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Abstract

In 1952, Alan M. Turing introduced a theory to explain the formation of spatial biological
patterns that can lead to both differentiated tissues and organs as well as the shapes and
spots of many living beings (such as the stripes of zebras or tigers, and sea shells, etc.).
He suggested the fundamental role played by certain chemicals (morphogens) that react
and diffuse through tissues, formulating these interactions as a system of two nonlinear
reaction-diffusion partial differential equations.

We will study the general conditions that these types of systems must satisfy for
such patterns to emerge, both from a theoretical and computational point of view, using
MATLAB for numerical experiments. We will particularly focus on the Schnakenberg
system.

Keywords: Morphogenesis, Turing, biological pattern, reaction-diffusion systems,
Schnakenberg, computational experiments

Resumen

En 1952, Alan M. Turing introdujo una teoría para explicar la formación de patrones
biológicos espaciales que pueden dar lugar tanto a tejidos y órganos diferenciados como
explicar las formas y manchas de muchos seres vivos (rayas de las cebras o los tigres,
conchas marinas,. . . ). Sugirió para ello el papel fundamental que juegan unas sustancias
químicas (morfógenos) que reaccionan y se difunden a través de los tejidos, formulando
dichas interacciones como un sistema de dos ecuaciones en derivadas parciales de reacción
difusión no lineales.

Estudiaremos las condiciones generales que deben verificar este tipo de sistemas
para que puedan aparecer dichos patrones, tanto desde el punto de vista teórico como
computacional, utilizando MATLAB para los experimentos numéricos. En particular nos
centraremos en el sistema de Schnakenberg.

Palabras clave: Morfogénesis, Turing, patrón biológico, sistemas de reacción-difusión,
Schnakenberg, experimentos numéricos.
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1. Introduction

1.1. Motivation. State of Art

Since the origin of civilization, humans have felt an unrelenting curiosity to understand
the mysteries of the life around us. In this sense, biology has historically been, and
continues to be, one of the branches of science that most interest elicits. The researches
and discoveries made over the time, have revealed information that help human kind
to understand our place in the universe and our relationship with the world around us.
However, there are still countless fundamental questions that have not been resolved.
For instance, simple ones such as the origin of the forms or the patterns in nature, as
well as its evolution.

If one visualizes the natural world, considering the astonishing diversity of shapes
and structures observed in living organisms, one could ask oneself how this diverse forms
of life arise, what biological and physical processes underlie their development or how
these forms adapt, change and stabilize (despite being subject to numerous sources of
noise).If you find these questions difficult to answer, it is because they remain some of
the most profound mysteries in science.

In this context, morphogenesis plays a crucial role. It is the part of embryology
that characterizes the development of patterns and shapes in nature, hence a fascinating
branch of biology, given the great richness and diversity of patterns in different living
beings: from small marine organisms to more complex beings such as moths or leopards
as we can see in Figures 1 and 2.

Figure 1: Moth (Hyalophora cecropia). It
presents patterns both on its wings, as well as
on its antennae and in the striping of its body

Figure 2: Leopard (Panthera pardus). It is
known by the pattern of spots all over its
skin.

The fundamental importance of pattern and form in biology is thus self-evident.
Although molecular genetic studies have led to many advances in determining the
elements participating in the process, it is not enough to understand the underlying
mechanism, and this is where the strengths of mathematical modelling lie. Not only
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are models able to analyse experimental results, but also to predict mechanisms by
which populations interact, thus suggesting further experiments. In this context, the
understanding of these spatial patterns is one of the greatest scientific challenges today
as the mechanism of pattern formation is still unknown, and, although several advances
have been made in this regard throughout history, bringing us closer to an understanding,
most of these theories are phenomenological and do not focus on the description of the
underlying process.

D’Arcy Thompson (1860-1948) was a disruptive biologist that played an important
role in this issue, whose train of thought supposed a change in the kind of approaches to
this problem. From his point of view, Darwin’s theory of evolution had several defects,
in the sense that, for instance, the patterns in this theory arise from natural selection,
which help the animal to survive and adapt to the environment. The key point here is
that, despite being partially true, it does not explain how natural selection conforms a
particular pattern neither its evolution so that the animal can adapt itself to the changes
its species undergoes over time. He claims in his book "On Growth and Form" [11],
that physical processes, combined with structural constraints, are responsible for the
emergence of forms in nature, particularly biological forms and patterns, hence excluding
the Darwinian explanation.

At those times, as one might expect, the majority of the scientific community
came up against him; however, this supposed a turning point which led more and more
researchers to tackle the root cause, among whom as we will see, stood out Alan Turing
with his morphogenetic theory.

Another inspiring idea was the one suggested by Waddington in [13], cited in Turing’s
paper. He proposed the idea of organizer molecules that were produced by specific
cells and diffused throughout the organism such that eventually other cells settled in
the organism, depending on the concentration of these molecules. This is based on the
gradient model of diffusion, a process of transport by which molecules move from areas
of higher concentrations to smaller ones. This idea, as well as those outlined in "What
is life?" [10], where Schrödinger raised some physical questions related to life, motivated
Turing to carry out his own approach [3].

1.2. Turing’s idea

Alan Turing, a prominent figure in the history of science, was a pioneering mathematician,
logician, and cryptographer. He is primarily known for his "Turing Machine" during
World War II, a foundational concept that laid the groundwork for modern computing
and forever changed our understanding of computation and artificial intelligence.

He was particularly fascinated by the arrangement of certain structures in plants,
such as their leaves (which exhibited remarkable symmetry) and interested in how certain
forms and patterns in nature could arise spontaneously [4]. Turing eventually published
his paper "The chemical basis of morphogenesis" [12] in Philosophical Transactions B in
1952, which has shown to be a landmark publication and nowadays is a field of research
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in its own right.

He stablished, firstly, how spatial chemical patterns can form, and secondly, how
to relate these patterns to those observed in nature. He postulated a mechanism for
the formation of biological patterns, suggesting that they are the consequence of an
observable population (for instance, skin cells) responding to populations that diffuse
signals, called morphogens (as they plant the seed for the morphogenesis). Specifically,
these morphogens are considered chemical reactants unaffected by their environment
that diffuse freely acting directly on cells to produce specific cellular responses which
end up in the formation of such patterns. Therefore, as it has been mentioned before,
given a chemical pattern, the cells respond to it, in the sense that we eventually have a
correlation between the chemical pre-pattern, and the patterns we see in nature. Once
the prepattern is established, morphogenesis is a slave process.

This mechanism was based on reaction-diffusion systems for two different concentrations
of morphogens. Put briefly, we can consider a compound Φ, which plays the role as
the activator. It carries out an autocatalytic reaction in order to generate more of
itself, whose velocity depends on the current concentration of Φ. Furthermore, in this
description, Φ also activates the production of another compound, Ψ, which indeed
inhibits the formation of Φ. Therefore, Turing’s theory could be understood as the
competition between the activation of Φ and the inhibition of Ψ.

The innovation in Turing’s idea from the previous ones, is the inclusion of reaction
between molecules. Despite chemical reaction and molecular diffusion are normally
known as homogenising processes, if we consider a mechanism involving both together,
stationary patterns can arise naturally from the system. Moreover, in this model we have
an spontaneous breaking of the initial system’s homogeneity, which eventually leads to
the emergence of a wide variety of patterns (unlike the gradient model, where spatial
symmetry is already broken from the beginning by the presence of privileged reference
cells). Nevertheless, different diffusions for the compounds are required, so that this
competition is not identical in all the region. Actually, the inhibitor has to diffuse more
quickly than the activator; otherwise the reaction would end and we would not have
pattern. Therefore, if both substances diffuse differently over the region, their influences
might change locally, thus Φ and Ψ could dominate one over the over in different regions.

Turing demonstrated mathematically the existence of such patterns under certain
conditions. He actually carried out several simulations (in 1952) for a given morphogen
system, obtaining the patterns shown in Figures 3 and 4. It is also worth showing the
modern versions of these patterns (Figures 5 and 6) to appreciate how, despite the
limitations of his time, Turing’s work is astonishing.
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Figure 3: One-dimensional pattern obtained in
a numerical simulation published by Turing in
1952

Figure 4: Two-dimensional pattern
obtained in a numerical simulation
published by Turing in 1952

Figure 5: Modern version of the
one-dimensional pattern obtained by Turing
in 1952

Figure 6: Modern version of the
two-dimensional pattern obtained by
Turing in 1952

Nevertheless, Turing’s ideas were initially neglected by the biological community partly
due to the several counterintuitive aspects of the theory. In addition, his work was
overshadowed by the discovery of the double-helix structure of DNA a year later,
and the subsequent development of molecular biology. His theory had to wait almost
20 years, when chemistry began to pay attention to non-equilibrium processes and
physics-mathematics to non-linear problems. Since then, there has been renewed interest
in these ideas, and more generally in trying to explain the underlying mechanisms of
spatial organisation in developmental biology as well as in the application of Turing’s
theory to chemical and biological systems. It is worth noting that Turing’s original model,
and many subsequent papers, have only explored the case of two interacting morphogens,
but nowadays it is known that developmental processes involve hundreds of different
chemical compounds interacting across a complex and heterogeneous environment.

However, the fundamental insights arising from the concept of diffusion-driven pattern
formation are compelling and have been proven in straightforward chemical systems,
so it seems likely they play some role in a range of developmental scenarios. Actually,
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despite the little knowledge of cellular morphogenesis being known at his time, Turing
was prescient in understanding the simplicity of his ideas, stating [12]: “This model will
be a simplification and an idealisation, and consequently a falsification. It is to be hoped
that the features retained for discussion are those of greatest importance in the present
state of knowledge.”

Still, his counter-intuitive mechanism, is currently generating new ideas, even after 60
years of research, mainly propelled from the recent rapid developments in computational
software and hardware, prompting us to think we could be witnessing the emergence of
a new era in Turing theory. For instance, in a recent paper Raspopovic et al. provide
evidence to support a Turing mechanism for the arrangement of fingers, by developing a
computer model capable of accurately reproducing the patterns that cells follow as the
embryo grows fingers [7].

Given the importance of Turing’s ideas, we are going to study his theory, analysing the
general conditions these systems have to satisfy so that patterns can emerge, both from
theoretical and computational point of view. Firstly, we will derive in section 1.3 the
form of the reaction diffusion system. Afterwards, we will determine the solution of such
system in section 2 and derive the conditions for Turing instability in section 3. Then, we
will apply the theory of these previous chapters to several examples in section 4. Finally,
we will conclude by discussing the results obtained.

1.3. Reaction Diffusion System Deduction

Particles such as cells, bacteria or chemicals move randomly in nature. The concept of
diffusion arises when this microscopic irregular movement results in a macroscopic regular
motion of a group of particles. However, there are also different processes that affect
particles behaviour, such as interactions either between them or with the environment.
Thus, instead of specifying a macroscopic behaviour from the knowledge of the individual
microscopic behaviour (which is a complex task to do), it is usual to derive a continuum
model equation for the global behaviour in terms of a particle density or concentration
of particles or chemicals in our case [5].

Therefore, considering diffusion in three spatial dimensions, let S be an arbitrary
surface enclosing a volume V . Denoting the concentration of the species as ϕ(x, t) and
according to the general conservation equation , the rate of change of ϕ(x, t) in V is equal
to the rate of flow of material across the surface S into V plus the material created in V .
This is,

∂

∂t

∫
V

ϕ(x, t)dv = −
∫
S

J · ds +
∫
V

fdv (1)

where J is the flux of material and the function f represents the source of material,
which could depend on ϕ, x and t. For instance, in the ecological context, the source
term could represent the birth–death process whereas ϕ the population density.

It is possible to simplify previous equation by applying the divergence theorem to
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the surface integral and, assuming ϕ (x,t) is continuous,∫
V

[ϕt +∇ · J− f(ϕ, x, t)] dv = 0 (2)

where ϕt denotes the partial derivative with respect to t.

Since the volume V is arbitrary, the integrand must be zero in order to satisfy
equation (2) for every value of V . Therefore, the corresponding conservation equation
for the concentration ϕ ends up to be

ϕt +∇ · J = f(ϕ, x, t) (3)

In addition, we can follow the classical approach to diffusion, known as Fickian diffusion,
which establishes that the flux J of a material is proportional to the gradient of the
concentration of the material. Thus, in this three spatial dimension case, we can express
the flux as

J = −D∇ϕ (4)

where D could be a function of x and ∇ denotes the gradient with respect to the spatial
variables x.

Therefore, equation (3) becomes

ϕt = f(ϕ, x, t) +∇ · (D∇ϕ) (5)

We can generalise the previous expression to the situation in which there are several
interacting chemicals represented by the vector ϕi(x, t), i = 1, ...,m of concentrations,
each of one diffusing with its own diffusion coefficient, interacting according to the vector
source term f. Considering this case, equation (5) becomes

ϕt = f +∇ · (D∇ϕ) (6)

where D is a matrix of the diffusivities which is a diagonal matrix if there is no cross
diffusion among the species. We will mainly be focused on reaction diffusion systems in
which D is diagonal and constant and f is a function only of ϕ.

As we have already mentioned before, the main contribution of Turing was the
diffusion-driven instability resulting in heterogeneous patterns, which, in some sense,
almost seems counter-intuitive as diffusion tends to spread out concentrations, creating
homogeneous distributions and not a spatially heterogeneous mixture. It is the interplay
of at least two different chemicals which can result in spatial pre-patterns; indeed, we
will work with Turing instability at its simplest, studying the interactions between two
different diffusing morphogen populations. The typical kinetics that can lead to this
instability is the one where one concentration acts as an activator, and the other one, as
an inhibitor. The activator promotes its own production, whereas the inhibitor controls
the first one in a negative feedback loop [6].

Thus, given two different morphogen concentrations (ϕ, ψ) and taking into account
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Neumann boundary conditions (considering an isolated domain as we are interested in
self-organisation of pattern i.e without external influence), we have the following system:

ϕt(x, t) = Dϕ∆ϕ(x, t) + f (ϕ(x, t), ψ(x, t))

ψt(x, t) = Dψ∆ψ(x, t) + g (ϕ(x, t), ψ(x, t))

∇ϕ(x, t) · n⃗ = 0, ∇ψ(x, t) · n⃗ = 0, x ∈ ∂D

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D ⊂ Rd̃, t > 0

(7)

where the functions f(ϕ, ψ) y g(ϕ, ψ) represent the reaction kinetics (they are, in
general, non linear) and d̃ is the space dimension. Dϕ and Dψ are the positive constant
diffusion coefficients and ∂D is the boundary of the domain D where we can define the
normal vector n⃗ at every point.

For instance, in a one spatial dimensional domain D = [0, L], the reaction diffusion
system in equation (7) can be simplified to:



ϕt(x, t) = Dϕ
∂2ϕ(x,t)
∂x2

+ f (ϕ(x, t), ψ(x, t))

ψt(x, t) = Dψ
∂2ψ(x,t)
∂x2

+ g (ϕ(x, t), ψ(x, t))

ϕx(0, t) = ϕx(L, t) = 0, ψx(0, t) = ψx(L, t) = 0

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ [0, L] ⊂ R, t > 0

(8)

There is a great variety of reaction models which exhibit Turing pattern formation,
although, as we will see and derive, the Schnakenberg model (1979) stands out from the
others and is attracting a great deal of research attention in recent years. It is given by
the following kinetics:



ϕt(x, t) = ∆ϕ(x, t) + γ (a− ϕ(x, t) + ϕ2(x, t) ψ(x, t))

ψt(x, t) = d∆ψ(x, t) + γ (b− ϕ2(x, t) ψ(x, t))

∇ϕ(x, t) · n⃗ = 0, ∇ψ(x, t) · n⃗ = 0, x ∈ ∂D

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D ⊂ Rd̃, t > 0

(9)
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This system can be interpreted considering that ϕ and ψ reside in a substrate of
two substances A and B. Thus, A can react to produce ϕ and ϕ can degrade to form A
again. In this normalised version of the model, these rates correspond to the parameters
γa and γ, respectively. In contrast, B reacts to form ψ at rate γb. Also, two molecules
of ϕ can react with one molecule of ψ to form three molecules of ϕ at the reaction rate
of γ (autocatalysis), which describes the last terms in both expressions of equation. This
chemical reaction can be explained with the following equation [1]:

ϕ
γa−→←−
γ

A B
γb−→ ψ, 2ϕ+ ψ

γ−→ 3ϕ (10)

In this context, it is often useful and intuitively helpful in model building to express the
mechanism’s kinetics in schematic terms. We have designed the corresponding scheme of
the Schnakenberg model in Figure 7

Figure 7: Schematic representation of the activator–inhibitor mechanism in the Schnakenberg
system.
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2. Solution of the Reaction Diffusion System

2.1. Autonomous System of ODE

Previous equation (8) is a non-linear system of partial differential equations (PDE).
However, it is possible to look for constant solutions in x, such that solutions do not depend
on the position and, as a result, we get an autonomous system of ordinary differential
equation (ODE). 

ϕt(t) = f(ϕ(t), ψ(t))

ψt(t) = g(ϕ(t), ψ(t))
(11)

Let us assume there exists (ϕ0, ψ0) ∈ R+ × R+ with f(ϕ0, ψ0) = g(ϕ0, ψ0) = 0. This
represents the case where there is not interaction between the morphogen concentrations.
Thus, it is a stationary solution according to (11). Furthermore, since this solution does
not depend on space, it is a homogeneous solution, which will remain stationary for the
system of PDEs. As previously mentioned, Turing’s theory on pattern formation relies
on the preexistence of an asymptotically stable solution, making this a fundamental
concept.

Let us introduce first the notion of stability.

Definition 1. The equilibrium solution (ϕ0, ψ0) of equation (11) is said to be stable if for
each number ε > 0 we can find a number δ > 0 (depending on ε ) such that if (ϕ(t), ψ(t))
is any solution of equation (11) having ||(ϕ (0) , ψ (0)) − (ϕ0, ψ0)|| < δ, then the solution
(ϕ(t), ψ(t)) exists for all t ≥ 0 and ||(ϕ(t), ψ(t))− (ϕ0, ψ0)|| < ε for t ≥ 0.

With this in mind, we can define an asymptotically stable solution:

Definition 2. The equilibrium solution (ϕ0, ψ0) is said to be asymptotically stable if it
is stable and if there exists a number δ0 > 0 such that if (ϕ(t), ψ(t)) is any solution of
equation (11) having ||(ϕ (0) , ψ (0))− (ϕ0, ψ0)|| < δ0, then limt→+∞(ϕ(t), ψ(t)) = (ϕ0, ψ0).

It is possible to study the stability performing a linear stability analysis, linearizing
equation (11) around (ϕ0, ψ0) by means of Taylor’s formula, neglecting small terms:

ϕt = f(ϕ, ψ) = f(ϕ0, ψ0) + fϕ(ϕ0, ψ0)(ϕ− ϕ0) + fψ(ϕ0, ψ0)(ψ − ψ0) + ...

ψt = g(ϕ, ψ) = g(ϕ0, ψ0) + gϕ(ϕ0, ψ0)(ϕ− ϕ0) + gψ(ϕ0, ψ0)(ψ − ψ0) + ...
(12)

where fϕ denotes the partial derivative of f with respect to ϕ and so on.

Taking this into account, we can express approximately the equation (11) as follows:

ϕt(t)
ψt(t)

 ≈
fϕ(ϕ0, ψ0) fψ(ϕ0, ψ0)

gϕ(ϕ0, ψ0) gψ(ϕ0, ψ0)



ϕ(t)− ϕ0

ψ(t)− ψ0

 (13)
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Let us note that we now have a homogeneous linear system of ODEs with constant
coefficients. To simplify the analysis, we seek exponential solutions, even though the
equations are coupled through the matrix shown above.

To proceed, we introduce the vector notation:

w =

(
ϕ− ϕ0

ψ − ψ0

)
We know there exist solutions of the form:

w = eλtv

where λ is the eigenvalue of the matrix and v is the corresponding eigenvector. In this
way, we transform the problem into finding the eigenvalues and eigenvectors of the matrix
M :

M =

(
fϕ(ϕ0, ψ0) fψ(ϕ0, ψ0)
gϕ(ϕ0, ψ0) gψ(ϕ0, ψ0)

)
(14)

By solving the characteristic equation of this matrix, we obtain the eigenvalues λ, which
indeed determine the stability of the stationary solution (ϕ0, ψ0). If the real parts of all
eigenvalues are negative, the solution is asymptotically stable; if any of them is positive,
it is unstable, whereas if all of them have real part equal to zero, it is stable (although
not asymptotically stable). This analysis provides insight into the behavior of the system
near the stationary point and helps predict whether small perturbations will grow or
decay over time.

Given the role the constant solution of equation (11) has in Turing instability, it
is important to ensure that it is an asymptotically stable solution of the ODE.

Theorem 1. The critical point (0, 0) of a linear system
(
ϕ
ψ

)′

=M

(
ϕ
ψ

)
is asymptotically

stable if and only if Tr(M) < 0 y det (M) > 0.

Proof. The characteristic equation of M is given by

det(M − λI) = 0,

which can also be written as

λ2 − Tr(M)λ+ det(M) = 0,

Therefore, the roots of the characteristic equation are the eigenvalues λ1 and λ2 of
M :

λ1,2 =
Tr(M)±

√
Tr(M)2 − 4 det(M)

2
. (15)

For the critical point (0, 0) to be asymptotically stable, the real parts of both eigenvalues
λ1 and λ2 must be negative, given the solution of the system. As a consequence, since
the sum of the eigenvalues is the trace of M

λ1 + λ2 = Tr(M) < 0.

11



Moreover, the product of the eigenvalues is the determinant of M , hence

λ1λ2 = det(M) > 0.

so that both eigenvalues have negative real parts.

These conditions together (Tr(M) < 0 and det(M) > 0) ensure that both eigenvalues λ1
and λ2 have negative real parts, as visualizing equation (15), we have three possibilities
for the discriminant.

• Case 1: ∆ > 0: The roots λ1 and λ2 are real and distinct.

– If Tr(M) < 0 and det(M) > 0, both roots are negative.

• Case 2: ∆ = 0: The roots λ1 and λ2 are real and equal.

– If Tr(M) < 0, the only repeated root is negative.

• Case 3: ∆ < 0: The roots λ1 and λ2 are complex conjugates.

– The real part of the complex conjugate roots is Tr(M)
2

. If Tr(M) < 0, the real
part of both roots is negative.

Hence, we have proven that (0,0) is asymptotically stable if and only if Tr(M) < 0 and
det(M) > 0.

It should be noted that the discussion carried out in the proof, related to the eigenvalues,
also applies to the type of solutions we might encounter. The nature of the eigenvalues
significantly influences the form and behavior of equation (11) solutions. In the second
case of the proof, where the eigenvalues are real and equal, the solution includes linear
terms whereas when they are complex conjugates, the solution includes oscillatory terms.
Furthermore, the second case has two solution variants depending on if the matrix is
diagonalizable or not. Nevertheless, as we will see later, we are going to focus on the
case with real and distinct eigenvalues since this will be the most frequent case in our
framework.

Stability of an stationary solution is commonly analyzed using phase diagrams.
We show in Figure 8 the corresponding trajectory for the case of the autonomous system
associated to the Schnakenberg model shown in equation (9), where the constant solution
is ϕ0 = a + b and ψ0 = b/(a + b)2. We can see the asymptotic stability of the stationary
solution given a random initial condition point, hence the trajectory converges to the
critical point when time goes to infinity.

12



Figure 8: Phase diagram of the Schnakenberg system, for a = 0.126779, b = 0792366 and γ = 60.

2.2. General Linear System of PDE

In this first step, we are going to derive the solution of the general linear reaction diffusion
system, 

(
ϕt(x, t)
ψt(x, t)

)
=

(
a11 a12
a21 a22

)(
ϕ(x, t)
ψ(x, t)

)
+

(
Dϕ 0
0 Dψ

)(
∆ϕ(x, t)
∆ψ(x, t)

)
∇ϕ(x, t) · n⃗ = 0, ∇ψ(x, t) · n⃗ = 0, x ∈ ∂D

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D ⊂ Rd̃, t > 0

(16)

and analyse it for all the spatial dimensions.

It should be noted that we will refer to concentrations and solutions interchangeably by
abuse of language although they can be negative as we will actually see later. From now
on, we will denote the matrix associated with the concentration term as M :

M =

(
a11 a12
a21 a22

)
2.2.1 Spatial dimension one

Considering a one-dimensional domain D = [0, L], we can use the method of separation
of variables and taking into account the boundary conditions, we can try solutions of the
form:

ϕ(x, t) =
∞∑
n=0

pn(t) cos
(nπ
L
x
)

ψ(x, t) =
∞∑
n=0

qn(t) cos
(nπ
L
x
)

(17)

13



as they satisfy Neumann conditions since,

∂ϕ(x, t)

∂x
= −

∞∑
n=0

pn(t)
nπ

L
sin
(nπ
L
x
)

and thus we have that ∂ϕ(0,t)
∂x

= ∂ϕ(L,t)
∂x

= 0 where x ∈ [0, L].

Formally, if we substitute equations (17) into equation (16), we get that:

∞∑
n=0

(
p′m(t)
q′m(t)

)
cos
(nπ
L
x
)
=

∞∑
n=0

(
Dϕ 0
0 Dψ

)(
−
(
nπ
L

)2
pn(t)

−
(
nπ
L

)2
qn(t)

)
cos
(nπ
L
x
)
+

∞∑
n=0

M

(
pn(t)
qn(t)

)
cos
(nπ
L
x
) (18)

Then, moving the right term into the left,

∞∑
n=0

{(
p′n(t)
q′n(t)

)
−
[
−n

2π2

L2

(
Dϕ 0
0 Dψ

)
+M

](
pn(t)
qn(t)

)}
cos
(nπ
L
x
)
= 0

However, since the cosines are an orthogonal basis of L2[0, L], we have that every term
has to be zero:

(
p′n(t)
q′n(t)

)
=

[
−n

2π2

L2

(
Dϕ 0
0 Dψ

)
+M

](
pn(t)
qn(t)

)
∀n ∈ N (19)

where we will denote the matrix appearing in equation (19) asMn. This is an homogeneous
linear system of two ODEs, with solution of the form:(

pn(t)
qn(t)

)
= Anαn e

λ1n t + Bnβn e
λ2n t (20)

assuming that λ1n and λ2n are real and distinct eigenvalues of Mn and αn and βn are the
corresponding eigenvectors. The coefficients An and Bm are determined with the initial
conditions: (

ϕ(x, 0)
ψ(x, 0)

)
=

(
ϕ0(x)
ψ0(x)

)
=

∞∑
n=0

(
pn(0)
qn(0)

)
cos
(nπ
L
x
)

with
(
pn(0)
qn(0)

)
= Anαn +Bnβn

(21)

where we have expanded the initial data in the corresponding Fourier cosine series.

Thus, considering equations (19) and (21), the solution of this system is given
by: (

ϕ(x, t)
ψ(x, t)

)
=

∞∑
n=0

(
Anαne

λ1n t + Bnβne
λ2n t
)
cos
(nπ
L
x
)

(22)

14



Revisiting the previous discussion on the different cases we might have regarding the
eigenvalues, the solution obtained in equation (22) holds only when the eigenvalues are
real and distinct. We have different solutions for the rest of possibilities. However, this
case is considerably more likely to take place, specially considering the matrix Mn, in
which the diffusivity matrix (with Dϕ ̸= Dψ) dominates for high enough values of n
(it can be inferred from equation (41) below). In addition, in this case two associated
eigenvectors form a basis of R2. Therefore, we will focus in the case with real, negative
and distinct eigenvalues.

Although most of the references do not deal with the convergence in equation (22)
(as it is a common belief that in nature they converge), we will give our own proof at
least in a particular framework that is close to our main interest, as we will see later.

Proof of convergence in the case of M symmetric and a finite number of positive
eigenvalues, for D = [0, L]

Proof. Considering the initial conditions in equation (21) ϕ0, ψ0 ∈ L2[0, L], we trivially
have that

∑∞
n=0 p

2
n(0) < +∞, and

∑∞
n=0 q

2
n(0) < +∞. In addition, considering this initial

condition in equation (22) for a fixed value of n, we get that

An αn + Bn βn =

(
pn(0)
qn(0)

)
(23)

We aim to prove the convergence of the solution, which is equivalent to see that
ϕ(x, t), ψ(x, t) ∈ L2[0, L], ∀ t > 0. Therefore, from equation (22) we want to show:

∞∑
n=0

A2
n||αn||2 e2λ1nt < +∞

∞∑
n=0

B2
n||βn||2 e2λ2nt < +∞

(24)

We can simplify the previous equation as we have freedom to choose the eigenvectors
such that ||αn|| = ||βn|| = 1.

In addition, assuming the matrix M to be symmetric, we have that Mn is also
symmetric as it is only a modification of the diagonal of M . Therefore, the eigenvectors
αn and βn of Mn corresponding to the real eigenvalues λ1n and λ2n (which are already
normalised) are orthogonal.

Thus, we can express equation (23) as a system:

(
αn βn

)(An
Bn

)
=

(
pn(0)
qn(0)

)
(25)

Then, multiplying both sides by the transpose:

(
An Bn

) (
αn βn

)T (
αn βn

)(An
Bn

)
=
(
pn(0) qn(0)

)(pn(0)
qn(0)

)
(26)
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Since the eigenvectors are orthonormal, from previous expression we deduce that:

A2
n +B2

n = p2n(0) + q2n(0) (27)

Suppose that there exists a finite set I such that if n ∈ I, λ1n > 0 or λ2n > 0. Considering
again equation (24), we can split the sum, and use the fact that we can always find
a constant C such that 0 < e2λ1nt ≤ C and 0 < e2λ2nt ≤ C ∀n ∈ I, with C > 1.
Consequently:

∞∑
n=0

(
An e

λ1nt +Bn e
λ2nt
)2 ≤ 2

(
∞∑
n=0

A2
n e

2λ1nt +B2
n e

2λ2nt

)
≤

≤ 2
∑
m∈I

(
A2
ne

2λ1nt +B2
ne

2λ2nt
)
+ 2

∑
m/∈I

(
A2
n +B2

n

)
≤

≤ 2C

(
∞∑
n=0

A2
n +B2

n

)
= 2C

(
∞∑
n=0

p2n(0) + q2n(0)

) (28)

where the first inequality comes from the fact that if n /∈ I, its eigenvalues are negative,
hence the exponentials are smaller than one. In the second one, we have taken out C as
common factor since C > 1, and in the last one we have used equation (27). As those
sums in equation (28) converge, the solution also does for this case as we wanted to prove.

It should be noted that the assumption made in the proof regarding the finite number of
positive eigenvalues is a consequence of Turing’s conditions (which will be derived later).
Therefore, as we are studying pattern formation, this hypothesis does not suppose a
restriction in our framework.

Apart from the case where M is symmetric, there is also another one for which
the solution trivially converges and it is the one where the sum appearing in the initial
condition is finite. As a consequence, the solution also has finite terms in its sum (since
the cosines are an orthogonal basis of the Hilbert space L2[0, L]), hence it converges.

2.2.2 Spatial dimension two

Considering a two-dimensional rectangular domain D = [0, Lx]× [0, Ly] and analogously
as in the one spatial dimension problem (taking into account the boundary conditions in
both dimensions), we can try solutions of the form.

ϕ(x, y, t) =
∞∑
n=0

∞∑
m=0

pnm(t) cos

(
nπ

Lx
x

)
cos

(
mπ

Ly
y

)
ψ(x, y, t) =

∞∑
n=0

∞∑
m=0

qnm(t) cos

(
nπ

Lx
x

)
cos

(
mπ

Ly
y

) (29)

where x ∈ [0, Lx] and y ∈ [0, Ly].

In the same way, we have a similar system as in equation (19):(
p′nm(t)
q′nmt)

)
=

[
−
(
n2π2

L2
x

+
m2π2

L2
y

)(
Dϕ 0
0 Dψ

)
+M

](
pnm(t)
qnm(t)

)
(30)
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as well as for the initial condition, for which we get that(
ϕ(x, y, 0)
ψ(x, y, 0)

)
=

(
ϕ0(x, y)
ψ0(x, y)

)
=

∞∑
n=0

∞∑
m=0

(
pnm(0)
qnm(0)

)
cos

(
nπ

Lx
x

)
cos

(
mπ

Ly
y

)
(31)

hence the general solution for the two spatial dimensional problem is given by(
ϕ(x, y, t)
ψ(x, y, t)

)
=

∞∑
n=0

∞∑
m=0

(
Anmαnm e

λ1nm t + Bnmβnm e
λ2nm t

)
cos

(
nπ

Lx
x

)
cos

(
mπ

Ly
y

)
(32)

where λ1nm and λ2nm are eigenvalues of Mnm, αnm and βnm the corresponding eigenvectors,
and Anm and Bnm are determined with the initial conditions.

2.2.3 Spatial dimension three

Considering a three-dimensional domain given by the orthohedron D = [0, Lx]× [0, Ly]×
[0, Lz], we can carry out the same procedure as in previous two cases, with the difference
that now the matrix Mnmk is given by:

Mnmk =

[
−
(
n2π2

L2
x

+
m2π2

L2
y

+
k2π2

L2
z

)(
Dϕ 0
0 Dψ

)
+M

]
(33)

hence the solution for the three spatial dimensional problem in the orthohedron is(
ϕ(x, y, z, t)
ψ(x, y, z, t)

)
=

∞∑
nmk

(
Anmkαnmke

λ1nmk
t +Bnmkβnmke

λ2nmk
t
)
cos

(
nπ

Lx
x

)
cos

(
mπ

Ly
y

)
cos

(
kπ

Lz
z

) (34)

where λ1nmk
and λ2nmk

are eigenvalues of Mnmk, αnmk and βnmk the corresponding
eigenvectors, and Anmk and Bnmk are determined with the initial conditions.

Note that the proof carried out for the convergence in the one-dimensional domain holds
for both two and three spatial dimensions.

2.3. General Non-Linear Case

Once we have made the first step and already know the general solution for the linear
problem in every dimension at least in simple domains, it is crucial to study the non-linear
case, which represents better the processes that take place in nature:

(
ϕt(x, t)
ψt(x, t)

)
=

(
f(ϕ, ψ)
g(ϕ, ψ)

)
+

(
Dϕ 0
0 Dψ

)(
∆ϕ(x, t)
∆ψ(x, t)

)
∇ϕ(x, t) · n⃗ = 0, ∇ψ(x, t) · n⃗ = 0, x ∈ ∂D

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D ⊂ Rd̃, t > 0

(35)
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The latter actually exhibits a different behaviour from the linear case, which should
be noted as the general nonlinear model manifest certain properties (which occur in
nature) the linear theory does not predict. While we have formulas for linear theory that
provide insights into the behavior of nonlinear cases, concentrations grow unboundedly,
and can even be negative. However, for the non linear system, solutions do not
grow exponentially (bounded concentrations) and remain positive for positive data
(non-negative and bounded) as a consequence of the non-linear terms interaction.

Nevertheless there exist several proofs for different kinetics. For positive and regular
enough data, it is possible to prove in particular systems the existence of global bounded
solutions. However the proofs are complex and use overly elaborate reasonings that go
beyond our scope. For instance, there exist several theorems in [8] which proves it for
kinetics which are quite similar to the Schnakenberg case, for spatial dimensions 1,2 and 3.

It corresponds to the Brusselator model appearing in chemical reactions, where
the non linear terms are given by:

f(ϕ, ψ) = a− (b+ 1)ϕ+ ϕ2ψ

g(ϕ, ψ) = bϕ− ϕ2ψ.
(36)

which can be compared with the Schnakenberg functions prior to non-dimensionalization:

f(ϕ, ψ) = a− ϕ+ ϕ2ψ

g(ϕ, ψ) = b− ϕ2ψ.

In this way, [8] proves the existence of globally bounded solutions for equation (36) and
space dimension d̃ = 1, 2, 3.

It is also proven for the Gierer-Meinhardt model, proposed in the study of various
topics for developmental biology, for which the kinetics are given by:

f(ϕ, ψ) = ϕ2/ψ + ρ− µϕ
g(ϕ, ψ) = ϕ2 + ρ− νψ

where µ, ν, ρ, ρ are positive constants.

In [8] it is also proved for this case the positivity of the solution for d̃ = 1, 2, 3.

However, we have not found an specific reference for a proof explaining this behaviour for
the Schnakenberg model (which is the one we have focused on), despite it has attracted
a lot of attention in the last years.

Thus, we can conclude that both cases present advantages and disadvantages compared
to each other. Given the difficulties encountered in dealing with the nonlinear system, we
will use the exact solution of the linear system as an approximation for the solution of the
non-linear one in simple domains. Therefore, for instance in the one spatial dimensional
problem, we would get:(

ϕ(x, t)− ϕ0

ψ(x, t)− ψ0

)
≈

∞∑
n=0

(
Anαne

λ1n t + Bnβne
λ2n t
)
cos
(nπ
L
x
)

(37)
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3. Turing Instability

3.1. Necessary conditions for the Diffusion-Driven Instability

Turing instability arises from the reaction diffusion system analysed previously and it
takes place when, under certain conditions, the homogeneous steady state is stable to
small perturbations in the absence of diffusion but unstable to small spatial perturbations
when diffusion is present. Therefore, we are keen on determining which conditions are
necessary so that patterns arise as a consequence of diffusion.

For doing so, as we just have mentioned, we will consider the solutions of the
linearized system, hoping they will apply to the solutions of the general nonlinear system.
However, we will later see that this is not always true.

We are going to obtain such conditions for the one-dimensional case (we will see
later they also hold for the other spatial dimensions). For doing so, we are going to
study a particular case of (22), considering Bn = 0. This is, approximate solutions for
non-linear system of the form [9]:(

ϕ(x, t)
ψ(x, t)

)
=

∞∑
n=0

(
an
bn

)
eλn t cos

(nπ
L
x
)

(38)

Note that, if Re(λn) is negative for all n, the perturbations tend to decay exponentially
quickly, whereas if Re(λn) is positive for any value of n, then concentrations in equation
(38) will grow exponentially quickly and, as a consequence, the homogeneous steady
state turns to be linearly unstable.

With all this in mind, replacing expression (38) into the linearization of (35) for
one spatial dimension,

0 =

(
λn +Dϕk

2
n − fϕ(ϕ0, ψ0) −fψ(ϕ0, ψ0)

−gϕ(ϕ0, ψ0) λn +Dψk
2
n − gψ(ϕ0, ψ0)

)(
an
bn

)
(39)

where kn = nπ
L

.

Previous matrix equation has a non-trivial solution, i.e,
(
an
bn

)
̸=
(
0
0

)
when the

determinant is zero. In the sequel, it is usual to write fϕ instead of fϕ(ϕ0, ψ0) and so on,
to lighten the presentation. In this way, the following expression must be satisfied:

λ2n+λn
(
(Dϕ +Dψ) k

2
n − fϕ − gψ

)
+DϕDψk

4
n−k2n (Dϕgψ +Dψfϕ)+fϕgψ−fψgϕ = 0 (40)

Denoting h2(k) = DϕDψk
4
n − k2n (Dϕgψ +Dψfϕ) + fϕgψ − fψgϕ, we get that

λn± =
fϕ + gψ − (Dϕ +Dψ)k

2
n ±

√
(fϕ + gψ − (Dϕ +Dψ)k2n)

2 − 4h(k2n)

2
(41)

19



Previous equation (41) is known as dispersion relation and, as we will see, it can be very
useful, in the sense that it gives information related to which modes will contribute to
the pattern (depending on the sign of the corresponding eigenvalues).

According to equation (41) and considering the case where there is no spatial
dependence, the stationary solution must be stable. Thus, in the case where there is no
diffusion or spatial variations, Dϕ = Dψ = kn = 0,

λn± =
fϕ + gψ ±

√
(fϕ + gψ)

2 − 4h(0)

2
(42)

As it was mentioned before, for the homogeneous steady state (ϕ0, ψ0) to be linearly
stable in the absence of any spatial effects, we need the real parts of both eigenvalues to
be negative, Re(λn±) < 0 since in this case, the perturbation goes to zero when t→ +∞.
For this, the two following conditions must be satisfied according to Theorem 1

fϕ + gψ < 0 (43)

h(0) = fϕgψ − fψgϕ > 0 (44)

Including now diffusion, Dϕ, Dψ and kn are non-zero values. In this case, Re(λn+)
is required to be positive for at least one n, so that the steady state is unstable to
spatial disturbances as regarding equation (43), fϕ + gψ − (Dϕ +Dψ)k

2
n < 0 , Re(λn−) is

always negative (considering previous conditions). Therefore, we will have the instability,
according to equation (41) when h(k2n) < 0 (same reasoning as in the previous case).
Expanding the whole expression,

DϕDψk
4
n − k2n (Dϕgψ +Dψfϕ) + fϕgψ − fψgϕ < 0 (45)

By solving the corresponding equality for k2n, we get

k2n± =
Dϕgψ +Dψfϕ ±

√
(Dϕgψ +Dψfϕ)

2 − 4DϕDψ (fϕgψ − fψgϕ)
2DϕDψ

(46)

hence we can divide R in three different regions: (−∞, k2n−),(k2n−, k2n+) and (k2n+,+∞).
Since the expression is positive in the first and in the third one (as k4n is the dominant
term), it follows that (k2n−, k

2
n+) is the region of interest, where h(k2n) is negative (taking

into account the equation (45) is biquadratic and convex). Therefore:

k2n− < k2n < k2n+ (47)

Note that k2n− and k2n+ are real (by its definition). In addition, considering equation (46)
we can see that

(Dϕgψ +Dψfϕ)
2 − 4DϕDψ (fϕgψ − fψgϕ) > 0
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Moreover, k2n+ has to be positive, since it is the square of a real value, so according to
equation (46),

Dϕgψ +Dψfϕ > 0

However, as fϕgψ − fψgϕ > 0 considering equation (44), the previous inequality system
can be simplified to

Dϕgψ +Dψfϕ > 2
√
DϕDψ

√
(fϕgψ − fψgϕ) > 0 (48)

Summarizing, the conditions needed for a Turing instability are given by equations (43),
(44), (47) and (48). The first two conditions take into account the solution stability
with time, such that the spatial patterns do not change in time, whereas the other two
guarantee the instability to spatial perturbations. Once we have a given configuration
and the space is fixed, the patterns do not change.

The preceding process allows us to generate spatial patterns under various conditions
imposed, given two morphogen concentrations, following equation (16) We collect here
again these conditions:

fϕ + gψ < 0 fϕgψ − fψgϕ > 0

k2n− < k2n < k2n+ Dϕgψ +Dψfϕ > 2
√
DϕDψ

√
(fϕgψ − fψgϕ) > 0

(49)

It should be reminded that partial derivatives of f and g are evaluated at the critical
point (ϕ0, ψ0).

We have carried out this derivation for the one-dimensional linear problem. It is
worth noting that we have the same conditions for two and three spatial dimensions,
modifying respectively k2n+ k2m and k2n+ k2m+ k2k instead of k2n and changing the notation
of the eigenvalues to λnm or λnmk.

Remark 1. Considering expression (38) the dominant contributions as t increases are
those in which Re(λn) > 0 since, as it has been mentioned before, the other modes tend to
zero exponentially. In addition, in a finite domain, the bounded interval given in equation
(47) should have discrete values of kn.

Hence, we can rewrite equation (38) for large enough values of t as:(
ϕ(x, t)
ψ(x, t)

)
≃

n+∑
n−

(
an
bn

)
eλnt cos

(nπ
L
x
)

(50)

Note that this sum converges as it has a finite number of elements.

As a matter of fact, it is possible to understand the basis of the activator-inhibitor
mechanism in which the Turing instability is based, introduced in section 1, taking into
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account the conditions we have just obtained.

According to the equations (43) and (48), we can conclude that the derivatives
fϕ(ϕ0, ψ0) and gψ(ϕ0, ψ0) must be of opposite sign, since it follows from the first one that
both of them have to be either negative or have opposite sign, but the latter discards
the second possibility as the diffusion coefficients are positive. In addition, from the
second inequality, we can see that fψ(ϕ0, ψ0)gϕ(ϕ0, ψ0) < 0 in order to compensate the
fact that fϕ(ϕ0, ψ0)gψ(ϕ0, ψ0) < 0. This leave us with four different combinations for the
signs corresponding to fψ(ϕ0, ψ0), gϕ(ϕ0, ψ0), fψ(ϕ0, ψ0) and gϕ(ϕ0, ψ0). Thus, we have
two options for the cross-terms, which are either fψ(ϕ0, ψ0) < 0 and gϕ(ϕ0, ψ0) > 0 or
fψ(ϕ0, ψ0) > 0 and gϕ(ϕ0, ψ0) < 0.

Without loss of generality, we can consider the case where fϕ(ϕ0, ψ0) > 0 and
gψ(ϕ0, ψ0) < 0. Therefore we have two possibilities. In the first one, where fψ(ϕ0, ψ0) < 0
and gϕ(ϕ0, ψ0) > 0, we can see that ϕ is the activator as gϕ(ϕ0, ψ0) > 0, and is also
self-activating (fϕ(ϕ0, ψ0) > 0). It is important to take into account that, as we are
interested in pattern formation, the inhibitor has to diffuse more quickly than the
activator. However, ψ is the inhibitor as fψ(ϕ0, ψ0) < 0 and is also inhibiting itself
(gψ(ϕ0, ψ0) < 0). On the contrary, considering the other case, ψ turns to be the activator
fψ(ϕ0, ψ0) > 0 although it is self-inhibiting. This two different possibilities we have just
explained, can be also understood intuitively in the following diagram:

Figure 9: Activator-Inhibitor mechanism for the cases explained

Another difference between both cases is that in the first one, the concentrations
follow the same pattern regarding their growths, this is, we have both concentrations
either at high or at low densities in the same region as the pattern develops. However, in
the second case their behaviour is just the opposite, since where ϕ is at a high density, ψ
is low, and vice versa.
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3.2. Schnakenberg Reaction-Diffusion System

There is a wide variety of systems that have been used in studies of spatial patterning.
Most of them are based on chemical reaction-diffusion system. As it was mentioned
previously, Schnakenberg model stands out, which is commonly expressed in the following
dimensionless reaction diffusion system:

ϕt = ∆ϕ+ γ
(
a− ϕ+ ϕ2v

)
= ∆ϕ+ f(ϕ, ψ)

ψt = d∆ψ + γ
(
b− ϕ2ψ

)
= d∆ψ + g(ϕ, ψ)

(51)

with γ > 1, d > 1, a > 0 and b > 0. In this case, the homogeneous steady state solution
turns out to be

ϕ0 = a+ b, ψ0 =
b

(a+ b)2
. (52)

as the unique solution to f(ϕ, ψ) = g(ϕ, ψ) = 0.

In addition, we can analyse the conditions derived in equation (49), given that, at
the steady state:

fϕ(ϕ0, ψ0) = γ
b− a
a+ b

, fψ(ϕ0, ψ0) = γ (a+ b)2 > 0,

gϕ(ϕ0, ψ0) = γ
−2b
a+ b

< 0, gψ(ϕ0, ψ0) = −γ (a+ b)2 < 0,

fϕ(ϕ0, ψ0)gψ(ϕ0, ψ0)− fψ(ϕ0, ψ0)gϕ(ϕ0, ψ0) = γ2 (a+ b)2 > 0.

Therefore, Turing conditions applied to the Schnakenberg model turn out to be:

fϕ + gψ < 0⇐⇒ a >
ϕ0

2

(
1− ϕ2

0

)
dfϕ + gψ > 2

√
d
√
fϕgψ − fψgϕ ⇐⇒ a <

ϕ0

2

(
1− 2ϕ0√

d
− ϕ2

0

d

)
,

(53)

where equation (44) trivially holds and, jointly with b = ϕ − a, the conditions given in
equation (48) are redundant. In addition, equation (47) must be also satisfied in order
to have modes with positive eigenvalues.

Therefore, we eventually have two boundary curves in the (a, b)−plane which bound
the Turing space. As the lower curve does not depend on the diffusion parameter d,
it is possible to change the size of the Turing space directly by modifying the value of
d, and can even make it disappear. Actually, once Turing’s conditions depending on
a and b are satisfied, their role turns out to be more like a scaling problem, affecting
the concentration values without significantly altering the pattern structure (see [1]).
In contrast, γ and d have a more significant impact on pattern shape. The standard
requirement that morphogen diffusivities should ideally be considerably different, can be
inferred from the equation (53). In this case, the greater the difference in diffusion rates
(higher value of d), the wider the Turing space, hence patterns emerge much more easily.
Furthermore, γ comes out as a common factor in equation (46) playing a tuning role for
the range of modes performing in the solution.
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The behaviour mentioned previously can be ilustrated in the following Figures 10,
11, 12 and 13 where, given a = 0.126779 and b = 0.792366, we can study the dependence
of the possible n performing in Turing’s instability, with γ and d for the two-dimensional
system.

Figure 10: Region with the possible values of
n as a function of γ

Figure 11: Number of possible n performing
in Turing’s instability as a function of γ.

Figure 12: Region with the possible values of
n as a function of d

Figure 13: Number of possible n performing
in Turing’s instability as a function of d

As far as for the dependence with respect to γ is concerned, note that the number
of modes with positive eigenvalues grow exponentially initially and then they have
a linear correlation. In contrast, despite this range of n also increases exponentially
initially with d, it stabilizes asymptotically for a given value of d. This dependence is
not particular of this case, but the general behaviour of the solution with these parameters.

It is important to notice that the previous analysis corresponds only to the linear
case. Nevertheless, as it has already been mentioned before, there is a huge difference in
the non-linear system, arising from the non-linear terms. These non-linear interactions
are the responsible of the finite amplitude in the patterns (which indeed makes the model
chemically plausible). Moreover, non-linear equations can cause the excitation of higher
modes, in the sense that, for instance, quadratic terms give

cos
(nπ
L
x
)2

=
1

2

(
1 + cos

(
2nπ

L
x

))
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Thus, higher modes can perform in the solution, and its contribution can be determined
from the coefficients of the Fourier expansion in equation (22). Although in the linear
approximation concentrations grow unbounded and can even be negative it gives an
important hint of what happens in the non-linear case.

4. Numerical Simulations

In this section we are going to analyse and compare different examples for one, two and
three dimensions, including both linear and non-linear problems. In particular, we will
explore the dependencies of the solution with respect to all the parameters involved.

4.1. MATLAB programs

For our study, we have carried out an extensive numerical experimentation work, by
implementing several functions in MATLAB R2023b. Most of them are based on pdepe
and solvepde, tools which solve systems of PDEs specified in a PDEModel. The former,
for the one-dimensional domain, uses the ode15s solver for time integration (for solving
stiff ODE), whereas the latter, for the two and three spatial dimensions, is based on the
finite element method (FEM). We had to provide as input in both programs the domain
D, the boundary conditions of the problem, the initial conditions, as well as specify both
PDEs. After meshing the domain, the programs solved the problem for different values
of time, taking into account the model introduced, to eventually plot the solution and
visualize the pattern.

The difficult part of FEM in spatial dimension 2 and 3 is drawing the domain
(specially if it is not a simple one) and generating its mesh. Despite MATLAB has his
own commands for simple cases, the use of PDE toolboox and STL files (for two and
three spatial dimensions, resp.) is required for more complex geometry. Let us recall
that STL is a file format widely used for 3D printing. In general, we have used domains
with simple geometries (square, cube). As an example, we have included at the end an
example with a more complicated 3D geometry (a cat).

We have combined these two programs with the study of the modes whose eigenvalues
were positive, once the matrix was defined, so that we could analyse more efficiently the
simulations. In addition, we have also created several programs to study the dependence
of the solution with respect to the different parameters, plotting the values of n with
positive eigenvalues as a function of such parameters. From all these programs, we have
carried out all the simulations required for our project. In the appendix we have included
a couple of representative examples of the use of both comands.
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4.2. Spatial dimension one

4.2.1 Linear Problem

In this section we are going to analyse and compare different cases for the one dimensional
linear domain problem. The problem to be addressed is the following:



(
ϕt(x, t)
ψt(x, t)

)
=M

(
ϕ(x, t)
ψ(x, t)

)
+

(
Dϕ 0
0 Dψ

)(
ϕxx(x, t)
ψxx(x, t)

)
ϕx(0, t) = ϕx(L, t) = 0, ψx(0, t) = ψx(L, t) = 0

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D = [0, L] ⊂ R, t > 0

(54)

In the beginning we are going to consider the matrix

M =

(
0.5 1
−0.55 −1

)
(55)

with Dϕ = 1 and Dψ = 10, for which Turing conditions are satisfied (this can be verified
by replacing this values in equation (49)). Indeed, we will keep the value Dϕ = 1 in all
the examples for simplicity. As for the domain is concerned, we are going to assume
L = 10.

The only mode with positive eigenvalue for these parameters is n = 1. Recalling
the notation of equation (22), the eigenvalues for this mode are λ11 and λ21 where the
corresponding eigenvectors are α1 = (α11, α21) and β1 = (β11, β21). This is the notation
we will use in what follows.

Without additional preamble, the values obtained in this case are λ11 =
1.4309e − 01, α1 = (9.6824e − 01, −2.5000e − 01) for the first eigenvalue, and
λ21 = −1.7287e + 00, β1 = (−4.2496e − 01, 9.0520e − 01) for the second one. As far as
we know, this is the mode that is going to dominate, and thus will get selected by letting
time increase.

Once we already have all the parameters fixed, we can study the dependence of
the solution with respect to the initial condition. The simplest case is the one where we
have constant initial conditions, this is, (ϕ(x, 0), ψ(x, 0)) = (ϕ̂0, ψ̂0). In this case, we can
replace it into equation (22), and we get that(

ϕ̂0

ψ̂0

)
= A0

(
α10

α20

)
+B0

(
β10
β20

)
as the cosines are an orthogonal basis of L2[0, L]. Since the eigenvectors also form a
basis, we can express the initial condition as a linear combination of them.
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Furthermore, we can select α0 as the initial condition:(
ϕ̂0

ψ̂0

)
= α0 =

(
α10

α20

)
so that A0 = 1 and B0 = 0, hence the solution is given by(

ϕ(x, t)
ψ(x, t)

)
=

(
α10

α20

)
eλ10 t (56)

Eventually, it is possible to study both time and space behaviour of the solution:

Figure 14: Concentrations over time for system (54) with matrix (55), Dψ = 10 and the constant
initial conditions.

Figure 15: Concentrations over space for system (54) with matrix (55), t = 50, Dψ = 10 and the
constant initial conditions.
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We can see in Figure 14 what we expected theoretically from equation (56). Since the
eigenvalue for n = 0 is negative (λ10 = −1.3819e − 01), the solution tends to zero with
time (the constant asymptotically stable solution for the autonomous system) and it
does not depend on space, given the initial condition. Thus, if we consider higher values
of t, concentrations would be closer to zero.

Note that we have obtained negative concentration values, which has no physical
sense. Although this show a clear limitation in linear theory, this approximation is
useful to understand how patterns arise, as well as their dependence with the parameters
involved in the system.

We can increase the complexity, analysing now non-constant initial conditions; for
instance (ϕ(x, 0), ψ(x, 0)) = (3 cos

(
2π
10
x
)
,−7 cos

(
2π
10
x
)
). Analogously as in the previous

case, since the cosine form a basis, we can express equation (22) considering only the
term corresponding to n = 2 (fixed in the initial condition).(

ϕ(x, t)
ψ(x, t)

)
=

[
A2

(
α12

α22

)
eλ12 t +B2

(
β12
β22

)
eλ22 t

]
cos

(
2π

10
x

)
(57)

Furthermore, as it has been explained previously, the coefficients of the initial
condition terms can be expressed as a combination of the corresponding eigenvectors,
which lead us to determine the values of A2 and B2. If we take into account that
λ12 = −6.0805e−03 and λ22 = −4.8365e+00, and also α2 = (9.9386e−01,−1.1061e−01),
β2 = (−1.9833e−01, 9.8013e−01), we get that A2 = 1.6300e+00 and B2 = −6.9579e+00.

The numerical solution can be seen graphically in Figure 16 together with the
analytical solution of equation (57) for t = 100.

Figure 16: Concentrations over space for system (54) with matrix (55), where t = 100, L = 10,
Dψ = 10 and the initial condition mentioned before, as well as the corresponding analytical
solution in equation (22) with n = 2.
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As far as for the spatial dependence is concerned, we can see in Figure 16 that there are
oscillations with an amplitude of 0.8 which actually decrease for higher values of t (since
both eigenvalues are negative). We can also observe the cosine behaviour with two nodes
performing in equation (57). Furthermore both numerical and analytical solutions for
the two concentrations overlap completely. In fact, the maximum relative error for each
one is of the order of O(10−4).

It is remarkable that the solution also tends to zero with time as expected, although in a
slower way for ϕ than in the previous case since in this case λ12 is very close to zero (it
is not a too negative value).

Once we have already studied the most straightforward examples, we can try with
general initial conditions since every arbitrary function ϕ(x, 0), ψ(x, 0) ∈ L2[0, L] can be
expressed in its Fourier series of cosines in the following way

ϕ(x, 0) =
ρ0
2

+
∞∑
n=1

ρm cos
(nπ
L
x
)

where ρn =
2

L

∫ L

0

ϕ(x, 0) cos
(nπ
L
x
)

ψ(x, 0) =
δ0
2
+

∞∑
n=1

δn cos
(nπ
L
x
)

where δn =
2

L

∫ L

0

ψ(x, 0) cos
(nπ
L
x
) (58)

Furthermore, according to Bessel Inequality, if we have a function which is
square-integrable, ρn −→ 0 and δn −→ 0 for n −→ +∞, see [2].

For instance, we can consider an initial condition given by (ϕ(x, 0), ψ(x, 0)) = (x2, x3),
which does not isolate any value of n in the sum of equation (22). In this case, the
solution has now contributions from every value of n although for higher t it will be
essentially dominated by the term corresponding to n = 1 since it is the only one which
has a positive eigenvalue.

We have studied the numerical solution, with the corresponding analytical solution
taking into account only the dominant term (n = 1) of the sum. When t is small, there
are more contributions apart from n = 1, hence the analytical solution in which only
performs n = 1, does not match with the numerical solution. Nevertheless, this changes
if we study a high enough value of t (e.g, t = 100) for which it is useful to normalise
both solutions since they are of the order of O(106). Therefore, we show in Figure 17 the
results, dividing both concentrations by their maximum (of the order of O(e14)).

In this case, the mode n = 1 becomes the main contribution to the solution since t
is high enough for the rest to be neglected, hence we can see the cosine behaviour of
one node (n = 1). We have gained more sensibility with the normalisation, where the
absolute errors are of the order of O(10−7) or even smaller. Considering the overlap in
Figure 17 between both solutions and the corresponding errors, we can say that they are
practically equivalent and the pattern has the expected form.
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Figure 17: Concentrations normalised over space for system (54) with matrix (55), t = 100,
L = 10, Dψ = 10 and the general initial condition, with its corresponding analytical solution in
equation (22) for n = 1, also normalised.

Once we have studied the dependence of the solution with respect to the initial
condition, we could ask ourselves how it would behave if we change other parameters.
Firstly, we are going to see the dependence with respect to the diffusivities, by
analysing the previous example, but now with Dψ = 100. In this case, we have
positive eigenvalue for n = 1 (λ11 = 3.5229e − 01, λ21 = −1.0820e + 01) and for
n = 2 (λ12 = 9.1659e − 02, λ22 = −4.0464e + 01). The corresponding eigenvectors
are α1 = (9.98806e − 01,−4.8952e − 02), β1 = (−8.8759e − 02, 9.9605e − 01),
α2 = (9.99907e− 01,−1.3555e− 02) and β2 = (−2.4641e− 02, 9.9969e− 01) respectively.

In this case, we have an additional mode that is going to perform in the solution,
thus it will be a little more complex as we have two main contributions. However, for
high enough values of t, the one whose eigenvalue is the highest, is the one which is
going to dominate. Considering only these two terms (neglecting all whose eigenvalues
are negative), we can express the analytical solution as:(

ϕ(x, t)
ψ(x, t)

)
≈ A1

(
α11

α21

)
eλ11 t cos

( π
10
x
)
+ A2

(
α12

α22

)
eλ12 t cos

(
2π

10
x

)
(59)

It is possible to plot the numerical solution for this case together with the analytical
one given by equation (59), both normalised dividing by the maximum (of the order of
O(e35)):
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Figure 18: Concentrations normalised over space for system (54) with matrix (55), t = 100,
L = 10, Dψ = 100 and the general initial condition, with its corresponding curve where only
n = 1 and n = 2 are taken into account, also normalised.

We can see that the curves apparently overlap for each concentration. Furthermore, if we
consider the maximum error in both cases, we get that they are of the order of O(10−12)
or even smaller, which is quite satisfactory. In addition, we can also see from Figure 18
that the dominating term of the solution is the one whose eigenvalue is higher, this is,
n = 1, just as we anticipated before.

The solution has also an important dependence with the length L of the one-dimensional
domain, since the number of n which have positive eigenvalues, depends strongly on this
parameter, as we can see in equations (19) and (47), where kn = nπ

L
. Moreover, as we

have seen in the previous examples, the behaviour of the solution depends mainly on
these particular values of n in the sense that more values of n with positive eigenvalues
lead to a more complex solution, although in the end the solution will be dominated by
the mode whose positive eigenvalue is higher. In the following table, we have studied
those values of n which have a positive eigenvalue for different values of L and Dψ to
analyse its dependence (this is, the dependence of the solution) with respect to these two
parameters.

Dψ / L 1 5 10 15 20 25 100
10 - - 1 {1, 2} {1, 2, 3} {1, 2, 3, 4} {4, ..., 19}
100 - 1 {1, 2} {1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4, 5} {2, ..., 22}

Table 1: Values of n which have positive eigenvalues for different values of Dψ and L for system
(54) with matrix (55), keeping fixed Dϕ = 1.

At first sight, it seems that the number of n which have positive eigenvalues, this
is, that contribute to the solution, increases with L and Dψ. This behaviour can be
particularly analysed by plotting these specific values of n versus L, which has been
carried out in Figure 19.
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Figure 19: Values of n versus L for different values of Dψ (10,100 and 1000), for system (54)
with matrix (55). The ones that have positive eigenvalues are inside the region delimited by the
lines of the same colour.

We can see in Figure 19 that both the upper and lower limits for n have a linear
behaviour. From this plot, we can conclude that these values of n increase with L. This
dependence is not particular of this case, but happens in general as we can expect from
equation (47) where kn = nπ

L
, being the bounds of kn fixed by the other parameters. As

a consequence, if L is increased, the interval of possible n is wider.

Moreover, this range of n also increases for higher values of Dψ. This dependence
can be seen in Figure 20 for a fixed value of L.

Figure 20: Values of n versus Dψ for L = 10, for system (54) with matrix (55) . Those that have
positive eigenvalues are inside the region delimited by both curves.
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In this plot, we can see how the number of n with positive eigenvalues grows initially
exponentially with Dψ although this behaviour gets attenuated for approximately
Dψ ≈ 50 to be stabilized asymptotically at Dψ ≈ 100. This means that, in this case,
the variation is performed in the initial range of (0-50). In addition, from Dψ ≈ 100
onwards, no matter how much the value of Dψ is increased, that the number of n which
have positive eigenvalue will not change. This behaviour takes place in general for every
value of L (as well as for other values of the other parameters), although it changes
quantitatively being the variation higher for higher values of L. Furthermore, we have
also seen that the concentrations increase earlier in time for higher values of L.

All in all, the complexity of the pattern depends mainly on the number of n that
have positive eigenvalues which, as we have seen, has a direct correlation with the initial
condition as well as with the values of L and the diffusivities.

We can also study a different matrix M , to see if simulations also match theoretical
predictions.

M =

(
10 −13
24 −30

)
(60)

In this case, we will also consider L = 10, Dϕ = 1 and Dψ = 10, for which the
range of values of n that have positive eigenvalue is {2, 3, ..., 8}. The highest eigenvalue
corresponds to n = 5, hence we expect it to dominate in the general case for time high
enough.

Nevertheless, if we fix a value of n with the initial condition as it has been done
previously, for instance with (ϕ(x, 0), ψ(x, 0)) = (3 cos

(
π
L
x
)
,−7 cos

(
π
L
x
)
), we observe an

unexpected behaviour of the numerical solution. For smaller values of t (for instance,
t = 10), only n = 1 performs in the solution as expected, as this is the unique mode fixed
in the initial condition. However, if we let the system evolve until t = 14, we observe the
following pattern:

Figure 21: Concentrations over space for system (54) with matrix (60), where L = 10, Dψ = 10,
t = 14, and the initial condition is given by (ϕ(x, 0), ψ(x, 0)) =

(
3 cos

(
π
Lx
)
,−7 cos

(
π
Lx
))

.
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In Figure 21, there are unexpected contributions apart from n = 1, and its characteristic
cosine form with only one node begins to be distorted. If we study a higher value of t, for
instance, t = 25, we observe the following pattern, where now n = 5 is the dominant term:

Figure 22: Concentrations over space for system (54) with matrix (60), where L = 10, Dψ = 10,
t = 25 and the initial condition is given by (ϕ(x, 0), ψ(x, 0)) =

(
3 cos

(
π
Lx
)
,−7 cos

(
π
Lx
))

.

This does not agree with the analytical solution, according to which the solution
tends to zero with time as n = 1 does not have a positive eigenvalue. Our interpretation
is that this could be due to the computer arithmetic. Despite the initial condition
includes only the term cos

(
πx
10

)
, MATLAB might carry out the program considering an

initial condition of the form cos
(
πx
10

)
+ O(ϵ) cos

(
5πx
10

)
where ϵ is of the order of O(10−16)

(machine epsilon). Previous two initial conditions are numerically the same. However,
if we let the system evolve in time, the positivity of the eigenvalue for n = 5 makes its
contribution visible at a certain time, to end up being the main one for higher values of t.

Following this interpretation, it is possible to consider an analytic solution in which both
terms n = 1 and n = 5 contribute. The coefficient accompanying the term corresponding
to n = 5 is the ratio of the numerical solution to the exponential eλ15t multiplied by the
eigenvector of the analytical one, for a fixed time. This factor is of order O(10−14).

Therefore, we can now plot both numerical and the analytical solution normalised
with the correction made. This is shown in Figure 23.
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Figure 23: Concentrations over space for system (54) with matrix (60), where L = 10, Dψ = 10,
t = 25 and the initial condition is given by (ϕ(x, 0), ψ(x, 0)) = (3 cos

(
π
Lx
)
,−7 cos

(
π
Lx
)
). We

have plotted it together with the interpretation given to the numerical difficulties found.

The overlap between both solutions in Figure 23 shows that both solutions are quite
similar, hence we might be in the right track.

4.2.2 Non-Linear Problem

In this section, we will study the non-linear case for the one-dimensional problem:



(
ϕt(x, t)
ψt(x, t)

)
=

(
f(ϕ, ψ)
g(ϕ, ψ)

)
+

(
Dϕ 0
0 Dψ

)(
ϕxx(x, t)
ψxx(x, t)

)
ϕx(0, t) = ϕx(L, t) = 0, ψx(0, t) = ψx(L, t) = 0

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D = [0, L] ⊂ R, t > 0

(61)

As it has been mentioned before, the linear theory has its limits, and this becomes evident
in the following simulations, with the appearance of modes which are not expected to
dominate, given the form of the initial condition. Another important difference, as we
will see, are the concentration bounds. These differences with the linear case arise from
the second order terms neglected in the linearization (12).

We are going to focus on the Schnakenberg system, where for instance, the non-linear
terms are given in this case by

f(ϕ, ψ) = 100− 1000ϕ+ 1000ϕ2ψ g(ϕ, ψ) = 900− 1000ϕ2ψ
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for which the constant solution is (ϕ0, ψ0) = (1, 0.9). Thus, the linearization matrix M
is the following:

M =

(
800 1000
−1800 −1000

)
(62)

We can firstly study in this case the solution dependence with respect to L and Dψ. This
is shown in Table 3:

Dψ / L 0.25 0.5 1 5 10
10 - 3 {5, 6, 7} {23, ..., 35} {46, ..., 71}
100 {1, 2} {1, 2, 3, 4} {2, ..., 8} {6, ..., 44} {12, ..., 88}

Table 2: Values of n which have positive eigenvalues for different values of Dψ and L for system
(61) with matrix (62), keeping Dϕ = 1 fixed.

We can see a similar dependence of these particular values of n with L and Dψ, as in
Table 1, in the sense that the range of values of n with positive eigenvalues increases
with both parameters.

We can also analyse the behaviour of the solution with respect to the initial
conditions, as we did in the linear case. For instance, we can choose
(ϕ(x, 0), ψ(x, 0)) =

(
ϕ0 + cos

(
3π
L
x
)
, ψ0 + cos

(
3π
L
x
))

for L = 0.25, Dϕ = 1 and
Dψ = 10, (i.e, there is no n with positive eigenvalue), and plot the solution against both
space and time (Figures 24 and 25).

Figure 24: Concentrations over space for system (61) with matrix (62), L = 0.25, Dψ = 10,
t = 10 and the initial condition explained before.

We can see in Figure 24 that there is no spatial pattern. This is what we expected
since the constant solution is only perturbated with n = 3 and, as stated above, none
of the values of n have positive eigenvalue. Moreover, since the constant solution is
asymptotically stable, the perturbated concentrations quickly tend to it, as it can be
seen in Figure 25.
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Figure 25: Concentrations over time for system (61) with matrix (62), L = 0.25, Dψ = 10, t = 10
and the initial condition explained before.

If we consider L = 0.5 with the same initial condition, we would see that the
main contribution corresponds to n = 3 since it is the only value of n with a positive
eigenvalue for this particular L apart from the fact that we have fixed this value in the
initial condition. This is the same as in the linear case, so we do not show the results in
order to not to be repetitive.

However, for L = 1 and the same initial condition, we have a different result from
the linear case, where the main contribution was n = 3 (fixed in the initial condition).
The solution for the non-linear case is shown in Figure (26):

Figure 26: Concentrations over space for system (61) with matrix (62), L = 1, Dψ = 10, t = 10
and the initial condition (ϕ(x, 0), ψ(x, 0)) =

(
ϕ0 + cos

(
3π
L x
)
, ψ0 + cos

(
3π
L x
))

.
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We can see that the main contribution to the solution in Figure 26 is the term
corresponding to n = 6 as there are six nodes. Despite fixing n = 3 in the initial
condition, it is n = 6 the one that dominates. This, as it has been explained before,
arises from the neglection of the second order terms in the linearisation of the problem.
Although these terms are small, the highest positive eigenvalue corresponds to n = 6,
hence it dominates for sufficiently high values of t.

It is possible to study also a general initial condition as in the linear case, where
(ϕ(x, 0), ψ(x, 0)) = (x2, x3), for L = 1:

Figure 27: Concentrations over space for system (61) with matrix (62), L = 1, Dψ = 10, t = 10
and the general initial condition explained before.

Again, we can observe in Figure 27 that the dominant term is n = 6. This behaviour
matches with predictions made by linear theory, as no mode is fixed in the initial
conditions. Note that Figures 26 and 27 are identical even though the initial conditions
were completely different, hence the importance of the non-linear terms stands out.

From the results obtained for the non-linear case, we can conclude that the differences
with respect to the linear one are quite evident. Note in the last case the presence of
unexpected modes and the fact that concentrations are positive and bounded. Thus,
although linear theory provides insight into what one might expect in the non-linear case,
its applicability is limited. This will become more evident in the two and three spatial
dimensions simulations.
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4.3. Spatial dimension two

4.3.1 Linear Problem

This is a more complex problem where we have an additional dimension. In this case, we
are going to study the normalised Schnakenberg problem, starting with the analysis of
the linearized problem:



(
ϕt(x, t)
ψt(x, t)

)
=M

(
ϕ(x, t)
ψ(x, t)

)
+

(
1 0
0 d

)(
∆ϕ(x, t)
∆ψ(x, t)

)
∇ϕ(x, t) · n⃗ = 0, ∇ψ(x, t) · n⃗ = 0, x ∈ ∂D

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D = [0, Lx]× [0, Ly] ⊂ R2, t > 0

(63)

where the matrix M is given by

M = γ

(
b−a
a+b

(a+ b)2
−2b
a+b

−(a+ b)2

)
(64)

We have initially chosen Lx = Ly = 1, a = 0.126779, b = 0.792366, d = 10 and γ = 60
as Turing conditions are fulfilled with these parameters, with only a pair of values of
nx and ny for which we have a positive eigenvalue : {nx, ny} = {1, 1}, being λ11+ = 2.8084.

As we did in the one dimensional problem, we begin with a simple case in
which the modes performing in the solution do not have positive eigenvalue. For
instance,(ϕ(x, 0), ψ(x, 0)) =

(
a+ b+ cos (2π x) cos (π y) , b

(a+b)2
+ cos (2π x) cos (π y)

)
,

hence fixing the pair {nx, ny} = {2, 1}. This is shown in Figure 28.

From this plot, we can visualize there is no pattern (as expected), since the only mode
fixed in the initial condition (hence performing in the solution) has negative eigenvalues.

Eventually, it could be useful to study a more general case, for instance, given by
the initial condition (ϕ(x, 0), ψ(x, 0)) =

(
a+ b+ x2y3, b

(a+b)2
+ x2y3

)
, where no pair of

{nx, ny} is fixed. The corresponding solution is shown in Figure 29:
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Figure 28: Two-dimensional pattern for the linearized problem of Schnakenberg (63) with matrix
(64), Lx = 1, Ly = 1, a = 0.126779, b = 0.792366, d = 10, γ = 60, t = 4 and the initial condition
mentioned before. The colour represents ϕ concentration.

Figure 29: Two-dimensional pattern for the linearized problem of Schnakenberg (63) with matrix
(64), with Lx = 1, Ly = 1, a = 0.126779, b = 0.792366, d = 10, γ = 60, t = 2 and the initial
condition mentioned before. The colour represents ϕ concentration.
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In this case, we have a pattern where the dominant mode is the pair {nx, ny} = {1, 1},
the only one which has positive eigenvalue. This was what we expected from linear
theory. In addition, if we let the system evolve indefinitely, the concentration increases
unboundedly. For instance, for t = 4 we already have a concentration of the order of
O(104).

Revisiting section 3.2, γ and d become especially important in pattern formation
and, as one might expect extrapolating the analysis of the one-dimensional problem, if
we increase γ and d, there will exist more {nx, ny} pairs performing in the solution. We
analyse this correlation in Table 3.

d / γ 20 30 60 100
10 - {1, 0} {1, 1} {2, 0}, {1, 1}
20 {1, 0} {1, 0} {1, 0}, {1, 1} {1, 0}, {1, 1}, {2, 0}, {2, 1}

d / γ 200
10 {2, 0}, {2, 1}, {2, 2}, {3, 0}
20 {1, 1}, {2, 0}, {2, 1}, {2, 2}, {3, 0}, {3, 1}

Table 3: Values of n which have positive eigenvalues for different values of d and L for the
linearized problem of Schnakenberg (63) with matrix (64), Lx = 1, Ly = 1, a = 0.126779,
b = 0.792366. For simplicity, the pair {nx, ny} represents both {nx, ny}, {ny, nx}

.
We can also study a more complex problem with the same general initial condition as in
the previous case. This is achieved by increasing both γ and d, as there are more modes
performing. For instance, considering γ = 1000 and d = 20, we get the following pattern:

Figure 30: Two-dimensional pattern for the linearized problem of Schnakenberg (63) with matrix
(64), Lx = 1, Ly = 1, a = 0.126779, b = 0.792366, d = 20, γ = 1000, t = 2 and the general
initial condition mentioned before. The colour represents ϕ concentration.
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Although the dominant eigenvalue corresponds to the pairs {2, 4} and {4, 2}, it is more
difficult to appreciate its contribution; partly due to the variety of modes performing
in the solution, as there are 48 of them. However, it is important to be aware of the
distorsion arising from the fact that both dominant pairs have the same eigenvalue, hence
contribute in the same way. Since this eigenvalue λ42+ = 2.3715e + 02 is considerably
high, the concentrations increase very quickly, being already of the order of O(10206) for
t = 2.

4.3.2 Non-Linear Problem

We will carry out the same analysis as in the linear problem, to compare the differences
between both problems. The system in this case is given by:

(
ϕt(x, t)
ψt(x, t)

)
=

(
γ (a− ϕ+ ϕ2ψ)
γ (b− ϕ2ψ)

)
+

(
1 0
0 d

)(
∆ϕ(x, t)
∆ψ(x, t)

)
∇ϕ(x, t) · n⃗ = 0, ∇ψ(x, t) · n⃗ = 0, x ∈ ∂D

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D = [0, Lx]× [0, Ly] ⊂ R2, t > 0

(65)

Considering the same parameters and starting with the constant initial condition
(ϕ0, ψ0) =

(
a+ b, b

(a+b)2

)
, we get the following pattern for t = 2:

Figure 31: Two-dimensional pattern for the Schnakenberg system (65), with Lx = 1, Ly = 1,
a = 0.126779, b = 0.792366, d = 10, γ = 60, t = 2 and the constant initial conditions mentioned
before. The colour represents ϕ concentration.
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Whereas in the linear system for this case concentrations would tend to zero (as this is
the constant solution in the linear case), we now see they remain the same over time.
Despite the initial condition is the same in both cases, (ϕ0, ψ0) is the stationary constant
solution for the non-linear case, which is asymptotically stable, hence we do not have
pattern and concentrations tend to this stationary solution.

Let us consider

(ϕ(x, 0), ψ(x, 0)) =
(
a+ b+ cos (2π x) cos (π y) , b

(a+b)2
+ cos (2π x) cos (π y)

)
:

Figure 32: Two-dimensional pattern for the Schnakenberg system (65), with Lx = 1, Ly = 1,
a = 0.126779, b = 0.792366, d = 10, γ = 60, t = 2 and the initial condition mentioned before.
The colour represents ϕ concentration.

In this case, although the only pair performing in the initial condition is {nx, ny} = {2, 1},
the dominant mode in Figure 32 corresponds to {nx, ny} = {1, 1}, which arises from
the non-linear terms. In addition we can also appreciate the effect of the non-linear
terms interaction, bounding the concentrations, in contrast with the linear case where
the concentrations were of the order of O(104) for t = 4.

As far as for the general case is concerned, we show the corresponding pattern in
Figure 33, also bounded by the non-linear terms, where, as in previous cases, the
contribution of the dominant mode is remarkable.

Eventually we can study the last example analysed in Figure 30, for the non-linear case.
This has been carried out in Figure 34.

With this last example, the limitations of the linear theory become obvious. Whereas in
the Figure 30, the pattern obtained is blurry, and the algorithm suffers as a consequence of
the quickly and unbounded growth of the concentration, in Figure 34, the concentrations
are bounded by the non-linear terms interaction, hence the algorithm works more
efficiently. Despite having a wide range of modes with positive eigenvalue, it is possible
to distinguish the dominant modes {2, 4}, {4, 2} from those whose eigenvalue is smaller.

43



Figure 33: Two-dimensional pattern for the Schnakenberg system (65), with Lx = 1, Ly = 1,
a = 0.126779, b = 0.792366, d = 10, γ = 60, t = 2 and the general initial condition mentioned
before. The colour represents ϕ concentration.

Figure 34: Two-dimensional pattern for the Schnakenberg system (65), with Lx = 1, Ly =
1, a = 0.126779, b = 0.792366, d = 20, γ = 1000, t = 2 and the general initial condition
(ϕ(x, 0), ψ(x, 0)) =

(
a+ b+ x2y3, b

(a+b)2
+ x2y3

)
. The colour represents ϕ concentration.
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4.4. Spatial dimension three

4.4.1 Linear Problem

Finally, we can carry out the same analysis for the three-dimensional problem. We will
also consider the linearized version of Schnakenberg system

(
ϕt(x, t)
ψt(x, t)

)
=M

(
ϕ(x, t)
ψ(x, t)

)
+

(
1 0
0 d

)(
∆ϕ(x, t)
∆ψ(x, t)

)
∇ϕ(x, t) · n⃗ = 0, ∇ψ(x, t) · n⃗ = 0, x ∈ ∂D

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D = [0, Lx]× [0, Ly]× [0, Lz] ⊂ R3, t > 0

(66)

where the matrix M is given by:

M = γ

(
b−a
a+b

(a+ b)2
−2b
a+b

−(a+ b)2

)
Although in general linear theory is expected to be more easy to deal with than
the non-linear case, the fact that its solutions grow exponentially, entails numerical
difficulties which increase in three spatial dimensions. Therefore, we have chosen the
parameters so that these difficulties are overcome since we already know that high
values of γ and d involves more complex patterns. With this aim, we have considered
Lx = 1, Ly = 1, Lz = 1, a = 0.25, b = 0.75, d = 25, γ = 100 and an initial condition
given by (ϕ(x, 0), ψ(x, 0)) = (ϕ0 + 10−3 sin πx, ψ0 + 10−4 sin πx). We have 4 modes with
positive eigenvalues, where {1, 1, 0}, {0, 1, 1} and {1, 0, 1} are the dominant ones. The
pattern obtained is shown in Figure 35:

Figure 35: Three-dimensional pattern for the Schnakenberg system, where Lx = 1, Ly = 1, Lz =
1 a = 0.25, b = 0.75, d = 25, γ = 100, t = 4 and the general initial condition (ϕ(x, 0), ψ(x, 0)) =(
ϕ0 + 10−3 sin (πx), ψ0 + 10−4 cos (πx)

)
.
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Despite the dominant modes are predicted by linear theory, it is more difficult to
distinguish them clearly. This already happened in the two dimensional case, where
the pattern arises from the joint contribution of the dominant modes, hence we are
visualizing the superposition of all of them.

In Figure 36 it is possible to observe the pattern inside the volume by drawing
the corresponding contours slice planes.

Figure 36: Five contours in volume slice planes of Figure 35

We can observe how concentrations tend to decay smoothly if we move away from
the locations with highest concentrations. This can be seen more clearly if we plot only
the contour slice corresponding to z = 0.5, where we can see that the highest values in
modulus for the concentrations are located in the corners.

Figure 37: Contuor slice of z = 0.5 for Figure 35.
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4.4.2 Non-Linear Problem

The problem to be adressed in this case is the three-dimensional Schnakenberg system:

(
ϕt(x, t)
ψt(x, t)

)
=

(
γ (a− ϕ+ ϕ2ψ)
γ (b− ϕ2ψ)

)
+

(
1 0
0 d

)(
∆ϕ(x, t)
∆ψ(x, t)

)
∇ϕ(x, t) · n⃗ = 0, ∇ψ(x, t) · n⃗ = 0, x ∈ ∂D

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x)

x ∈ D = [0, Lx]× [0, Ly]× [0, Lz] ⊂ R3, t > 0

(67)

We have studied the case given by a = 0.2, b = 0.8, d = 25 and γ = 100. As for the
initial condition is concerned, we have considered a simple one: (ϕ(x, 0 =, ψ(x, 0)) =
(ϕ0 + 10−2 sin (π x), ψ0 + 10−3 cos (π x))

In this case, we have 10 modes with positive eigenvalue, among which {1, 1, 0}, {0, 1, 1}
and {1, 0, 1} have the highest ones. The pattern obtained in this case is shown in Figure
38:

Figure 38: Three-dimensional pattern for the Schnakenberg system (67) with Lx = 1, Ly = 1,
Lz = 1 a = 0.2, b = 0.8, d = 25, γ = 100, t = 2 and the general initial condition
(ϕ(x, 0 =, ψ(x, 0)) =

(
ϕ0 + 10−2 sin (π x), ψ0 + 10−3 cos (π x)

)
.

From Figure 38, we can see that concentrations are positive, being the highest values
located along two cube edges. Concentrations are bounded and they do not change too
much from t = 2 onwards. Moreover, we can analyse the pattern further, through the
contour slices.

Figure 39 enhances what we mentioned previously, as we can visualize how the
concentration tends to decay as we move away from those edges.
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Figure 39: Five contour slices from the cube volume

Eventually, we can also try to carry out the simulations in more complex domains. For
instance, once at this point, the study of pattern formation in animals is is worthy of
attention. As an example, we have used an stl file of a polygonal cat with 13 faces in
order to carry out a simulation.

With this aim, we show in Figure 40 the results obtained for a cat, with
γ = 1, d = 55, a = 0.22, b = 0.58 and a general condition given by
(ϕ(x, 0), ψ(x, 0)) = (ϕ0 + 0.8 cos(πx) cos(πy) cos(πz), ψ0 + 0.8 cos(πx) cos(πy) cos(πz)):

Figure 40: Three-dimensional pattern, considering Schnakenberg model solved when D is the
figure of a cat, with γ = 2, d = 55, a = 0.22, b = 0.58, t = 10 and the general initial condition
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5. Conclusions

In this work, we have studied Turing’s theory of morphogenesis. In 1952, he proposed
a two nonlinear reaction-diffusion partial differential equations to explain the formation
of spatial biological patterns. We have firstly used linear theory to obtain both the
exact solutions of the linearized problem, and the general conditions that these types
of systems must satisfy for such patterns to emerge. Afterwards, we have exploited the
formulas obtained in the linear case to the non-linear problem, and we have become
aware of the advantages and limitations of linear theory.

We have been able to predict to a good extent the behaviour of the solutions,
determining the range of modes performing in the solution and so on. However, we
have encountered several differences in the solutions for the linear case, which have
complicated the analysis in the non-linear problem. Whereas in the former the solutions
can be negative and grow exponentially and unboundedly, in the latter they are positive
and bounded when the initial data are also. Nevertheless, we have not found any proof of
this behaviour in the literature for the Schnakenberg model. In this context, numerical
simulations performed with MATLAB have shown to be crucial in understanding the
dynamics of the reaction-diffusion systems. We conducted simulations for one, two, and
three spatial dimensions, which significantly enhanced our comprehension of the pattern
formation processes, understanding the dependencies of the solution with respect to the
different parameters involved in the system. In particular, we have seen the relations
required for the Schnakenberg model, for a and b so that Turing conditions are satisfied
as well as understood the tuning role γ and d play as for the range of modes is concerned.
This system was studied for a variety of geometry configurations where the last example
should be remarked. In this case, we wanted to study a more complex domain, for which
is was necessary to use another tool outside of MATLAB, which is an STL file.

During the simulations, we faced significant challenges, especially with the linear
case, where the algorithms suffered given the exponential growth of the data. Moreover,
we also encountered unexpected behaviour of the solutions in a particular case, for which
we carried out our own interpretation.
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A. Appendix: MATLAB programs

A.1. Pdepe program

1 %% Global parameters
2 global L D1 D2 T A
3 T=100;
4 L=10;
5 nx=100*L;
6 nt=100*T;
7 D1=1; D2=100;
8 x=linspace(0,L,nx);
9 t=linspace(0,T,nt);

10 m=0;
11 A=[1/2 1;-0.55 -1];
12 opciones=odeset('RelTol',1e-6);
13 sol = pdepe(m,@pdefun,@pdeic,@pdebc,x,t,opciones);
14 %-------------------------------------------------------------------------
15 function [c,D,s] = pdefun(x,t,u,dudx) %PDE system
16 global D1 D2 A
17 c = [1; 1];
18 D = [D1; D2] .* dudx;
19 f=A(1,1)*u(1)+A(1,2)*u(2);
20 g=A(2,1)*u(1)+A(2,2)*u(2);
21 s = [f; g];
22 end
23 %-------------------------------------------------------------------------
24 function u0 = pdeic(x) %Initial condition
25 global L
26 % phi0=3*cos(pi*x/L);
27 % psi0=-7*cos(pi*x/L);
28 phi0=x.^2;
29 psi0=x.^3;
30 u0=[phi0;psi0];
31 end
32 %-------------------------------------------------------------------------
33 function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t) % Boundary Conditions
34 pl = [0; 0];
35 ql = [1; 1]; %Neumann left condition
36 pr = [0; 0];
37 qr = [1; 1]; %Neumann right condition
38 end
39 %-------------------------------------------------------------------------
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A.2. Solvepde program for spatial dimension three

1 %% Global Parameters
2 global Lx Ly Lz D1 D2 a b gamma
3 gamma=800;
4 Lx=1;
5 Ly=1;
6 Lz=1;
7 a=0.2000;
8 b=0.3842;
9 D1=1; D2=20;

10 A=gamma*[(b-a)/(a+b), (a+b)^2; (-2*b)/(a+b), -(a+b)^2];
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 % Create a two equations PDE model
13 model = createpde(2);
14 importGeometry(model, 'Cubo1.stl');
15 mesh = generateMesh(model, "GeometricOrder", "linear");
16

17 % Adjust the transparency of the cube's faces
18 figure;
19 pdegplot(model, 'FaceAlpha', 0.3, 'FaceLabels', 'on');
20 title('Cubo con Caras Transparentes');
21

22 % Parameters of the system
23 d = 1;
24 c = [D1;D2];
25 f = @(region,state) [gamma*(a - state.u(1,:) + state.u(1,:).^2 .*

state.u(2,:));↪→

26 gamma*(b - state.u(1,:).^2 .* state.u(2,:))];
27

28 %Boundary Conditions
29 applyBoundaryCondition(model, 'face', (1:6), 'g', 0, 'q', 0);
30

31 specifyCoefficients(model, 'm', 0, 'd', d, 'c', c, 'a', 0, 'f', f);
32

33 % Initial condition
34 u0 = @(region) [(a+b)*ones(size(region.x)) +

(region.x).*(region.y).*(region.z);...↪→

35 b/(a+b)^2*ones(size(region.x))+(region.x).*(region.y).*(region.z)];
36 setInitialConditions(model, u0);
37

38 %Time vector and resolution of the system
39 tlist = linspace(0,2,10);
40 result = solvepde(model, tlist);
41 u = result.NodalSolution;
42

43 figure;
44 pdeplot3D(model, 'ColorMapData', u(:,1,end));
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45 alpha(0.5);
46 title(sprintf('Solución en t = %.2f', tlist(end)));
47 drawnow;
48

49 %Contour slices of the volume
50 component = 1;
51 xx = -0.5:0.01:0.5;
52 yy = -0.5:0.01:0.5;
53 zz = 0:0.01:1;
54 [X, Y, Z] = meshgrid(xx, yy, zz);
55

56 % Interpolate the solution for the first component at all times
57 uintrp = interpolateSolution(result, X, Y, Z, component,length(tlist));
58

59 % We redefine the size of the vector
60 sizeX = size(X);
61 uintrp = reshape(uintrp, size(X));
62

63 % Visualize the solution with countourslice of several values of z
64 figure
65 colormap jet
66

67 altura = [0; 1/6; 2/6;3/6;4/6;5/6;1];
68 contourslice(X, Y, Z, uintrp, [], [], altura)
69 xlabel('x')
70 ylabel('y')
71 zlabel('z')
72 colorbar
73 view(-11, 14)
74 axis equal
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