( k∑

i=1

xin

)

−
k∑

i=1

xip =
k∑

i=1

(
φ
p
n (xin) − xip

) = φ
p
n (x j

n ) − x j
p,

hence

ρ

( k∑

i=1

xi ,
k⋃

j=1

S j

)2

≥ σ

( k∑

i=1

xi ,
k⋃

j=1

S j

)2

≥
k∑

j=1

σ

( k∑

i=1

xi , S j

)2

=
k∑

j=1

σ(x j , S j )
2 ≥

k∑

j=1

‖x j‖2J .

��
Proposition 5.8 Let p > 2. If no Xn contains a copy of �p, then neither does Ĵ (�).

Proof Assume otherwise and let (xk)k∈N be a sequence in Ĵ (�) equivalent to the unit vector
basis of �p .

Then, for every j , m ∈ N0 and ε > 0, R(Pm) � ⊕m
i=1Xi does not contain copies of �p ,

as not containing copies of �p is a three-space property [6, Theorem 3.2.d], so Pm |[xi : j<i] is
strictly singular, since [xi : j < i] is still isomorphic to �p . Therefore, there exist k ∈ N with
k > j and y ∈ [xi : j < i ≤ k] such that ‖y‖J = 1 and ‖Pm(y)‖J < ε/2, and then there
exists n > m such that ‖(I − Qn)(I − Pm)(y)‖J < ε/2 by Proposition 4.3, which leads to
‖y − Qn(I − Pm)(y)‖J ≤ ‖Pm(y)‖J + ‖y − Pm(y) − Qn(I − Pm)(y)‖J < ε.

By induction, given a sequence (εn)n∈N of positive real numbers and startingwithm0 = 0,
there exist a strictly increasing sequence (mn)n∈N of positive integers and a sequence (yn)n∈N
of norm-one elements of Ĵ (�) that is a blocking of (xn)n∈N such that ‖yn − Qmn (I −
Pmn−1)(yn)‖J < εn for every n ∈ N; in particular, (yn)n∈N is still equivalent to the unit
vector basis of �p . Choosing a sequence (εn)n∈N that converges to 0 fast enough, we can then
assume that (zn)n∈N = (

Qmn (I − Pmn−1)(yn)
)
n∈N is also still equivalent to the unit vector

basis of �p , where each zn ∈ R
(
Qmn (I − Pmn−1)

) = R
(
(I − Pmn−1)Qmn

)
. But then, for any

n ∈ N, we would have

2

∥
∥
∥
∥

n∑

i=1

zi

∥
∥
∥
∥

2

J
≥

n∑

i=1

‖zi‖2J
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by Lemma 5.7, which is not possible for a sequence equivalent to the unit vector basis of �p
with p > 2. ��

For example, let (pn)n∈N be a strictly increasing sequence in (2,∞) and let p = limn pn .
Taking Xn = �pn and letting φn : �pn −→ �pn+1 be the natural inclusion, then Ĵ (�)/J (�)

is isomorphic to �p (or c0 if p = ∞), as ‖x‖pn −→
n

‖x‖p , so the quotient map Ĵ (�) −→
Ĵ (�)/J (�) is strictly singular by Proposition 5.8 and Ĵ (�) is subprojective by Proposi-
tion 5.6.

6 The dense subspace chain case

Let (Z , ‖ · ‖) be a Banach space. In this section, we will assume that each Xn is a closed
subspace of Z such that

⋃
n∈N Xn is dense in Z and Xn ⊆ Xn+1 for every n ∈ N0, each

‖ · ‖n is the restriction of ‖ · ‖ to Xn and each φn is the natural inclusion of Xn into Xn+1.
We will write J (Xn) = J (�), Ĵ (Xn) = Ĵ (�) and 	(Xn) = 	(�) for this particular case.

Under these conditions, the mapping S : Ĵ (Xn) −→ Z defined as S
(
(xn)n∈N0

) = limn xn
is a surjective bounded linear operator with kernel J (Xn) and the induced quotient map
Ĵ (Xn)/J (Xn) −→ Z is an isometry [4, Corollary 1.3].

Proposition 6.1 If Z is subprojective, then Ĵ (Xn) is subprojective.

Proof Each Xn ⊆ Z is subprojective [23, Lemma 3.1] and Ĵ (Xn)/J (Xn) is isomorphic to Z ,
hence subprojective, so Ĵ (Xn) is subprojective by Corollary 5.3 and Proposition 5.5. ��

Given that the constructionof J (Xn) ismade so that the quotient Ĵ (Xn)/J (Xn) is isometric
to Z , it is natural to ask whether the quotient is complemented, that is, whether Ĵ (Xn) =
J (Xn) ⊕ ( Ĵ (Xn)/J (Xn)) = J (Xn) ⊕ Z . For some spaces Z , this will be impossible; for
instance, Z = c0 as a subspace of Ĵ (Xn) ≡ J (Xn)

∗∗ would make �∞ embed into Ĵ (Xn)

[16, Proposition 2.e.8], which is separable (	(Xn) is dense in Ĵ (Xn)). On the other hand,
for Z = �1 the complementation is immediate, as �1 is always complemented as a quotient
[16, Proposition 2.f.7]. For other spaces, we have the following.

Proposition 6.2 Let (Zn)n∈N be an unconditional Schauder decomposition of Z that satisfies
a lower 2-estimate and such that Xn = ⊕n

i=1Zi and let (Tn)n∈N be the sequence of aggregate
projections associated with (Zn)n∈N (so R(Tn) = Xn and Tn(z) −→

n
z for every z ∈ Z).

Then the linear map T : Z −→ Ĵ (Xn) defined as T (z) = (Tn(z))n∈N is well defined and an
embedding into Ĵ (Xn), and Ĵ (Xn) = J (Xn) ⊕ R(T ) � J (Xn) ⊕ Z.

Proof Let K < ∞ be the suppresion constant of (Zn)n∈N and let M < ∞ be such that
∑k

i=1 ‖zi‖2 ≤ M
∥
∥
∑k

i=1 zi
∥
∥2 if (zi )ki=1 are disjoint with respect to (Zn)n∈N, in that each zi

belongs to a different Zi . Let z ∈ Z and S = { p0 < · · · < pk } ∈ ℘; then

ρ(T (z), S)2 =
k∑

i=1

∥
∥Tpi−1(z) − Tpi (z)

∥
∥2 + ‖Tpk (z)‖2

≤ M

∥
∥
∥
∥

k∑

i=1

(
Tpi−1(z) − Tpi (z)

)
∥
∥
∥
∥

2

+ ‖Tpk (z)‖2

= M
∥
∥Tp0(z) − Tpk (z)

∥
∥2 + ‖Tpk (z)‖2

≤ MK 2‖z‖2 + K 2‖z‖2 = (M+1)K 2‖z‖2
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so T (z) ∈ Ĵ (Xn) and ‖T (z)‖J ≤ √
(M+1)/2K‖z‖. If we define the operator

S : Ĵ (Xn)−→ Z given by S
(
(xn)n∈N

) = limn xn as before, then ST is clearly the iden-

tity on Z , so T S is a projection on Ĵ (Xn) with kernel J (Xn) and range R(T ). ��

This applies, for instance, if Z = �p , for 1 ≤ p ≤ 2, and (Zn)n∈N is the decomposition
associated to the unit vector basis, which is unconditional and satisfies a lower 2-estimate [17,
Theorem 1.f.7], or to Z = L p for 1 ≤ p ≤ 2 with the decomposition associated to the Haar
basis (or any other unconditional basis) [3, p. 128]; in all of these cases, Ĵ (Xn) � J (Xn)⊕Z .

On the other hand, if Z contains a copy of �p for p > 2 but no Xn contains a copy
of �p , then Ĵ (Xn) does not contain copies of �p by Proposition 5.8 and Ĵ (Xn) cannot contain
Ĵ (Xn)/J (Xn) ≡ Z as a subspace, so the quotient cannot be complemented. In particular, this
happens for Z = �p itself, with p > 2, and its canonical finite-dimensional decomposition.
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