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A B S T R A C T

Computer-aided deep learning has significantly advanced road crack segmentation. However, supervised models
face challenges due to limited annotated images. There is also a lack of emphasis on deriving pavement condition
indices from predicted masks. This article introduces a novel semantic diffusion synthesis model that creates
synthetic crack images from segmentation masks. The model is optimized in terms of architectural complexity,
noise schedules, and condition scaling. The optimal architecture outperforms state-of-the-art semantic synthesis
models across multiple benchmark datasets, demonstrating superior image quality assessment metrics. The
synthetic frames augment these datasets, resulting in segmentation models with significantly improved effi-
ciency. This approach enhances results without extensive data collection or annotation, addressing a key chal-
lenge in engineering. Finally, a refined pavement condition index has been developed for automated end-to-end
defect detection systems, promoting more effective maintenance planning.

1. Introduction

Industrial advancements and transport infrastructure improvements
face constraints such as material ageing, atmospheric conditions, and
traffic loads [1]. In road infrastructure, prompt crack detection and
repair are crucial. These actions prevent further degradation, extend
service life, and minimize costs for maintenance organizations [2].
Conversely, road users reap the benefit of enhanced driving safety,
improved comfort, elevated quality of passage with minimal disrup-
tions, and reduced accident risks stemming from road defects [3]. A
well-maintained road network is vital for economic prosperity [4].
Therefore, surface pavement distress detection is essential in Structural
Health Monitoring, providing an initial assessment of road conditions
[5].

Current practices still rely on manual visual inspection by qualified
engineers. This incurs significant costs and extended durations for
pavement distress detection [6]. Thus, computer-aided visual inspection
techniques, mainly based on Deep Learning (DL), have gained signifi-
cant interest worldwide [7,8] in the field of intelligent road damage
detection [9,10]. In surface distress recognition, DL models primarily
tackle the following Computer Vision (CV) tasks: classification (26 %),

object detection (25 %), and instance (9 %)/semantic (37 %) segmen-
tation [5,11]. Classification focuses on categorizing samples at the
image level. Object detection aims to locate and classify multiple in-
stances of distress within an image. Segmentation refers to classification
at the pixel level.

Road crack segmentation, a leading trend in DL-based defect in-
spection due to the prevalence of cracks, provides essential information
about crack location and topology for pavement condition analysis [12].
The current state-of-the-art predominantly focuses on advanced seg-
mentation architectures, with a particular interest in binary crack seg-
mentation [13]. The most implemented models are primarily built upon
DL-based convolutional neural networks (CNNs). These networks are
mainly encoder-decoder-based, such as improved U-Net [12], asym-
metric dual-decoder U-Net [2,14,15], ARD-U-Net [16], APF-Net [17],
PCSNet [18], improved FasterNet [19], and multi-fusion U-Net [20,21],
among others. Additionally, there is a growing interest in the develop-
ment of segmentation networks utilizing visual transformer layers
[22–24]. Unfortunately, the application of DL techniques to real-world
pavement crack segmentation faces several challenges.

Collecting high-quality, diverse, and large-scale images is chal-
lenging but crucial for ensuring the robustness and generalizability of
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data-driven models [25]. Such models require thousands of varied and
realistic images to perform effectively. Many state-of-the-art models rely
on supervised learning, which demands the labour-intensive creation of
segmentation masks for each raw image. This manual annotation pro-
cess is not only costly but also impractical for engineering applications
[26]. Traditional solutions often involve transfer learning and conven-
tional data augmentation. Transfer learning depends on pre-trained
models from large datasets, which may not be available or suitable for
specific CV tasks [27]. Conventional data augmentation methods, such
as rotation and brightness shifting, may fall short in providing the
necessary realism and diversity [28]. To address these limitations,
emerging approaches utilize generative models [29]. These models can
generate realistic and diverse synthetic images, thereby enhancing
datasets and reducing the need for manual annotation and extensive
data collection.

The most used generative algorithms in the sub-field of road crack
generation are variants of Generative Adversarial Networks (GANs) [30]
and Variational Autoencoders (VAEs) [31]. A GAN includes a generator
that creates high-definition samples from random noise and a discrim-
inator that differentiates between real and generated images. In
contrast, a VAE features an encoder that compresses input data into a
lower-dimensional latent space and a decoder that reconstructs the
original data from this compressed representation. Although there have
been fewer implementations in road crack generation, diffusion models
have also been explored in this area [31]. A diffusion model [32]
operates in two stages: forward and reverse. In the forward stage, noise
is progressively added to images based on a noise schedule. During the
reverse stage, a network predicts and removes the noise from the im-
ages, producing high-quality frames. The following review explores the
scarce research on applying generative models to crack image
generation.

Xu et al. [33] introduced a dual-step system using a Deep Convolu-
tional GAN (DCGAN) [34] to generate synthetic crack images and a
classification CNN model trained on the augmented dataset. Similarly
[35], used a DCGAN for synthetic pavement crack image generation and
trained an enhanced VGG16 model on the augmented data. Ma et al.
[36] employed a GAN to create synthetic crack images, which were then
used to augment the dataset for training a YOLOv3 model. In Ref. [9], a
VAE was trained to produce crack images, integrating its encoder with
the DCGAN generator to use learned latent vectors instead of Gaussian
noise, with improved performance validated by a Faster R–CNN
network. Zhang et al. [37] developed a two-stage system combining a
DCGAN for image augmentation and an attention-guided U-Net for
crack segmentation [38]. proposed FeatureGAN, where an autoencoder
learns real crack features, and masked Gaussian noise is added to real
crack images for the GAN generator to produce synthetic cracks [26].
created multi-stage GANs based on Wasserstein GAN [39] to address
crack pixel imbalance by increasing resolution sequentially. Likewise
[40], developed a super-resolution GAN to enhance crack image reso-
lution and validate classification results [41]. proposed a three-stage
framework addressing sample imbalance by annotating images for
crack/non-crack classification and using an encoder-DCGAN to generate
crack images.

A key challenge with previous models is their lack of control over
generated images, which complicates labelling for crack segmentation
tasks and makes synthetic image annotation time-consuming and costly.
This lack of control also hinders the ability to create images with specific
attributes, limiting their use for tasks requiring precise control. Few
studies address the need for conditional generative models to enhance
road crack semantic segmentation. Semantic synthesis-oriented models
aim to generate realistic images from segmentation maps. Yan et al. [42]
introduced CycleADC-Net, which uses CycleGAN [43] for
image-to-image translation from low-light to bright domains, followed
by training an encoder-decoder segmentation network on this
augmented dataset [44]. proposed SynCrack, which employs the Perlin
noise algorithm to generate background images and integrates

segmentation masks using a weight map strategy [28]. developed a se-
mantic diffusion model that combines background images and seg-
mentation maps to generate synthetic images with seamlessly integrated
cracks for complex scenarios.

Conversely, assessing road condition is challenging in pavement
crack segmentation and requires developing condition indices from se-
mantic segmentation masks [45]. introduced an index derived from
areas identified by an object detection model. However, this method
faced precision issues with certain crack-like defects at the bounding box
level [46]. proposed an index based solely on the pixel-level areas of
predicted masks [47]. developed an index using segmentation masks
and the mean crack width estimated via a skeleton-based algorithm.
Despite these efforts, the latter two approaches are limited in their
ability to provide detailed classifications of various crack types, result-
ing in indices that are restricted and less informative. Therefore, it is
essential to create a pixel-level pavement condition index that in-
corporates the severity of each crack type, offering a more meaningful
assessment for road authorities.

This study addresses key research gaps in crack segmentation,
including the limitations of supervised architectures due to the lack of
large, diverse, and high-quality datasets. It also aims to develop a con-
ditional generative system for semantic synthesis, reducing the costs
associated with manual labelling. Additionally, the study seeks to create
a refined pavement condition index based on crack detections by deep
learning models. This paper introduces a novel semantic diffusion syn-
thesis model, named RoadPainter. RoadPainter generates a large volume
of realistic and diverse images depicting pavement defects from seg-
mentation masks, addressing labelling challenges through its condi-
tional approach. The primary contributions are as follows.

a) Introducing a novel semantic diffusion synthesis with an improved
encoder-decoder denoising network based on self-attention layers
and spatially-adaptative (de)normalization modules.

b) Optimizing the RoadPainter model based on the architecture
complexity, noise schedules, and classifier-free guidance scaling in
terms of image quality assessment metrics and computational cost.

c) Demonstrating the enhanced performance of the improved semantic
diffusion synthesis architecture compared to state-of-the-art gener-
ative models.

d) Validating the enhanced detection performance of various DL-based
segmentation algorithms following synthetic image augmentation
across multiple benchmark road datasets.

e) Engineering a fine-grained pavement condition index tailored from
pixel-level crack segmentation masks.

The rest of the paper is organized as follows. A detailed exposition of
state-of-the-art DL-based generative architectures alongside the pro-
posed innovative model is given in Section 2. Section 3 then scrutinizes
the model’s optimization results, comparing its performance with
existing models. Also, it explores its practical utility in intelligent road
maintenance with a refined pavement condition index. Finally, Section 4
encapsulates the primary research findings, the limitations, and outlines
future research directions.

2. Semantic road crack synthesis

In sub-section 2.1, a concise review of the state-of-the-art semantic
synthesis architectures analyzed in this study will be provided for
comparison with RoadPainter. The aim is to facilitate comprehension by
a broader research audience. Thus far, we have delineated two novel
models oriented towards road crack synthesis: SynCrack [44] and the
Crack Diffusion Model (CDM) [28]. Given the limited application of
semantic synthesis models to pavement cracks, CycleGAN [43] and
Pix2Pix [48] have also been included.
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2.1. State-of-the-art architectures

GANs consist of two networks: the generator (G) and the discrimi-
nator (D). G learns to create synthetic images resembling the real data
distribution by transforming random noise. Meanwhile, D distinguishes
between real and fake images as a binary classifier. Through adversarial
training, G aims to fool D, while D strives to accurately classify real and
synthetic images. G and D are typically CNN-based architectures. Once a
GAN is trained, the pre-trained G is used as the generative system. A
conditional GAN [49] generates fake images based not only on random
noise but also on some input condition (e.g., text, semantic mask, etc.).

Pix2Pix is a conditional GAN, specially designed for image-to-image
(I2I) translation. An I2I task is semantic synthesis. The G of Pix2Pix is a
U-Net [50] with skip connections between mirrored layers, and its D
corresponds to a PatchGAN classifier [51]. G receives the semantic mask
as input and produces fake images. Then, D receives both real images
with real labels and fake images (from the generator) with fake masks.

CycleGAN is capable of performing semantic synthesis in an un-
paired manner, meaning it does not require paired image-mask samples.
CycleGAN consists of four networks: a generator (G1) that maps masks
to synthetic images with its corresponding discriminator (D1), and a
generator (G2) that maps synthetic images back to masks with its
associated discriminator (D2). The loss function in CycleGAN includes
an adversarial loss, which encourages the generation of realistic images,
and a cycle-consistency loss, which ensures fidelity between the original
and translated images.

SynCrack is not a DL-based generative model; it is a methodology
based on traditional image processing operations. First, it uses a work-
flow based on 2D Perlin noise to create background road images. Then,
the segmentation mask is blended or fused with the background image
using a weighting map strategy.

CDM is a generative semantic synthesis model based on Denoising
Diffusion Probabilistic Models (DDPM). DDPMs operate in two stages:
forward and reverse diffusion. During the forward diffusion process,
Gaussian noise is gradually added to real images over T steps, referred to
as timesteps. The noise inclusion during this process is defined by the
noise schedule. Thanks to the reparametrization trick, the noised image
at the final timestep can be computed in a single step. The reverse
diffusion process aims to learn to denoise the noisy images from timestep
T to 0. This process can be simplified: a neural network predicts the
mean noise at a given t from the preceding timestep. The loss function at
each timestep is the mean squared error (MSE) between the real noise
computed during the forward process and the predicted noise. The
analytical expressions for sampling new fake images from the pre-
trained denoising network are detailed in Ref. [32]. CDM has one
main difference from conventional DDPMs: the denoising network is a
U-Net that receives as input the element-wise summation of the noisy
crack image, the segmentation mask, and the background image (a real
image with no defects). Consequently, the pre-trained CDM requires a
background and mask image to sample synthetic frames.

The aforementioned networks present various potential limitations
that will be discussed in the results. For example, GANs such as Pix2Pix
and CycleGAN often suffer from mode collapse, where the generator
produces a limited variety of images despite having different inputs.
Pix2Pix may produce blurry images or fail to preserve fine details.
CycleGAN, on the other hand, faces significant complexity due to the
simultaneous training of four networks and may generate unrealistic
artifacts, textures, or colors with limited datasets. SynCrack is con-
strained by a very limited repertoire of backgrounds, which prevents it
from capturing real road elements such as highly textured surfaces or
shadows. Lastly, CDM’s major limitation is its requirement for back-
ground images for both training and inference, posing a significant
constraint.

2.2. Our approach: RoadPainter

RoadPainter is an advanced conditional DDPM tailored for semantic
road crack synthesis. While it utilizes the traditional forward diffusion
process to generate noisy images as outlined in Ref. [32], its reverse
diffusion process features several innovations. Notably, RoadPainter
employs a novel architecture that deviates from the classic U-Net by
integrating semantic information through the SPADE mechanism and
utilizing ResBlocks and self-attention mechanisms for enhanced multi-
modal fusion of the semantic mask and crack image. Additionally, it
introduces a new approach to incorporating conditional information
during the reverse diffusion process (CFG). The following sub-sections
will provide detailed insights into these innovations, covering SPADE,
CFG, and architecture specifics.

2.2.1. Spatially adaptative (DE)Normalization (SPADE)
Previous generative architectures like Pix2Pix and CycleGAN pri-

marily integrated the semantic layout directly with a noisy image input,
which led to the problem of semantic washing. This term refers to the
degradation of semantic information as it passes through the network
layers, causing the generated images to lose their correlation with the
original semantic masks. Consequently, while these models could pro-
duce realistic images, they struggled to maintain a strong alignment
between the generated images and the intended semantic layouts.

SPADE addresses this issue by introducing a conditional normaliza-
tion technique that maintains the semantic information throughout the
image generation process. Mathematically, SPADE can be viewed as a
form of conditional Batch Normalization where the conditioning infor-
mation is the semantic mask. The process starts with Instance Normal-
ization (InstanceNorm), which normalizes each spatial location
independently, maintaining local spatial information. The semantic
mask is processed through two convolutional layers to produce spatially
adaptive γ and β tensors, ensuring that these parameters are tensors with
the same spatial dimensions as the input feature maps. This spatial
adaptability allows SPADE to retain and emphasize the semantic struc-
ture within the generated images, resulting in outputs that are not only
realistic but also semantically consistent with the input masks. The
SPADE method is expressed as:

xSPADE = InstanceNorm(x) ⊙ γ + β (1)

In Eq. (1), x refers to the input feature map. This element-wise multi-
plication and addition ensure that the semantic information is effec-
tively incorporated at each spatial location, preserving the structure and
enhancing the fidelity of the generated images.

2.2.2. Classifier-free guidance (CFG) for semantic image synthesis
In this study, a new CFG strategy [52] has been incorporated into the

reverse diffusion process to improve conditional integration. This
approach calculates the mean predicted noise through linear interpo-
lation between the noise predicted from the conditional input (εθ

(
yt
)
))

and the noise predicted from the unconditional input (the crack image
alone). The CFG scale, denoted as “s” in Eq. (2), governs this interpo-
lation. Inspired by Ref. [53], the condition is defined by the semantic
mask, while a null mask (yt = 0) is used in non-conditional cases to
represent a background image of a road without cracks. The mean
predicted noise is reformulated as:

εθ = εθ(yt) + s[εθ(yt) − εθ(yt =0)] (2)

The incorporation of CFG allows for refined control over the influ-
ence of the semantic mask on the generated output. This leads to
improved quality and accuracy of the synthesized images, enhancing
their fidelity and ensuring more effective balancing of semantic
information.
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2.2.3. Multi-modal U-Net
The novel architecture is illustrated in Fig. 1. The proposed U-Net

architecture features an encoder composed of ResBlock modules [54].
Each ResBlock processes the noisy images (xt) and timesteps (t) as in-
puts. The number of output channels for each block is determined by the
model’s channel configuration and a channel multiplication vector,
which are specified hyperparameters. Noisy images are first passed
through a 2D convolutional layer (Conv2D) for feature extraction, while
timesteps are processed through a series of layers including positional
embedding, dense layers, and a non-linear Sigmoid Linear Unit (SiLU)
activation function.

In the encoder, the noisy input traverses two residual blocks, each
comprising Group Normalization (GroupNorm2D), a SiLU activation
function, and a down-sampling Conv2D layer. The second block in-
corporates a dropout layer between the SiLU activation and Conv2D to
reduce overfitting. Meanwhile, encoded timesteps are processed
through SiLU and dense layers to capture temporal dynamics. The
output from the last residual block, which pertains to the noisy image, is
combined with the corresponding timestep data using a scale-shift
normalization technique, enhancing the feature-temporal correlation
within the denoising network. To preserve critical low-level details, the
original noisy image is added to the output tensor from the residual
block before further propagation. Following a sequence of ResBlock
modules, a self-attention mechanism [55] is employed to allow the
encoder to assess the relevance of various elements in the
noisy-temporal feature map, thereby facilitating the capture of
long-range dependencies and improving contextual understanding.

The bottleneck of the network consists of two ResBlock modules
interspersed with a self-attention mechanism. The ResBlock structure in
this stage mirrors that used in the encoder, with two key modifications:
the incorporation of SPADE for conditional normalization instead of
GroupNorm2D, and the convolutional layers maintain the spatial di-
mensions without alteration. SPADE, as discussed previously, utilizes

semantic-based conditional normalization, adapting the feature maps
according to the semantic masks. This ensures semantic consistency in
the generated images.

In the decoder, ResBlock modules with SPADE are used similarly to
the encoder, with convolutional layers performing up-sampling. The
decoder architecture is nearly symmetrical to the encoder, but it in-
corporates SPADE and up-sampling layers to align the generated output
with the desired semantic structure. This semantic conditioning in the
decoder ensures that the output image is consistent with the intended
semantic content, guiding the synthesis process to produce meaningful
results. Finally, GroupNorm2D, SiLU activation, and Conv2D are applied
to generate an output tensor of the same dimension as the input, rep-
resenting the mean noise tensor for a given time step.

In summary, RoadPainter improves semantic road crack synthesis by
integrating SPADE for semantic consistency, CFG for refined conditional
control, and a novel U-Net architecture with ResBlocks and self-
attention mechanisms. This approach, validated through extensive ex-
periments detailed in the following sections, demonstrates enhanced
alignment between generated images and semantic masks, resulting in
high-quality and accurate outputs.

3. Experimental setup

3.1. Benchmark crack datasets

Binary crack segmentation datasets, including DeepCrack [56],
CrackSC [57], CFD [58], and Crack500 [29], have been utilized to
validate various generative architectures and segmentation models.
Additionally, the benchmark dataset Mosquitonet [59] was employed to
validate the refined and detailed pavement condition index.

The DeepCrack dataset contains 537 raw crack images (300 for
training and 237 for testing) with human-based segmentation annota-
tions. The percentage of crack versus non-crack pixels is 2.91%/97.09%

Fig. 1. Proposed denoising network of RoadPainter.
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for the training set and 4.33 %/95.67 % for the test set, with images
sized at 544x384 pixels. This benchmark database includes various
textures, scenes, and scales. The Crack Forest Dataset (CFD) includes
118 annotated road crack images, each 480x320 pixels, captured using a
smartphone. These images feature disturbances such as shadows, oil
spots, and water stains, with a train-test split of 90%–10 %.

The Crack500 dataset consists of 500 images, each 2000x1500
pixels, captured with cost-effective smartphones on the main campus of
Temple University. These images are typically cropped into 640x360
pixel patches, reflecting diverse lighting conditions and shadows that
increase segmentation complexity. The dataset was used with 1896
patches for training and 1124 for testing. The CrackSC dataset, in
contrast to CFD and Crack500, is specifically designed to address chal-
lenges in low-volume local roads with pronounced shadows and dense
crack formations. It includes additional complexities such as tree
shadows, fallen leaves, and abundant moss. This dataset comprises 197
images of pavement surface cracks, captured using an iPhone 8 along
Enoree Ave, Columbia, SC, with a 9:1 train-test split.

The Mosquitonet dataset contains 7099 images, each with di-
mensions of 640x640 pixels, accompanied by annotations in multiple
object detection formats. These top-down view images were collected
using a vehicle-mounted camera and include 13 types of distress cate-
gorized into three families: distress (e.g., potholes or longitudinal
cracks), repair (e.g., patches or sealed cracks), and sewer (e.g., man-
holes). The dataset encompasses a variety of brightness and weather
conditions. To validate the refined pavement condition index, a subset of
100 patches from Mosquitonet was annotated for binary crack
segmentation.

3.2. Performance metrics

Image quality assessment (IQA). To ensure the reliability and realism
of the synthetic frames generated by generative architectures, it is
crucial to employ IQA metrics. These metrics provide an objective
evaluation of visual fidelity and structural integrity, allowing for a
comprehensive assessment of image quality against real-world stan-
dards. The IQA metrics analyzed in this study include Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM),
Fréchet Inception Distance (FID), and Learned Perceptual Image Patch
Similarity (LPIPS).

PSNR measures the quality of reconstruction by comparing the peak
signal value (255) to the mean squared error (MSE) between the real
image (xreal) and the generated image (xfake) (Eq. (2)). It is typically
expressed in decibels (dB), with higher values indicating better quality.
SSIM, a perception-based metric, assesses image quality based on
luminance, contrast, and structural similarity (Eq. (3)). SSIM values
range from 0 (completely dissimilar) to 1 (identical).

PSNR=
1

MxN
∑M

i=1

∑N

j=1
10 log10

(
PV2

MSE
(
xreal, xfake

)

)

(2)

SSIM=

(
2μxrealμxfake + C1

)(
2σxreal σxfake + C2

)

(
μ2
xreal + μ2

xfakel + C1

)(
σ2
xreal + σ2

xfakel + C2

) (3)

FID measures the similarity between the distributions of real images
(xreal) and generated images (xfake) by comparing their associated fea-
tures extracted using a pre-trained Inceptionv3 model (Eq. (4)). A lower
FID score indicates a closer statistical resemblance between the two
distributions. LPIPS assesses similarity based on human perception. It
calculates the Euclidean distance between the feature representations of
real and generated images obtained from a pre-trained AlexNet model. A
lower LPIPS score signifies greater visual similarity between xreal and
xfake according to human perception.

FID=
⃦
⃦μreal − μfake

⃦
⃦2 + Tr

(
σreal + σfake − 2 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅σrealσfake

√ )
(4)

In the preceding equations, μreal and μfake represent the mean features,
while σreal and σfake denote the variance of the extracted features from
Inceptionv3. Tr refers to the trace. Additionally, μxreal and μxfake corre-
spond to the mean of the real and generated images, respectively, and
σxreal and σxfake denote their variances. C1 and C2 are constants.

Segmentation metrics. In this article, a binary segmentation problem
is addressed, where pixel values of the image background are set to
0 and crack pixels to 1. Accuracy (Eq. (5)) is calculated as the average
mean absolute error between predicted and ground truth pixels. How-
ever, accuracy alone is insufficient in cases of high pixel imbalance, so
additional metrics are included. A True Positive (TP) occurs when both
the predicted pixel value and the ground truth pixel value are 1; a False
Positive (FP) occurs when the real label is 0 and the predicted value is 1;
a False Negative (FN) occurs when the prediction is 0 and the real label is
1; and a True Negative (TN) arises when both the label and the pre-
diction are 0. Based on these parameters, the following metrics are
defined: Precision (Eq. (6)) measures the quality of predictions, Recall
(Eq. (7)) reflects how many of the true labels have been correctly
identified, and the F1-score (Eq. (8)) provides a balance between Pre-
cision and Recall. Finally, Intersection over Union (IoU, Eq. (9)) quan-
tifies the overlap between the set of predicted pixel values (P) and the set
of ground truth pixel values (GT) as the ratio of their intersection to their
union. The mean IoU (mIoU) is the average of the IoU calculated across
all categorized classes.

Accuracy=
1
N
∑N

i=1

(
xipred − xigt

)
(5)

Precision=
TP

TP+ FP
(6)

Recall=
TP

TP+ FN
(7)

F1 − score=
2TP

2TP+ FN+ FP
(8)

IoU=
P ∩ GT
P ∪ GT

=
TP

TP+ FP+ FN
(9)

In the previous expressions, xipred, xigt, and N refer to the predicted,
ground truth pixel-level label, and the number of pixels, respectively.

3.3. Environment and programming details

The programming language used is Python 3.8.10. The computer
vision libraries include OpenCV 4.7.0.72 and Pillow 9.5.0. The deep
learning framework is PyTorch 2.2.1 with CUDA 12.1. Figures in the
paper are created using Seaborn 0.12.2, Matplotlib 3.7.1, and Matcha
Online Math Editor. The computer station utilized is a Dell Alienware
Aurora with a GeForce RTX 3080 Ti GPU.

3.4. Workflow

The workflow of this study is illustrated in Fig. 2. Initially, the pro-
posed architecture, RoadPainter, was optimized using the DeepCrack
dataset. The model was trained for 300 epochs with a batch size of 4 and
a dropout ratio of 0.1. The Mean Squared Error (MSE) was used as the
loss function, and the Adam optimizer was employed with a learning
rate of 1e-6, β1 of 0.5, and β2 of 0.999, on images sized 128x128 pixels.

The optimization process was conducted in sequential steps. Evalu-
ation metrics included IQA metrics, visual inspection of synthetic im-
ages, and computational cost. Initial efforts focused on identifying the
optimal architecture by varying channel multipliers and model chan-
nels. For the optimal configuration, various noise schedules -linear,
cosine, sigmoid, and stable diffusion-were explored [60]. Subsequently,
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the impact of the improved CFG scale was assessed. All results presented
are based on the test split.

The performance of the optimal RoadPainter model was bench-
marked against state-of-the-art models using the DeepCrack, CFD,
CrackSC, and Crack500 datasets. Models such as CycleGAN, Pix2Pix,
SynCrack, and CDMwere evaluated using default hyperparameters from
their respective original publications. Following validation of the
RoadPainter model’s superior performance through IQA metrics and
visual inspection, it was employed to generate synthetic crack images
from manually crafted semantic masks. This process involved using the
model to enhance binary information images with texture.

After image generation, data augmentation was performed on syn-
thetic images across open-source datasets. This augmentation process
included both synthetic RGB images and their corresponding semantic
masks in the training set, while test images remained unaltered. Five
segmentation architectures -U-Net [50], PAN [61], PSPNet [62], Link-
Net [63], and FPN [64]-were trained both before and after augmenta-
tion. These models were trained for 300 epochs using the Adam
optimizer with a learning rate of 1e-4, β1 of 0.5, and β2 of 0.999. The
Dice loss function was utilized, with a batch size of 32 and an image size
of 128 pixels.

Finally, the most robust segmentation architecture, trained with the
augmented Crack500 dataset, was selected to validate the proposed
methodology for computing the refined pavement condition index. A

deep learning-based architecture was utilized with the Mosquitonet
dataset to detect various road defects. The chosen object detector is
YOLOv8 [65]. YOLOv8 was trained with a learning rate of 1e-5, using
the Adam optimizer with β1 of 0.5 and β2 of 0.999, a batch size of 32, for
300 epochs. The loss function employed is a weighted loss that in-
tegrates Complete-IoU for bounding box regression and Focal Losses for
completeness and classification.

Bounding boxes predicted by YOLOv8 were cropped and resized,
with only those classified as crack types retained. The crack categories,
as defined in Ref. [59], include seven distinct types. The best pre-trained
segmentation model was then used to generate binary segmentation
masks from the predicted cropped bounding boxes. These masks were
employed to quantify the potential refinement of the pavement condi-
tion index proposed in Ref. [59], both before and after applying se-
mantic segmentation.

4. Results and discussion

4.1. RoadPainter optimization

4.1.1. Architecture
First, the impact of channel multiplier expansion strategies (CM, as

shown in Fig. 1) within the proposedmultimodal attention-guided U-Net
architecture for semantic image synthesis is examined. In this initial set

Fig. 2. Workflow.
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of experiments, all network-related hyperparameters were kept fixed to
assess the effect of increasing the number of ResBlock modules in both
the encoder and decoder networks. Specifically, the focus was on
lengthening the channel multiplier vector and modifying its elements to
boost the output channels of the corresponding modules. This analysis
aims to evaluate the trade-off between computational efficiency and
channel multiplier expansion. The results are presented in Table 1.

Table 1 demonstrates a clear trend of increasing computational
complexity associated with more elaborate channel multiplication
configurations. This trend is evident in the rising number of parameters,
training and sampling times, and overall model capacity. Although it is
generally anticipated that more complex models will yield improved
image quality metrics, this assumption is not always validated. The
subsequent discussion on IQA metrics will address this hypothesis.

For every configuration, PSNR values are higher, indicating greater
similarity between generated and ground truth samples in terms of pixel
intensity. However, PSNR alone may not accurately reflect the quality of
segmentation masks, as it focuses solely on pixel intensity and overlooks
higher-level features such as structure, shape, or semantic meaning.
Therefore, high PSNR values may coexist with artifacts or in-
consistencies that are not immediately visible but can compromise
overall segmentation quality. Conversely, SSIM assesses structural sim-
ilarity by considering luminance, contrast, and local pixel intensity
variations. Results show substantial similarity, though the most complex
configuration exhibits approximately 5.1 % lower SSIM performance
compared to simpler configurations. Despite SSIM’s advantages over
PSNR, it may not fully address issues related to semantic information
control or guidance, as high SSIM does not guarantee accurate semantic
segmentation.

FID measures the perceptual similarity between generated and real
samples. A notable trend is the deterioration of FID with increased
model complexity. The configurations (1, 2, 3, 4) and (1, 1, 2, 3, 4),
which are the least complex, show exceptional FID performance, nearing
the minimum value. The most complex configuration results in the
lowest LPIPS value, but differences between configurations are mar-
ginal. Given that IQA metrics favour the least complex models, the (1, 2,
3, 4) configuration was chosen for its optimal FID performance and
lower computational cost. Attempts to increase complexity with addi-
tional self-attention modules were abandoned due to memory allocation
errors. Table 2 displays the results of adjusting the model’s channel
configurations.

Contrary to expectations, where increased complexity typically re-
sults in diminished FID, the results revealed a more nuanced relation-
ship. Notably, the configuration with 128 channels yielded the lowest
FID (Table 1), while simpler configurations, such as those with 32
channels, demonstrated superior FID values (↑127.4 %). Conversely,
both lighter (64 and 96 channels) and more complex (160 channels)
configurations were close to the optimal configuration (128 channels),
but they did not surpass it in terms of FID. Beyond the quantitative IQA
metrics, a qualitative visual assessment of the generated images was
conducted to evaluate their fidelity, reliability, and segmentation mask
accuracy. Fig. 3 depicts the various images generated for each
configuration.

The RoadPainter configurations highlight two key aspects: realism
and texture. The simplest model can create cracks but often produces
unrealistic colors, such as green and yellow, which are not typical of
road surfaces. Consequently, the model with 32 channels, which yields

poor FID scores, is discarded due to its unrealistic images. As the number
of channels increases, texture quality improves. However, the most
complex model often results in nearly opaque images or struggles with
pavement textures, particularly in defects like block or alligator
cracking. Models with 96 and 128 channels provide more convincing
textures, while the 64-channel model lacks realism. After evaluating
multiple images, the 128-channel model was determined to be the best,
offering logical colors, high realism, and convincing texture. Although
not the lightest model, the (1, 2, 3, 4) configuration with 128 channels is
deemed optimal.

4.1.2. Noise schedules
Fig. 4 illustrates the square root of the cumulative product of αt (see

Ref. [32]) over timesteps, indicating the evolution of the forward
diffusion process from the original raw image to pure Gaussian noise at
T = 1000. The corresponding signal-to-noise ratio (SNR) is depicted on
the right plot, balancing noise, and image power throughout training.
Typically, noise schedules begin with non-zero SNR, causing a disparity
between training and inference. When t = T during training, a small
amount of signal persists, comprising low-frequency information. In
contrast, noise schedules with zero terminal SNR closely resemble
inference behavior, aligning with pure noise input at t = T during
training. Fig. 4 displays the logarithmic representation of different noise
schedules, demonstrating adherence to this requirement while showing
distinct modulation of the forward diffusion process for each schedule.

Table 3 presents the IQA metrics for various noise schedules. The
results demonstrate relatively consistent trends across all noise sched-
ules, with RoadPainter’s optimal configuration slightly outperforming
others in the stable diffusion noise schedule, particularly in terms of
PSNR. However, the most significant impact is observed in the FID
values, where the sigmoid schedule performs the worst. The nearly
linear schedule also surpasses the cosine schedule. Notably, the stable
diffusion schedule achieves an FID of 1.11, which is nearly six times
lower than the best result obtained, highlighting a substantial disparity.
This result underscores the importance of incorporating noise schedules
as an additional degree of freedom in the optimization space and tuning
hyperparameters for semantic image synthesis models, especially in
crack synthesis. Consequently, the stable diffusion noise schedule has
been selected.

Fig. 5 presents a selection of synthetic images generated from ground
truth masks. These images showcase various geometries (e.g., mesh,
diagonal, transversal, longitudinal) and exhibit a range of thicknesses,
lengths, perspectives, and patterns. Notably, the texture of the pavement
becomes discernible upon closer inspection, highlighting the model’s
ability to generate cracks with multiple logical endpoints, leading to
diverse backgrounds. This variability significantly enhances the value of
synthetic images for data augmentation by providing both considerable
diversity and high realism. Unlike traditional data augmentation tech-
niques, which often rely on geometric alterations, this approach lever-
ages a pre-trained generative model to produce an infinite number of
frames that meet two criteria: they closely resemble real images and are
conditioned by a semantic mask. This capability is particularly valuable
in contexts like road maintenance, where the collection and labeling of
images are major challenges. In essence, this method offers an efficient
solution for data collection and labeling.

Table 1
Computational aspects and image quality assessment metrics (calculated for the test partition) using the DeepCrack dataset, focusing on channel multiplications.

Channel multiplication Parameters (M) Training time/cost (h/MiB) Inference time/cost (h/MiB) PSNR SSIM FID LPIPS

(1, 2, 3, 4) 134 4.00/5940 0.227/4774 56.58 ± 0.72 0.98 ± 0.03 6.23 ± 0.51 0.0003 ± 0.0001
(1, 1, 2, 3, 4) 143 4.60/5574 0.272/5228 56.36 ± 0.74 0.98 ± 0.01 6.63 ± 0.44 0.0003 ± 0.0001
(1, 1, 2, 2, 4, 4) 187 5.40/6794 0.296/6234 56.62 ± 0.69 0.98 ± 0.02 7.69 ± 0.53 0.0004 ± 0.0001
(0.5, 1, 1, 2, 2, 4, 4) 197 5.47/6820 0.316/6384 56.19 ± 0.70 0.93 ± 0.03 9.82 ± 0.47 0.0002 ± 0.0001
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4.1.3. CFG scale
In Table 4, it can be observed that the differences in relation to all

metrics are very minor. However, for the case of s= 3, an FID is obtained
that is 5.41 % lower compared to the best configuration from the pre-
vious sub-analysis, along with a superior PSNR of 2.19 %. Therefore,
despite the slight differences, this hyperparameter has been established
to conclude the overall optimal configuration of RoadPainter. In
conclusion, the optimal configuration has a channel multiplier vector of

(1, 2, 3, 4) with 128 channels, employing a stable diffusion noise
schedule, and a CFG scale of 3. Subsequently, to ascertain the robustness
and efficacy of the proposed generative model, a comparative analysis
has been conducted against state-of-the-art generative models across
various open-source datasets pertaining to pavement cracks.

Table 2
Computation aspects and image quality assessment metrics (computed for test partition) with DeepCrack datasets in terms of model channels.

Model channels Parameters (M) Training time/cost (h/MiB) Inference time/cost (h/MiB) PSNR SSIM FID LPIPS

32 15 2.00/1550 0.070/1276 55.66 ± 0.26 0.96 ± 0.01 14.16 ± 0.56 0.0005 ± 0.0001
64 42 2.63/2840 0.147/2858 56.57 ± 0.80 0.98 ± 0.01 7.01 ± 0.50 0.0004 ± 0.0001
96 82 4.00/4408 0.227/4784 56.39 ± 0.56 0.98 ± 0.02 8.85 ± 0.43 0.0002 ± 0.0001
128 134 4.63/5940 0.255/4774 56.58 ± 0.72 0.98 ± 0.03 6.23 ± 0.51 0.0003 ± 0.0001
160 197 7.72/8142 0.462/8704 54.44 ± 0.69 0.96 ± 0.03 8.08 ± 0.58 0.0004 ± 0.0001

Fig. 3. Representation of synthetic cracks with varying features (e.g., widths, geometries) sampled from diffusion models trained with different model chan-
nels (MC).

Fig. 4. Modified noise schedules with rescaling to fit pure noise at t = T.
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4.2. Comparison with state-of-the-art approaches

Table 5 presents IQA metrics for various state-of-the-art models
evaluated on different open-source datasets. RoadPainter consistently
outperforms the other models, demonstrating significantly higher PSNR
and SSIM scores, as well as substantially lower FID and LPIPS values. In
contrast, Pix2Pix and CycleGAN exhibit lower performance across all
datasets, with reduced PSNR and SSIM scores and increased FID and
LPIPS values. SynCrack and CDM display intermediate performance,
with results varying across datasets. Overall, RoadPainter delivers su-
perior image quality and fidelity compared to the other models.

For the CFD dataset, which comprises a relatively small volume of
images, the results are more comparable. Although RoadPainter shows
slightly better performance according to IQA metrics, it often struggles
with semantic correlation, as illustrated in Fig. 6. In comparison, Pix2Pix
and CycleGAN achieve conditional translation but face their own limi-
tations. Pix2Pix tends to suffer from mode collapse in the background,
resulting in a lack of diversity in synthetic images and potentially

degrading the performance of segmentation architectures trained on
these images. Meanwhile, CycleGAN avoids mode collapse but often
produces backgrounds that are highly unrealistic.

For the CrackSC dataset, Pix2Pix does not exhibit mode collapse in
the background (see Fig. 6). However, like CycleGAN, it demonstrates
limited generalization with new samples, resulting in outputs that
resemble pavement backgrounds with slightly more texture than those
from earlier datasets. RoadPainter, on the other hand, excels by gener-
ating a diverse range of textures, including varying colors, tones, and
intricate details such as shadows or dust within the cracks.

The Crack500 dataset, which includes a large volume of high-
quality, high-resolution images with diverse and textured content, pre-
sents a different scenario. Here, Pix2Pix produces both realistic back-
grounds and cracks with clear semantic correlation. Despite this, mode
collapse is evident, as the background remains largely similar regardless
of the input. CycleGAN generates highly unrealistic images, occasionally
achieving semantic similarity but failing to capture the characteristic
darker color of cracks relative to the background. In contrast,

Table 3
IQA metrics for different noise schedules.

PSNR SSIM FID LPIPS

Schedule Linear 56.58 ±

0.72
0.98 ±

0.03
6.23 ±

0.51
0.0003 ±

0.0001
Sigmoid 55.59 ±

0.11
0.97 ±

0.06
10.02 ±

0.49
0.0003 ±

0.0001
Cosine 55.81 ±

0.57
0.97 ±

0.01
9.65 ±

0.57
0.0003 ±

0.0001
Stable
Diffusion

58.47 ±

0.89
0.99 ±

0.01
1.11 ±

0.44
0.0002 ±

0.0001

Fig. 5. Real test segmentation masks from DeepCrack and synthetic crack images generated by RoadPainter.

Table 4
IQA metrics as a function of the CFG scale.

PSNR SSIM FID LPIPS

CFG
scale

1.5 58.47 ±

0.89
0.99 ±

0.01
1.11 ±

0.44
0.0002 ±

0.0001
2.0 57.49 ±

0.43
0.98 ±

0.02
1.10 ±

0.43
0.0001 ±

0.0000
2.5 58.52 ±

0.92
0.99 ±

0.02
1.09 ±

0.47
0.0002 ±

0.0001
3.0 59.75 ±

0.96
0.99 ±

0.02
1.05 ±

0.33
0.0002 ±

0.0001
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RoadPainter consistently delivers highly realistic synthetic images with
notable diversity, featuring distinct backgrounds and avoiding issues
such as mode collapse and limited generalization.

Fig. 7 displays synthetic images generated by state-of-the-art models
specifically designed for the semantic synthesis of road cracks. CDM
successfully captures the correlation with the semantic mask; however,
its backgrounds often appear highly unrealistic, displaying whitish tones
around the defects and a consistently grayish background. Additionally,
CDM requires both a semantic mask and a real background image
without defects for generating new images, which may limit its appli-
cability in real-world engineering contexts. In contrast, while SynCrack
produces images that may seem realistic, it fails to accurately represent
the true tones of the pavement and lacks the depiction of artifacts such as
shadows or fine details. Based on IQA metrics and visual inspection, it is
evident that the RoadPainter model outperforms these state-of-the-art
models.

Fig. 8 presents additional images generated by RoadPainter across
various datasets, showcasing its strengths and limitations. The size and
resolution of datasets influence the model’s creative capabilities.
RoadPainter excels at producing highly textured and realistic images,
even in cases where cracks are not distinctly differentiated from the
background. Future research will aim to enhance the model’s perfor-
mance on smaller datasets. Notably, images from Crack500 demonstrate
exceptional texture and realism, closely resembling the original images.
Results from DeepCrack are omitted, as they were previously discussed
in Fig. 5.

4.3. Improved segmentation efficiency with augmented datasets

Each model was augmented with synthetic images generated by its
corresponding pre-trained generative model on its training split.
Tables 6–9 present the segmentation metrics for various segmentation
architectures and benchmark datasets. For each dataset, with N images
in the training partition, N/2 synthetic images were added, resulting in
3N/2 images in the new training partitions, where 66.7 % are real and
the remaining 33.3 % are synthetic.

To generate these synthetic images, we created a dataset using the
Paint tool, featuring a consistent black background with white pixels
representing cracks, thereby producing synthetic crack semantic masks.
We introduced diversity by incorporating various crack geometries,
widths, and positions, including longitudinal, transversal, irregular,
block, and alligator cracking (see Fig. 9). This pseudo-labeling method
proved highly efficient, allowing us to control the generated images and
enhance the learning of data-driven models by increasing the volume of
diverse images. Unlike manual dataset annotation, this approach
streamlines the process and ensures greater variety in the generated
images.

Table 6 shows that while all architectures achieved high baseline
accuracy (above 0.97) even without augmentation, RoadPainter
consistently enhanced this metric across all models. However, accuracy,
which is simply the ratio of correctly classified pixels, can be misleading
in imbalanced datasets where cracks are significantly outnumbered by
background pixels. This issue is evident in DeepCrack and several other
datasets. For images depicting mesh-type defects, such as block cracking
or alligator cracking, the proportion of crack-associated pixels is rela-
tively higher compared to the total number of pixels. In contrast, most
images contain isolated cracks, such as longitudinal or transverse cracks,
where the crack pixel ratio fluctuates between 5 % and 15 %. This
imbalance suggests that accuracy alone may not be the most appropriate
metric for these datasets.

Precision, which measures the proportion of true positives among all
predicted positives, showed the most significant improvements with
RoadPainter augmentation. Architectures like LinkNet and U-Net
experienced substantial gains in precision (↑49.7 % and ↑53.2 %,
respectively), indicating a notable reduction in false positive crack de-
tections. While precision is crucial, effective crack detection also re-
quires high recall, meaning the model must capture a large proportion of
actual cracks. The observed improvements in recall, alongside precision
gains, suggest that the overall accuracy and the ability to identify all true
crack instances have been balanced.

The F1-score, which is the harmonic mean of precision and recall,
achieved the highest gain with FPN (↑23.6 %), reflecting significant
improvement in this trade-off. This metric assesses the average overlap
between predicted and ground truth crack masks. Additionally, the
improvements in mIoU with RoadPainter augmentation indicate better
overall segmentation quality, capturing both the presence and precise
location of cracks more accurately. LinkNet showed the most significant
improvement in mIoU (↑43.2 %). Although mIoU provides a compre-
hensive view of segmentation quality, it may not capture specific crack
characteristics. Overall, these results underscore that the enhanced
LinkNet with synthetic images from RoadPainter achieves the best
metrics in the case of DeepCrack.

Table 7 illustrates that while significant improvements are observed
in various metrics, the change in accuracy with RoadPainter augmen-
tation may appear modest. This subtle shift is likely attributable to the
limitations of accuracy as a metric in imbalanced crack-pixel datasets.
Notably, a substantial positive trend is evident in precision for all ar-
chitectures following the incorporation of synthetic data. Precision is
particularly critical in imbalanced scenarios, as it reflects the reduction
in false positive crack detections. Architectures such as U-Net and
LinkNet achieved the most significant gains in precision (approximately
3.5 times), underscoring the effectiveness of RoadPainter in reducing
the misclassification of background pixels as cracks.

Table 5
IQA metrics of synthetic images for different generative models and benchmark
datasets.

Dataset Model PSNR SSIM FID LPIPS

DeepCrack Pix2Pix 15.03 ±

0.36
0.23 ±

0.01
137.13 0.57 ±

0.09
CycleGAN 14.85 ±

0.49
0.27 ±

0.03
158.16 0.64 ±

0.02
RoadPainter 59.75 ±

0.92
0.99 ±

0.02
1.05 ±

0.33
0.0002 ±

0.0001
SynCrack 14.73 ±

1.65
0.27 ±

0.01
115.35 ±

0.69
0.58 ±

0.02
CDM 12.87 ±

0.46
0.28 ±

0.08
136.49 ±

0.98
0.61 ±

0.08
CrackSC Pix2Pix 19.76 ±

0.63
0.19 ±

0.01
88.79 0.42 ±

0.08
CycleGAN 18.51 ±

0.20
0.51 ±

0.04
84.69 0.51 ±

0.03
RoadPainter 67.60 ±

0.97
0.99 ±

0.01
2.10 ±

0.01
0.0003 ±

0.0001
SynCrack 18.48 ±

0.95
0.24 ±

0.01
136.82± 0.40 ±

0.06
CDM 16.61 ±

0.05
0.17 ±

0.04
50.31 ±

0.63
0.78 ±

0.10
Crack500 Pix2Pix 15.29 ±

0.28
0.061 ±

0.003
73.90 ±

8.96
0.44 ±

0.02
CycleGAN 13.60 ±

0.09
0.08 ±

0.01
89.70 ±

0.03
0.82 ±

0.08
RoadPainter 70.05 ±

2.50
0.99 ±

0.01
1.55 ±

0.01
0.0004 ±

0.0001
SynCrack 16.42 ±

0.90
0.11 ±

0.01
187.27 ±

6.70
0.53 ±

0.03
CDM 15.52 ±

0.87
0.12 ±

0.03
62.98 ±

0.11
0.82 ±

0.02
CFD Pix2Pix 23.04 ±

0.19
0.63 ±

0.08
163.11 ±

26.00
0.34 ±

0.03
CycleGAN 22.76 ±

0.13
0.67 ±

0.09
155.35 ±

32.15
0.50 ±

0.05
RoadPainter 44.30 ±

1.75
0.68 ±

0.01
98.11 ±

19.33
0.27 ±

0.01
SynCrack 17.38 ±

3.98
0.41 ±

0.09
140.87 ±

2.14
0.41 ±

0.02
CDM 13.95 ±

1.60
0.40 ±

0.08
134.07 ±

3.60
0.64 ±

0.03
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In addition to reducing false positives, RoadPainter enhances the
models’ ability to capture a greater proportion of actual cracks. U-Net
and LinkNet once again demonstrate the most notable improvements in
recall, reflecting their enhanced capability to identify true cracks despite
the class imbalance. All models also show substantial gains in the F1-
score with RoadPainter augmentation. However, improvements in
mIoU, which measures the overlap between predicted and ground truth
crack masks, are relatively modest compared to other metrics. This is
likely due to the CrackSC dataset’s higher proportion of very thin or faint
cracks, which are inherently more challenging to segment accurately.

Regarding Table 8, the improvements in recall and F1-score for the
CFD dataset are more moderate compared to those observed with
CrackSC. This suggests that the CFD dataset may have a higher

proportion of easily detectable cracks or a more balanced class distri-
bution. While RoadPainter continues to enhance crack detection per-
formance, the initial performance may have been relatively high due to
these dataset characteristics. In contrast to the CrackSC dataset, the
improvements in mIoU are more pronounced in the CFD dataset. This
indicates that the CFD dataset likely contains a higher prevalence of
well-defined, thicker cracks, which benefit more from the additional
training data provided by RoadPainter. Despite the varying degrees of
improvement across different metrics, RoadPainter augmentation
consistently boosted the performance of all architectures for the CFD
dataset. This is likely because the dataset is quite small, with a 9:1 split
applied, making performance improvements in the segmentation met-
rics less noticeable.

Fig. 6. Comparison of synthetic samples from test segmentation masks for several public crack datasets in terms of state-of-the-art and proposed generative
architectures.

Fig. 7. Synthetic images from state-of-the-art crack-oriented semantic synthesis models.
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Fig. 8. Crack images generated by RoadPainter from test segmentation masks of various crack benchmark datasets.

Table 6
Standard binary segmentation metrics for several state-of-the-art architectures, before and after applying image augmentation with synthetic frames from the
DeepCrack dataset, generated using the optimized RoadPainter model.

Configuration Accuracy Precision Recall F1-score mIoU

DeepCrack FPN 0.974 0.447 0.870 0.594 0.423
FPN&RoadPainter 0.981 0.697 0.889 0.734 0.580
U-Net 0.976 0.464 0.883 0.603 0.432
U-Net&RoadPainter 0.982 0.695 0.911 0.691 0.596
LinkNet 0.975 0.451 0.850 0.595 0.424
LinkNet&RoadPainter 0.983 0.691 0.926 0.755 0.607
PSPNet 0.972 0.420 0.666 0.555 0.385
PSPNet&RoadPainter 0.976 0.615 0.701 0.647 0.496
PAN 0.974 0.449 0.787 0.593 0.422
PAN&RoadPainter 0.981 0.683 0.854 0.718 0.560
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Table 9 presents the results for the Crack500 dataset, which is
significantly larger than the previously used datasets. As with the pre-
vious tables, this table illustrates the potential benefits of image
augmentation with synthetic cracks generated by the optimized Road-
Painter model. Compared to the smaller CrackSC dataset, the improve-
ments in all metrics for Crack500 are more modest. This is likely because
Crack500 provides the models with a larger volume of real-world crack
data during training. Despite this, RoadPainter augmentation still leads
to noticeable improvements in precision, recall, and F1-score across all
architectures. The results from the Crack500 dataset demonstrate the
continued effectiveness of RoadPainter augmentation, even with a
larger and potentially more diverse dataset.

Comparing the results across Tables 6–8 underscores the impact of
dataset size on the effectiveness of synthetic data augmentation. While
RoadPainter resulted in more substantial improvements with the smaller
CrackSC dataset, its positive impact persists with the larger Crack500
dataset. This suggests that RoadPainter augmentation generalizes well
across various data scenarios, validating the hypothesis that this inno-
vative diffusion model enhances crack segmentation performance. The
solution addresses challenges related to image collection and labeling,
thereby supporting the data-driven nature of deep learning architectures

for road crack segmentation.
This novel approach, in contrast to traditional image collection and

labelingmethods, offers several advantages. It enables the rapid creation
of a large volume of diverse, high-quality images within a shorter
timeframe and at a reduced cost. Additionally, it allows for precise
control over the types of images generated, which is particularly valu-
able when a model struggles with specific crack types. In such scenarios,
targeted images can be created by drawing specific semantic masks,
thereby improving class balance and enhancing the performance of the
segmentation architecture.

4.4. A refined pavement condition index

Most crack segmentation studies focus on designing high-
performance architectures but often overlook aspects that are crucial
for developing effective road maintenance strategies. Specifically, a few
studies create pavement condition indices from segmentation results to
guide strategic road maintenance decisions.

In a previous study [59], a pavement condition index was developed
based on detections from an object detection model, referred to as the
Area-based Pavement Distress Index (ASPDI). This index utilized a

Table 7
Standard binary segmentation metrics for several state-of-the-art segmentation architectures, before and after applying image augmentation with synthetic frames
from the CrackSC dataset, generated using the optimized RoadPainter model.

Dataset Configuration Accuracy Precision Recall F1-score mIoU

CrackSC FPN 0.975 0.122 0.294 0.202 0.113
FPN&RoadPainter 0.980 0.305 0.589 0.312 0.185
U-Net 0.981 0.132 0.307 0.212 0.118
U-Net&RoadPainter 0.983 0.447 0.515 0.388 0.241
LinkNet 0.979 0.119 0.352 0.198 0.110
LinkNet&RoadPainter 0.980 0.418 0.547 0.397 0.248
PSPNet 0.974 0.109 0.201 0.177 0.100
PSPNet&RoadPainter 0.981 0.250 0.394 0.245 0.139
PAN 0.975 0.116 0.283 0.192 0.110
PAN&RoadPainter 0.980 0.319 0.562 0.330 0.198

Table 8
Standard binary segmentation metrics for several state-of-the-art segmentation architectures, before and after applying image augmentation with synthetic frames
from the CFD dataset, generated using the optimized RoadPainter model.

Dataset Configuration Accuracy Precision Recall F1-score mIoU

CFD FPN 0.968 0.100 0.817 0.190 0.104
FPN&RoadPainter 0.978 0.202 0.822 0.323 0.192
U-Net 0.979 0.170 0.785 0.330 0.160
U-Net&RoadPainter 0.983 0.250 0.850 0.377 0.232
LinkNet 0.981 0.190 0.813 0.351 0.191
LinkNet&RoadPainter 0.982 0.225 0.822 0.380 0.213
PSPNet 0.968 0.089 0.609 0.175 0.080
PSPNet&RoadPainter 0.972 0.145 0.695 0.238 0.135
PAN 0.972 0.109 0.728 0.215 0.110
PAN&RoadPainter 0.979 0.204 0.793 0.323 0.192

Table 9
Standard binary segmentation metrics for several state-of-the-art segmentation architectures, before and after applying image augmentation with synthetic frames
from the Crack500 dataset, generated using the optimized RoadPainter model.

Dataset Configuration Accuracy Precision Recall F1-score mIoU

Crack500 FPN 0.969 0.660 0.653 0.686 0.522
FPN&RoadPainter 0.967 0.723 0.701 0.694 0.531
U-Net 0.968 0.663 0.679 0.692 0.529
U-Net&RoadPainter 0.970 0.723 0.704 0.709 0.550
LinkNet 0.967 0.633 0.686 0.692 0.530
LinkNet&RoadPainter 0.968 0.729 0.754 0.710 0.551
PSPNet 0.962 0.605 0.640 0.649 0.480
PSPNet&RoadPainter 0.964 0.659 0.676 0.670 0.499
PAN 0.967 0.658 0.695 0.688 0.525
PAN&RoadPainter 0.969 0.703 0.708 0.707 0.547
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pre-trained object detection model that outputs multiple bounding
boxes for each image, each encompassing various defects and classifying
the type of distress. The ASPDI was then calculated based on these
predictions, with values ranging from 0 to 100 %, where 100 % repre-
sents ideal road conditions and 0 % indicates a critical need for repair.
The index is derived from the weighted sum of the areas within the
predicted bounding boxes, with weights representing the severity of
each defect as indicated by the predicted label. This approach in-
corporates fine-grained classification through severity coefficients,
addressing the limitation of many state-of-the-art solutions.

However, analysis revealed a significant issue related to crack-type
defects (e.g., diagonal cracking, irregular cracking) in calculating their
area. This calculation often proved unrealistic, resulting in lower ASPDI
scores for images with less severe defects. To address this issue, an object
detection network, specifically YOLOv8, was utilized. From the YOLOv8
detections with the Mosquitonet test split, only those classified as crack-
type defects were programmatically cropped. For these defects, the
LinkNet & RoadPainter model, pre-trained with Crack500, was applied
to generate predicted masks for the cropped patches. This refinement
aimed to improve ASPDI calculations by using the area of crack-type
pixels (white) within the bounding box dimensions rather than the

entire bounding box area itself. This approach seeks to enhance the
accuracy of the ASPDI calculation by providing a more precise measure
of the crack areas.

To validate the effectiveness of the refined ASPDI calculation, 100
patches with crack-type defects from the Mosquitonet test split were
selected and manually annotated for binary segmentation. Fig. 10 pre-
sents histograms of ASPDI values calculated under four conditions for
this subset: (1) for the annotated or ground truth bounding boxes (object
detection approach), (2) for the predicted bounding boxes using
YOLOv8, (3) for the ground truth segmentation masks, and (4) for the
predicted segmentation masks obtained from YOLOv8’s cropped pre-
dictions processed with LinkNet. In the object detection approach,
ASPDI values frequently fall below 80, indicating potential concerns.
This is particularly evident because the test subset mainly consists of
isolated crack-type defects (e.g., longitudinal, transversal, diagonal),
resulting in a noticeable tail in the histogram where ASPDI values
diverge from expected norms.

Conversely, the results derived from predicted segmentation masks
show a significant improvement. Most instances are concentrated in a
less concerning range, between 80 and 100. The few remaining instances
correspond to two types of crack defects -block cracking and alligator

Fig. 9. Synthetic samples generated by the trained RoadPainter (using the Crack500 dataset) from hand-painted segmentation masks for data augmentation.
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cracking-where the area calculated from the predicted bounding boxes
closely matches that from the segmentation masks. By refining the
ASPDI index to focus on pixel-level analysis, we retain the detailed
classification provided by the original ASPDI while achieving a more
accurate measure of crack area. This refinement results in a more real-
istic and meaningful ASPDI value, which is essential for effective
decision-making in the development of strategic road maintenance
plans.

Fig. 11 illustrates various scenarios to clarify the previous results,
featuring detections from YOLOv8 alongside the corresponding pre-
dicted semantic masks from the enhanced LinkNet model. It presents

four scenarios: (I) a case where the refinement is minimal (first paired
row, first two columns); (II) a case where the refinement is noticeable
(first paired row, columns three and four); (III) a case where the
refinement is highly significant (second paired row, columns one and
two); and (IV) a case involving mesh-type cracks, where the difference
between bounding box and segmentation is less pronounced due to the
substantial area of these cracks (second paired row, columns three and
four).

To summarize, the refined ASPDI index provides a more accurate
assessment of crack areas by leveraging pixel-level analysis from
YOLOv8 and LinkNet models. This enhancement not only improves the
effectiveness of pavement maintenance strategies but also serves as a
valuable metric for evaluating and comparing deep learning models in
pavement distress detection.

5. Conclusions

This paper introduces a novel deep learning-based generative diffu-
sion architecture for synthesizing crack images from segmentation
masks. A multimodal, attention-based U-Net has been designed to
incorporate both images and masks. The masks fuse semantic informa-
tion using SPADE modules, and conditioning sampling is ensured with
the modified CFG strategy. This system addresses the challenges asso-
ciated with acquiring a large volume of diverse and realistic images.
Moreover, as a conditional model, it eliminates the need for labelling the
synthetic images, thereby reducing the costly annotating process.
Additionally, it is a controllable model that can be guided through se-
mantic masks to address specific problems related to pavement cracks.
The main sub-conclusions are.

a) RoadPainter can generate a substantial volume of high-definition,
conditionally cross-correlated, and diverse crack images.

b) The optimized RoadPainter model demonstrates superior IQA met-
rics with a more efficient configuration on the DeepCrack dataset,
utilizing 134 million parameters, 128 channels, and a (1,2,3,4)
channel multiplication vector.

Fig. 10. ASPDI distribution for the test split of the Mosquitonet benchmark dataset, comparing real object detection/annotation ground truths with predictions from
YOLOv8 (object detection) and augmented LinkNet (segmentation) for crack-type road defects.

Fig. 11. Comparison of predicted bounding boxes with pre-trained YOLOv8
and predicted segmentation masks with improved pre-trained LinkNet to see
area-based challenges concerning the calculus of the refined pavement condi-
tion index.
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c) Various noise schedules (linear, sigmoid, cosine, and stable diffu-
sion) were investigated with a null SNR. The stable diffusion noise
schedule yielded the most favorable metric values. Additionally,
different CFG scales were assessed, with a CFG scale of 3 achieving
the best results: 59.7 PSNR, 0.99 SSIM, 1.05 FID, and 0.0002 LPIPS
on the DeepCrack dataset.

d) The optimal configuration of RoadPainter was evaluated in terms of
IQA and visual inspection, demonstrating superior performance
across all four datasets (DeepCrack, CFD, CrackSC, and Crack500)
when compared to state-of-the-art semantic synthesis models,
including Pix2Pix, CycleGAN, CDM, and SynCrack.

e) Standard segmentation metrics for five different segmentation ar-
chitectures (U-Net, LinkNet, PSPNet, PAN, FPN) showed clear
improvement after augmentation with the four benchmark datasets.

f) A refined pavement condition index for pavement distress detection
has been developed and validated.

Future work will delve into latent diffusion models to reduce the
complexity of diffusion models and explore the use of diffusion models
with transformer-based denoising networks, rather than convolutional-
based networks, to enhance segmentation performance for small crack
datasets.
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[27] S. Cano-Ortiz, P. Pascual-Muñoz, D. Castro-Fresno, Machine learning algorithms
for monitoring pavement performance, Autom Constr 139 (Jul. 2022) 104309,
https://doi.org/10.1016/j.autcon.2022.104309.

[28] H. Zhang, Z. Qian, W. Zhou, Y. Min, P. Liu, “A Controllable Generative Model for
Generating Pavement Crack Images in Complex Scenes,” Computer-Aided Civil and
Infrastructure Engineering, Mar. 2024, https://doi.org/10.1111/mice.13171.

[29] F. Guo, Y. Qian, J. Liu, H. Yu, Pavement crack detection based on transformer
network, Autom Constr 145 (Jan. 2023) 104646, https://doi.org/10.1016/j.
autcon.2022.104646.

[30] I.J. Goodfellow, et al., Generative adversarial networks, arXiv:1406.2661 [stat.ML]
(Jun. 2014).

S. Cano-Ortiz et al. Results in Engineering 23 (2024) 102745 

16 

https://doi.org/10.1016/j.dibe.2023.100300
https://doi.org/10.1016/j.autcon.2023.105138
https://doi.org/10.1016/j.autcon.2023.105138
https://doi.org/10.1016/j.autcon.2023.104853
https://doi.org/10.1016/j.autcon.2023.104853
https://doi.org/10.1016/j.autcon.2022.104678
https://doi.org/10.1016/j.autcon.2023.105186
https://doi.org/10.1016/j.engappai.2023.106880
https://doi.org/10.1016/j.eswa.2023.119560
https://doi.org/10.1109/TITS.2024.3373370
https://doi.org/10.1109/TITS.2024.3373370
https://doi.org/10.1016/j.engappai.2021.104376
https://doi.org/10.1016/j.engappai.2021.104376
https://doi.org/10.1016/j.dibe.2022.100109
https://doi.org/10.1016/j.dibe.2022.100109
https://doi.org/10.1016/j.rineng.2022.100657
https://doi.org/10.1016/j.engstruct.2023.116988
https://doi.org/10.1016/j.engstruct.2023.116988
https://doi.org/10.1016/j.rineng.2023.101267
https://doi.org/10.1016/j.rineng.2023.101267
https://doi.org/10.1016/j.autcon.2024.105375
https://doi.org/10.1016/j.autcon.2024.105375
https://doi.org/10.1016/j.autcon.2024.105482
https://doi.org/10.1016/j.autcon.2024.105482
https://doi.org/10.1016/j.measurement.2023.113252
https://doi.org/10.1016/j.measurement.2024.114159
https://doi.org/10.1016/j.autcon.2023.105214
https://doi.org/10.1111/mice.13225
https://doi.org/10.1016/j.measurement.2023.112475
https://doi.org/10.1016/j.measurement.2023.112475
https://doi.org/10.1016/j.engappai.2023.107328
https://doi.org/10.1016/j.autcon.2022.104646
https://doi.org/10.1016/j.autcon.2022.104646
https://doi.org/10.1016/j.autcon.2023.105217
https://doi.org/10.1016/j.autcon.2023.105217
https://doi.org/10.1016/j.autcon.2023.105217
https://doi.org/10.1016/j.autcon.2023.105217
https://doi.org/10.1016/j.dibe.2023.100315
https://doi.org/10.1016/j.engappai.2023.107767
https://doi.org/10.1016/j.autcon.2022.104309
https://doi.org/10.1111/mice.13171
https://doi.org/10.1016/j.autcon.2022.104646
https://doi.org/10.1016/j.autcon.2022.104646
http://refhub.elsevier.com/S2590-1230(24)01000-4/sref30
http://refhub.elsevier.com/S2590-1230(24)01000-4/sref30


[31] D.P. Kingma, M. Welling, An introduction to variational autoencoders,
Foundations and Trends® in Machine Learning 12 (4) (2019) 307–392, https://
doi.org/10.1561/2200000056.

[32] J. Ho, A. Jain, P. Abbeel, Denoising Diffusion Probabilistic Models, Jun. 2020
arXiv:2006.11239 [cs.LG].

[33] B. Xu, C. Liu, Pavement crack detection algorithm based on generative adversarial
network and convolutional neural network under small samples, Measurement 196
(Jun. 2022) 111219, https://doi.org/10.1016/j.measurement.2022.111219.

[34] A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks,” arXiv:1511.06434 [cs.LG], Nov.
2015.

[35] Y. Que, et al., Automatic classification of asphalt pavement cracks using a novel
integrated generative adversarial networks and improved VGG model, Eng. Struct.
277 (Feb. 2023) 115406, https://doi.org/10.1016/j.engstruct.2022.115406.

[36] D. Ma, H. Fang, N. Wang, C. Zhang, J. Dong, H. Hu, Automatic detection and
counting system for pavement cracks based on PCGAN and YOLO-MF, IEEE Trans.
Intell. Transport. Syst. 23 (11) (Nov. 2022) 22166–22178, https://doi.org/
10.1109/TITS.2022.3161960.

[37] T. Zhang, D. Wang, A. Mullins, Y. Lu, Integrated APC-GAN and AttuNet framework
for automated pavement crack pixel-level segmentation: a new solution to small
training datasets, IEEE Trans. Intell. Transport. Syst. 24 (4) (Apr. 2023)
4474–4481, https://doi.org/10.1109/TITS.2023.3236247.

[38] X. Zhang, B. Peng, Z. Al-Huda, D. Zhai, FeatureGAN: combining GAN and
autoencoder for pavement crack image data augmentations, Int. J. Image Graph.
Signal Process. 14 (5) (Oct. 2022) 28–43, https://doi.org/10.5815/
ijigsp.2022.05.03.

[39] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved Training
of Wasserstein GANs,” arXiv:1704.00028 [cs.LG], Mar. 2017.

[40] B. Yuan, Z. Sun, L. Pei, W. Li, M. Ding, X. Hao, Super-resolution reconstruction
method of pavement crack images based on an improved generative adversarial
network, Sensors 22 (23) (Nov. 2022) 9092, https://doi.org/10.3390/s22239092.

[41] Q. Song, L. Liu, N. Lu, Y. Zhang, R.C. Muniyandi, Y. An, A three-stage pavement
image crack detection framework with positive sample augmentation, Eng. Appl.
Artif. Intell. 129 (Mar. 2024) 107624, https://doi.org/10.1016/j.
engappai.2023.107624.

[42] Y. Yan, S. Zhu, S. Ma, Y. Guo, Z. Yu, CycleADC-Net: a crack segmentation method
based on multi-scale feature fusion, Measurement 204 (Nov. 2022) 112107,
https://doi.org/10.1016/j.measurement.2022.112107.

[43] J. Song, P. Li, Q. Fang, H. Xia, R. Guo, Data augmentation by an additional self-
supervised CycleGAN-based for shadowed pavement detection, Sustainability 14
(21) (Nov. 2022) 14304, https://doi.org/10.3390/su142114304.

[44] R. Rill-García, E. Dokladalova, P. Dokládal, Syncrack: improving pavement and
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