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Fragility of Kardar-Parisi-Zhang universality class in the presence of temporally correlated noise
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We study numerically a family of surface growth models that are known to be in the universality class of
the Kardar-Parisi-Zhang equation when driven by uncorrelated noise. We find that, in the presence of noise
with power-law temporal correlations with exponent θ , these models exhibit critical exponents that differ both
quantitatively and qualitatively from model to model. The existence of a threshold value for θ below which the
uncorrelated fixed point is dominant occurs for some models but not for others. In some models the dynamic
exponent z(θ ) is a smooth decreasing function, while it has a maximum in other cases. Despite all models sharing
the same symmetries, critical exponents turn out to be strongly model dependent. Our results clearly show the
fragility of the universality class concept in the presence of long-range temporally correlated noise.
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I. INTRODUCTION

Kinetic surface roughening is the term used to describe the
dynamics of surfaces under the effects of random fluctuations
[1–3]. The key quantity is the surface height h(x, t ) at posi-
tion x ∈ Rd and time t , which is a random field with some
probability distribution. If the system preserves some basic
symmetries (like time translation t → t + t0, space translation
x → x + x0, and invariance under rotations in the hyperplane
of x), which are common in nature, then translation invariance
along the growth direction h → h + c, for arbitrary constant c,
immediately implies scale-invariant roughening [4–6]. In this
case, the height-height correlations are described by power
laws with some critical exponents, which values ought to
depend solely on the exiting symmetries, conservation laws,
and system dimension. This allows the classification of scale-
invariant growth processes into universality classes [1], akin
to what occurs in critical phase transitions. An important
question in kinetic surface roughening theory is the robustness
of universality against the presence of quenched disorder [7,8]
or long-range correlations of the environmental noise [9].

One important example in the field of surface roughening is
the universality class represented by the Kardar-Parisi-Zhang
(KPZ) equation [10] in d + 1 dimensions

∂t h(x, t ) = ν∇2h + λ

2
(∇h)2 +

√
D η(x, t ), (1)

where η is a Gaussian noise with zero mean 〈η(x, t )〉 = 0
and no correlations 〈η(x, t )η(x′, t ′)〉 = δ(x − x′)δ(t − t ′).
This equation describes the roughening dynamics for a
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one-dimensional interface that grows by the effect of the
noise term η. The first term on the right-hand side describes
interface elasticity (surface tension), while the second term
is a nonlinear non-Hamiltonian term associated with lateral
interface growth.

The KPZ universality class plays a central role in statistical
physics as a fundamental model of scaling out of equilib-
rium. Beyond growing interfaces, the KPZ equation appears
in many very different contexts, such as directed polymers
in random media [2], randomly stirred fluids [11], particle
transport [12,13], driven-dissipative Bose-Einstein conden-
sates [14], and space-time chaos [15,16], to cite a few.

KPZ equation satisfies the above mentioned h → h + c
invariance, so that solutions to the KPZ equation are scale-
invariant: for any scalar b, the change of variables x → bx,
t → b1/zt , and h → bαh, leaves Eq. (1) unchanged for a par-
ticular choice of the d-dependent critical exponents α and z.
Furthermore, the KPZ nonlinearity leads to Galilean invari-
ance: KPZ equation remains unaffected by the transformation
x → x + λεt and h → h − εx with ε → 0. This immedi-
ately implies the scaling relation α + z = 2 in any dimension
[1,10]. In d = 1 the critical exponents are known exactly:
α = 1/2 and z = 3/2, which can be obtained by a perturba-
tive dynamical renormalization group (DRG) calculation [10].
Remarkably, the exact form of h in d = 1 has been found for
several initial conditions [17,18] through several theoretical
techniques that have revealed the existence of a deep connec-
tion between KPZ universality class and random matrix theory
[17–20]. In higher dimensions, exact predictions do not exist
and one has to rely on numerical simulations.

Soon after the introduction of the KPZ equation, the ef-
fect of correlated noise in Eq. (1) was analytically studied
in a seminal paper by Medina et al. [9]. We focus our
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attention here in the case of solely temporal correlations
where the noise in Eq. (1) has a slowly decaying correlator
given by

〈η(x, t )η(x′, t ′)〉 = 2δ(x − x′)|t − t ′|2θ−1, (2)

with the index θ ∈ [0, 1/2) characterizing the “range” of the
temporal correlation. In the θ → 0 limit the noise becomes
delta correlated, while for θ → 1/2 the noise behaves effec-
tively as a columnar disorder [21]. Using a perturbative DRG
approach to analyze Eq. (1) with the noise correlation (2),
Medina et al. made a prediction for the critical exponents
in 1 + 1 dimensions up to one-loop order in the perturbative
series expansion:

α =
{

1/2 if θ < 1/6

1.69 θ + 0.22 1/6 < θ < 1/2,
(3)

z =
{

3/2 if θ < 1/6

(2α + 1)/(1 + 2θ ) 1/6 < θ < 1/2.
(4)

However, Medina et al. calculation has severe technical dif-
ficulties directly associated with the presence of temporally
correlated noise. On the one hand, one immediately notes that
time-correlated noise breaks Galilean invariance and the scal-
ing relation α + z = 2 becomes invalid, at least for θ > 1/6.
In DRG terms this means that the flow equation for λ has
corrections in the perturbative expansion. On the other hand,
and maybe more importantly, no stable fixed point is found
for θ > 1/4. In fact, an infinite set of singularities appear
at θ∗ = 1/4, 2/6, 3/8, . . . and an increasing number Nmax of
terms contribute as θ gets larger. Medina et al. solved the sums
numerically for various increasing values of Nmax improving
the numerical estimates of the correction. The calculation
becomes increasingly difficult because Nmax > 1/(1 − 2θ ) →
∞ as θ → 1/2. All in all, the calculation is very problematic,
and it is hard to be convinced of the validity of the whole
approach (see Ref. [9] for further details).

A self-consistent expansion (SCE) was employed by Kat-
sav and Schwartz [22] to obtain the critical exponents α(θ )
and z(θ ) as smooth functions of θ . At variance with the DRG
calculation of Medina et al. no threshold exists, and the expo-
nents differ from the uncorrelated case for any finite θ .

A different approach, using a perturbative functional renor-
malization group (FRG), was carried out by Fedorenko in the
context of elastic manifolds in correlated disorder [23]. The
two-loop results indicated that the dynamic exponent z is a
decreasing function of θ , at variance with Eq. (4) where z is
increasing with θ .

The problem was analyzed by Squizzato and Canet [24]
using a nonperturbative functional renormalization group
(NPFRG). They concluded that, in the presence of power-law
time-correlated noise, the uncorrelated fixed point is stable for
below some critical θth, while there is a new critical point
above the threshold where the exponents are θ -dependent.
These results are qualitatively in accordance with Medina
et al. DRG, but in disagreement with SCE or FRG.

Early numerical explorations of the scaling behavior of
the KPZ equation in the presence of long-range temporally
correlated noise was carried out by Lam et al. [25] by using
simulations of ballistic deposition (BD) in 1 + 1 dimensions.

They found a good agreement with Medina at al. predictions
in Eqs. (3) and (4) for some noise generators, but not for
others. Two noise generator algorithms could give consider-
ably different surface exponents even if the correlator was
identical. They attributed this discrepancy to extremely slow
crossovers, which should vanish at large scales. The problem
was revisited almost 25 years later by Song and Xia [26], who
also carried out simulations of BD with correlated noise, gen-
erated by two different algorithms (one of them was identical
to that of Lam et al. [25]) and concluded that the prediction of
the DRG was in excellent agreement with simulations.

In a recent paper Alés and López [27] have shown that
the scaling picture of KPZ in the presence of temporally
correlated noise is much richer than previously expected. The
main result was that the surface shows anomalous rough-
ening beyond θ = 1/4 and actually becomes faceted if θ is
increased further. The appearance of a faceted pattern implies
the existence of a new critical exponent αs �= α that describes
the scaling behavior of the surface power spectral density. It
also implies that the standard scaling ansatz for the surface
correlation function, which is the starting point of any RG
analysis, has to be replaced by the generic scaling ansatz of
Ramasco et al. [28]. These results were later confirmed by
independent investigations and extended to 2 + 1 dimensions
[29–31]. Obviously, the original DRG approach [9] does not
make any prediction about the value of the new exponent
αs(θ ), neither is able to explain the emergence of facets. The
more recent NPFRG approach developed by Squizzato and
Canet [24] was also inconclusive with respect to the faceted
phase.

In this paper we revisit the problem of the universality class
of the KPZ equation with temporally correlated noise. We
report on extensive simulations of two different discretizations
of the KPZ equation and two implementations of the BD
model. Our results clearly show that the dependence of the
critical exponents on the noise correlation index θ depends
on microscopic details and particulars of the model. In fact,
results differ, even at a qualitative level, from model to model
showing that the fine details do matter and strongly affect the
critical behavior. Furthermore, not only the exponents α(θ )
and z(θ ) are qualitatively and quantitatively different for all
the models, but also the surface height distribution differs. Our
calculation of the kurtosis and skweness of the height distri-
bution for the two KPZ integration schemes clearly shows that
these models, although they share KPZ symmetries, do obey
different height statistics.

The rest of the paper is organized as follows. In Sec. II we
describe the models in detail. In Sec. III the observables and
quantities of interest, critical exponents, and interface statis-
tics are discussed. Main results are presented in Sec. IV, where
a comparison of the relevant critical exponents for all the
studied models is made. Finally, conclusions are summarized
in Sec. V.

II. MODELS

We describe now several integration schemes we studied
to investigate the universality class of KPZ with temporally
correlated noise. In all cases, an adaptation of the algorithm
originally proposed by Mandelbrot [32,33] was used. The
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details of the algorithm and parameters used in noise gener-
ation can be found in Ref. [27].

A. Numerical integration of the KPZ
equation (I): Exponential correction

The first model we study consists in an explicit integra-
tion scheme for the KPZ equation with temporally correlated
noise, Eqs. (1) and (2), for ν = D = 1 and λ = 4,

hj (t + 1) = h j (t ) + 
t

[
ν D[h j (t )] + λ

2
N [h j (t )]

]
+

√
D
t η j (t ), (5)

where hj (t ) is the interface height at position j = 1, 2, . . . , L
and simulations were performed for systems of size L with
periodic boundary conditions. In all cases the surface is started
from a initially flat profile hj (0) = 0. The noise is Gaussian
distributed with correlations given by

〈ηi(t )η j (t
′) = 2δi, j |t − t ′|2θ−1, (6)

with a noise correlation index θ ∈ [0, 1/2). The operator
D represents the discrete Laplacian, D[hj] = a−2(h j+1 +
h j−1 − 2h j ), where a is the lattice spacing, and N [h j (t )]
is the nonlinear term discretization. In this case we choose
N [h j] = f ( h j+1−h j−1

2a ) with the standard smoothing function
[34]

f (y) = 1 − e−cy2

c
, (7)

which has been successfully used to integrate several growth
equations and guarantee very stable numerical schemes for
several surface growth equations [34–37], including KPZ with
correlated noise [27,30]. Note that this prescription generates
the usual KPZ nonlinearity [(h j+1 − h j−1)/(2a)]2 at order c0,
while higher order terms, c, c2, c3, . . . , correspond to integer
powers of this term—all of them consistent with the growth
symmetries but with decreasing coefficients for 0 < c < 1.
This produces very stable numerical schemes in which spu-
rious numerical instabilities associated with artificially large
local gradients are effectively suppressed [27,34]. Here we
use a = 1, 
t = 10−3, and c = 0.1 as control parameter of
the stabilization function.

B. Numerical integration of the KPZ equation (II): Numerical
scheme that preserves the stationary behavior

We have also studied the numerical discretization origi-
nally devised by Lam and Shin [38] that has the property
of preserving the stationary solution of the corresponding
Fokker-Plank equation. To be more specific, this scheme pro-
duces a discretization of the KPZ term such that the exact
steady-state probability distribution of the resulting discrete
surfaces corresponds to that of the continuum. In this case,
the KPZ nonlinearity is discretized as

N [h j] = 1

3a2
[(h j+1 − h j )

2 + (h j+1 − h j )(h j − h j−1)

+ (h j − h j−1)2], (8)

while the rest of the terms and conditions remain the same
as in Eq. (5). We use ν = D = 1 and λ = 4 in our numerical

simulations, the same as before. Here we also use a = 1 and

t = 10−3, periodic boundary conditions, and surface evolu-
tion is always initiated from a flat state.

In addition, we have also investigated the method that
was proposed by Sasamoto and Spohn [39] for the stochastic
Burgers’ equation

∂t u = ν∂2
x u + λu∂xu +

√
D∂xη, (9)

which allows us to describe the evolution of the slopes field
u = ∂xh of KPZ interfaces. In this case, the KPZ discrete
interface h j (t ) can be recovered as

h j (t ) =
j∑

l=0

ul (t ) (10)

from the numerical solutions ul (t ) of the Burgers’ equation.
This strategy has been used with successful results to recover
the KPZ behavior, for instance, in Ref. [40]. We found that
the results are indistinguishable from those obtained using the
method described in Eq. (8) also for correlated noise θ > 0.
Hence, in the following we report only on the results obtained
by using (5) with the discretization (8).

C. Ballistic deposition

A wide variety of surface growth models based on particle
deposition share the same symmetries as KPZ equation and
are believed to belong to the same universality class. In par-
ticular, discrete growth models of the ballistic deposition (BD)
type represent a typical example of KPZ scaling behavior in
1 + 1 dimensions [1,41] (although caution must be taken in
higher dimensions, at least for some BD algorithms [42]). We
have also simulated several discrete algorithms for surface
growth with KPZ symmetries in the presence of time corre-
lated noise. These simulations extend previously published
results by two of us [27]. We present a summary of our
results for two BD models that correspond to two different
implementations of the correlated noise.

The interface is an integer h j (t ) that gives the height posi-
tion at spatial coordinate j = 1, 2, . . . , L and integer time t .
Starting from a flat initial state hj (0) = 0 for all i, the surface
height is given by

h j (t + 1) = Max[h j (t ) + ζ j (t ), h j−1, (t ), hj+1(t )],

where the noise ζ j (t ) can take only two values {0, 1} and
is temporally correlated with an exponent 0 < θ < 1/2. The
algorithm is updated in parallel so that growth is attempted
at all even (odd) sites at even (odd) time steps with periodic
boundary conditions.

We report here on two different implementations of the
correlated noise. We generate a Gaussian distributed noise
η j (t ) with the temporal correlations in Eq. (2), following
Ref. [27] as before. Then we define ζ j (t ) = 0 if η j (t ) � 0 and
ζ j (t ) = 1 if η j (t ) > 0. This corresponds to Lam et al. [25]
implementation of BD with time-correlated noise, which we
call BD-I model.

There are many possible numerical prescriptions to con-
struct the integer noise ζ from the continuous Gaussian
variable η while temporal correlations remain virtually intact.
We introduce here model BD-II in which the noise is ζ j (t ) � 0
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if η j (t ) < 0 and ζ j (t ) = [[η j (t )]] + 1 if η j (t ) > 0, where [[x]]
means integer part of x ∈ R. At variance with BD-I, in this
case we have accumulation of large noise amplitudes at certain
sites since a large value of ζ j at time t is more likely to be
followed by other large amplitudes at times t + 1, t + 2, etc.,
due to the time correlations. This favors large local slopes for
BD-II as compared with BD-I model. In any case, note that
both noise models have strictly the same correlations.

III. OBSERVABLES

In order to characterize the kinetic roughening processes
from the numerical simulations of the KPZ and Burgers’
equations, we measure the global roughness

W (t, L) =
〈√√√√ 1

L

L∑
j=1

[h j (t ) − h̄(t )]2

〉
, (11)

where L is the lateral size of the system. The scaling exponents
are customarily obtained from the power-law behavior of the
global roughness with time

W (t, L) ∼ tβ, t  tsat (12)

and the saturation values Wsat (L) = W (t � tsat, L) with the
system size

Wsat ∼ Lα, (13)

where tsat ∼ Lz. The dynamic exponent z, which describes the
spatial extent of height-height correlations can be computed
just as the quotient z = α/β.

Since the scaling of the interface in the presence of cor-
related noise is expected to be anomalous [27], we have to
deal with different local and global scaling of the roughness
for large values of θ . Such behavior is called anomalous
scaling or anomalous kinetic roughening [43–46]. As shown
by Ramasco et al. [28] the scaling properties of anomalously
roughened surfaces can be best described in Fourier space
using the power spectral density or (structure factor) S(k, t ) =
〈|̂hk (t )|2〉 where ĥk (t ) = L−1/2 ∑L

m=1 hm(t ) exp(−ikm) is the
discrete Fourier transform in space of the surface height in
1 + 1 dimensions.

Following Ramasco et al. [28] in 1 + 1 dimensions we
expect

S(k, t ) = k−(2α+1)s(kt1/z ), (14)

where the most general scaling function, consistent with scale-
invariant dynamics, is given by [28]

s(u) ∼
{

u2(α−αs ) if u � 1
u2α+1 if u  1,

(15)

with α being the global roughness exponent defined in
(13) and αs the so-called spectral roughness exponent [28].
Standard scaling corresponds to αs = α < 1. However, other
situations may be described within the generic scaling frame-
work, including super-roughening and intrinsic anomalous
scaling, depending on the values of αs and α [28]. For faceted
surfaces, the case of interest for us here, one has αs > α so that
two independent roughening exponents are actually needed
to completely describe the scaling properties of the surface

FIG. 1. Dependence with θ of the scaling exponents α (red �),
αs (blue �), and z (green �) for KPZ with the different integration
schemes described in Secs. II A and II B. Filled symbols correspond
to known values for KPZ in the uncorrelated noise (θ = 0) and
columnar disorder (θ = 1/2) limits. The latter are from numerical
simulations in Ref. [48]. For comparison we also show the existing
theoretical predictions: dynamic RG [9] with dashed line, SCE [22]
with dotted-dashed, FRG [23] with solid line, and NPFRG [24] with
dotted line.

[28]. Scaling behavior in Eqs. (14) and (15) implies that when
one plots k2α+1S(k, t ) vs kt1/z for numerical data taken at
different times t these can be collapsed into the universal
scaling function (15) only for the correct choice of exponents.
This is the so-called data collapse technique and provides a
very systematic approach to analyze critical dynamics.

In recent times, the importance of the surface height
statistics to asses the roughening universality class has been
highlighted [47]. Therefore, we have also studied the field
statistics by computing the time-dependent skewness

S (t ) = 1

W 3(t )

〈
1

L

L∑
j=1

[h j (t ) − h̄(t )]3

〉
(16)

and kurtosis

K(t ) = 1

W 4(t )

〈
1

L

L∑
j=1

[h j (t ) − h̄(t )]4 dx

〉
, (17)

as observables that on their own are used in order to charac-
terize the probability distribution function (PDF) of the height
fluctuations.

IV. UNIVERSALITY CLASS: NUMERICAL RESULTS

A. Scaling exponents

We now present numerically computed scaling exponents
for different degree of temporal correlations θ in the four dif-
ferent systems assessed in this work. As mentioned above, the
integration of the Burgers’ equation yields to the same results
as Lam and Shin discretization, model KPZ-II, in Eq. (8), so
it will not be shown. In Fig. 1 we plot the critical exponents
α, αs, and z for the KPZ equation integrated with the two
different discretizations that we tag as KPZ-I and KPZ-II.
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FIG. 2. Evolution of the α + z sum for different values of θ . The
solid line corresponds to the Galilean invariance α + z = 2.

The figure also shows the limiting cases θ = 0 (uncorrelated
noise) and θ → 1/2 (columnar noise) as a reference. In all
our simulations the roughness exponent α was computed at
saturation by fitting the stationary surface width to Eq. (13) for
systems of size L = 210, 211, 212, and 213. Then, measuring
the asymptotic k-dependence of the power spectral density
data, ∼k−(2αs+1), at long times and small momenta k we can
calculate the spectral roughness exponent αs. Subsequently,
numerical results for S(k, t ) at different times can be cast
into the scaling form (15) by using standard data collapse
techniques.

For both discretizations the interface develops a faceted
pattern for large enough values of the noise correlation index
θ , implying αs(θ ) > α(θ ), which was recently reported in
the literature [27] as a distinctive feature associated with the
interplay between the KPZ nonlinearity and the noise corre-
lations. Let us focus our attention on the specific functional
dependence of the critical exponents with the noise index θ .
It is evident that the three critical exponents for KPZ-I and
KPZ-II discretizations are not only quantitatively different
but they also differ at qualitatively level. The two roughness
exponents are monotonously increasing functions of θ for
KPZ-I. In contrast, in the case of KPZ-II discretization these
exponents remain nearly constant α(θ ) = αs(θ ) = 1/2 for θ

values below 0.23 approximately. Also, the spectral roughness
exponent for KPZ-I discretization does not seem to converge
to the columnar disorder limit value αs = 3/2 [21]. As for the
dynamic exponent z(θ ) strong differences also appear for both
discretizations, which do not seem to be easily explained for
two discretizations of the same dynamics.

In Fig. 2 we plot α + z in the four studied models for
different values of θ . This allows us to visualize the rupture
of the Galilean relation that holds for KPZ with uncorrelated
noise but should be broken when the temporal correlations in
the noise are present. Remarkably, the degree of violation of
Galilean invariance, as measured by the deviation of α + z
from 2, is relatively small, although clearly finite for all θ

and both discretizations. This is due to the purely numerical

FIG. 3. Dependence with θ of the scaling exponents α (red �),
αs (blue �), and z (green �) for BD-I and BD-II discrete models
described in Sec. II C). As in Fig. 1, filled symbols correspond
to known values for KPZ with white noise (θ = 0) and columnar
disorder (θ = 1/2). Lines correspond to theoretical predictions as
in Fig. 1.

observation that the increase of α is partially compensated by
the decrease of z as θ is varied.

A similar analysis was carried out for the two BD models
described in Sec. II C, and a summary of the results is shown
in Fig. 3. From these plots it would be difficult to argue that
both models should belong to the same universality class,
since they share the same symmetries. Note that for BD-I
model the dynamic exponent stays roughly constant around
z(θ ) ≈ 3/2 as the noise index is varied, close to its value
for standard KPZ. Comparison of Figs. 1 and 3 immediately
reveals the fragility of the universality concept in the presence
of temporally correlated noise. It is remarkable that discrep-
ancies in critical exponents across models appear even for
relatively small values of θ , in a phase where facets are not
still present (i.e., where αs = α).

B. Fluctuation statistics

We assess the fluctuation statistics behavior by computing
the skewness (16) and kurtosis (17) of the height field fluc-
tuations for different values of θ . For standard KPZ, without
temporal correlations, these quantities evolve in time during
the surface dynamics from the Gaussian distribution values
(linear regime) towards the Tracy-Widom (TW) distribution
values (in the actual nonlinear growth phase) [47]. For finite-
size systems the dynamics eventually becomes stationary for
t > tsat ∼ Lz, and the statistics shows Gaussian values again
due to the fluctuation-dissipation theorem [1,3]. For a flat ini-
tial condition h j (0) = 0, j = 1, 2, . . . , L the skewness values
evolve from S = 0 (Gaussian) to a maximum in a plateau
value at intermediate times of S � 0.29. The kurtosis ex-
hibits an analog crossover behavior from K = 3 (Gaussian)
to K � 3.16. All this while the surface evolution is in the dy-
namic regime before saturation sets in, of course. These fully
nonlinear KPZ regime values of S and K correspond to the
so-called TW-GOE distribution, which describes the largest
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FIG. 4. Dependence with θ of the skewness and kurtosis of sys-
tems of size L = 1024 (green �), L = 2048 (red �), and L = 4096
(blue �) in the three systems assessed. Filled circles correspond to
the theoretical values for TW-GOE statistics: (flat initial conditon)
KPZ with uncorrelated (θ = 0) noise.

eigenvalue of random matrices in the Gaussian orthogonal
ensemble (GOE) [47].

In our simulations of the KPZ equation (with both KPZ-I
and KPZ-II discretizations) the maximum value of the skew-
ness and kurtosis temporal series have been determined for
different values of θ ∈ [0, 1/2). The results are shown in
Fig. 4, where they are also compared with the reference values
for TW-GOE, i.e., KPZ with θ = 0.

Several system sizes have been considered, L = 210, 211,
and 212. Remarkably, for KPZ-II discretization the skewness
and kurtosis seem to scale with the system size for high values
of θ . This anomalous dependence of the statistics with system
size appears within the range of θ values that corresponds to
the faceted phase of the surface.

Comparison of the height fluctuation statistics, summa-
rized in Fig. 4, for KPZ-I and KPZ-II discretizations again
indicates strong differences in the presence of correlated noise
and poses serious doubts about the independence of the crit-
ical behavior from microscopic details and the existence of
universality.

V. CONCLUSIONS

We have studied a well-known family of surface growth
models that, when driven by uncorrelated noise, all belong
to KPZ universality class. These models included numerical
integration schemes of the KPZ equation as well as ballistic
particle deposition algorithms. We have analyzed the scaling
behavior of these models in the presence of temporally cor-
related noise with a long-tail memory parametrized by the
index θ . We focused on determining the critical exponents that
describe the surface fluctuations (roughness) for each separate
model as the noise memory range is increased.

All models studied share the emergence of a faceted
regime, which was first reported in Ref. [27], for large
enough values of θ . The growth of facets immediately im-
plies, following Ramasco et al. [28], that an independent
spectral roughness exponent αs �= α enters into the scaling

description. The origin of a rough faceted phase is the result
of the interplay between the KPZ nonlinearity and the long
memory of the driving noise.

Our main conclusion is that long-range memory in the
noise driving KPZ breaks down universality: different models
exhibit different critical behavior, despite they share the same
fundamental symmetries. More precisely we found that the
functional form of the three critical exponents α(θ ), αs(θ ),
and z(θ ) is different for each model studied. Not only the
functional forms are quantitatively different but also qualita-
tive aspects change from one model to another. The dynamic
exponent z(θ ) may be a strictly decreasing function, go up
and then down, or just stay roughly constant as θ is varied,
depending on the model details. Similar differences appear
in the roughness exponents. For model KPZ-II, for instance,
α(θ ) = αs(θ ) = 1/2 below θth ≈ 1/4, while these exponents
are monotonously increasing with θ > 0 for other models.
Our numerical results clearly show that, although critical
behavior exists in all cases, the critical exponents strongly
depend on the microscopic details of the particular model.
This fragility of the universality class for KPZ with time-
correlated noise is also reflected here in the statistics of the
height fluctuations that shows very distinctive features for
the two different integration schemes KPZ-I and KPZ-II. A
critical inspection of existing numerical results in the lit-
erature, both from direct numerical integration by different
algorithms [26,27,30,31] and from discrete deposition models
[25,27,29], reveals a similar lack of consistency in the criti-
cal exponents dependence on θ , even at a purely qualitative
level.

Actually, the situation with the numerical models we stud-
ied here resembles what occurs with the exiting theoretical
approaches to the problem. Medina et al. perturbative DRG
[9] and Squizzato and Canet NPFRG [24] predict the ex-
istence of a threshold θth below which the exponents take
the values of the uncorrelated noise case. In contrast, for the
Katzav and Schwartz SCE approximation [22] and Fedorenko
FRG [23] there is no trace of a threshold, with exponents
smoothly varying with θ . Also, the dynamic exponent z(θ )
is found to be an increasing function above θth = 1/6 by
the perturbative DRG [9], while the other three calculation
methods [22–24] lead to decreasing functions.

In conclusion, temporally correlated noise in KPZ-like
growth models leads to critical behavior that is strongly de-
pendent of model details. Our results, together with the more
precise analytical approaches so far, raise serious concerns
about the existence of a true universality for KPZ in the
presence of time correlated noise.
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