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ABSTRACT 

Artificial intelligence (AI), and mainly one of its fields, machine learning (ML), present 
themselves as a great tool for drug discovery. Computer-aided drug design (CADD) has 
revolutionized the traditional drug discovery pipeline with the incorporation of adequate ML 
techniques at each stage of the process, cheapening and expediting results. Two major 
strands compose CADD, known as ligand-based drug design and structure-based drug 
design, each incorporating diverse ML techniques. In this regard, this work will review the 
main aspects of virtual screening (VS), which is employed to scan for “drug-like” 
molecules. In silico drug design can utilize ligand-based, structure-based or hybrid tools. 
Additionally, even though AI has centered its applicability at the earlier stages of the drug 
discovery pipeline, it is true that pre-clinical stages are also becoming promoted. Finally, 
one field of study where many difficulties for drug development appear is central nervous 
system (CNS) disorders. Thus, it seems convenient to include a section on recent practical 
advances in this area. In summary, this review aspires to provide a longitudinal view of the 
benefits AI can deliver in drug discovery. 

Keywords: Artificial intelligence, Machine learning, Drug discovery, Computer-aided drug 
design, Central nervous system drugs 



RESUMEN 

La inteligencia artificial (AI), y principalmente uno de sus campos, el aprendizaje 
automático (ML, de sus siglas en inglés machine learning), están siendo una gran 
herramienta para el descubrimiento de nuevos fármacos. El diseño de fármacos asistido 
por ordenador (CADD, de sus siglas en inglés computer-aided drug discovery) ha 
revolucionado el proceso tradicional de desarrollo de fármacos con la incorporación de 
técnicas de ML adecuadas en cada etapa del proceso, abaratando y acelerando los 
resultados. El CADD se compone de dos vertientes principales, conocidas como diseño 
de fármacos basado en ligandos y diseño de fármacos basado en estructuras, 
incorporando cada una diferentes técnicas de ML. En este contexto, este trabajo revisará 
los principales aspectos del screening virtual (VS), que se utiliza para identificar 
compuestos que presenten una alta probabilidad de unirse a la diana terapéutica. El 
diseño de fármacos in silico puede utilizar herramientas bien basadas en ligandos, en 
estructuras moleculares o bien un formato híbrido de ambas. Adicionalmente, aunque la AI 
ha basado su aplicabilidad en las etapas tempranas del proceso de descubrimiento de 
fármacos, es cierto que las etapas preclínicas de investigación de fármacos también se 
están favoreciendo por la AI. Finalmente, un campo de estudio donde aparecen muchas 
dificultades para el desarrollo de fármacos es el de los trastornos del sistema nervioso 
central (CNS). Por lo tanto, parece conveniente incluir una sección sobre avances 
prácticos recientes en esta área. En resumen, esta revisión aspira a proveer una visión 
longitudinal de los beneficios que la AI puede ofrecer en el descubrimiento de fármacos. 

Palabras clave: Inteligencia artificial, Aprendizaje automático, Descubrimiento de 
fármacos, Diseño de fármacos asistido por ordenador, Fármacos del sistema nervioso 
central  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1.  INTRODUCTION 
Artificial intelligence (AI) is steadily and notoriously crawling inside health sciences. More 
and more medical specialties harness the opportunities it provides, and the doomsayers 
are slowly subdued by the accomplishments. In the era of big data, AI presents itself as 
both the necessary and optimal instrument to manage the large amounts of information 
derived from genomics, proteomics and the never-ending set of novel “multi-omics”. 
Derivatives of AI like the different machine learning (ML) models have wondrous real-world 
applications for different contexts in the biomedical scene.  

In particular, recent AI advances in the field of drug discovery have fostered the surfacing 
of the acronym computer-aided drug design (CADD). The once sluggish and “unprofitable” 
drug discovery pipeline can be better oriented a priori, with AI greasing the gears of drug 
discovery and improving the outcomes at every stage: target identification and validation, 
high-throughput screening, lead discovery and optimization, and pre-clinical, clinical and 
post-clinical analyses.  

The main improvements CADD has brought in the last five to ten years can be divided into 
two broad categories: ligand-based drug design and structure-based drug design. Each 
one in drug design can be approximated to its homologue in virtual screening (VS). 
Therefore, it is common to find literature on ligand-based VS and structure-based VS. One 
objective is to examine the main techniques in structure-based VS, concretely molecular 
docking and molecular dynamics (MD) simulations. Protein function prediction (PFP) plays 
a major role in target identification, a related structure-based drug design method. Another 
objective of the present lecture is to review the main techniques in ligand-based VS, 
namely quantitative structure-activity relationship (QSAR) and pharmacophore modelling. 
Additionally, ligand-based drug design is also intertwined with de novo molecular design, 
an AI-heavy method for drug conception utilizing diverse deep ML algorithms. As an 
additional feature, hybrid VS is likewise promising, due to the integration of techniques 
from both worlds. 

Even though the benefits of AI in the earlier stages of drug discovery fairly outshine those 
in the finale “pre-clinical and clinical analyses” stage it is a goal of this review to look for 
benefits across the whole drug discovery pipeline. In this regard, the momentum of AI 
translates into pre-clinical analysis. Nevertheless, other distal areas like approval and post-
market analysis can also be enhanced when the adequate AI techniques are employed. 

In summary, the aim of this review is to contextualize AI in drug discovery. The wide range 
of ML techniques utilized are introduced whenever deemed convenient. The leading edge 
methods for ligand-based and structure-based drug design are introduced and explained. 
As a final remark, given one of the areas with maximal potential for CADD is CNS drug 
discovery a brief summary seems convenient. With this topic sufficing as the source of 
examples due to its magnitude and possible offshoots, a final point is included highlighting 
novelties in the sector for several CNS disorders including schizophrenia, depression, 
Alzheimer’s disease and Parkinson’s disease. 



2.  OBJECTIVES 
The objective of the present manuscript is to provide the reader with a comprehensive 
review of the role of artificial intelligence in drug design. An introductory section about the 
intricacies of artificial intelligence and a final section including handpicked examples are 
attached to better illustrate the real-world possibilities of artificial intelligence in the drug 
discovery pipeline. 

3.  METHODS 
In this review, the author scoped PubMed and Google Scholar for systematic review and 
other scientific papers available from 2019 up to 2024 on the topic of artificial intelligence 
and drug discovery. The search was posteriorly widened with recent and relevant books, 
reviews and specific articles manually chosen by the author. The MeSH terms employed in 
the search were “artificial intelligence”, “machine learning”, “drug discovery”, “drug design”, 
“drugs”, and “central nervous system”. 



4.  LIST of ABBREVIATIONS 
AAE   Adversarial autoencoder 

AD   Alzheimer’s disease 

ADMET  Absorption, distribution, metabolism, excretion and toxicity 

AI   Artificial intelligence 

AMBER  Assisted Model Building with Energy Refinement 

ANN   Artificial neural network 

BBB   Blood-brain barrier 

CADD   Computer-aided drug design 

CHARMM  Chemistry at Harvard Macromolecular Mechanics 

CNN   Convolutional neural network 

CNS   Central nervous system 

COCONUT  COlleCtion of Open Natural prodUcTs 

DEMON  Deep Dementia Phenotyping 

DL   Deep learning 

GAN   Generative adversarial network 

GO   Gene Ontology 

GPT   Generative pre-trained transformer 

GPU   Graphics processing unit 

GRU   Gated recurrent unit 

GWAS   Genome-wide association study 

HDAC   Histone deacetylase 

LSTM   Long short-term memory  

MD   Molecular dynamics 

ML   Machine learning 

MPO   Multi-property optimization 

NLP   Natural language processing 

PD   Parkinson’s disease 



PDB   Protein Data Bank 

PFP   Protein function prediction 

PPI   Protein-protein interaction 

QSAR   Quantitative structure-activity relationship 

QSPR   Quantitative structure-property relationship 

RNN   Recurrent neural network 

SELFIES  SELF-referencing embedded string 

SELSER  Sparse EEG Latent SpacE Regression 

SMILES  Simplified molecular input line entry system 

STRING  Search Tool for the Retrieval of Interacting Genes/Proteins 

SVM   Support vector machine 

TPU   Tensor processing unit 

VAE   Variational autoencoder 

VS   Virtual screening 



5.  STATE of the ART 

5. 1.  The basics of artificial intelligence 

AI is a field of computer science that aspires to create intelligent machines. While the 
concept was coined in 1956 it has finally bloomed in the past five years. The extent of the 
influence of AI is notorious in virtually all sciences, including health sciences. With the 
advent of AI, a huge number of technicalities from computer and data sciences have 
flooded medical literature. Given the expected preparation of the general medical public 
regarding AI and other derived concepts, and in order to establish a benchmark to which 
refer to, an overview of the basics of AI is presented. [1,2] 

In the first place, ML is a branch of AI that attempts to create algorithms that can learn from 
a set of given data (or dataset) and extrapolate those learnings to other problems or 
situations, gradually becoming better. In the heart of ML there are several paradigms, but 
the classical and most important ones are three: supervised learning, unsupervised 
learning, and reinforcement learning. [1-4] 

Supervised learning, like every other learning paradigm, seeks to establish an algorithm 
incorporating features present in the dataset to establish a conclusion. These features are 
called inputs and the conclusion is called output. One key difference from other ML 
paradigms is that a supervised learning model utilizes labeled data, that is to say, data 
tagged with additional information. The dataset is customarily subdivided into three 
groups: a training dataset that allows the supervised learning model to engender the 
algorithm, a validation dataset to enhance the algorithm, and a testing dataset to evaluate 
how well it performs with unknown data. The most common tasks supervised learning 
algorithms undertake are (i) classification and (ii) regression; while the former elicits a 
categorical variable, the latter involves a numerical variable (Figure 1). Finally, the 
denomination “supervised” stems from the fact that the algorithm is informed —usually by 
a human— of the inputs and the desired output (also called supervisory signal) in the 
training phase, so that it has certain examples with which to build the algorithm. [1-5] 

Unsupervised learning is a paradigm that tries to elucidate patterns upon an unlabeled 
dataset. Posteriorly, the unsupervised learning model will try to identify those patterns 
when presented with a new array of data. Some of the most frequent tasks unsupervised 
learning algorithms conduct are (i) clustering, (ii) association, and (iii) anomaly detection 
(Figure 1). Clustering creates groups with shared clusters of features and predicts the 
category of new variables. Association visualizes relationships among variables and 
predicts the probability of new variables in the dataset presenting certain features. 
Anomaly detection spots outliers with aberrant features within the dataset and screens for 
new variables that are inconsistent. In essence, the designation “unsupervised” comes 
from the absence of human intervention, or in other words, the utilization of unlabeled 
data. Unsupervised learning is generally considered to grant a more “creative” perspective 
than supervised learning. Last but not least, another paradigm called semi-supervised 
learning, halfway through supervised and unsupervised learning, is sometimes used in 
problems where the dataset is only partially labeled, like a compendium of radiology 
images where the medical professional labels only a small subset. Other atypical 
paradigms are under constant scrutiny (e.g. self-supervised learning, weakly-supervised 
learning, transfer learning). [1-5] 

Reinforcement learning is a paradigm that endeavors to obtain a solution to a presented 
problem where no single answer is right or wrong. Through multiple iterations following 



reward-based selection (i.e. selection of preceding behaviors with maximum cumulative 
reward) the algorithm aspires to solve the problem finding a sweet spot between 
exploration of new options and exploitation of prior knowledge (Figure 1). However, 
reinforcement learning is stated to follow a Markov decision process, a mathematical 
framework where each new iteration is dependent only on the previous one, which 
condenses all previous learnings the algorithm has made. As far as health sciences are 
concerned, reinforcement learning remains the least useful of the three main ML 
paradigms. [1-5] 

Diving further into ML, there are abundant highly-specific algorithms, models or methods 
best suited to solve concrete problems. Artificial neural networks, or simply, neural 
networks, are one of the main and most-developed ones, with tens of applications. An 
artificial neural network (ANN) is an ML model inspired by a biological neural network 
composed of nodes called artificial neurons (henceforth neurons) aggregated into layers 
and communicated among them via connections that emulate synapses. Usually, an ANN 
has an input layer, an output layer, and an indefinite number of intermediate hidden layers 
between them (Figure 2). Sometimes, earlier terminology is used; the term perceptron 
refers to a neuron and the term multilayered perceptron refers to an ANN. The way an 
ANN works is the ensuing: each neuron in the input layer generates a “signal” and sends it 
to a number of neurons in the following layer, which balance the sum of inputs by means of 
an activation function, and in the case of this not being the output layer the procedure is 
repeated in each layer passing on the modified “signal”. To determine the relative 
importance of the inputs a neuron receives each connection is given a “weight” by which 

SUPERVISED 
LEARNING

UNSUPERVISED 
LEARNING

REINFORCEMENT 
LEARNING

• Utilizes labeled data to build a function that 
maps inputs in the dataset to an output  

• Classically better for discriminative tasks: 
classification and regression

• Utilizes unlabeled data to build a representation 
that mimics the patterns in the dataset 

• Classically better for generative tasks: 
clustering, association and anomaly detection

• Utilizes reward-based selection to take actions 
in an environment 

• Generally better for “exploratory" tasks where 
no definitive result is preferred a priori

Figure 1. Brief recap about the key differences between the three main ML paradigms.



the “signal” is multiplied before the activation function combines all those inputs. Similarly 
to Hebb’s rule, which states that “cells that fire together, wire together”, if a desired output 
is procured the “weight” of the connection or synapse increases. Once the output layer is 
reached, the loss or “cost” function is calculated to quantitatively assess the distance 
between the current output and the expected output, and backpropagation is performed to 
modify the “weights”. There are two types of neural networks: uni-directional or feed-
forward neural networks, and bi-directional or recurrent neural networks. Although the 
difference is auto-explanatory, —the flow of information can occur in one or both ways— it 
is important to note that recurrent neural networks also have intra-layer connections. [1-4] 

Lastly, deep learning (DL) is an ML model that connects deep neural networks (those with 
two or more hidden layers) and feature or representation learning, an alternative ML 
paradigm aiming to proficiently discover the representations needed for feature detection. 
DL algorithms (deep neural network, recurrent neural network, convolutional neural 
networks, autoencoders) enable much higher, or deeper, capabilities of feature extraction, 
and consequently deeper levels of abstraction (Figure 3). For example, in the study of 
diabetic retinopathy, a DL algorithm can be provided with some initial examples, and the 
algorithm will learn to recognize the signs of the disease (e.g. microaneurysms, intraretinal 
hemorrhages, macular edema or ischemia, soft exudates, neovascularization…) when no 
information on what features to look for was gifted. [1,2,6,7] 
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Figure 2. Simplified representation of a basic feed-forward fully-connected ANN. In this 
example NX represents the input layer, HX and MX represent the hidden layers, and OX 
represents the output layer. Each circle or node represents a neuron and each arrow 
represents a synapse.



 

5. 2.  The drug discovery pipeline 

The discovery of a new drug is significantly expensive on all fronts. Most estimations agree 
somewhere around EUR 2.5 billion and 12 years. As of today, the percentage of novel 
drugs that reach commercialization is 13%, a dreadful figure. As the brilliancy and 
refinement of AI permeates other aspects of society the initial unease associated with AI 
use in health sciences vanishes gradually. Of course, it is self-evident that most drugs in 
drug discovery are proteins, and for the extent of this review proteins are going to be the 
main target. Notwithstanding, AI also provides the opportunity to explore other 
biomolecules (carbohydrates and lipids) as substrates for drug discovery. [8,9] 

COMPUTER SCIENCE

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP  
LEARNING

Figure 3. Hierarchical view of emergence of the most common AI-related terms.

TARGET IDENTIFICATION and TARGET VALIDATION

HIGH-THROUGHPUT SCREENING

LEAD DISCOVERY and LEAD OPTIMIZATION

PRE-CLINICAL and CLINICAL ANALYSIS

Figure 4. Stage distribution of the classical drug discovery pipeline.



The drug discovery pipeline contains several relatively well-defined steps for the approval 
of new drugs on the market (Figure 4). First, the identification and validation of new targets 
(as a rule, proteins) with therapeutic potential. Second, the examination of multiple 
molecules with desirable bio-active properties upon the chosen targets, also known as 
high-throughput screening. Third, the selection of the most promising drug candidates (or 
hits) and multi-property optimization of the chosen molecules, known respectively as hit-to-
lead (lead discovery) and lead optimization in drug discovery. Fourth, the succession of 
preclinical, clinical, and post-clinical (a.k.a. post-approval, post-marketing) trials. In the 
case of CADD, where AI is largely applicable, the frontiers between these steps blur 
considerably, as ML/DL or other models allow multiple steps to be performed in rapid 
succession or even simultaneously. [2,8,10-13] 

Although CADD can be used at any step, it is undoubtedly most common in the earlier 
stages of drug discovery because one of the main incentives for CADD implementation is 
the potential for savings if “drug-like” molecules and “druggable” targets are considered 
from the beginning. Two differentiated strands of CADD stand out: ligand-based drug 
design and structure-based drug design. Each of them encompasses their “relative” in VS: 
(i) ligand-based VS and (ii) structure-based VS; and their combination has impulsed (iii) 
hybrid VS (Figure 5). However, the broader concepts with the surname “drug design” will 
be used as headings through the narrative to incorporate other aspects like de novo 
molecular design or functional prediction. [2,8,10-13] 

5. 3.  Structure-based drug design 

Structure-based drug design can be seen as an inescapable step, but it is still somehow 
organic; in an era where big data is the rule rather than the exception, for health sciences 
to make use of the massive influx of information from different “multi-omics” the parallel 
expansion of bioinformatics and cheminformatics compulsorily involves AI. It is imperative 
to understand that while ligand-based VS is the norm, it would take place at a different 
time in the drug discovery pipeline as a substitute to high-throughput screening (and even 
lead discovery and lead optimization) and involve its own and distinguishable methods. 
Molecular docking and MD simulation, the major specific methods for structure-based VS 
or, circumventing the differences between both concepts, structure-based drug design, will 
be reviewed in the subsequent subsections. A preface condensing present advances in 
target identification is included beforehand. [2,10,14] 

5. 3. 1.  Target identification and protein function prediction 

Target identification, defined as the experimental discovery of new “druggable” targets, has 
also experienced a transition in line with CADD. As of today, only about 3000 out of more 
than 20000 proteins in the human proteome have known therapeutic potential, and only 
four protein families condense more than 50% of all current drug targets (G protein-
coupled receptors, nuclear receptors, voltage-gated ion channels, ligand-gated ion 
channels). Hence, the identification of targets to leverage for drug design harbors 
countless possibilities and, from time to time, provides serendipitous additional information 
on molecular and pathophysiological mechanisms of diseases (i.e. with the discovery of 
novel biomarkers). [14-17] 



During target validation, multiple-objective criteria can be implemented to better align 
targets with the objectives of the study. Text data is one source of “multi-omics” information 
with the development of some medical generative pre-trained transformer (GPT) models. 
These are generative models intensively trained on huge amounts of data that can create 
human-like content. Other pure “multi-omics” approaches can procure interconnected 
molecular information with tools like genome-wide association study (GWAS) analysis. 
Finally, AI-driven computational approaches for target identification —like pharmacophore 
screening, reverse docking, and structure similarity assessment— can convert that 
information through DL algorithms like recurrent neural network (RNN) or generative 
adversarial network (GAN), or transfer learning techniques. The overall picture is that 
synchronized application of non-experimental “multi-omics” and computational approaches 
is enough to help immensely target identification and target validation. [9,14,15,17-19] 

PFP is the cornerstone of target identification, and benefits hugely from many ML 
algorithms, either in isolation or juxtaposition. Most of the time, a conjunction of different 
ML-processed-sources are entwined, and improved PFP is achieved through means of 

LIGAND-BASED 
VIRTUAL SCREENING

QUANTITATIVE-STRUCTURE 
ACTIVITY RELATIONSHIP

PHARMACOPHORE 
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VIRTUAL SCREENING

MOLECULAR 
DOCKING

MOLECULAR DYNAMICS 
SIMULATION

VIRTUAL SCREENING

HYBRID VIRTUAL 
SCREENING

Figure 5. Diagram showing the three varieties of in silico methods for compilation and 
evaluation of compounds from chemical databases.  



consensus. These data sources are usually protein sequences, protein structures or 
protein-protein interaction (PPI) networks. [14,15,20-22] 

Sequence-based PFP is the most common because the amino acid sequence is the 
easiest data source to obtain information about. Consequently, feature selection (choice of 
sequence-level and amino acid-level properties to implement, like amino acid frequency) is 
easier to conduct on amino acid sequences than other data sources to improve on ML 
approaches to PFP. The main inconvenience with this method is the high false discovery 
rate. The two ML models primarily used at this stage are convolutional neural network 
(CNN) and k-nearest neighbors —an alternative supervised learning algorithm that excels 
at classification—, but as previously indicated multi-algorithm models (generally including 
one CNN) are both hopeful and fruitful. The primary databases used for this task are 
UniProt, Gene Ontology (GO), DrugBank, Pfam database, and Therapeutic Target 
Database. [15,20,23-30] 

Structure-based PFP seems less developed due to the recency of 3D graphs and the 
resultant lack of data. Nevertheless, promising results are appearing with the development 
of especially graph-adapted databases (i.e. Protein Data Bank [PDB]) and algorithms (i.e. 
graph convolutional networks and graph attention networks). [15,31-33] 

PPI-based PFP offers great insight into the pharmacodynamics of novel drug targets. 
Foremost, PPIs are highly specific points of biophysicochemical interaction between two or 
more proteins. The first PFP models were based on the concept of homology; current 
models retain that core because interacting proteins characteristically have similar 
functions. Databases used are typically UniProt, GO and Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING). ML models employed at this stage are more diverse 
and dubious. Using an analogy to music bands, it could be argued that each one has a 
personal music genre that fits it (in this case it is a ML model). Without getting into further 
details, they can be less-than-ideally classified into three categories up to this point in time: 
maxout neural networks, network diffusion-based methods, and network embedding-based 
methods. [15,34-38] 

As an addendum to this last paragraph, it is important to note that PPI prediction methods 
per se can also benefit from ML/DL. In the latest systematic review, kernel-based 
compound-protein interaction (a generalization from PPI) prediction utilizes one SMILES-
derived-fingerprints kernel and one three-vectorial-sequence-derived kernel to generate a 
heterogeneous kernel representation that can be exploited in a classification task. To 
achieve realistic performance of compound-protein interaction prediction methods, either 
in the superior kernel-based (e.g. DeepDTA) or in alternative graph-based ML models, four 
key points were pinpointed: (i) 5-fold non-redundant cross-validation, (ii) validation over 
true negative examples, (iii) random pairing for negative example generation, and (iv) 
”rank of first positive prediction” as the performance evaluation tool. Transient PPIs 
mediated by short peptides are an ideal drug target, and many ML supervised models 
around the idea of mass protein-peptide affinity prediction have been tested using 
sequence-based data. [39-44] 

Eventually, multi-information fusion-based PFP is the idealized culmination of function 
prediction (Figure 6). Sequence homology stands as the cardinal contributor to function 
prediction, but it has limitations. COFACTOR is a method that makes up for the lack of 
sequence homology data with the addition of structural homology data that increases 
functional information. The amalgamation of sequence-based, structure-based and PPI-
based functional prediction promises to be the ultimate innovation. Many approaches are 



essayed; one of the most prominent methods is named “Quantitative Annotation of 
Unknown Structure”. This system works in crescendo, starting at the sequence level and 
making structural predictions. Then, structures are used to make functional predictions 
analogously to COFACTOR, but in this case with the intercurrent contributions of PPI data 
from the STRING database and functionally discriminative motifs found in the sequence 
itself. These three pillars prompt a consensus in the form of a quantitative result that is 
easier to interpret. [15,45-48] 

Last but not least, an interesting method named “Iterative Group Function Prediction” 
distances itself from the classical approaches to PFP. By taking a group of proteins found 
to work together in a biological context through “multi-omics” techniques like GWAS, 
turning them into graphs and establishing a network that is repeatedly re-evaluated, it is 
indeed possible to put forward the global function of the group with accuracy based on 
those inconclusive “multi-omics” cues. [15,49] 

SEQUENCE-BASED

UniProt 
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ALGORITHM 
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GRAPH ATTENTION 
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PPI-BASED

STRING

MAXOUT NEURAL 
NETWORK  

or 
NETWORK DIFFUSION- or 

EMBEDDING-BASED 
METHODS

CONSENSUS-BASED PROTEIN FUNCTION PREDICTION

Figure 6. Ideal confluence of sequence-based, structure-based and PPI-based PFP in a 
fusion-based final prediction. Each individual approximation to PFP (rectangle) appears 
skewered together with the up-to-date most researched ML models (circle) and the most 
representative databases utilized (pentagon).



5. 3. 2.  Molecular docking 

Molecular docking, or simply, docking, is a molecular modelling method to envisage the 
preferred orientation of a ligand (almost always a small molecule) with regard to a target 
and determine the binding affinity between the pair. The orientation of the ligand relative to 
the target altogether with the conformation of each while forming the complex is called 
binding mode, and each particular binding mode is called a pose. Two concepts are of 
utmost importance in molecular docking: the docking algorithm and the scoring function. 
[2,14,50,51] 

On the one hand, the docking algorithm is a computational approach for scouting the 
nearly limitless binding mode search space. There are two options for docking algorithms. 
Some are systematic and involve intensive exploration of poses; the rest are stochastic 
and involve random modifications of the binding mode in order to generate new possible 
poses. [2,10,14,50,51] 

On the other hand, the scoring function is a measurable estimation of the binding affinity of 
the ligand-target complex, or, to put it bluntly, the confidence in the binding free energy of 
the pose being the lowest possible, since a low binding free energy means a high stability 
of the complex. There are three categories for scoring functions. They can be force field 
scoring functions (these work by decomposition of the binding free energy into force field 
parameters), empirical scoring functions (these work by summation of the energy terms 
involved) or knowledge-base scoring functions (these work by experimental determination 
via gathering of structural information). [2,10,14,50,51] 

Most ML models focus on the scoring function because the docking algorithm requires 
considerably more computing power, becomes much slower to train and/or modify, and 
also because currently the obtainment of original poses is in large part dependent on 
external software, and these ML algorithms require datasets of up to millions of examples. 
But, with the scoring function in mind, there have been novel ML algorithms essayed 
(random forest, support vector machine [SVM], CNN), and novel approaches. To name but 
a few: creation of new scoring functions, modification of known scoring functions, or 
adaptation of existing scoring functions to particular instances. [2,8,10,14,52] 

Protein flexibility refers to the dynamic nature of the binding mode. Although molecular 
docking is considered a static approach to structure-based VS, some methods have been 
developed to account for protein flexibility. The core ones are (i) soft docking, (ii) side-
chain flexibility, (iii) molecular relaxation and (iv) protein ensemble docking. All operate by 
increasing permissiveness at some point, being it Van der Waals forces, side chains, or 
other. [2,52] 

5. 3. 3.  Molecular dynamics simulation 

MD simulation is a computer simulation method to observe in silico the interactions 
between molecules throughout time. In comparison, it can be said that docking allows for 
the envisioning of static interactions, although protein flexibility is considered. MD 
simulations offer a good grasp of the bio-activity of a drug-target complex. The main 
setback with MD simulations is that they are quite computationally expensive, and 
therefore, require copious resources for a simulation generally spanning no more than 
nanoseconds. DL algorithms can learn the implicit patterns present in an MD simulation 
and give a better perspective of the binding mode and the binding affinity of the poses. In a 



similar trend, the parallel development of hardware (i.e. GPUs, TPUs) due to the rise of AI 
has enabled longer and more expensive fine-grained simulations that minimize the room 
for error; for example, involving quantum mechanics of the electron cloud. [2,14,53] 

MD simulations calculate the variations in protein conformation across the passage of time 
using Newtonian physics and force fields. The resonant concept of force field can be 
abbreviated as a computational model to assemble all inter-molecular or intra-molecular 
forces at play. As such, force fields are helpful to determine the free energy of the complex 
(incorporating all potential energies involved), and consequently estimate its binding 
affinity. Within this framework, the most notable programs are Assisted Model Building with 
Energy Refinement (AMBER), Chemistry at Harvard Macromolecular Mechanics 
(CHARMM), optimized potentials for liquid simulations, Groningen Molecular Simulation 
and coarse-grained force fields. [2,14,54-56] 

ML-based models can work as a lever to gain insight into drug response. Also, ML can 
accelerate MD simulations by predicting the free energy of a complex and channelling 
them towards it, a strategy sometimes referred to as “ML force field”. [14,57] 

5. 3. 4.  Computational geometry of the binding site 

The geometry of the binding site heavily affects the “druggability” of the target and the 
effect the ligand has upon it. That is to say, the binding site is often a cavity or pocket 
concave in shape because it has a greater potential contact surface area —and higher 
binding affinity— than a protrusion convex in shape would have. Henceforth, in a typical 
structure-based drug design scheme, a target will be selected from one database (e.g. 
PDB) and a group of candidate ligands will be selected from another database (e.g. 
DrugBank) to conduct molecular docking followed by MD simulation. Data about the 
binding mode, stability and binding free energy can be collected, and DL methods can be 
implemented to learn these features and extract information about the geometry of the 
binding site (Figure 7). For example, dose-response curves are used in drug discovery to 
obtain and represent information about the pharmacokinetics and the pharmacodynamics 
of a drug-target complex. Parameters of functional potency like EC50 or IC50 are 
established by carrying out costly and unreliable in vivo experiments. Instead, DL methods 
can be used to draw predictions from the overall binding site geometry and its interactions 
with the ligand molecule using pharmacophore-based schemes. [2,10,14,58-60] 

5. 4.  Ligand-based drug design 

Although the preceding section has necessarily a liaison with this one, this section will 
refer only to ligand-based VS, going into detail about QSAR and pharmacophore 
modelling, and, to a much lesser extent, some information on hybrid VS will be provided. 
Moreover, a brand-new possibility that AI enables is de novo drug design or de novo 
molecular design, defined as the development of new molecules already meeting the 
requirements of the screening process. Different DL applications including RNN, GAN, 
variational autoencoder (VAE), and CNN appear worthwhile for the moment. Both central 
points of this section continuously move the spotlight in the drug discovery pipeline from 
the screening phase towards lead discovery and optimization. [2,10,61,62] 



With the ever-growing popularity of AI-driven models in medicine, there is a consequent 
increase in resources that can mimic the previously long-lasting and inefficient process of 
sorting through thousands of chemical compounds known as drug screening. The classic 
procedure at this stage is in vitro high-throughput screening, and while the results are 
more realistic it is costly and only allows for the exploration of a little fraction of the vast 
chemical search space, estimated to contain up to 1060 pharmacologically active 
molecules. More and more studies are inclined to look into the benefits of (in silico) VS 
since ML can be useful for this task. Nevertheless, both central concepts in this section (de 
novo molecular design and ligand-based VS) are unavoidably interrelated and go together 
in their evolution. [2,10,13,61,62] 

LIGANDS

TARGET

1. DOCKING ALGORITHM and SCORING FUNCTION

2. MOLECULAR DYNAMICS SIMULATION

BINDING FREE ENERGY 
+ 

GEOMETRICAL PROPERTIES 
+ 

DOSE-RESPONSE CURVES

Figure 7. Diagram of the usual workflow with both major structure-based VS techniques 
molecular docking and MD simulation. Once the set of ligands is decided upon, the less 
demanding molecular docking is performed first and the MD simulation is conducted 
afterwards. The results are then processed with DL algorithms to obtain estimations of the 
binding free energy, computational geometrical properties and dose-response curves.



5. 4. 1.  Strategies for de novo molecular design 

An RNN is a type of neural network that works bi-directionally. In a simplified sense, a 
neuronal network receives inputs (small data pieces in a database) that are then multiplied 
by randomly generated “weights”, and the outputs (inferences made at each layer) are 
used to further modify these “weights” applied to the inputs until the outputs are closer to 
the desired result. In the case of an RNN, it possesses a memory called internal state. 
When an input is provided for the first time, the internal state records this as the first 
iteration and it receives the greatest “weight”. With each sequential iteration, the RNN 
incorporates a new input —each of them carrying a lesser “weight” than the previous one
— and uses the preceding input to refine the final output. The one problem with RNNs is 
that due to their bi-directional nature the final output is also affecting all previous inputs, 
and the “weight” it carries fades with each iteration while the “cost” grows. This 
backpropagation concept is called the vanishing gradient problem (the weight diminishes 
progressively) or the exploding gradient problem (the cost increases progressively). Two 
types of RNN are used in drug discovery to mitigate these issues: long short-term memory 
(LSTM-RNN) and gated recurrent unit (GRU-RNN). The difference between them is that a 
GRU-RNN is more compact and utilizes fewer parameters than an LSTM-RNN. One 
immediate benefit of this approach is that the RNN is not required to in silico navigate the 
endless chemical search space —which is called a brute force search—, and instead it 
perfects the molecule it is “looking for” with each new output based on the original input it 
received, such as pharmacokinetic properties. [61-68] 

A GAN is a type of ML algorithm that was initially devised for unsupervised learning. In 
broad terms, two opposing neural networks compete against each other until one of them 
wins. Essentially, it involves a zero-sum game where the first neural network (which is 
called generative neural network) tries to generate an output resembling one from an array 
of data, while the second neural network (which is called discriminative neural network) 
tries to discern if the input received belongs to the original array of data or is a fabrication 
of the generative neural network. [61,63,69-71] 

An autoencoder is also a type of ML algorithm that uses unsupervised learning. In short, 
an autoencoder is a type of neural network utilized to create efficient representations of 
data. Two components are principal: the encoder and the decoder. An autoencoder 
generates a simplified version of the data or “latent representation” through the encoder, 
from which it is capable of deterministically regenerating an output matching the original 
input through the decoder. To succeed in this task, the “latent representation” must achieve 
a finer level of detail called granularity, and is said to be fine-grained. A VAE is a variant 
that goes one step further, because it is capable of generating a “latent representation” 
that is not static. Thus, probabilistically regenerating an output similar to the original input, 
but with slight modifications each time due to it sampling the “latent representation” and 
not decoding it at face value. An adversarial autoencoder (AAE) is another probabilistic 
variant that combines a GAN after the decoding process. A discriminative neural network 
tries to discern if the slightly different outputs come from the original array or a different set 
of data. For example, in one pioneering study employing an AAE called DruGAN and 
comparing it against a VAE for the generation of molecular fingerprints depicting novel 
anticancer molecules the VAE was outclassed by the AAE in generation power and 
efficiency. The general utility of these autoencoder-based methods resides in the 
possibility of guiding the modifications made to optimize the molecule, and typically a third 
component —the predictor— evaluates the novel molecules (in the form of vectors) 
emerging from the “latent representation”. [8,61,62,72-74] 



A CNN is a type of feed-forward neural network. The basics are the same as in any neural 
network, the peculiarity of the CNN being that it performs convolution in at least one of the 
layers (which is called convolutional layer). Using a considerably non-mathematical 
approximation it can be said that convolution in this scenario means that a neuron from a 
convolutional layer is affected only by inputs with similar features named “receptive field” in 
the previous layer, instead of having this neuron be affected by all inputs in the previous 
layer like in a typical fully-connected neural network. In some cases, another type of layer 
(which is called pooling layer) can be interspersed after a convolutional layer to merge all 
outputs from a group of neurons into a single one in the next one. The importance of CNN 
models just at this stage is enormous, because they enable the learning of molecules 
simplifying immensely the impracticalities of neural networks using fully-connected layers. 
[1,62,63,75-77] 

5. 4. 2.  Data representation and findings 

Molecules can be represented or encoded in multiple ways, but the most employed ones 
are string-based representations and graphs, especially 3D graphs. The “nomenclature” 
most widely used for string-based representations is one-dimensional, the Simplified 
Molecular Input Line Entry System (SMILES). One SMILES string provides information 
about the atoms, bonds, branches, and cyclic structures of the original molecule (Figure 
8). Further changes have been made to these string-based representations, making it 

[H][C@@][Branch2][Ring1][P][C][N][Branch1][C][C][C@][Branch1][C][H][C][C]
[=C][N][C][=C][C][=C][C][=Branch1][=Branch1][=C][Ring1][=Branch2][Ring1]

[=Branch1][C][Ring1][=N][=C][Ring2][Ring1][C][C][=Branch1][C][=O][N]
[Branch1][Ring1][C][C][C][C]

[H][C@@]1(CN(C)[C@]2([H])CC3=CNC4=CC=CC(=C34)C2=C1)C(=O)N(CC)CC

Figure 8. Skeletal formula made with the Chemical Sketch Tool of the Protein Data Bank 
(PDB) database and correspondent SMILES and SELFIES strings of the molecule lysergic 
acid diethylamide.



plausible to reflect other characteristics of the original molecules. In particular, inside the 
field of de novo molecular design, it is interesting that while not all randomly generated 
SMILES strings are valid, its recent successor SELF-referencing Embedded String 
(SELFIES) is completely robust in the sense that every randomly generated SELFIES will 
depict an existing molecule. On another note, 2D and 3D molecular graphs employ 
matrices to show the relative positions of atoms and their relationships, and can be used to 
represent their original molecules in ML operations. [14,61-63,78-81] 

The results of the current approximations to de novo drug design are briefly summarized in 
the present and next paragraphs. Primarily, AI-derived models can offer great results, but 
can also meet derailment if the datasets employed are not tailored to the problem and 
thence impede generalizability. There are copious examples of independent researchers 
who have tried utilizing RNN models for de novo drug design (e.g. ReLeaSE, DrugEx), and 
many examples of studies where in vivo validation of the new molecule was proven. The 
current consensus seems to be that LSTM-RNN models are superior to GRU-RNN 
models, even though both of them have been designed and employed successfully to 
create valid SMILES strings. In regard to VAE and AAE models, they are the second most-
used strategy incorporating AI in this step of drug discovery. GAN is the least used method 
of these initially discussed, but depending on the concrete example there are also some 
that reach almost 100% of valid SMILES strings. Other models have been tried to a lesser 
extent for de novo drug design, the most common ones being CNN models and 
evolutionary algorithms. [10,61,62,64-77,82] 

From the array of molecular representations available SMILES strings are the most 
frequent ones. There is evidence that suggests AI trained with enumerated SMILES —
where all possible SMILES forms of the molecule are laid over— yield better results than 
those trained with canonicalized SMILES —where the SMILES form is absolute—. With 
regard to SELFIES, its implementation is not major due to its recency, but it seems 
promising due to its robust nature. Graphs (especially three-dimensional graphs) are a 
rising trend because they provide AI with additional information about the conformation of 
the molecule and additional opportunities to learn the implicit rules of molecular structure, 
especially when in conjunction with a CNN. Finally, other string-based representations like 
molecular fingerprints (bit sequences carrying information about molecular features) are 
seldom used. These molecular fingerprints, which can be any-dimensional —even zero-
dimensional—; for example, the 2D Molecular ACCess System or extended connectivity 
fingerprints, seem to render suboptimal results and should be discouraged with the current 
knowledge. [8,61-63,79,81] 

On a similar note, it is interesting to add that AI tools utilized in ligand-based drug design 
nowadays include the following: AlphaFold2, DeepChem, DeepBind, DeepBar, Chemputer, 
Chemical VAE, PPB2, InnerOuterRNN, DeltaVina… It is substantive to note that the large 
majority of them are free to use and accessible online, as well as most databases 
employed in drug discovery. Thus, the irreproducibility and the unverifiability of most AI 
research seems rather awkward. [2,14,83-86] 

5. 4. 3.  Lead discovery and lead optimization 

Once there are means by which to represent a molecule and to evaluate if it is a feasible 
candidate for a new drug the previous points are inescapably connected to VS. In the 
traditional drug discovery pipeline it is not clear where the transition from high-throughput 



screening to lead discovery to lead optimization happens when AI enters the picture. 
Through diverse traditional or ML/DL applications (mainly RNN, GAN, VAE, CNN) new 
molecules with the potential of becoming a drug are created. These selected molecules 
have optimized properties including bio-activity (such as anticancer, antiviral or 
antibacterial activity), but must also meet basic requirements like validity (the adherence to 
the laws of physics and chemistry), novelty (the presence of molecules distinct from those 
in the dataset or the drug market) and synthetic feasibility (the possibility of being 
synthesized ex silico). Other requirements can be bypassed depending on the setting 
(uniqueness, diversity, similarity). This overlying concept is referred to as multi-property 
optimization (MPO). [10,61-63,87,88] 

Due to the goal-oriented nature of de novo molecular design, MPO is translated to proxy 
scoring functions in order to carry out comparisons among competing molecules. The 
basics of MPO are the classical pharmacological concepts of absorption, distribution, 
metabolism, excretion and toxicity (ADMET), although ADMET properties are similarly 
involved in the alternative in vitro high-throughput screening phase (Figure 9). Further 
options for MPO involve imposing restrictions on the molecules created in order to turn 
them even more “drug-like”. For instance, it is true that physicochemical descriptors 
remain an important part of MPO. The most common conditions imposed tend to relate to 
Lipinski’s rule of five, minted in 1997, which states that an active ingredient candidate for 
an orally administered drug should not have: more than 5 hydrogen bond donors, more 
than 10 hydrogen bond acceptors, more than 500 daltons of molecular mass, or a 
calculated octanol-water partition coefficient (clogP) greater than 5. The most important 
prerequisite is undoubtedly a small size, and virtually every studied ligand in drug 
discovery is less than 500 daltons. [8,10,61-63,87,88] 

ABSORPTION • Route of administration by which a drug reaches 
the bloodstream

DISTRIBUTION

METABOLISM

• Transport of the drug from the bloodstream to 
the site of action

• Conversion to active or inert metabolites that 
influence the drug bio-activity

EXCRETION

TOXICITY

• Steps involving the removal of metabolites from 
the body

• Damage secondary to the drug the body suffers 
due to treatment with it

Figure 9. Reminder of the concepts integrating ADMET, the pivotal aspect of MPO.



As mentioned above, ADMET profiles constitute the base of MPO. In principle, toxicity 
remains the most important ADMET property to bear in mind, because roughly 33% of 
drug candidates are rejected in pre-clinical and clinical development due to toxicity issues. 
Efforts have accomplished multi-task deep neural networks that have proved to foretell 
hallmarks of drug toxicity better than their predecessors and with a reduction in the rate of 
false positives, like DeepTox (which paired with the specific dataset Tox21 works 
wonders). Additionally, a subfield of computer science utilizing statistical and AI-based 
approaches known as natural language processing (NLP) can be utilized to “understand” 
literature and mine for specific information, in this case about the subject of drug toxicity. 
[8,10,63,87,89,90] 

When using a proxy scoring function in MPO for de novo molecular design —for example, 
using a QSAR (see later) for the prediction of EC50 or IC50 for a novel set of molecules 
created by a generative model— it must be considered that it is heavily database-
dependent. As in a paradox, the closer the QSAR (or any other proxy scoring function) of 
each novel molecule resembles those in the database, the higher the validity and the lower 
the novelty, and vice versa. Performance evaluation in MPO is complicated, and barely-
grounded ML results should be interpreted extra cautiously since they can misrepresent 
reality and hinder interpretability. [10,91,92] 

To date, the most widely used —generally small-molecule but target-inclusive as well— 
databases in the realm of CADD are PubChem, ChEMBL, DrugBank, UniProt database, 
PDB, BindingDB, BindingMOAD, ChemSpider, COlleCtion of Open Natural ProdUcTs 
(COCONUT) and ZINC. These and many other databases provide information on the 
pharmacokinetics and pharmacodynamics of the included molecules, that can be 
incorporated into VS by AI through the aforementioned and other ML applications. A 
common strategy in supervised ML is cross-validation, to employ one of these datasets for 
the primary training of the algorithm and refine it with a smaller and more specific dataset 
on a second occasion. However, a valid argument is to be made that VS incorporates bias, 
as even the biggest databases —containing hundreds of millions of legitimate “drug-like” 
compounds— fall quite short against the size of the search space at hand. Another source 
of bias seems to be that, as new efforts to discover useful molecules concentrate around 
previous hits, the known search space grows in related spurts, while the majority of it 
remains obscure. [2,10,14,58,59,61] 

Due to the patent inability of the prevailing databases to encompass enough labeled data 
for its use in certain situations, ML techniques around the idea of adaptability have been 
studied. These are interrelated with the semi-supervised learning paradigm, yet employ 
different methods to essentially continually incorporate knowledge into a growing pool. 
First, transfer learning implicates utilizing information from a previously already-solved task 
to solve the one ahead by fine-tuning the conclusions. Second, multi-task learning 
implicates utilizing more than one dataset at a time to solve many tasks at once, and it is 
especially useful for recycling rather small datasets that are not useful in themselves. 
Third, self-supervised learning —which can be best classified as an alternative ML 
paradigm— implies that the very algorithm is the one assigning sloppy easy-to-generate 
labels to the dataset and training itself on that same dataset afterwards. The best 
alternative is unclear since evidence is conflicting and ever-changing in most of the field, 
but ML techniques with a certain degree of flexibility seem to pose an enormous 
advantage in data scarcity settings. [10,93-95] 

Drug repurposing or drug repositioning is another concept tangentially related to VS, but 
with great leverage at the stages of lead discovery and optimization. The idea behind drug 



repurposing is multi-faceted; by promoting repurposing of known drugs with copious 
amounts of data available, a “speedrun” of the drug discovery pipeline can be performed, 
shortening both the time and costs inverted before commercialization. A typical molecule 
can have multiple targets, and exploitation of compiled data from known drugs via ML/DL 
can guarantee a higher rate of “hits” for new purposes and a faster hit-to-lead conversion. 
[8,96-99] 

5. 4. 4.  Strategies for ligand-based virtual screening 

In the absence of structural information of the target —as it is the case in structure-based 
VS—, the so-called ligand-based VS strategies can be engaged. Two common strategies 
take the spotlight, the former is QSAR and the latter is pharmacophore modelling. A 
recurring concept at the stage of hit-to-lead or MPO is called QSPR (Quantitative 
Structure-Property Relationship), an empirical linear regression model that allows the 
expression of a physical or chemical property (typically biological activity, giving rise to the 
acronym QSAR) as a function of the structure of a molecule, in quantitative terms. Hence, 
the crucial components of a QSPR/QSAR are the origination of molecular descriptors and 
the formulation of the mathematical paradigm. The steps in a QSAR are the following: (i) 
preparation of the ligand battery, (ii) selection of molecular descriptors in the training 
dataset (habitual molecular descriptors are electronic effects, hydrophobic parameters, 
steric effects, and substructural effects), (iii) calculation of the correlation to biological 
activity for the chosen descriptors, and (iv) evaluation of internal and external validity 
(Figure 10). [2,10,62,100] 

The outcome of a QSAR is a column of cells with the predicted values of the biological 
activity of a range of molecules for a single target. In this manner, ML can be applied at 
this stage to fit even tampered nonlinear regression models and promote ADMET-
appropriate drug candidate profiles using QSARs or other QSPRs. The deployment of ML 
in QSAR analysis has been essayed successfully through various DL approaches: random 
forest, SVM, multi-task deep neural network… SVM, one of the principal supervised 
learning algorithms, can create a division in an array of data either linear (when there are 
two perfectly distinct classes) or nonlinear (when there is some overlapping between the 
classes). [2,8,10,62,100,101] 

• Selection of the dataset 
• Variable selection 
• Model construction 
• Model evaluation

Steps to follow in a 
QUANTITATIVE-STRUCTURE 

ACTIVITY RELATIONSHIP 
ANALYSIS

Steps to follow in a 
PHARMACOPHORE MODELLING 

ANALYSIS

• Selection of the dataset 
• Conformation analysis 
• Molecular superimposition 
• Model refinement 
• Model evaluation

Figure 10. Comparison of the workflow of a QSAR versus a pharmacophore modelling 
analysis.



The pharmacophore can be defined as the ensemble of molecular features —steric and 
electronic— that grant biological activity to specific ligands over a target, that is to say, the 
requirements for a key to be recognized by the lock. Pharmacophore modelling can be 
used to confirm the presence of biological activity and guide generative ligand-based VS 
strategies. In a nutshell, there are five steps to pharmacophore modelling, similar to those 
in a QSAR: (i) preparation of the ligand battery, (ii) creation of a low-energy conformation 
list, (iii) superimposition of low-energy conformations, (iv) abstraction of pharmacophore 
elements, and (v) evaluation of internal & external validity (Figure 10). [2,62,100,102,103] 

5. 4. 5.  Hybrid virtual screening 

Although diverting slightly from the main topic of this segment, hybrid VS should be 
bestowed some representation. This in-between concept refers to the conjunction of 
ligand-based VS (primarily QSAR-oriented) and certain coarse target-based techniques. 
The main hybrid VS techniques derive from proteochemometrics. This type of analysis 
with a bit of a bizarre name is almost interchangeable with multitarget-QSAR, and differs 
from a traditional QSAR in that it makes use of multiple targets instead of one and 
incorporates target descriptors. Hence, the outcome of a proteochemometric model is, in 
contrast with a QSAR, a matrix where the additional dimension is composed of a number 
of parallel QSARs, but its usefulness increases exponentially thanks to the exploitation of 
the emerging synergies. In essence, since hybrid VS can be seen as an expansion of 
ligand-based VS, both methods share pros and cons. Some enlightening examples of 
achievements via hybrid VS are: the learning of protein representations from amino acid 
sequences, the unification of uncertainty for data from heterogeneous sources, and the 
hybridization of the workflow in very ambitious structure-based VS projects (structure-
based techniques are performed on a small subset which is used as a training dataset in 
an unsupervised model). [10,104-106] 

5. 5.  Pre-clinical and clinical development 

Many AI-related models can be helpful at the final stages of the drug discovery pipeline, 
but no single one is “El Dorado”. NLP and one derivative sub-task called named entity 
recognition (based on localization of named entities in a text and their categorization in 
different semantic fields) can be helpful altogether with GPT models at summarization and 
generation of documents. Prediction of cell responses to drugs is one key step in the drug 
discovery pipeline. Two methods stand out with this intention, similarity-based (based on 
the premise that similar drugs act on similar targets) and feature-based (based around the 
idea of drug-target feature vectors informing convolutional to attentional algorithms). AI can 
be also tried at other tasks related to drug marketing like drug manufacturing, quality 
control, clinical trial blueprinting, and post-clinical analysis and development. [8,10] 

5. 5. 1.  Approval and post-market analysis 

The tentacle-like possibilities of AI can reach beyond development of novel drugs, helping 
approval and market forecasting and positioning. Data mining approaches like NLP can 
help understand the selling space and concrete needs of the population by leveraging big 
data gained through business-to-business internal surveying. As a matter of fact, ML can 



even help at making use of scattered data indirectly related to financial expenditure and 
profits during drug development, establishing more competitive and fair prices for the 
benefit of the company and society. [8,107,108] 

Another post-market niche where AI has found its way is drug antagonism/synergism 
prediction, since experimental study of drug interactions is inefficient. Supervised ML 
advances like a Bayesian ANN and a random forest algorithm have been essayed for 
scouting interactions, albeit DL-boosted models like DeepSynergy have overpowered 
them, as it is more often than not the case due to the might of DL. Anyhow, ML/DL has the 
faculties to reform the antagonism/synergism interaction scouting process much more 
effective and applicable in clinical practice. In particular, anticancer drug combo 
optimization is the area where the stimulus of drug antagonism/synergism prediction can 
be greater, for the reason that many anticancer schemes require up to six or seven drugs. 
[8,63,109-111] 

5. 6.  AI in drug discovery for central nervous system disorders 

One of the fields that could capitalize on AI the most includes the group of agents 
specifically targeting the CNS. Disorders of the CNS mostly include neuropsychiatric 
conditions such as schizophrenia or dementia, but CADD in this setting spreads out over 
areas like anesthesia, neuropathic pain, or substance abuse. CNS drugs require even 
longer than the usual 10-15 years on average to gain approval —but could see this period 
remarkably shortened thanks to AI-enabled drug discovery—, and they are subjected to 
especially tight control. By the way, CNS drugs also have a lower success rate due to 
other factors encompassing insufficient trial length, substandard knowledge of the 
underlying pathophysiology, “dirty” target engagement, and the presence of the blood-
brain barrier (BBB). Target identification in CNS drugs appears to follow the maxim that 
few protein families (characteristically G protein-coupled receptors) condense more than 
50% of drug target identification efforts. [5,112-115] 

The BBB is a selective semi-permeable membrane comprised of capillary endothelial cells 
that are lined by a basement membrane made from structural proteins, pericytes, 
astrocytic end-feet, and microglial cells. Given that the physiologic action of this barrier is 
to not let exogenous substances come into contact with the brain, the success rate of CNS 
drugs is extremely dependent on good BBB permeability. BBB permeability prediction is 
the epicentre of CNS drug discovery, and many ML algorithms propelled by the 
abovementioned Lipinski’s rule of five or other physicochemical descriptors have been 
employed to account for passive diffusion. Accomplishments notwithstanding, particular 
molecules follow specialized drug-transporter interactions that cannot be translated into 
simple physicochemical descriptors. Transporters like the ATP-binding cassette transporter 
and efflux pump P-glycoprotein appear to be the primary determinants of achieving 
therapeutic concentrations in the blood and regulation of pharmacoresistance in the CNS 
and should not be disregarded. Efforts in this direction have not provided an omnipotent 
algorithm for the prediction of BBB permeability yet, but definitively DL has set a course on 
the right track. [5,114,116-120] 



5. 6. 1.  Examples of advancements in central nervous system disorders 

Schizophrenia is currently the biggest enigma in psychiatry. While AI is indeed not the 
panacea, it offers opportunities to tackle the many challenges this disorder proposes, 
although data scarcity hinders the resolution of the heterogeneity of the disorder. AI has 
been essayed satisfactorily in target identification, ligand-based VS, structure-based VS, 
prediction of therapeutic adherence and drug repurposing. [5,113-115,121] In detail, 
schizophrenia target genes were identified employing an SVM to initially rank genes from 
public microarray datasets —built with the help of GWAS analyses—, paired with another 
algorithm so-called recursive feature elimination to posteriorly discard genes devoid of 
significance. [122] For VS, SVMs were also applied for the prediction of presynaptic 
dopamine overactivity and the formation of gamma-aminobutyric acid uptake inhibitor 
QSAR models. Another VS method entailed the creation of a pharmacophore model of α7 
nicotinic acetylcholine receptor agonists coupled with a recursive partitioning model to trim 
undesirable ligands. [123] The SVM methodology was successful as well for drug 
repositioning in schizophrenia. [124] 

Depression treatment is already benefiting from AI. [5,112,115,121] Gradient boosting 
models have been attempted to predict if a patient will achieve symptomatic remission 
using both citalopram and escitalopram. [125,126] This gradient boosting model was 
repeated in an ulterior study coupling it with a hierarchical clustering algorithm to 
determine groups of symptoms that could benefit from treatment with a particular 
antidepressant. [127] Since these studies do not explain the degree of response to each 
particular antidepressant, another group engendered the “Antidepressant Response 
Prediction Network” model, which achieved positive antidepressant response prediction 
and assessed if the patient would reach symptomatic remission and if the patient could 
benefit from treatment with additional antidepressants. [128] Electroencephalography and 
functional magnetic resonance imaging can be used as biomarkers in psychiatric research 
and have also been tried to predict depression treatment response, for example, in the 
former via an SVM —for escitalopram— and in the latter via a “homebrew” algorithm called 
Sparse EEG Latent SpacE Regression (SELSER) —for sertraline—. [129,130] 

Alzheimer’s disease (AD) is the leading neurodegenerative disorder but astonishingly it 
has over a 99% failure rate in drug development, allegedly chiefly due to its complex and 
misunderstood pathogenesis. [5,113-116,121] ML designs ranging from ANN to SVM to 
random forest algorithms have been surveyed for VS of AD-implicated proteins histone 
deacetylase (HDAC), acetylcholinesterase and S100 calcium-binding protein A9, 
respectively. In this regard, it is intriguing that there has been an instance where ML was 
used to ascertain that random forest algorithms would be the best from an assortment of 
miscellaneous ML models for the prediction of AD drugs and targets. [131-133] In another 
vein, hyper-predictive ML designs have originated in the form of ANN and random forest 
trained on PPIs and MD simulations data of binding modes including caspase-8 —another 
AD-implicated protein— as the target. [134] Posteriorly, following the guidelines laid by 
these predecessors, a novel graph CNN model has been essayed for VS of the AD-
implicated protein beta-secretase 1. [135] Despite these prospects in single-target 
inhibitors, the complexity of the AD pathogenesis enforces the pursuit of multitarget drugs, 
which could benefit hugely from hybrid VS through the use of proteochemometrics 
archetypes. The endless endeavors in that direction, cyclically based on the foregoing, 
have so far yielded various HDAC inhibitors with the support of diverse ML algorithms 
(ANN, Bayesian algorithm, recursive partitioning…), but non-specificity and non-selectivity 
remain nasty issues due to the numerous isoforms in the HDAC family. [136] Another 
remarkable breakthrough enabled by ML has been the reprofiling of AD drugs for vascular 



dementia, given the frequent overlap of both entities. [137,138] In the end, collaborative 
networks between biotechnology companies, academia, regulators and health care 
professionals like the Deep Dementia Phenotyping (DEMON) Network appear to be the 
greatest route to crack the code of better dementia patient treatment. [113] 

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder. A few 
AI-enabled drugs have been essayed to mitigate its symptoms. [5,114,115] Side effects of 
current medications (mainly levodopa-induced dyskinesia) have also been faced with drug 
repurposing techniques based upon literature mining. [137,138] Both ligand-based and 
target-based VS appear efficacious; for instance, the first through the inference of QSAR 
models of putative inhibitors of leucine-rich repeat kinase 2 protein (a key risk factor in 
familial and sporadic PD) with an array of ML techniques, and the second through 
identification of compounds at a time binding to the two receptors —adenosine A2A 
receptor and dopamine D2 receptor— implicated in the pathophysiology of PD with an 
SVM model. [139] Additionally, docking and MD studies revealed that an additional ring in 
piperine-like compounds augments the inhibitory potency against monoamine oxidases A 
and B. [140] More modern propositions paradoxically involve the use of in vivo (i.e. human 
midbrain organoid model) or in vitro (i.e. zebrafish model) experimental designs with ML-
based backbone or background reinforcements. [141,142] 

6.  DISCUSSION & CONCLUSIONS 
AI represents a powerhouse to be reckoned with in modern drug discovery. With the 
floodgates open AI promises to shake the traditional drug discovery pipeline, although 
current progress is not there yet. AI can push CADD to break past the 13% estimated rate 
of commercialization, and bring down both the cost (EUR 2.5 billion) and time (12 years) it 
takes on average to bring a new drug to the market. All at once, ML strategies can reach 
unexplored areas in drug discovery. For example, the assessment of carbohydrates or 
lipids as drug candidates or the assessment of proteins outside of the four flagship protein 
families (G protein-coupled receptors, nuclear receptors, voltage-gated ion channels, and 
ligand-gated ion channels) in target identification. 

As previously stated, the traditional drug discovery pipeline is composed of four distinctive 
steps: target identification and target validation, high-throughput screening, lead discovery 
and lead optimization, and pre-clinical, clinical and post-clinical analyses. With the advent 
of CADD these stages are bound to change. Target identification is currently dependent on 
protein function prediction strategies, which seem to flourish when sequence-based, 
structure-based and PPI-based are used in tandem to integrate “multi-omics" information. 
In vitro high-throughput screening has already been dethroned by VS, and is the stage 
where the greatest progress has been made, because the potential for savings is higher if 
molecules with considerable “drug-like” properties and targets with a high probability of 
being “druggable” are tested from the beginning. In silico techniques for ligand-based VS 
(QSAR and pharmacophore modelling), structure-based VS (molecular docking and MD 
simulation) and hybrid VS are already employed regularly with success and permeate the 
next stage in the drug discovery pipeline. Lead discovery and lead optimization have bi-
faceted AI ramifications, inasmuch as AI can be advantageous for MPO through the 
promotion of adequate ADMET profiles (with a special interest in toxicity, a leading cause 
of drug rejection in pre-clinical and clinical studies) and fulfillment of other requirements 
like Lipinski’s rule of five, and AI can also be favorable for drug repurposing. Pre-clinical 
and clinical analysis is the area where AI has prompted a lesser push. Finally, post-clinical 



analysis is likewise understudied but NLP and DL-derived literature mining techniques 
seem hopeful and drug antagonism/synergism prediction techniques are one area of 
recent growth (Figure 11).  

Moreover, the drug discovery pipeline can now be shortened by performing several steps 
at a time. De novo drug design enables almost simultaneous target identification, VS and 
MPO with the intervention of DL algorithms. Among those algorithms discussed, LSTM-
RNN, AAE and CNN appear the most promising, and the candidate molecules were even 
tested in vivo in some cases. When speaking of molecule representation the string-based 
enumerated SMILES lead but SELFIES is a very promising 2D representation due to its 
robustness. Nonetheless, the future is 3D graph-based for sure, since graphs convey a lot 
more information which in turn makes DL models better. There is at the moment no ground 
to suggest a favoritism for any other algorithm or molecular representation. 

One point to highlight from the present review is the overwhelming dominance of DL when 
compared to other ML models for the resolution of all kinds of problems. In the instances 
where DL can be applied in the form of CNN, GAN, VAE, AAE, RNN or any other DL model 
it is nearly doubtless that it is the best option. The only setback is that due to the nature of 
DL it can not be applied to every problem, and even if it can be applied it is sometimes not 
optimal from a computing power perspective because the task is minor. In consequence, 
shallower ML models like SVM, random forest, k-nearest neighbors, decision tree, 
Bayesian models or many other ML algorithms prevail in the majority of current research 
because they are easier to train, apply and modify. In fact, in the provided examples of 
drug discovery in CNS disorders it is apparent that in schizophrenia, depression, AD and 
PD research an SVM model (modified or not) was attempted at least once and conversely 
DL methodologies are scarce. 

Relatedly, another interesting idea is that there seems to be a perfect match between task 
and AI tool towards which efforts should strive to reach. All basic ML paradigms initially 
discussed have certain tasks at which they excel, and the crystal clear evidence is that the 
bulk of experiments in drug discovery employ models under the supervised learning 
paradigm, which is classically better for the customary classification and regression tasks 
in this field. But, in spite of the differences, each research group tends to focus on the 

FUSION-BASED PFP powered by “multi-omics” big data

LIGAND-BASED and STRUCTURE-BASED VS

MPO via ADMET profiles and others

Pre-clinical to post-market analysis 

Figure 11. Feasible stage distribution of the modern drug discovery pipeline. See Figure 4 
for a reference of the traditional drug discovery pipeline.



development of a somewhat personal algorithm or model, distancing itself from the 
“typical” ML/DL nomenclature, like in the case of SELSER. It is perhaps early to fully 
understand how to classify AI innovations, but the more specific an algorithm is for a task 
the better results it aspires to achieve. 

Although AI in drug discovery presents many advantages from afar, some nuances remain. 
One such con is the enormous size (approx. 1060 pharmacologically active molecules) of 
the small-molecule search space, together with the current exploratory initiatives orbiting 
closely around previous hits. Like a large fishing vessel fishing in a pond, no results can 
emanate if this situation continues. The ocean awaits and should be explored. Secondly, 
given the size of the chemical search space, data scarcity is a problem and will be for a 
while even with the magnitude of current databases. To circumvent this issue, flexible ML 
techniques like transfer learning, multi-task learning or self-supervised learning have been 
launched that improve outcomes in data-deprived situations. Thirdly, since ML algorithms 
devised by research groups act like a black box nothing is known from the exterior and 
results are often irreproducible and performance evaluation impossible. Plus, as previously 
stated a paradox is established when novelty increases due to a parallel decrease in 
validity, and vice versa. For now and the coming years, results must always be interpreted 
conservatively in the setting of AI. 

In summary, AI is a wonderful revolution and provides the means to unlock a new era in 
drug discovery, which has already started. Due to the novelty, nobody should jump to 
conclusions yet and all possibilities should be explored and re-explored until solid axioms 
to AI in CADD are revealed by scientific efforts. Be that as it may, fabulous and vibrant 
results are already at the door, either in CNS drug discovery or other domains, and fear of 
the unknown should not stop scientific progress. In the end, the mystery and the promise 
of distant horizons always have called men forward. 
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