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The scaling behavior of the excited energy states of the directed polymer in random media is analyzed numer-
ically. We find that the spatial correlations of polymer energies scale as ∼k−δ for small enough wave numbers
k with a nontrivial exponent δ ≈ 1.3. The equivalence between the stochastic-field equation that describes the
partition function of the directed polymer and that governing the time evolution of infinitesimal perturbations in
space-time chaos is exploited to connect this exponent δ with the spatial correlations of the Lyapunov vectors
reported in the literature. The relevance of our results for other problems involving optimization in random
systems is discussed.
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Nonlinear spatially extended dynamical systems often
exhibit space-time chaos [1–3]. For a system with N de-
grees of freedom, according to Oseledets ergodic theorem [4],
there exists a set of L real numbers λ1 > λ2 > · · · > λN ,
the characteristic Lyapunov exponents (LEs), that mea-
sure the exponential rates of separation or convergence of
nearby trajectories and provide an important tool to char-
acterize chaos in nonlinear dynamical systems. LEs are
associated with certain special directions in tangent space, the
so-called covariant/characteristic Lyapunov vectors (CLVs)
g1(x, t ), g2(x, t ), . . . , gN (x, t ). CLVs have shown to be cru-
cial to fully characterize many aspects of chaotic behavior in
extended systems (see Ref. [3] for a recent review), including
the role of hydrodynamic modes [5,6], chaos extensivity [7]
and hyperbolicity [8,9], time-delayed systems [10], LE fluc-
tuations [11,12], as well as for initializing ensembles in
forecasting applications [13]. This outburst of activity was
mainly driven by the discovery of numerical algorithms to
effectively calculate the full set of CLVs [14–16] in spatially
extended systems of arbitrary complexity and large size.

It was noticed early on that CLVs have rather peculiar
localization properties and exhibit scale-invariant correla-
tions [17,18]. These spatial correlations (to be defined below)
are characterized by a power spectral density S(k) ∼ k−δ

with a universal critical exponent δ ≈ 1.2, which seems to
describe long-wavelength correlations for many different spa-
tially extended systems that exhibit dissipative chaos. This
new scaling exponent has been shown to be crucial to ex-
plain the universal scaling of LE fluctuations in space-time
chaos [11]. The origin of the new exponent and its significance
in other contexts of physics are still open questions.

In this Letter we show that the critical exponent δ ≈
1.2–1.3 also appears in a very different, seemingly unre-
lated context: the scaling properties of the excited energy
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states of the directed polymer in random media (DPRM).
The DPRM problem plays a central role in condensed matter
physics [19] with mappings or connections that include the
problem of finding optimal paths in random media [20,21],
fracture cracks [22,23], surface growth [24–26], random ma-
trix theory [27–30], among many others. Since the DPRM
is, up to some extent, a problem amenable to analytical
treatment [24,26,27,31–33], our results have the potential to
lead to a mathematical understanding of the origin of this
elusive exponent.

LVs in spatially extended systems. Given a dynamical sys-
tem described by the state variable u(x, t ) at position x ∈ Rd

and time t , the Lyapunov analysis [3] focuses on the evo-
lution of a random infinitesimal perturbation ϒ(x, t = 0) :=
δu(x, 0). Both LEs and CLVs fully characterize tangent space
dynamics and the geometry of stretching and contracting
volumes in phase space. It is important to note that (al-
most) any random initial perturbation ϒ(x, t ) will align with
the main CLV, ϒ(x, t ) ∝ g1(x, t ), exponentially fast, since
other stretching directions are exponentially less amplifying
in comparison with the first [14,15,17,18]. Only if the initial
perturbation was ideally set to lie in the nth CLV subspace
would it remain aligned with that direction (numerically this
idealization is limited by computer precision, for obvious rea-
sons). In other words, CLVs for n > 1 are unstable solutions
of the tangent space dynamics and are physically nonac-
cessible except by specially designed algorithms. We shall
recall this observation later when we discuss DPRM excited
energy states.

CLVs are strongly localized in space [34], at least for
directions associated with positive (expanding) LEs. This
suggests to study the logarithm of the CLV amplitude as
the relevant quantity. In fact, it is customary to define the
nth CLV surface hn(x, t ) := ln |gn(x, t )| and calculate the
spatial correlations of hn [17,18,35]. Numerical studies in
a variety of spatially extended dynamical systems (includ-
ing several coupled-map lattices, coupled symplectic maps,
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continuous-time systems, etc.) have shown that CLV surfaces
exhibit seemingly universal correlations for chaotic dissipa-
tive systems [10,11,17,18,35]. The power spectral density
for the nth CLV surface scales as a power law Sn(k) =
limt→∞〈|ĥn(k, t )|2〉 ∼ k−δ . For the main LV, n = 1, one finds
invariably δ = 2 in d = 1 [34,35]. However, for CLVs with
n > 1 numerical simulations have shown a crossover at long
wavelengths to a power law with exponent δ ≈ 1.2, with a
crossover length scale that decreases as n increases [17,18].
This asymptotic exponent seems to be robust for different
systems [11].

In the spirit of statistical field theory, the evolution of
infinitesimal perturbations in spatially extended chaotic sys-
tems can been generically described by the heat equation with
multiplicative noise [17,18,34]. Specifically, in the hydrody-
namic limit we expect the statistical properties of perturba-
tions to be described by an effective theory,

∂tϒ(x, t ) = ∂xxϒ + ζ (x, t )ϒ, (1)

where the diffusion term describes spatial relaxation of lo-
cal perturbances, while ζ (x, t ) is a multiplicative Gaussian
white-noise term that takes into account, in a coarse-
grained fashion, the seemingly random fluctuations in
amplification/contraction effects of nonlinearities along the
trajectory. Such an effective Landau-type theory is expected
to capture the universal statistical properties, in particular the
scale-invariant spatiotemporal correlations, of tangent space
vectors. Similar arguments, for instance, lead to an effective
and very successful theory for the dynamics of the synchro-
nization error in coupled chaotic systems [36] by including a
nonlinear term −κϒ(1 − ϒ) in Eq. (1).

The effective theory immediately provides an explanation
of the correlation scaling for the first CLV. Indeed, from
Eq. (1), the surface h(x, t ) := ln |ϒ(x, t )| obeys the ubiqui-
tous Kardar-Parisi-Zhang (KPZ) equation [37] for interfacial
dynamics,

∂t h(x, t ) = ∂xxh + (∂xh)2 + ζ (x, t ), (2)

which exhibits scale-invariant solutions with surface corre-
lations 〈|̂h(k, t )|2〉 ∼ k−2 in one dimension (1D) [37]. Since
any random perturbation aligns with the main CLV, ϒ(x, t ) ∝
g1(x, t ), the associated surfaces simply differ by a con-
stant and both satisfy KPZ equation, therefore δ = 2 for the
first CLV.

Actually, the effective field theory (1) should also de-
scribe any perturbation evolving in tangent space, including
the CLVs for n > 1. However, as discussed above, CLVs for
n > 1 are not typical solutions of the tangent space
dynamics—namely, its basis of attraction has zero measure—
and they are saddle-point solutions of the tangent space
equations. To be concrete, a random perturbation that is set
to be initially in the subspace spanned by the n-CLVs for
n = 2, 3, . . . will align with the second CLV, a random per-
turbation that is set to be initially in the subspace spanned
by the n-CLVs for n = 3, 4, . . . will align with the third CLV,
and so forth. This reasoning leads to the conclusion that the
scaling properties of the nth CLV could be also extracted from
Eq. (1) after the removal of the dominant components. In the

following we will show how this can be expressed in terms of
the mapping of Eq. (1) to the DPRM problem.

Directed polymer in 1+1 dimensions. Consider a directed
polymer growing in a disordered environment given by the
quenched random potential ζ (x, t ) that is uncorrelated. The
starting point of the polymer is fixed at (0,0) and the end point
is left free. The position of the polymer head is (x, t ), where t
is the growth direction. In the continuum limit the partition
function of all paths that connect (0,0) with (x, t ) is given
by [19]

Z (x, t ) =
∫ (x,t )

(0,0)
D[x(s)]e− ∫ t

0 ds{( dx(s)
ds )2+ζ [x(s),s]},

and which, following the Feynman-Kac formula, it can be
shown that

∂t Z = ∂xxZ + ζ (x, t )Z. (3)

The free energy of the directed polymer that ends at (x, t ) is
F (x, t ) ∝ − ln Z and according to Eq. (3) obeys KPZ scaling.
This is all well known in the context of DPRM theory and,
indeed, has provided a basis to obtain the exact solution of
KPZ in 1D [26].

The final states of the polymer are directed paths that
minimize the free energy F (x, t ). Those minimal energy paths
are realizations of the ground state, which exhibits sample-to-
sample fluctuations due to random disorder. Note that there
is a one-to-one correspondence with the problem of the LVs:
The free energy of the ground state corresponds to the first LV
surface with the appropriate change of language, Z ↔ ϒ and
F ↔ −h.

In the following we will study by means of numerical
simulations the statistics and correlations of the excited energy
states of the DPRM, i.e., polymer paths whose energy is above
the ground state.

We focus on the zero-temperature limit, as we are inter-
ested in the strong-coupling limit [20]. We consider the usual
setup where a one-dimensional directed polymer grows on a
45◦ rotated square lattice. The starting point of the polymer is
fixed at (0,0) and the end point is left free. Directed paths grow
along the bonds of the lattice by growing in one unit at each
time step. The position of the polymer head is (x, t ) ∈ Z × N,
where t is the growth direction. The polymer evolves in a
quenched disorder background that is implemented by assign-
ing an uncorrelated randomly distributed number ζ (x, t ) to
each site of the lattice. At zero temperature the free energy
is just the total energy and the ground state is the path whose
energy is the minimum over all paths γt that grow from (0,0)
up to time t ,

E0(t ) = min
γt

∑
(x,τ )∈γt

ζ (x, τ ), (4)

where E0(t ) is the ground state energy with x ∈ [−t, t] and
τ ∈ [0, t]. At any given time t the polymer energies can
be computed by means of a transfer matrix recurrence rela-
tion [38,39],

E (x, t ) = min[E (x − 1, t − 1) + ζ (x − 1, t − 1),

E (x + 1, t − 1) + ζ (x + 1, t − 1)],

L012102-2



LYAPUNOV VECTORS AND EXCITED ENERGY STATES OF … PHYSICAL REVIEW E 109, L012102 (2024)

-1000 -500 0 500 1000

-1000

-800

-600

-400

-200

0

FIG. 1. Typical energies E (x, t ) for three disorder realizations of
a polymer of length t = 2048 are shown. The ground state fluctuates
around x = 0, while higher energies follow a semielliptic profile. The
inset shows the energy fluctuations defined as in Eq. (5).

which gives the energies of all minimal paths that connect
(0,0) to (x, t ). The ground state is then computed by taking
the minimum of the energies over all end points, E0(t ) =
minx E (x, t ), that is, Eq. (4). From all the minimal energy
paths of length t only one is the ground state, say the one end-
ing at x = x0(t ), which exhibits sample-to-sample fluctuations
due to disorder. The scaling properties of the ground state are
known to be related with KPZ exponents, and one has that
the sample-to-sample energy fluctuations scale with polymer
length as σ 2

E ,0(t ) = 〈E2
0 〉 − 〈E0〉2 ∼ t2β while the position of

the end point is σ 2
x,0(t ) = 〈x2

0〉 − 〈x0〉2 ∼ t2/z as corresponds
to the KPZ universality class [19].

The remaining paths, ending at other positions, correspond
to excited energy states, which have received very little atten-
tion in the literature [40] mainly due to the fact that they are
physically irrelevant, since they are not accessible at T = 0.
These are the states we are interested in.

In Fig. 1 we show an ensemble of energy profiles E (x, t )
for polymers of length t = 2048 and different disorder real-
izations of the DPRM at T = 0. Similar profiles are obtained
for any length t . One can see that the energy fluctuates around
a semielliptic profile, Ẽ (x, t ), that satisfies ε(Ẽ − a)2 + (x −
b)2 = R2, where ε, a, b, and R are t-dependent parameters.
For polymers of length t we define the fluctuation around the
energy profile

E (x, t ) := E (x, t ) − Ẽ (x, t ), (5)

and calculate the spatial correlations of E for very long
polymers. The parameters that define Ẽ are fitted for each
disorder realization using the central half domain [−t/2, t/2]
in order to avoid the inaccuracies that occur close to the sys-
tem edges, where the slope of the semielliptic profile diverges.
After removal of the semielliptic profile the resulting E
shown in the inset of Fig. 1 do not show any trend. In Fig. 2
we plot the power spectral density S(k, t ) = 〈|̂E (k, t )|2〉,
where the hat denotes a spatial Fourier transform, for poly-
mers of lengths t = 214, 215, . . . , 217. One can clearly see
a crossover from k−2 scaling at short distances to k−1.3 as
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FIG. 2. Power spectral density S(k, t ) of energy fluctuations for
polymers of lengths t = 214–217. Data are averaged over 104 noise
realizations. Dashed and dotted lines are guides to the eye corre-
sponding to the exponents δ = 2 and δ = 1.3, respectively. The inset
shows how the estimated crossover length lc = 2π/kc varies with the
system size, and lc ∼ L1.04 is obtained from a linear fit.

we probe correlations at longer distances. Note that, given
the energy profile, spatially close points x correspond (on
average) to close energy states. At short distances (i.e., small
energy gap) the energy fluctuation of excited states appears to
be governed by the KPZ universality class, as occurs for the
ground state. In contrast, what Fig. 2 shows is that correlations
between energy states with a large gap belong to a different
universality class.

We have also studied the scaling of the energy of ex-
cited states Ei with the polymer length t . In Fig. 3 we show
the ith energy and end-point fluctuations σ 2

E ,i(t ) = 〈E2
i 〉 −

10 2

10 4

10 4 10 5

10 1

10 2

FIG. 3. Time evolution of σE ,i(t ) and σ|x|,i(t ) for different ener-
gies i = 1, 2, 4, 8, . . . , 16 384 (color graded from blue to red) for
a polymer of length t = 16 384. Data are averaged over 104 noise
realizations. Straight and dotted lines are guides to the eye for the
corresponding values of z and β (top and bottom panels) for KPZ
scaling and our estimations for high energies, respectively.
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〈Ei〉2 ∼ t2β and σ 2
|x|,i(t ) = 〈|xi|2〉 − 〈|xi|〉2 ∼ t2/z scaling with

polymer length t for different values of i. For low-energy
states, the scaling corresponds to the values of β and z of
KPZ, as it does for the ground state at i = 0. However,
for large enough energies, the scaling crosses over to new
values β � 0.17 and z � 0.8. Note also that the value of δ

measured for energy states with a large gap is quite close
to that which corresponds from the scaling exponents mea-
sured in Fig. 2, δ = 2βz + 1 ≈ 1.136, hence scaling seems to
be consistent.

Discussion. The equivalence between the stochastic-field
equations that describe the time evolution of infinitesimal
perturbations in space-time chaos, Eq. (1), and the DPRM
problem, Eq. (3), can be exploited to construct a mapping
between both problems. Indeed, the first CLV amplitude
|g1(x, t )| is formally equivalent to the partition function
Z (x, t ) of the DPRM. Both are known to become strongly
localized in space. For the polymer the partition function
localizes at the ground state path, Z (x, t ) ∼ exp[−E0t −
f (x/t1/z )], where E0 is the minimum energy and f is a scaling
function describing the sample-to-sample transverse fluctua-
tions of the end point [20]. Conversely, for the main CLV, −E0

is merely the first LE and f describes its fluctuations. Note
that fluctuations of the main LE were theoretically proven
to be described by KPZ universality (z = 3/2) [11]. Other
solutions of the multiplicative-noise equation are unattainable
because their basin of attraction has zero measure: For any
given noise realization the system gets trapped in the corre-
sponding ground state. The nth CLV can only be obtained
by actively excluding the subspace spanned by the first n − 1
CLVs, which is equivalent to excluding the first n − 1 energy
states in the DPRM problem in order to get the polymer path
corresponding to the nth energy.

Our numerical simulations show that the excited energy
states of the 1 + 1 DPRM at zero temperature exhibit a
nontrivial sample-to-sample scaling for long enough polymer
lengths t . The spatial distribution of energy fluctuations shows
a correlation that crosses over from a KPZ δ = 2 exponent
at short distances to δ = 1.3 at large scales. The partition
function, if restricted to paths with energies E > Ei for i  0,
should be Zi(x, t ) ∼ exp[−Eit − f̃ (x/t1/z′

)], where Ei is the
energy of the ith excited state, f̃ a scaling function, and
z′ ≈ 0.8. Note that the new scaling regime appears for energy

correlations between high energies, which implies long
enough distances x ∼ t (taking into account the semiellip-
tic profile in Fig. 1). This simple heuristic argument gives
z′ ≈ 1. Obviously, more precise analytical arguments would
be required to get better estimates. Correspondingly, the nth
CLV would behave asymptotically as |gn(x, t )| ∼ exp[λnt +
f̃ (x/t1/z′

)], where λn is the nth LE, which is consistent with
the scaling behavior observed in numerical simulations of dis-
sipative chaos in extended systems [17,18]. We stress here that
in order to obtain from theory the crossover to δ ≈ 1.3 that we
observed in our simulations one would require to calculate
two-point correlations of the type 〈ln Z (x, t ) ln Z (x′, t )〉 not
only for the ground state, but for high-energy states. As far
as we know this has not been done so far.

In summary, we have found a nontrivial exponent δ ≈ 1.3
that describes the long-wavelength behavior of spatial cor-
relations between sample-to-sample fluctuations of excited
energy states in the DPRM. This exponent can be identified
with that observed in the problem of the scaling of bulk CLVs
in spatiotemporal chaos [17,18]. In the field of space-time
chaos this exponent has been shown to be essential to explain
the universal scaling of the fluctuations of bulk LEs [11,12].
Our results can open the door to further theoretical insights
on the origin of this exponent by using the analytical tools
developed in recent years to treat the DPRM based on the
formulation of the problem in terms of a gas of attractive
bosons, the Bethe ansatz, the replica trick, or random matrix
theory [24,26,27,31–33].

Finally, we stress that ensembles of optimal paths such
as those that appear here are very common in statistical me-
chanics and condensed matter physics. Indeed, similar path
structures appear in river basins, traffic networks, interface
growth, fracture cracks, as well in many other problems in
random systems. We do believe that a complete understanding
of the unexpected scaling behavior of the excited energy states
that we report here can provide important insights into other
seemingly unrelated random systems.
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