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Acute leukemia is the most frequently diagnosed malignancy in
childhood, with acute lymphoblastic leukemia (ALL) comprising
approximately 80% of cases in children aged 0–18 years, and
acute myeloid leukemia (AML) accounting for approximately
15–20% [1]. The early onset (0–10 years) of most childhood acute
leukemias and the high concordance rate among monozygotic
twins suggest a prenatal origin of the disease [1]. Indeed, the
presence of preleukemic precursors in cord blood (CB) samples or
Guthrie blood spots from children who later developed acute
leukemia has been demonstrated in several studies [2, 3].
However, this has mainly been demonstrated experimentally for
the most common cytogenetic subtypes, particularly in ALL.
The most prevalent genetic abnormality in infants (up to 1 year

of age) with AML (iAML) is chromosome 11q23 translocations
involving the KMT2A gene. This occurs at a higher incidence in
children than in adults (38% vs 2%), with the highest incidence in
infants (77%), suggesting that infant and adult AMLs are distinct
biological entities. Notably, iAML may have an in utero origin [4],
as demonstrated by long-established evidence of a prenatal origin
for MLL rearrangements [5]. In fact, the t(8;21)(q22;q22) AML
subgroup has also been associated with a prenatal origin [3].
However, studies of patients with AML in different molecular
subgroups have failed to detect the corresponding genetic
alteration in the respective CB or Guthrie blood spot samples
[6], suggesting a less frequent prenatal origin of AML compared
to ALL.
The t(7;12)(q36;p13) is a recurrent chromosomal rearrangement

uniquely linked to AML. It ranks as the second most common
abnormality in infants with AML, constituting nearly one-third of
cases and associated with a dismal prognosis [7], with extremely
poor survival rates and ineffective treatment by hematopoietic
stem cell transplantation. Event-free survival rates (EFS) are 0–14%

and overall survival (OS) 0–28%. However, more recent studies
indicate more optimistic outcomes, with 3-year EFS rates of 43%
and 3-year OS rates of 100%, albeit with high relapse frequencies
[8]. The clinical manifestation of t(7;12) primarily presents as AML,
although it has been diagnosed in a few cases as B-ALL or
biphenotypic leukemia [8]. t(7;12)+ blasts often exhibit a poorly
differentiated immunophenotype. Despite lacking a specific
association with a French-American-British (FAB subtype), blasts
are commonly classified as M0, M1, or M2 [8].
The breakpoint on chromosome 7 exhibits considerable

heterogeneity, impacting the region 7q31-7q36, which is proximal
to the motor neuron and pancreas homeobox 1 (MNX1) gene.
There are cases reporting patients with canonical breakpoints
and other harbouring non-classical translocations [8, 9]. This
region is entirely translocated to the derivative chromosome 12
[7]. Simultaneously, the breakpoint on chromosome 12 is situated
at position 12p13, disrupting the ETS variant transcription factor 6
(ETV6) gene in its 5’ region, specifically between exons 1 and 3 [8].
Notably, a significant portion of t(7;12) cases is reported in
conjunction with specific aneusomies. The presence of one or
more extra copies of chromosomes 8, 19, or 22 has been
consistently observed [7], with trisomy 19 being particularly
prevalent in over 70% of cases [8]. The concurrent occurrence of
these numerical anomalies has been suggested as a potential
factor in the development of leukemia. However, there is no clear
evidence regarding the mechanistic advantage of acquiring these
additional chromosomes, although some studies propose that it
may lead to the overexpression of specific genes [8, 10]. In line
with other cases of iAMLs, additional mutations are infrequent. A
common feature of t(7;12) patients is MNX1 overexpression, which
has been studied extensively using in vitro and in vivo models
attempting to recapitulate the biology of this disease [11]. MNX1
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overexpression does not lead to leukemic transformation of cord
blood (CB) cells or adult mouse bone marrow (BM) cells, but
impedes erythroid differentiation and encourages cellular senes-
cence [12]. However, MNX1 overexpression in fetal liver cells, but
not in adult BM cells, leads to leukemic transformation in a
retroviral mouse model [13]. MNX1::ETV6, independently of MNX1
overexpression, does not confer self-renewal capacity or leukemo-
genic potential in a model involving transduced fetal liver cells.
Only an in vitro myeloid biased was described in these assays [13].
Thus, the precise role of the MNX1::ETV6 fusion transcript remains
a subject of debate.
Here we present a case of iAML characterized by the t(7;12)

translocation, offering evidence supporting the neonatal origin of
the disease. Additionally, trisomy 19 is identified as a secondary
oncogenic event, likely occurring postnatally in the leukemogen-
esis process. A 5-months-old boy was diagnosed with AML,
wherein 40% of the BM cells were immature blasts (MPO+,
CD34+, CD38+, CD117+, CD13+, CD33+, CD123−/+, CD9−/+,
HLADR+) displaying an aberrant expression of the non-myeloid
markers CD7, CD2 and CD56. Cytogenetic analysis by optical
genome mapping (OGM) revealed a karyotype 47, XY,t(7;12)
(q36;p13),+19, with no additional structural or copy number

variants (SVs and CNVs) (Fig. 1A). Recurrent mutations for FLT3,
NPM1, and TP53 genes were also ruled out. We performed WGS on
AutoMACS-separated BM leukemic blasts (CD34+ CD33+) to
characterize the breakpoint and genes involved in the transloca-
tion (Fig. 1B). The CD34-CD33- cell population was used as non-
leukemic control cells. The analysis confirmed the presence of the
translocation with breakpoints at positions chr7:156,958,910
(affecting intron 3 of NOM1), and chr12:11,698,832 (within intron
2 of ETV6) (Fig. 1C). Additionally, we observed a 35 Kb inversion
(chr12:11,719,998-11,754,857) affecting exon 2 of ETV6 and
located 20 Kb from the translocation breakpoint on chromosome
12. Reconstruction of the chimeric chromosome revealed that the
fusion resulted in exons 3-8 of ETV6 in opposing transcriptional
orientation in relation to exons 4-11 of NOM1, except for exon 2 of
ETV6, which showed the same transcriptional orientation as NOM1
due to an inversion (Fig. 1C). Further analysis revealed a very low
mutational burden, with 19 substitutions and indels, none of them
affecting coding regions (data not shown), and confirmed the
presence of trisomy 19, and a subclonal deletion of the short arm
of chromosome 21.
In parallel, we performed RNA-seq of the BM blast cells to

explore the functional consequences of the t(7;12) translocation.
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Analysis confirmed the existence of a chimeric gene connecting
exon 2 of ETV6 to a cryptic exon located within intron 1 of ETV6
and containing multiple splicing acceptor sites, and the 3’-end of
this cryptic exon was joined to exon 4 of NOM1 (Fig. 1C).
Consistently, expression analysis revealed pronounced overex-
pression of the exons of NOM1 in the chimeric transcript
compared to exons 1-3. By phasing single-nucleotide polymorph-
isms (SNPs) surrounding the breakpoint and SNPs within the
exons, we identified strong allele-specific expression. The variant
allele frequency (VAF) for the SNP rs11765440, located within the
3’UTR of NOM1 and in phase with the translocation, was 95% by
RNA-seq, whereas WGS VAF was only 50% (data not shown). This
suggests the preferential overexpression of the chimeric allele in
these cells. In contrast, a SNP in exon 3 of ETV6 phased with the
breakpoint showed reduced expression of this ETV6 allele (RNA-

seq VAF: 10%, WGS VAF: 57%), supporting the notion that the
translocation results in ETV6 silencing.
Despite the observed overexpression of NOM1, the mechanism

by which this transcript might contribute to leukemogenesis
remains unclear, particularly as the cryptic exon within intron 1 of
ETV6 had many splice acceptor sites, resulting in the absence of an
open reading frame for the chimeric transcript. Therefore,
considering the physical proximity of NOM1 to MNX1 ( < 32 Kb),
a pivotal player in the canonical t(7;12) translocation, we studied
whether the translocation in NOM1 influenced MNX1 expression.
RNA-seq analysis showed that MNX1 was highly expressed in this
sample (176 transcripts per million) and was among the top 2%
highly expressed genes. To compare its expression with other AML
samples with or without the t(7;12) translocation, we integrated
our expression dataset with that of the TARGET [14]. This analysis
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revealed that the sample from our patient had the highest
expression of MNX1 relative to the dataset, followed by three
additional cases from TARGET that were positive for t(7;12)
(Fig. 1D). These results strongly suggest that, despite involving
NOM1, t(7;12) has a major effect on MNX1 expression, as it was
previously described [8]. Indeed, the translocated intron 1 of ETV6
contains numerous enhancers and regulatory elements that
may drive MNX1 overexpression, mimicking the molecular
mechanism described for canonical t(7;12) cases [11]. Of note, a
recent study points to an enhancer-hijacking event activating the
MNX1 promoter from the ETV6 locus as an explanation for the
MNX1 overexpression in this AML subtype [15]. Overall,
these observations support that MNX1, rather than NOM1, is most
likely the driver event of the disease, akin to other t(7;12)
leukemias [13].
To investigate the potential neonatal origin of the translocation,

we examined the patient’s cryopreserved CB cells collected at birth.
CB cells separated and enriched for hematopoietic stem and
progenitor cells (HSPCs) (CD34+), myeloid progeny (CD34-CD33+)
and more differentiated non-myeloid cells (CD34-CD33-) (Fig. 2A).
PCR amplification of the t(7;12) was observed in both CD34+ HSPCs
and the myeloid progeny, but not in differentiated non-myeloid
cells (Fig. 2B). The identity of the translocation product was
confirmed by Sanger sequencing and was identical to that detected
by WGS in the diagnosis BM sample (Fig. 2C). We then performed
microfluidic digital PCR (dPCR) on DNA from these populations to
quantify the proportion of cells with the translocation (Fig. 2D). The
t(7;12) translocation could be detected in 18% of CD34+ cells,
whereas <1% of CD34-CD33+ and CD34-CD33- cells were positive
for the translocation. Similarly, dPCR was used to evaluate the copy
number status of chromosome 19, the other major event identified
by OGM and WGS and often associated to t(7;12) iAML. Notably,
trisomy 19 was below the detection limit in all CB populations but
was readily detected in the diagnosis BM sample, indicating that
chromosome 19 duplication is a secondary event that occurred
postnatally. Altogether, our results provide the first evidence for the
neonatal origin and the cell compartment-of-origin of the
translocation t(7;12). Ultimately, functional gain-of-function and or
gene-editing experiments with t(7;12)/ETV6::NOM1 fusion in CD34+
HSPC cell fractions may provide fundamental knowledge about the
leukemogenic potential and precise the cell-of-origin of t(7;12)
iAML.
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