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A B S T R A C T

The advent of wireless technologies has led to the development of novel services for end-users, with stringent
needs and requirements. High availability, very high throughput, low latency, and reliability are all of them
crucial performance parameters. To address these demands, emerging technologies, such as non-terrestrial
networks or millimeter wave (mmWave), are being included in 5G and Beyond 5G (B5G) specifications.
mmWave enables massive data transmissions, at the expense of a more hostile propagation, typical for high
frequency bands. Consequently, the inherent instability of the physical channel significantly affects the upper
layers of the protocol stack, resulting in congestion and data losses, which might strongly hinder the overall
communication performance. These challenges can be addressed not only at the link layer, but at any affected
layer. QUIC is a new transport protocol designed to reduce communications latency in many ways. Among other
features, it enables the use of multiple streams to effectively manage data flows sent through its underlying
UDP socket. This paper introduces an implementation of priority-based stream schedulers along with the
design of a flexible interface. Exploiting the proposed approach, applications are able to set the required
scheduling scheme, as well as the stream priorities. The feasibility of the proposed approach is validated
through an extensive experiment campaign, which combines Docker containers, the ns-3 simulator and the
Mahimahi framework, which is exploited to introduce realistic mmWave channel traces. The results evince
that an appropriate stream scheduler can indeed yield lower delays for time-sensitive applications by up to
36% under unreliable conditions.
1. Introduction

Novel wireless networks, in particular 5G and Beyond 5G (B5G)
systems, enable an evolution in mobile communications, especially
in terms of new applications and services. These technologies allow
high transmission rates (enhanced mobile broadband, eMBB) and low
latency (ultra reliable and low latency communications, URLLC). In ad-
dition, they also foster the massive interconnection of devices generat-
ing and collecting information (massive machine-type communications,
mMTC). This has helped to the quick spread of the Internet of Things
(IoT) paradigm [1].

The next evolution of IoT, exploiting upcoming mobile networks, is
the intrinsic support of real-time applications, such as haptic commu-
nications, autonomous driving, interactive virtual education, or free-
viewpoint video (i.e. streaming video from a drone, allowing the pro-
jection of an enlarged view beyond the current viewpoint), among
others [2].
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One of the keys to meet these demanding requirements is upgrad-
ing the underlying network technologies. Greater bandwidths can be
achieved using mmWave technology, which consists of switching the
communications to GHz frequency range [3]. This allows for massive
data transmissions at high data rates and low latency, making it ideal
for a wide range of IoT applications, including smart cities, intelligent
transportation, healthcare, innovative industries, among others [4].
At the same time, non-terrestrial networks based on Low Earth Orbit
satellites can greatly reduce latency for distant end-points, apart from
increasing network availability [5]. The new technologies suit well
both traditional and emerging applications. Unmanned Aerial Vehicles
(UAVs) could be used to monitor the environment with embedded sen-
sors, to offload communications from congested terrestrial networks,
or to provide emergency assistance [6]. For instance, in the field of
agriculture, drones can collect data and send it to LEO satellites, as
part of a control network, to finally send it to the cloud [7].
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Fig. 1. Stream multiplexing in HTTP/2 and QUIC.

Furthermore, real-time applications have very strict time require-
ments that can be achieved with the combination of high-speed mo-
bile technologies such as 5G [8,9], suitable network topologies, and
appropriate communication protocols, among others.

QUIC is a new transport layer protocol that could support real-time
applications [10]. One of its main goals is to reduce communications
latency. To achieve that, QUIC does not only include an efficient infor-
mation loss recovery mechanism, but it also implements multiplexing
to avoid head-of-line (HOL) blocking. HOL blocking strongly affects
Transmission Control Protocol (TCP), the widespread transport protocol
used by almost all applications that need reliable data transmission,
such as the popular HTTP/2 application layer protocol. In TCP all
information flows go through its socket. In QUIC, information flows are
organized in streams, which are multiplexed over time. Fig. 1 illustrates
how a loss of a single data packet affects both TCP and QUIC. Since
TCP has only one data flow, the loss recovery mechanism delays the
whole connection (Fig. 1(a)), while in QUIC this only impacts the
corresponding stream (Fig. 1(b)). Stream multiplexing can also have
a positive impact on application performance. For this reason, the
standard does not define a specific stream management mechanism but
suggests that the application can prioritize its data based on the active
streams, [10, Section 2.3].

In real-time applications, some flows can be more time-sensitive
than others. To efficiently manage QUIC streams, those flows might
need to be prioritized, since they could be critical for many processes
of the aforementioned IoT applications. In this work we propose the
use of QUIC stream multiplexing and stream transmission scheduling,
based on user-defined priorities, to ensure low latency for time-sensitive
traffic. We present a two-fold, complementary evaluation. We first
assessed in [11] the performance of the proposed policies over var-
ious underlying connectivity conditions, with different loss rates. In
the present study we evaluate the impact of very dynamic channel
fluctuations, as those that characterize the behavior of mmWave links.

In summary, we extend the analysis carried out in [11], whose
main contributions are again presented in this paper. In such previous
paper, we proposed the integration of new stream schedulers in a real
QUIC implementation (in GO programming language). These included
baseline solutions, such as Weighted Fair Queuing (WFQ), as well as an
absolute-priority strategy, which aims at ensuring low delay for critical
traffic flows. The schedulers were validated using a methodology that
combined real nodes (Docker containers) with the ns-3 simulator,
which was used to emulate different connectivity conditions. This
methodology was exploited to assess the latency of a particular IoT
scenario, which entails real traffic, using traces that capture control
messages from a controller to an UAV. In this paper we extend the
aforementioned validation by proposing a new scheduling solution and
emulating other link layer technology. In particular we consider multi-
gigabit mmWave links, exploiting the Mahimahi framework instead on
ns-3. All in all, the main contributions of this work are:
2

• A dynamic stream scheduling policy, which based on instanta-
neous channel conditions switches between the different schedul-
ing solutions, initially proposed in [11].

• A detailed analysis and validation of all considered stream sched-
ulers.

• We use a new evaluation setup using Mahimahi framework [12].
We study the behavior of the proposed scheduling policies over
highly dynamic wireless channels, using mmWave links.

• All the code has been made available in a public git repository,1 to
ensure reproducibility of the presented results and experiments.

The remainder of this paper is structured as follows. Section 2
discusses related work, positioning our paper and pointing out its main
contributions. Section 3 describes the integration of the scheduling
mechanisms within a real QUIC implementation. Section 4 presents the
tools used to build the simulation setups, and discusses the obtained
results, which are used to compare the behavior of the proposed
scheduling approaches. The conclusions are outlined in Section 5,
which also provides an outlook of our future work.

2. Background

The QUIC protocol was first proposed by Google Inc. [13] and it
has been recently standardized and published by the Internet Engineer-
ing Task Force (IETF) as a series of ‘‘Request For Comments’’ (RFC)
documents [10,14–16]. QUIC was created with the aim of reducing
the download time of HTTPS traffic, without losing security and re-
liability [17]. It is implemented over UDP and it supports congestion
control and loss recovery mechanisms [16]. QUIC also includes a
number of features to tackle some of the challenges that TCP cannot
successfully overcome, such as: reduction of connection establishment
latency, head-of-line blocking delay, and protocol ossification. The
implementation at the application layer and protocol version manage-
ment allows the inclusion of other useful features, which were not
included in the original QUIC specification. In order to provide security
between two endpoints of the network, QUIC uses the TLS 1.3 proto-
col [15]. As a result, it is possible to reduce the connection start-up
time, by transmitting application data during connection establishment.
In addition, QUIC is transparent to middleboxes, which consider its
encrypted packets as UDP traffic. For this reason, middleboxes cannot
be optimized for QUIC traffic, which facilitates the deployment of new
QUIC versions, thus preventing protocol ossification.

Among the many extensions that can be added to QUIC, it is impor-
tant to highlight the unreliable datagram extension. By default, QUIC
sends reliable data in STREAM frames [10]. Some applications, espe-
cially those having strict real time requirements, need unreliable data
transmission to avoid delays induced by retransmissions. UDP alone
offers this feature, but UDP datagrams are not congestion-controlled
or encrypted, unlike the new QUIC DATAGRAM frame added in [18].

As mentioned above, QUIC is organized in streams, which can be
created by any endpoint. They are independent units of information
that can be unidirectional or bidirectional [10]. They can send data
interleaved with other streams, without guaranteeing the byte order of
the streams, and can be canceled when needed. QUIC allows streams to
operate simultaneously. Furthermore, an arbitrary amount of data can
be sent in any stream, depending on the flow control constraints and
stream boundaries. However, QUIC does not define how the scheduling
policy should behave when several streams run over the same connec-
tion. In this sense, this work arises as a response to the flexibility that
QUIC provides in terms of its scheduling policy implementation, taking
into account the requirements of the application traffic.

To the best of the authors’ knowledge, very few works have an-
alyzed the stream scheduler within QUIC. The vast majority of the

1 Schedulers in quic-go: https://github.com/fatimafp95/quic-
go_scheduler/tree/mod.
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Fig. 2. Representation of each scheduler functionality in each state of the stream queue management.
schedulers found in the literature aim at other aspects of the con-
nection, rather than multi-streaming, and, in particular, multipath.
Transport layer multipath (MP) consists of the simultaneous use of
multiple network interfaces. MP and stream schedulers tackle different
challenges: MP sends data through different and surely heterogeneous
network paths, while streams without MP are traversing the very same
path. An MP extension for QUIC is currently under development [19].
In addition, it is worth mentioning that some works reveal that stream-
awareness would actually improve the behavior of MP scheduling.
Shi et al. proposed a priority-based online stream scheduling mecha-
nism for MPQUIC [20]. Path scheduling was performed according to
stream properties. The authors showed that the proposed scheduler
could reduce the download time in an environment where paths might
have very different characteristics. Viernickel et al. also provided a
stream-to-path scheduling policy for MPQUIC, showing a reduction
of the HOL effect, and reducing the time required to establish sub-
flows [21]. Other works compare MP schedulers without taking into
account how the streams are handled within the transport protocol [22,
23]. MP is out of this paper’s scope, which focuses on multi-streaming
over a single path.

Chiariotti et al. [24] also studied the use of multiple streams over
one path. They only focus on how to map application data to the
underlying streams. The authors assume that applications define the
relationship of the data in each stream to the requirements of the cor-
responding service. Their scheduler sought to maximize this correlation
at the receiver node. They evaluate their approach using two particular
use cases: inter-vehicular and haptic communications. Hervella et al.
compared the performance of QUIC over realistic satellite networks
with that shown by TCP [25]. They modify the ns-3 network simulator
to emulate satellite links with different characteristics. They also carry
out an analysis of the impact of multi-streaming in QUIC, using the
default Round Robin scheduler. Their results evince that this scheduling
policy does not yield lower delays. In addition, Cui et al. also used mul-
tiple streams in QUIC to carry MPEG-DASH protocol (DASH) in [26].
In this case, the scheduler takes the decision based on the deadline
for each video segment that is adaptively sent through each stream, or
on the buffer state. If the segment is not received within the required
time or the playback buffer is not full, the multi-stream scheduler
switches the transmission mode to a simplex mode of operation, re-
ceiving the first requested segment, and pausing the remaining streams.
The authors also used ns-3 to conduct the experiments. The results
evince that DASH over QUIC (DASH+) with multi-stream achieves
higher throughput and better video quality compared to alternative ap-
proaches. However, the authors did not modify the scheduling policies
of the QUIC protocol. It is worth highlighting the work by Rozen-
Schiff et al. [27], since they actually modify these policies. They
proposed a QUIC module called AQUA that features a WFQ scheduler to
distribute bandwidth according to stream requirements for metaverse
applications.

Another set of papers that analyze the use of multiple streams
and their scheduling within the same QUIC implementation we use
herewith (quic-go), are mentioned hereinafter. Hervella et al. con-
ducted a comparative study on the performance of TCP and QUIC
transport protocols over realistic satellite networks [28]. The authors
proposed a novel methodology that combines real implementations,
leveraging virtualization techniques, with simulations to conduct sys-
tematic and repeatable experiments. The default operation the ns-3
3

framework is modified to incorporate the dynamic characteristics of
satellite communication links, particularly LEO communications. Their
comprehensive assessment spans various setups, including different
operating frequency bands and packet buffer lengths. While the main
focus was evaluating both protocols within dynamic environments, the
assessment also analyzed the impact of QUIC’s multi-streaming capabil-
ity. They concluded that the default stream scheduler that quic-go
includes, the well-known Round Robin (RR) may be suboptimal. Af-
terwards, Khan et al. further extended the assessment, analyzing the
behavior of other stream scheduling policies [29,30]. They considered
a more complex application where streams are prioritized based on
application data generation rate. For this, scheduling algorithms were
implemented at the application layer, defining a buffer for each stream.
Using this approach, they analyzed WFQ, Fair Queueing (FQ) and they
proposed three new schedulers based on Lyapunov’s theory [31]. These
novel schedulers are focused on equalizing the occupancy and the
accumulated sojourn time at the aforementioned buffers. The authors
showed that Lyapunov based scheduling policies fairly distribute both
the buffer occupancy and the delay between streams, without jeopar-
dizing the throughput, even under very high load situations, and highly
dynamic connectivity situations.

Some applications have very strict delivery time requirements. Ex-
amples of such applications are the aforementioned inter-vehicular
and haptic services, drone applications, or even gaming. The so-called
Tactile Internet, where haptic applications are considered, requires
round-trip times lower than ∼10 ms [9]. UAV control traffic has very
strict requirements for delay and reliability. In 2018, Ferranti et al.
predicted that 78% of the total traffic in 2021 would be from video
services [32]. This is actually strengthened by mobile technologies, as
they enable the interconnection of more devices, including UAVs. When
a drone carries different types of traffic, such as video and control flows,
it is important that the latter arrives at its destination with the lowest
possible delay. In this work, we propose to exploit multiple streams in
QUIC as a means to send the control traffic over a separate stream,
prioritizing it over the stream carrying bulk data.

We consider an appropriate stream scheduler for the QUIC imple-
mentation quic-go [33]. The default behavior in this implementation
reflects the traditional Round Robin (RR) policy. This algorithm equally
distributes the resources on a first-come, first-served basis. It means
that no priority is assigned to any stream, even if it carries sensitive
data. We propose two priority-based schedulers: weighted fair queuing
(WFQ) and absolute prioritization (ABS). On the one hand, WFQ assigns
a specific weight to each stream, which corresponds to the respective
time fraction. On the other hand, absolute prioritization allocates all
time to the highest priority stream as long as it has data to transmit.
It is worth noting that, as a consequence of the selected QUIC imple-
mentation, prioritization covers both transmission and retransmission
queues of a stream. Finally, a third algorithm is proposed which takes
into account the network conditions to adapt the stream scheduling
switching dynamically from RR to ABS and vice-versa.

3. Stream scheduler implementation

The QUIC implementation we use [33] is based on the IETF specifi-
cations [10,15,16], including the unreliable datagram extension [18].
It is worth mentioning that this implementation has been following the
changes proposed during the QUIC specification process. Furthermore,
Crochet et al. evaluated in 2021 the performance of various QUIC
implementations, and the most successful servers were quinn and
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Fig. 3. Diagram of all interfaces in quic-go related to stream management.
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quic-go, while quic-go was the best choice at the client side [34].
In addition, the QUIC interoperability matrix2 depicts several imple-
mentations with many interoperable features. Again, quic-go stands
out as one of the implementations that has the most features working
correctly, even with other implementations.

As already mentioned, the only stream scheduling policy found
in the original implementation is Round Robin. Before depicting the
schedulers that we have implemented, it is important to understand
the operation of the stream management interface in quic-go. Fig. 3
illustrates an implementation diagram of all interfaces related to the
stream management. When application data is ready to be sent, one or
more streams can be opened, where the data is written. Each stream
𝑖 has an assigned identifier (𝐼𝐷𝑖) that is queued in the stream queue.
Then, the interface, depending on the scheduler, selects data chunks
from the stream at the front of the queue to build the QUIC packet. This
packet is then assembled and transmitted according to the congestion
control,3 flow manager, and pacer. The pacer determines the appropri-
ate transmission time based on the RTT and the congestion window to
avoid a packet burst that might cause congestion and losses [16, Section
7.7]. Then, the packet is written in the UDP buffer.

In the following lines, we depict how the stream scheduling func-
tionality is designed and implemented in quic-go. The interfaces to
start a QUIC session and to interact with the streams are defined in the
interface.go file. This includes the functions used to open new streams
and to configure the connection (Config structure) needed for both

UIC server and client.
quic-go stream management mostly consists in handling a stream

ueue. We thus modify the queue management mechanisms to im-
lement new stream schedulers: absolute prioritization (ABS) and
eighted fair queuing (WFQ). Fig. 2 illustrates the default queue
anagement and the modifications we introduce. In this example, we
ave assigned a higher priority to the stream with the id ‘‘ID0’’. This
eans that messages sent in this stream will be processed first. At

he beginning, the stream queue is filled with the IDs (StreamQueue
nit.). For WFQ validation, we have allocated 75% transmission time
o ‘‘ID0’’ and 25% to ‘‘ID1’’. This is achieved by replicating the corre-
ponding streams within the queue. Then, the stream queue is checked,
ccording to the scheduler type and whether it has more data to send
stream.hasMoreData). After taking data for transmission from the first
tream in the queue, and if the stream still has data to send, it returns
o the queue. For WFQ and Round Robin, the stream is moved to the
nd of the queue, while for ABS it remains in the head. If there is no
ore data to send, the stream is not sent back to the queue and all of

ts replicas are removed.

2 https://interop.seemann.io/, last visit: 12/05/2024.
3 The only congestion control algorithm implemented in quic-go is

UBIC [35].
4

The default behavior for stream processing in quic-go is based
n the Round Robin (RR) algorithm, as shown in Algorithm 1. When
UIC opens one or more streams that have data to transmit, they
re considered as active streams (activeStreams). The implementation
llocates them at the end of the queue and starts processing them,
ccording to the moment they were opened (lines 1–3). The streams
re then assessed in terms of their construction and whether they have
ata to transmit. Next, the availability of more stream data is checked
hasMoreData). If there is more data to send, the corresponding stream
D (streamID) is placed at the end of the stream queue, otherwise, it is
emoved from the active stream queue (lines 10–14).

Algorithm 1 RR algorithm in quic-go for stream management.
Require: activeStreams, streamID, streamQueue, packet
1: if activeStreams[streamID] ≠ 0 then
2: streamQueue = append(streamQueue, streamID)
3: end if
4: numActiveStream = length(activeStreams)
5: streamCount = 0
6: while streamCount < numActiveStream do
7: id = streamQueue[0]
8: streamQueue = streamQueue[1:END]
9: hasMoreData = packet.FillWithStreamData(id)

10: if hasMoreData then
11: streamQueue = append(streamQueue, id)
12: else
13: delete(activeStreams, id)
14: end if
15: if packet.isFull then
16: break while loop
17: end if
18: streamCount++
19: end while

In order to implement a flexible interface to use multiple schedulers,
we extend the QUIC configuration with both the scheduler type and
the priority level for each stream (SchedulerType and StreamPrio list,
respectively). Based on this, any application using this enhanced QUIC
implementation could easily configure the stream manager features.

We redesign and adjust how the stream queue is managed and
processed, by the AddActiveStream and AppendStreamFrames functions
in the framer.go file, to include ABS and WFQ schedulers. AddAc-
tiveStream updates the stream queue when a stream becomes active
(newly opened, new data written, or flow control update). The new
streams are added at the end of the queue. Depending on the selected
scheduler, we modify this behavior to sort the queue based on the
streams’ priority levels as depicted in Algorithm 2. The stream queue is

further managed in AppendStreamFrames, which is called every time a

https://interop.seemann.io/
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Algorithm 2 ABS and WFQ algorithm for priority-based queuing
(function addActiveStream).
Require: SchedulerType, streamQueue, streamMapPrio, streamID, StreamPrio
1: switch SchedulerType do
2: case ABS:
3: lenQueue = length(streamQueue)
4: streamMapPrio[streamID] = StreamPrio[lenQueue−1]
5: if lenQueue > length(StreamPrio) then
6: priority, streamIDFound = streamMapPrio[streamID]
7: if not streamIDFound then
8: streamMapPrio[streamID] = 0
9: priority = 0
0: end if
1: StreamPrio = append(StreamPrio, priority)
2: end if
3: currentPosition = lenQueue−1 ⊳ New stream position

14: newPriority = StreamPrio[currentPosition]
15: while currentPosition ≥ 0 do
16: if newPriority ≥ StreamPrio[currentPosition] then
17: correctPosition = currentPosition
18: end if
19: currentPosition−−
20: end while
21: StreamPrio.insertAt(newPriority, correctPos)
22: streamQueue.insertAt(streamID, correctPos)
23: StreamPrio = StreamPrio[0:lenQueue−1]
24: streamQueue = streamQueue[0:lenQueue−1]
25: case WFQ:
26: prio = 1
27: knownPrio, streamIDFound = streamMapPrio[streamID]
28: if streamIDFound then
29: prio = knownPrio
30: else
31: if length(StreamPrio) > 0 then
32: prio = StreamPrio[0]
33: StreamPrio = StreamPrio[1:END]
34: end if
35: streamMapPrio[streamID] = prio
36: end if
37: replicate = prio
38: while replicate > 0 do
39: streamQueue = append(streamQueue, streamID)
40: replicate−−
41: end while
42: end switch

new QUIC data packet is built. By default, this function takes the first
stream in the queue, uses its data to build a STREAM frame and, if there
is more data, it returns the stream to the end of the queue, resulting in
Round Robin behavior. To implement other schedulers, we modify this
operation as presented in Algorithm 3.

To avoid breaking QUIC connection calls to the data write method,
we provide priorities in a list (StreamPrio) through the Config struc-
ure. At the time of stream selection, quic-go works with a stream
ueue (streamQueue), which is synchronized with the active stream
ist (activeStreams). If all stream data has been sent, or if the stream
s blocked, its ID will be removed from the stream queue. When
uch stream returns to the queue, it needs to recover the priority
evel assigned to it. For this purpose, we define an ID-priority map
StreamMapPrio), which is populated during priority list consumption.
ap population is defined on line 4 for ABS and lines 30–36 for WFQ

n Algorithm 2.
The default quic-go stream manager takes the first ID from the

tream queue, with the queue being filled on a first-come, first-serve
asis. For absolute prioritization, we sort the stream queue following
he StreamPrio list (Algorithm 2: lines 13–24). It establishes which
tream should be processed first, i.e., sending all of its data (keeping the
tream flow control limitation). Afterwards, the stream ID is removed
5

Algorithm 3 Stream management depending on whether more data is
available (function appendStreamFrames).
Require: SchedulerType, hasMoreData, streamQueue, streamID,

StreamPrio
1: if SchedulerType == ABS then
2: if hasMoreData then
3: streamQueue=append(streamID, streamQueue)
4: else
5: StreamPrio = StreamPrio[1:]
6: end if
7: else if SchedulerType == WFQ then
8: if hasMoreData then
9: streamQueue = append(streamQueue, streamID)

10: else
11: position, found = streamQueue.find(streamID)
12: while found do
13: delete(streamQueue, position)
14: position, found = streamQueue.find(streamID)
15: end while
16: end if
17: end if

from the stream queue, until it receives more data to transmit. Then
the stream with the next highest priority level is processed likewise.
WFQ scheduler distributes resources on a weighted basis. Our imple-
mentation emulates this behavior by interpreting StreamPrio as a list of
weights. Every new stream ID is replicated as many times as indicated
in the head of StreamPrio list (Algorithm 2: lines 37–41).

After building a STREAM frame for a new data packet, the default
Round Robin scheduler puts the corresponding ID back at the end of
the queue (Algorithm 1, lines 1–12). Following the same logic, ABS
scheduler takes the ID from the head of the stream queue, but instead
of appending it at the end of the queue, ABS puts it back to the head
(Algorithm 3, lines 2–4). If the stream has no data left, it does not return
to the queue and its priority level is removed from the StreamPrio list
(Algorithm 3, line 5). WFQ and RR behaviors are rather different. For
each stream that has more data to transmit, its ID is added to the end
of the queue (for RR, line 14 of Algorithm 1, and line 9 for WFQ in
Algorithm 3). If the stream has no more data to send, RR does not return
it to the stream queue (line 16 in Algorithm 1). This behavior applies as
well to WFQ, except that in this case we also need to remove all of the
depleted stream’s replicas from the queue (Algorithm 3, lines 11–14).

Finally, combining two of the previous schedulers a novel pol-
icy is proposed that aims to guarantee certain requirements of the
data streams. It would be specially appealing in scenarios with highly
varying capacity where a static configuration could not render the
best behavior. On the one hand, when the communication capacity
is high the prioritization would induce delays in the non-prioritized
streams even if it is not really necessary. On the other hand, when the
communication capacity degrades the prioritization would be necessary
to satisfy the requirements of the priority streams. In order to estimate
the communication capacity shared among the different data streams
we use the congestion window (CWND) and smoothed RTT (sRTT)
variables. It is worth noting that both parameters can be measured at
the QUIC layer, so guaranteeing the feasibility of this approach. In this
sense, sRTT is a variable within quic-go that corresponds to an expo-
nentially weighted moving average of the round-trip time samples [16,
Section 5.3]. These metrics are updated once an ACK event occurs,
facilitating bandwidth estimation. The capacity estimation is calculated
as the ratio of the CWND in bits to the RTT in seconds. Following
quic-go implementation, this ratio is scaled with a correction factor
of 5/4 to ensure that the actual bandwidth is not under-utilized [36].
Then, upon the definition of a target shared capacity sBW, the proposed

scheduler dynamically switches between ABS and RR according to the
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Algorithm 4 Logic to enable the adaptability of the scheduler (included
in appendStreamFrames).
Require: cwnd, sRTT, target
1: 𝑠𝐵𝑊 = (5∕4) ⋅ (𝑐𝑤𝑛𝑑 ⋅ 8)∕(𝑠𝑅𝑇𝑇 )
2: if sBW > target then
3: SchedulerType = ‘‘RR’’
4: else
5: SchedulerType = ‘‘ABS’’
6: end if

channel conditions. As can be seen in Algorithm 4, if the estimated
bandwidth is below the target then ABS will be employed to guarantee
the early reception of the prioritized stream (line 3). Conversely, if the
target is below the estimated bandwidth, the scheduler will be switched
to RR to prevent the starvation of other streams, as detailed in line 5
of Algorithm 4. It is worth mentioning that the application has only to
select this scheduler (SchedulerType = ‘‘adapt’’) and specify the stream
with the highest priority and its target bandwidth.

4. Results

4.1. Environment setup

To carry out the experiments, we first exploit the ns-3 discrete-event
simulator4 and Docker containers.5 Docker containers are connected
hrough ns-3, which emulates the characteristics of the underlying
onnectivity, by altering bandwidth and delay parameters (Fig. 4a).
dditionally, the loss rate can be also tweaked to consider different
onditions. We connect two containers that exchange real application
raffic. Each container hosts an application consisting of a client and

server that use QUIC. These applications are isolated from each
ther on separate networks, running on their corresponding operating
ystems, with their own network stack, and interacting with a dedicated
etwork device. To establish the network topology, each container is
onnected to a bridge that is linked to a tap device and then to a special
s-3 NetDevice. These NetDevices connect each emulated node (Docker
ontainer) to a network router. The two network routers are connected
y a point-to-point link (PointToPointNetDevice() in ns-3), which is used

to emulate different networking technologies by modifying bandwidth
and round-trip time. Furthermore, connecting links to edge routers
have very high capacity and zero delay, ensuring the bottleneck is on
the network.

The bandwidth and the round-trip time during the experiments are
1 Mbps and 40 ms, respectively. We also use different packet drop
rates to assess the performance under both reliable and unreliable link
conditions (0%, 5%, and 10%).

We extend the evaluation setup with a configuration that allows
end-to-end evaluation of communication conditions of high capacity
and variability. It is worth mentioning that ns-3 emulation capability
presents some limitation when configured with high communication
capacity. In those cases, ns-3 is not able to ensure timely packet
delivery acting as a bottleneck. In order to overcome this limitation,
we have used the Mahimahi [12] link emulator fed with capacity
traces to ensure multi-gigabit communications capacity, as depicted in
Fig. 4b. The capacity traces are generated from a mmWave scenario
in ns-3 [37] where a server and a client communicate sending UDP
traffic in saturation. During the communication the reception time of
every UDP packet and the number of received bytes are recorded, and
that trace is used to configure Mahimahi. More information about the

4 A discrete-event network simulator for Internet systems, https://www.
snam.org/ version 3.35.

5 Docker containers for virtualization, https://www.docker.com/ version
0.10.17.
6

generation of traces can be found in [38]. On top of the capacity traces,
Mahimahi allows us to define additional link delay and buffer size. In
Section 4.3 we will analyze the performance of the adaptive scheduler
over a scenario where a user moves between two buildings in a street
canyon, getting closer to a base station at a constant walking speed.
Tables [38, Tables 1, 2] provide more details about the configuration
that was used to obtain the traces used afterwards.

4.2. Performance assessment

Streams in QUIC can be used to send a single message, i.e. trans-
mitting the objects of a web page in separate streams, but can be
also mapped to information flows, thus sending multiple messages over
time, for instance, messages that might be sent to the same MQTT topic
in an IoT environment [39].

To carry out the first experiment, we use traces obtained from
a real communication between a controller and a drone over a 5G
network. The information of these traces comprises Micro Air Vehicle
Link (MAVLink36) packets over UDP. We thus consider two IoT nodes
with the Docker containers and the network is created by means of the
ns-3 simulator. The messages exchanged are generated by replicating
the information provided by the traces: we use each packet’s time-
stamp and payload length. We establish one QUIC connection between
the IoT nodes and we then open ten streams, emulating ten different
data flows, to better assess the benefits of the prioritization capacity
of the proposed schemes. One stream was assigned to the control
traffic (drone–controller traces) and the remaining streams to lower
priority background traffic. We emulated this non-essential traffic with
bulk transmissions, to mimic an intense usage of the underlying QUIC
connection. We assign higher priority to control traffic through the
extended QUIC configuration introduced in Section 3. Then, we analyze
the latency-sensitive control traffic, measuring the time that elapses
between the moment the message was written on the stream socket and
when it was completely delivered to the receiver. WFQ was configured
to allocate 25% of the transmission time to the priority stream and the
remaining time to the nine other streams. This particular configuration
(weights) is just meant to validate the correct operation of the imple-
mentation. In upcoming research, we will exploit this framework to
develop optimal scheduling policies, by adapting the particular weights
to the characteristics of the scenario and traffic patterns.

Fig. 5 uses a boxplot representation of the message delay for each
scheduler. As can be seen, results show a notable dispersion, due to
the large variability of the message lengths, specifically with Round
Robin. The operation of this scheduler assumes that the application
sends the information immediately, while the stream manager takes
data from each stream at a regular and equal pace. Hence, the infor-
mation might likely be queued, waiting to be transmitted. Some of the
prioritized messages arrive at the queue when their stream is closer
to the transmission, thus reducing the delay for such messages, while
other messages need to traverse the entire queue. The performance of
the absolute prioritization scheduler is better than RR. The proposed
scheduler consistently achieves lower latency for the prioritized traffic.
The gain is not remarkable due to the message lengths. QUIC data
manager fills a packet with data from the stream that is at the top of
the active stream queue. If the stream has no more data, it is removed
from the queue. The maximum length of control messages is 242 bytes,
so they always fit into a single QUIC packet, and the performance of
the schedulers is similar.

The behavior of WFQ is hampered by the computational load of
queue management with this scheduler, which delays the transmission
of data from the next queued stream. For this use case, prioritization
with applications that open multiple streams for the transmission of
multiple data flows can reduce latency despite the delay introduced by
scheduling operations.

6 MAVLink3 is a communication protocol for small unmanned vehicles.

https://www.nsnam.org/
https://www.nsnam.org/
https://www.docker.com/
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Fig. 4. Schematic illustration of the two evaluation setups. (a) is based on Docker containers and the ns-3 simulator; (b) is based on the Mahimahi framework, to load mmWave
traces.

Fig. 5. Control traffic messages latency using each scheduler with 10 streams.

Fig. 6. Message latency for the prioritized stream.
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Table 1
Relative gain (in terms of delay) of WFQ and ABS schedulers, compared to legacy
RR.

# WFQ ABS

Pkts 0% 5% 10% 0% 5% 10%

2 0.113 0.083 0.167 0.171 0.229 0.288
4 0.085 0.134 0.157 0.210 0.282 0.301
8 0.217 0.216 0.229 0.309 0.339 0.360
16 0.130 0.176 0.210 0.307 0.340 0.376

Table 2
Scenario setup B1 from [38, Table 1,2,3].

Link features

Buffer length {0.5, 1, 2, 5} × BDP
Delay [ms] {0, 5, 10, 20}
sBW [Mbps] {10, 20, 50, 100, 200, 500}

Application

# Streams 2
File size per stream 1GB

For a more in-depth analysis of these new proposals, we send longer
essages on the prioritized stream. We create one QUIC connection and

pen two streams. We increase the length of the prioritized messages
o ensure each of them corresponds to more than one single packet.
ore specifically, we transmit messages of 2, 4, and 8 packets. Fig. 6

hows the observed delay of this approach, using the same network
arameters. As was done in the previous experiment, WFQ allocates
5% of the time resource to the priority stream. It can be seen that
s the message length increases, priority-based stream scheduling be-
omes more beneficial since the gain is more remarkable. When two
UIC packets are generated, shorter times are handled when using
rioritization schemes. The transmission time is reduced by approxi-
ately 20 ms using ABS without losses. This difference increases with

he length of the message. When the message embraces 8 packets, a
eduction of at least 50 ms can be seen in the case of WFQ with respect
o RR, and around 80 ms if absolute prioritization is used. The same
ehavior is also seen for the error-prone channel (5%, Fig. 6(b)), and a
ifference of almost 85 ms is observed between ABS and Round Robin
hen 8 packets are generated.

To complement the results of Fig. 6, Table 1 shows the relative
mprovements of both WFQ and ABS over the RR scheduler for different
essage lengths and link qualities. As can be seen, the use of advanced

cheduling policies, together with the multi-streaming capacity fea-
ured by QUIC can yield relevant performance gains, especially with
arger messages (#pkts ≥ 2).

.3. Evaluation of an adaptive scheduler in a mmWave environment

As mentioned before, the evaluation of the adaptive scheduler
s conducted over a highly dynamic scenario, comprising mmWave
inks, characterized by high capacity and variability. In all scenarios,
n application transmits a 1 GB file over each stream, resulting in
aturation conditions until the transmission is complete, mimicking a
ulk transfer. We study the performance of the adapting scheduler
nder different configurations, as defined in Table 2. The mmWave
hannel presents an average throughput of 244.6 Mbps, with instanta-
eous (measured every 10 ms) minimum and maximum values of 0.94
nd 3703.79 Mbps, respectively. Over such communication channel
e study the performance of the adaptive scheduler under different

onfigurations of the target throughput (sBW), link delay and buffer
ize. As can be observed in Table 2, the buffer size is defined in
ultiples of the bandwidth-delay-product (BDP) which is obtained
ultiplying the average capacity mentioned above and the link delay

onfigured. Firstly, we study the evolution of the congestion window
8

nd throughput in a configuration where the buffer length equals to
Fig. 7. Evolution of the throughput and congestion window upon different target
throughput. The light gray shadow at the background represents the channel capacity
variability. Link delay and buffer size are set to 20 ms and 5 BDP, respectively.

5 ⋅BDP and the delay of the underlying connectivity is set to 20 ms,
using QUIC with two streams and the adaptive scheme, which allows
switching between ABS and RR. Fig. 7 shows the results that were
observed. It also includes, using a light gray shadow at the background,
the channel capacity variability. For the sake of visibility, the channel
capacity is plotted using the average capacity measured during 1 s. In
this sense, the figure does not represent capacity variations happening
in a higher pace, such as the maximum capacity of above 3 Gbps.
Additionally, we also varied the target threshold from a rather low
value (50 Mbps), where RR is predominantly used, to a more strict
target (500 Mbps), where ABS prioritizes one of the selected streams.

As illustrated in Fig. 7, when the threshold is lower, see Fig. 7(a),
than the estimated bandwidth and so the average rate, the RR scheduler
is mostly used. It is important to highlight that the download comple-
tion time of each stream remains approximately the same. Secondly,
as evinced by Fig. 7(b), when we increase the threshold to 100 Mbps,
we observe, at the beginning of the simulation, that a lower congestion
window leads to a reduction in the estimated rate, prompting the use
of the ABS scheduler. Finally, Fig. 7(c) shows that when we increase
the threshold beyond the average throughput, the bulk transfer of the
highest priority stream is sent first, followed by the others. This behav-
ior is a consequence of the ABS scheme being employed, as a result of
an estimated bandwidth lower than the target. This phenomenon can
be attributed to the presence of a larger delay, fixed at 20 ms, which
leads to increased RTTs and so lower estimated bandwidth.

Furthermore, we study the completion time under different con-
figurations to ascertain the impact of varying variables in the same
scenario. Fig. 8 shows the impact of varying the target throughput,

resulting in a reduction of the completion time, which is particularly
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Fig. 8. Impact of the target throughput over the completion time. Link delay and buffer
size are set to 20 ms and 5 BDP respectively.

Fig. 9. Impact of the link delay over the completion time. Target throughput and
buffer size are set to 100 Mbps ms and 5 BDP respectively.

Fig. 10. Impact of the link buffer size over the completion time. Target throughput
and link delay are set to 100 Mbps ms and 20 ms respectively.

relevant for the first stream, due to the use of the ABS scheme with a
strict target.

Then, Fig. 9 shows the results that were observed when we fixed
the target throughput and buffer length, while varying the link delay;
in this case we see an increase in the completion time, as the estimated
bandwidth had been reduced. Finally, in Fig. 10, we modified the
BDP, by sweeping the buffer length. As it was increased, the estimated
bandwidth was larger, resulting in a reduction in the overall completion
time.

We can thus conclude that, at a reasonable cost, the proposed strat-
egy of shifting between scheduling policies yields the behavior that was
expected. We use metrics that are accessible from the QUIC layer, thus
ensuring the feasibility of the proposed solution, and we use them to
decide the scheduler that guarantees the expected performance. When
the threshold is strict, the ABS is heavily used, granting more resources
to the highest priority stream, resulting in a better performance (shorter
completion time). On the other hand, when the threshold is looser, the
proposed solution fosters the RR scheduler, avoiding the starvation of
the non-priority stream, even if the ones having a highest priority are
satisfied (see Figs. 9 and 10).
9

5. Conclusions

In this paper, we designed and implemented a new stream manager,
including three scheduling strategies, to prioritize traffic in QUIC. We
used a GO-based implementation (quic-go) in which we added the
possibility for the user to choose the scheduler, as well as the priority
assigned to each stream. All the code has been made available in a
public git repository.

We evaluated QUIC performance with absolute prioritization (ABS),
Weighted Fair Queuing (WFQ) and the default Round Robin (RR)
schedulers in two complementary scenarios. The first one considered
time-sensitive traffic using real communication traces from a drone-
controller. This traffic is prioritized and competes with other back-
ground flows. To carry out experiments and compare the performance
of the proposed techniques, the methodology exploited in this first
setup entails both the ns-3 simulator and Docker containers. Using
the same testbed, a second scenario has been considered, focusing on
the impact of varying message lengths. Analyzing both scenarios, we
observe that the gain of our proposed scheme strongly depends on
the size of the prioritized message. Applications that prioritize flows
with relatively long messages (multiple QUIC packets), exhibit much
lower delays than the baseline scheduler. To address the unstable
performance of wireless links, we proposed a new adaptive scheduler,
which shifts between different solutions based on the current situation.
To evaluate its performance we defined a different scenario, based on
mmWave technology, which has a relevant role in 5G and B5G systems,
in environments with interference. We fed the traces of bandwidth
variation in such scenario to the Mahimahi emulator, to evaluate the
improvements brought to the QUIC performance thanks to the new
scheduling policy.

As a first assessment of the stream scheduler, this paper demon-
strates the feasibility and relevance of appropriate stream management,
according to the particular requirements of the applications. By using a
suitable scheme, the latency of prioritized messages can be significantly
reduced. According to the definition of the ABS scheduler provided
in this work, it was specifically conceived to be used for highly pri-
oritized streams, such as those coming from applications and services
with critical data flows, for instance, an unmanned vehicle exchanging
navigation control information with its operator. These services do not
normally require high traffic loads, so it is not likely that they would
block other streams. In any case, we could extend the behavior of the
proposed strategy, by including a mechanism to increase the priority
of particular streams, if packets have been waiting for long times.
Additionally, as a second assessment, we have assessed the performance
of an adaptive scheduling policy over a mmWave environment, which
is known for its high variability. The proposed scheme is able to adjust
its behavior to the channel conditions, based on two parameters (esti-
mated bandwidth, and the RTT) that are accessible at the QUIC layer,
to guarantee the feasibility, adhering to a specified target threshold
and prioritization configuration. The experiments, carried out over
a scenario with different buffer lengths and delays, evince that the
proposed scheme is able to improve the performance, according to
an indicated target value. More stringent configurations would prior-
itize certain streams, whereas less strict thresholds distribute resources
equally. Additionally, we have seen that an increase of the buffer
length leads to an overall completion time reduction. On the other
hand, when suffering from longer communication delays, the proposed
scheme fosters the ABS scheduler, to avoid hindering the performance
of the highest priority streams.

In our future work, we will look at the interplay between multi-
stream scheduling with both multi-path and congestion control mech-
anisms. We will also consider the integration of additional schedulers,
in particular looking at strategies that consider the delay as the main
parameter. We will study adapting their behavior to the corresponding
application and services, as well as to their particular requirements.
In this sense, the adaptative approach that has been proposed in the
paper is a first step. In the future we plan to broaden the potential
configuration possibilities, and to consider AI techniques to establish

the optimum setup, depending on the particular circumstances.
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