
Towards a General Framework to Model, Analyze and Optimize Real-time
Systems with GPUs

Iosu Gomeza,b,, Juan M. Rivasb, J. Javier Gutiérrezb, Jorge Parraa, Unai Dı́az de Cerioa

aDistributed and Connected Intelligence Department, IKERLAN Research Centre, Basque Research and Technology Alliance (BRTA),
Arrasate-Mondragón, Spain.

bSoftware Engineering and Real-Time Group, Universidad de Cantabria, Spain.

Keywords: real-time, GPU, modeling, analysis, optimization

1. Extended Abstract

Although the computational power and efficiency of GPUs would clearly benefit emerging real-time applications
such as smart mobility, the adoption of such accelerators is being hindered by the poorly documented nature of their
internal scheduling mechanisms. There is presently an intense research effort to propose solutions to enable the safe
usage of GPUs in real-time applications [1] [2], although their applicability remains a challenge.

In this extended abstract we present our methodology to safely incorporate GPUs into real-time systems. We
propose a comprehensive framework that builds upon existing and validated tools and techniques, based on three
main aspects: (1) an extension of an industry relevant meta-model, called MAST-2, to support GPUs, (2) leveraging
time partitioning to control the access to the GPUs, which enables the application of existing WCRT (Worst-Case
Response Time) analysis techniques, and (3) an optimization framework that takes advantage of the previous meta-
model and analysis, to construct optimized time partitions. These aspects are described in the following sections.
This work is the continuation of the Work-in-Progress presented in the ECRTS 2023 Industrial Challenge [3], and
is developed in the context of an industrial collaboration with Ikerlan Research Centre [4] and the railway vehicles
manufacturer CAF [5].

1.1. System Model: Extending MAST 2
MAST (Modeling and Analysis Suite for real-Time applications) [6] is a modeling technique together with a set

of analysis tools. The MAST meta-model allows describing the timing properties of a real-time system, focusing
on the relevant aspects for the analysis of the timing behavior. The model describes the software architecture of
the application, as well as its deployment on the hardware platform. The second version of the meta-model, called
MAST 2 [7], added support to ARINC 653 time partitioning and ARINC 664 (AFDX) communication networks, and
is aligned with the UML profile for Modeling and Analysis of Real-Time Embedded Systems (MARTE) [8]. In its
current version, MAST 2 does not incorporate the concept of GPUs. As a necessary step towards a general framework
to exploit GPUs in real-time systems, we extend MAST 2 to support two different paths to model such systems,
depending on the level of detail required and/or supported.

For a coarse grained modeling of GPUs, we add a new type of task (step in MAST 2), called GPU_Step, that
models a section of code that is executed in a GPU. In contrast to a standard Step, a GPU_Step is not assigned to
any scheduler or processor, and just includes an execution time that is assumed to be static and known. A GPU_Step

can be used in those situations in which the GPU is considered a black box, with no attempt to analyze its internal
contentions.

For a more detailed modeling of GPUs, we add a new type of processor, called GPU_Processor, which aims to
model the whole GPU, including all the aspects that could influence its internal scheduling, such as its number of
cores or other discrete resources (e.g. copy engine). The access to the GPU is governed by a new abstract scheduling
policy called GPU_Policy, which should be extended as the scheduling policies governing the GPU become known.
These detailed model elements are included to future-proof MAST 2, even if a precise analysis that takes into account
such information remains currently outside the state-of-the-art.

Preprint submitted to Brussels wOrkshop on real-time Scheduling and Operating system syNergies (BOSON) March 13, 2024



1.2. Response-time Analysis of Real-time Systems with GPUs
We propose to use a two-level scheduling scheme: a higher level that implements time partitioning, and a priority-

based lower level to schedule the workload inside each partition. Time partitioning is usually deployed to achieve time
isolation among different functionalities in the system. With our approach, it can also be leveraged to pre-establish
at which instants it is allowed to offload kernels into the GPU. For instance, all the CPU tasks that offload workload
into the GPU can be mapped to a unique time partition, effectively resulting in a serialization of the accesses to the
GPU. By limiting by construction the amount of concurrent kernels, the contentions that may occur inside the GPU
are simplified, and therefore simple techniques such as directly measuring the execution times of the kernels inside
the GPU in isolation become viable.

Given the scheme described above, we can model the execution of the kernels as static delays, which is supported
by the ”coarse grained” GPU_Step included in MAST 2. These delays must accommodate the maximum execution
times that are expected from the kernels, which can be established via measurements. There exist several worst-case
response-time analysis techniques that can be used to analyze these workloads that contain delays and time partitioning
[9], which are based on the Offset-Based Analysis [10, 11].

1.3. Optimization Framework
The execution scheme described in the previous section relies on the construction of a proper time partition plan.

This represents a complex optimization problem, as it involves several inter-dependent sub-problems: (1) definition
of the time partitions, (3) mapping of partitions to processors, (4) mapping of tasks to partitions, and (5) assignment
of priorities to tasks. Furthermore, this optimization process should also take into account that the WCETs can not
be considered static or known in advance. In particular, each plan can produce different interference patterns in the
access to shared resources, including GPUs, that may lead to different WCETs.

To solve this, we are working on extending existing time partitioning optimization algorithms, such as [12], with
the capability to automatically deploying testing code on real hardware platforms to empirically determine the WCETs
of the tasks. An overview of the algorithm is depicted in Figure 1, which is composed of the following steps:

1. The input model is a description of the real-time system (timing properties and platform), with an initial esti-
mation of WCETs.

2. A plan is constructed (partitions, mapping and priorities), applying the current estimations of the WCETs.
3. Testing code is constructed and deployed in the real hardware platform. The objective of these tests is to obtain

realistic measurements of the WCETs for the interferences expected with the current plan.
4. WCETs are obtained from the measurements.
5. The WCETs are integrated into the model, and a WCRT analysis is launched. This analysis could be the one

described in section 1.2, which considers the GPU kernels as delays.
6. WCRTs are obtained, which can be compared with the deadlines to determine the schedulability of the system.
7. If the current plan is determined to be schedulable, the algorithm returns the model enhanced with the optimized

plan and associated WCETs.

Construction of Plan

WCRT Analysis

HW platform

CodeInput Model Code

WCET
measurements

Output Model

model with WCETsWCRTs

1 2 3

4

56

7

Figure 1: Optimization framework main components and flow

2



Acknowledgements

This work was partially supported by MCIN/ AEI /10.13039/501100011033/ FEDER “Una manera de hacer Eu-
ropa” under grants PID2021-124502OB-C42 and PID2021-124502OB-C44 (PRESECREL).

References

[1] J. Perez-Cerrolaza, J. Abella, L. Kosmidis, A. J. Calderon, F. Cazorla, J. L. Flores, GPU Devices for Safety-Critical Systems: A Survey, ACM
Computing Surveys 55 (12 2022). doi:10.1145/3549526.

[2] I. Gomez, U. D. de Cerio, J. Parra, J. M. Rivas, J. J. Gutiérrez, Using GPUs in Real-Time Applications - A Review of Techniques for
Analyzing and Optimizing the Timing Parameters, Revista Iberoamericana de Automática e Informática industrial 21(1) (2023) 1–16.
doi:doi.org/10.4995/riai.2023.20321.

[3] I. Gomez, U. Dı́az-de Cerio, J. Parra, J. M. Rivas Concepción, J. J. Gutiérrez Garcı́a, Analysis and optimization of real-time applications
running on heterogeneous hardware, in: 35th Euromicro Conference on Real-Time Systems (ECRTS 2023), Industrial Challenge (Early
Stage Proposal), 2023.
URL https://hdl.handle.net/10902/31005

[4] Ikerlan research center, (Last update Jan 2024), url: https://www.ikerlan.es/en/ (2024).
[5] Grupo CAF (Construcciones y Auxiliar de Ferrocarriles), (Last update Jan 2024), url: https://www.caf.net/en (2024).
[6] M. G. Harbour, J. J. Gutiérrez, J. C. Palencia, J. M. Drake, MAST: Modeling and Analysis Suite for Real Time Applications, in: Proceedings

of 13th Euromicro Conference on Real-Time Systems, IEEE Computer Society Press, 2001, pp. 125–134.
[7] M. G. Harbour, J. J. Gutiérrez, J. M. Drake, P. L. Martı́nez, J. C. Palencia, Modeling distributed real-time systems with MAST 2, Journal of

Systems Architecture 59 (2013) 331–340. doi:10.1016/j.sysarc.2012.02.001.
[8] OMG, An OMG UML Profile for MARTE TM publication UML Profile for MARTE TM : Modeling and Analysis of Real-Time Embedded

Systems. Version 1.2. (2019).
[9] J. C. Palencia, M. G. Harbour, J. J. Gutiérrez, J. M. Rivas, Response-time analysis in hierarchically-scheduled time-partitioned distributed

systems, IEEE Transactions on Parallel and Distributed Systems 28 (2017) 2017–2030. doi:10.1109/TPDS.2016.2642960.
[10] J. C. Palencia, M. G. Harbour, Schedulability Analysis for Tasks with Static and Dynamic Offsets, in: Proceedings of 19th IEEE Real-Time

Systems Symposium, IEEE, 1998, pp. 26–37. doi:10.1109/REAL.1998.739728.
[11] J. C. Palencia, M. G. Harbour, Exploiting Precedence Relations in the Schedulability Analysis of Distributed Real-Time Systems, in: Pro-

ceedings of 20th IEEE Real-Time Systems Symposium, 1999, pp. 328–339. doi:10.1109/REAL.1999.818860.
[12] A. Amurrio, J. J. Gutiérrez, M. Aldea, E. Azketa, Partition window assignment in hierarchically scheduled time-partitioned distributed real-

time systems with multipath flows, Journal of Systems Architecture 130 (9 2022). doi:10.1016/j.sysarc.2022.102671.

3


