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Abstract

In this paper I propose a method to estimate the counterfactual distribution of
an outcome variable when the treatment is endogenous, continuous, and its effect is
heterogeneous. The types of counterfactuals considered are those in which the change
in treatment intensity can be correlated with the individual effects or when some of the
structural functions are changed by some other group’s counterparts. I characterize
the outcome and the treatment with a triangular system of equations in which the
unobservables are related by a copula that captures the endogeneity of the treatment,
which is nonparametrically identified by inverting the quantile processes that determine
the outcome and the treatment. Both processes are estimated using existing quantile
regression methods, and I propose a parametric and a nonparametric estimator of the
copula. To illustrate these methods, I estimate several counterfactual distributions of
the birth weight of children, had their mothers smoked differently during pregnancy.
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1 Introduction

Consider the problem of assessing of the distributional effects of a policy intervention, or

the decomposition of the difference of some variable between two or more populations into

several effects. These are two examples that can be addressed by estimating counterfactual

distributions. Typically, these have focused on cases in which the treatment was randomly

assigned or, if it was endogenously determined, the endogeneity only affects the estimation

of the structural parameters, but not the counterfactuals. For instance, if the counterfactual

treatment is either randomly assigned or set at a fixed value for every individual.

In this paper I study the estimation of counterfactual distributions when the treatment is

continuous, endogenous, its effect is heterogeneous, and the population can be split into two

or more groups. I consider two types of counterfactuals: one in which some of the structural

functions of one group are swapped by the counterparts of another group; another in which

the treatment intensity for each individual is changed, such that the counterfactual value is

correlated with the unobservables. Whereas the first may be more useful for decomposition

purposes, the second one may be more relevant when the policy maker has some limited

ability to enforce the treatment.

In this paper I make the following contributions. First, I propose two estimators of

the counterfactual distribution, one based on a parametric estimator of the distribution of

the unobservables, and the other on a nonparametric estimator. I study their asymptotic

properties, how to conduct inference, and compare them to alternative methods. Second, I

show that the distribution of the unobservables is identified, and describe how it determines

the outcome distribution. This is necessary to evaluate certain counterfactuals and to

compute the Marginal Treatment Effect (MTE, Heckman and Vytlacil, 2007; Florens et al.,

2008). Third, I illustrate these methods with an application of how reducing smoking

intensity in pregnant women would affect the weight distribution of newborns.
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One aspect that is often overlooked in applied analysis is the relation between the

different unobservables and how they can affect the distribution of both the treatment

and the outcome variables. I model the distribution of the unobservables with a bivariate

copula. Thus, one can intuitively interpret these unobservables as the conditional ranks of

unobserved ability. Moreover, it is also convenient for the estimation, as it allows to represent

the equations that determine the treatment and the outcome as quantile processes.

The copula is a determinant of both the treatment intensity and the outcome. As such, it

is a crucial element to analyze the possible effects of a policy intervention. Additionally, the

MTE can be expressed as an integral of the derivative of the outcome equation weighted

by the copula. Therefore, marginal variations of the treatment intensity would have a

heterogeneous effect on the outcome across individuals, partly because of the different value

of the unobservables. As a consequence, the copula also has a first order effect in the

estimation of counterfactuals that change the treatment distribution unevenly.

The estimation of the treatment and outcome equations is done using existing quantile

regression methods. In particular, I estimate them using Quantile Regression (QR, Koenker

and Bassett, 1978) and Instrumental Variables Quantile Regression (IVQR, Chernozhukov

and Hansen, 2005), respectively. These estimates are used as inputs for the estimation of

the copula, which can be done either parametrically, or non-parametrically. Both estimators

require the inversion of the quantile processes that conform the triangular model. Then,

these estimators are combined to obtain either an estimate of the actual distribution, or of

one of the counterfactual distributions. Moreover, they could also be used to estimate other

functionals of interest, such as the MTE or the unconditional quantile treatment effect.

I consider two types of counterfactuals. The first one involves swapping the structural

functions of one group by the counterparts of another group. This type is useful for

decomposition purposes. In an exogenous setting, the Oaxaca-Blinder decomposition splits

differences between the two groups into differences in covariates and differences in the

returns to these covariates (the slope parameters). The endogeneity of the model allows

to consider two additional sources for the differences in outcomes: the first stage equation
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that determines treatment intensity, and the copula that captures the amount of endogeneity.

The second type changes the distribution of the treatment intensity in a way that depends

on the unobservables. This may be more relevant when the policy maker has the ability to

partially affect the distribution of treatment intensity. For example, if it can set a minimum

level of treatment. In this case, the variation in treatment intensity is correlated with the

unobservables.

This paper belongs to the literature of the estimation of unconditional counterfactual

distributions. Machado and Mata (2005) and Melly (2006) proposed estimators of such

counterfactuals based on QR when the treatment is exogenous, which Chernozhukov et al.

(2013) generalized by proposing a method to estimate any functional of interest, given an

initial estimator of the conditional quantile curve or the conditional distribution function.1

Another closely related paper was Martinez-Sanchis et al. (2012), who adapted Melly (2006)

to an endogenous setting using a control function approach. The methods proposed in

this paper are different. In particular, they extend Chernozhukov et al. (2013) methods

to the presence of endogeneity based on an instrumental variables approach, similarly to

Pereda-Fernández (2010). Moreover, I consider different counterfactuals that cannot be

consistently estimated by Martinez-Sanchis et al. (2012).

Several empirical works could fit into the framework presented in this paper, such as

the impact of education on earnings (Card, 2001), and on adult mortality (Lleras-Muney,

2005), the effect of family income on scholastic achievement (Dahl and Lochner, 2012), the

impact of class size on scholastic achievement (Angrist and Lavy, 1999), or on long-term

outcomes (Fredriksson et al., 2013), the quality of institutions on income (Acemoglu et al.,

2012), or the effect of smoking during pregnancy on child’s birthweight (Evans and Ringel,

1999). These studies could benefit from studying the distributional effects of an intervention

that results in a different assignment of the treatment intensity for the whole population.

I illustrate these methods using data on birth weight of children whose mothers smoked
1Other related works include Firpo et al. (2009), who proposed an estimator based on reweighting of

the influence function to estimate distributional effects under exogeneity, or Frölich and Melly (2013), who
proposed a nonparametric estimator of the unconditional quantile treatment effect for the subpopulation of
compliers with an endogenous, binary treatment.
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during pregnancy, focusing on differences for white and black women. Following Evans

and Ringel (1999), I instrument smoke consumption during pregnancy with the state tax

as a percentage of the final price. First, I estimate the distributional effect of smoking

an extra daily cigarette, as well as the MTE. Then I carry out three counterfactuals in

which I respectively swap the copula for each group, I reduce the amount of cigarettes

smoked to one half of what was actually reported, and I limit the maximum daily amount

of smoked cigarettes to ten. The results show that such reductions in smoke consumption

during pregnancy by white mothers would increase the average birth weight. However, this

effect would be heterogeneous, and in particular it would substantially reduce the number

of newborns with low birth weight, i.e., those who weigh less than 2,500 grams at birth.

The rest of the paper is organized as follows. In Section 2 I describe the framework and

discuss the identification of the functionals of interest. In Section 3 I propose two estimation

methods based on different assumptions of the copula. In Section 4 I apply the methodology

presented in this paper to the estimation of the effect of smoking during pregnancy on birth

weight. Finally, Section 5 concludes. All proofs are shown in Appendix A.

2 Framework

Consider a triangular system of equations conformed by the following observable variables:

Y denotes the outcome variable of interest, X ≡ (X1 X
′
2)

′ be the vector composed of the

continuous treatment, X1, and a set of exogenous covariates, X2, and Z ≡ (Z1 X
′
2)

′ be the

vector composed of the instrumental variable, Z1 and the exogenous covariates. Moreover

the population can be split into a finite number of groups. Denote the group to which each

individual belongs by D, such that D ∈ D =
{
1, ..., D

}
, where D < ∞ is the number of

groups. The leading case are two groups, i.e., D = {1, 2}. This system is completed by

the unobserved random variables Ud and V , to which I refer as the conditional ranks, whose

conditional distributions given X2 are uniform.2 Both the outcome and treatment equations
2Because these variables are unidimensional, the amount of heterogeneity of the model is restricted. In

particular, it rules out models that are not monotonic on the unobservables, such as random coefficients
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are nonseparable functions. Formally, for D = d,3

Y = gd (X1, X2, Ud) (1)

X1 = kd (Z1, X2, V ) (2)

where gd (·, ·, ·) and kd (·, ·, ·) are nonseparable and strictly increasing in their last argument.

kd represents the conditional quantile function (CQF) of the treatment X1, which satisfies

P (X1 ≤ kd (Z1, X2, τ) |Z1, X2, D = d) = τ , and gd is the structural quantile function (SQF)

of Y , which satisfies P (Y ≤ gd (X1, X2, τ) |Z1, X2, D = d) = τ . The latter does not coincide

with the CQF because of the endogeneity of the treatment (Chernozhukov and Hansen,

2013).

The endogeneity of this model stems from the relation between the two unobservables.

Their joint distribution is established by the following assumption:

Assumption 1. (Ud, V ) ⊥ Z1|X2,∀d ∈ D. Moreover, the joint distribution of the unobservables,

conditional on the covariates, is given by Ud, V |X2 ∼ Cd
UV |X2

∀d ∈ D.

Cd
UV |X2

is the conditional copula of (Ud, V ) for group d.4 This may depend on X2,

allowing the amount endogeneity to vary across individuals with different characteristics. For

example, the endogeneity between income and schooling could vary with parental income,

since those students whose parents have low income may not be able to afford high levels

of schooling. Assumption 1 implies that, conditional on the covariates, the ranks are

independent of the instrument. This is the exclusion restriction of the model.
models. Unfortunately, these models are not nonparametrically identified (Hahn and Ridder, 2011; Kasy,
2011; Hoderlein et al., 2017; Masten, 2018) and they would further complicate the present analysis. Deriving
set-identification results with multidimensional unobserved heterogeneity is beyond the scope of this paper.

3This system uses the Skorohod representation, which states that a random variable φi can be written in
terms of its quantile function: φi = Q (Ui), where Ui ∼ U (0, 1).

4By definition, a copula is the multivariate distribution of (U1, ..., Um) such that
their marginal distributions are uniformly distributed on the unit interval. Sklar
(1959) showed that any multivariate distribution of the continuously distributed variables
X1, ..., Xm, with respective marginal cdfs F1 (x1) , ..., Fm (xm), there exists a unique cdf
C, such that P (X1 ≤ x1, ..., Xm ≤ xm) = C (F1 (x1) , ..., Fm (xm)). The conditional
copula is defined as C (F1 (x1) , ..., Fm−1 (xm−1) , Fm+1 (xm+1) , ..., Fm (xm) |Fm (xm)) =

∂
∂Fm(xm) C (F1 (x1) , ..., Fm (xm)). Lastly, the copula density is defined as c (F1 (x1)) , ..., Fm (Fm (xm)) =

∂m

∂F1(x1)·...·∂Fm(xm) C (F1 (x1) , ..., Fm (xm)).
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The copula of the conditional ranks, despite not being the objective function of the policy

maker, is nevertheless informative, as it can help identifying who would be more affected by

a change in treatment intensity. To see this, consider the MTE, given by5

E
[
∂g1 (X1, X2, Ud)

∂X1
|X1 = x1, X2 = x2, V = v,D = d

]
=

� 1

0
∇1gd (x1, x2, u) cd

U |V X2 (u|v, x2) du

(3)

where ∇1 denotes the derivative with respect to its first argument, and Cd
U |V X2

denotes the

copula conditional on V , X2, and D = d.

Hence, those individuals with a copula that has higher density at values of Ud for which

the marginal gain from increasing the treatment is largest, would benefit more from the

treatment intensity increase. E.g., assume that ∇1gd (x1, x2, u) = u and cd
UV |X2

(u, v|x2) =

2 + 4uv − 2u − 2v.6 Under exogeneity, the MTE would be equal to 1/2 for everyone, but

under endogeneity Equation 3 would equal (1 + v)/3. Hence, individuals with high values of v

would have a larger than average MTE and would benefit more from a treatment increase.

As a result, the copula allows to identify which individuals benefit the most, so that the

intervention can be targeted to maximize its impact.

2.1 Counterfactuals of interest

The first type of counterfactuals consists in swapping of any of the four structural functions

that determine the outcome by the counterparts of another group.7 Namely, the SQF of

the outcome, the CQF of the treatment, the copula, and the distribution of the observables,

F d
Z (z). These counterfactuals may focus both on the mean value and on the unconditional

distribution of the outcome variable. Mathematically, the counterfactual distribution when
5The relation of the copula and the MTE can be immediately generalized to the case of multidimensional

unobserved heterogeneity. For example, assume that it depends on {Um}M
m=1. Define the multidimensional

copula by CUV |X2 (U1, ..., UM , V |x2). Then, the MTE would be calculated as in Equation 3 by integrating
the derivative of gd with respect to the multidimensional copula, holding V constant.

6This is a particular case of the Bernstein copula.
7Note that in many circumstances the ability of the policy maker to implement such counterfactuals may

be limited, making them informative of such potential effects theoretically.
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one combines the SQF of group p, the CQF of group q, the copula of group r, and the

distribution of the observables of group s is given by

Fm
Y (y) =

�
Z

�
[0,1]2

1 (gp (kq (z1, x2, v) , x2, u) ≤ y) dCr
UV |X2 (u, v|x2) dF s

Z (z) (4)

where 1 (·) denotes the indicator function, Z denotes the support of Z, and m ≡ (p, q, r, s)

is used for brevity. Note that this type of counterfactual nests the type considered by

Chernozhukov et al. (2013) in an exogenous setting, which involve changing the SQF or the

distribution of the unobservables.

Alternatively, one could consider a counterfactual that involves a structural change in

the determination of the treatment. In particular, let the counterfactual treatment equal

kcf
d (z, v) ≡ ψ (kd (z, v)), rather than by Equation 2. These counterfactuals may be more

pertinent when the policy maker has the ability to partially enforce the distribution of

the treatment in certain ways. To illustrate them, consider the following examples of

counterfactuals:

Example 1. Imagine a policy maker interested in increasing worker’s income, Y , through an

increase in the minimum level of compulsory schooling, X1. In this counterfactual scenario,

those who would attain a level of education above that minimum without the intervention

(X1 > X1) would have the same level of education, but there would be an increase for those

below it. Since students with higher levels of unobserved ability, Ud, tend to study more years,

the increase in income for students below the threshold would be smaller than if those above

it increased their education level.

Example 2. Consider a policy maker who wants to estimate the effect that halving the

number of daily smoked cigarettes during pregnancy, X1, would have on the birth weight

of newborns, Y . Since smoking could be correlated with other unobserved bad habits, Ud,

such a policy would have a different effect on women who smoked a different amount of

cigarettes, which could increase the birthweight of those who would have had a low birth

weight (Y ≤ 2, 500) by less than the rest of the children.
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In these examples, the respective counterfactual treatments would be given by kcf
d (z, v) =

max (kd (z, v) , x), for some new minimum schooling age x, and kcf
d (z, v) = 1

2kd (z, v).

Remark 1. Note that the latest type of counterfactuals does not need the population to be

split into groups. However, because the group structure is used in decompositions, I maintain

it for both counterfactuals.

2.2 Identification

To discuss identification, note that the actual conditional distribution of the outcome can

be expressed as a function of the SQF of Y , the CQF of X1, and the copula of (Ud, V ):

F d
Y |Z (y|z) =

�
[0,1]2

1 (gd (kd (z1, x2, v) , x2, u) ≤ y) dCd
UV |X2 (u, v|x2)

=
�

[0,1]2
1
(
u ≤ g−1

d (kd (z1, x2, v) , x2, y)
)
dCd

U |V X2 (u|v, x2) dv

=
� 1

0
Cd

U |V X2

(
g−1

d (kd (z1, x2, v) , x2, y) |v, x2
)
dv (5)

for d ∈ D. Therefore, once these three functions are identified, the actual conditional

distribution is also identified. To do so, let the following assumption hold:

Assumption 2. Let X †
d

(
za, zb

)
≡
{
x1 ∈ X d

za ∩ X d
zb : F d

X1|Z (x1|za) = F d
X1|Z

(
x1|zb

)}
, where

X d
za ≡ supp (X1|Z = z,D = d), and zc = (zc

1, x2) for c = {a, b}. X †
d

(
za, zb

)
is nonempty and

finite ∀d ∈ D.

This assumption is needed for the identification of the SQF of Y (Torgovitsky, 2015),

and it holds even if the support of the instrument is binary. For the specific case considered

in this paper in the estimation, i.e., a linear quantile regression, it suffices to have some

quantile v such that the coefficient at that quantile equals zero.

The following proposition establishes the identification of the structural functions:

Proposition 1. Let Assumptions 1-2 hold. Then, for d ∈ D, the structural functions gd, kd,

and CUV |X2 are identified.
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The identification of gd and kd are based on the conditions spelled by Torgovitsky (2015)

and Matzkin (2003), respectively. The latter is well established, whereas the identification

of gd has received a lot of attention in the literature.8

Consequently, the copula is the remaining structural function that needs to be identified.

This is achieved by inverting the SQF and the CQF, which is possible by the continuity and

the monotonicity of both functions in their last argument. To better understand how the

instrument allows to identify the copula, notice that, conditional on (V, Z), there is a bijection

between Y and Ud. This is given by F d
Y |ZV (y|z, v) = Cd

U |V X

(
g−1

d (kd (z1, x2, v) , x2, y) |v, x2
)
.

Therefore, variations in Z induce a variation in the distribution of Y through a change

in the treatment, without affecting the unobservables. To illustrate this relation, consider

the exogenous case. If Ud and V were independent of each other, conditional on Z, the

conditional copula would simplify to Cd
U |V X2

(u|v, x2) = u. Moreover, by Equation 2, when

Z and V are known, so isX1. Thus, it follows that F d
Y |ZV (y|z, v) = g−1

d (kd (z1, x2, v) , x2, y) =

g−1
d (x1, x2, y) ≡ u, whereas under endogeneity F d

Y |ZV (y|z, v) ̸= u.

3 Estimation

3.1 Baseline Estimator

Let the following assumptions hold:

Assumption 3.

gd (X1, X2, Ud) = X ′βd (Ud)

kd (Z1, X2, V ) = Z ′γd (V )

8Chesher (2003) and Imbens and Newey (2009), who studied the nonparametric identification of
nonseparable models using a control function approach. Other papers proposed semiparametric methods,
which do not suffer from the curse of dimensionality, such as Jun (2009), or Lee (2007) who assumes the
model to be separable. Alternatively, Ma and Koenker (2006) proposed a parametric model of Chesher
(2003). Another recent paper is D’Haultfœuille and Février (2015), which established the identification
based on similar conditions to those in Torgovitsky (2015). On the other hand, (Hoderlein and Mammen,
2007) discussed the identification without monotonicity.
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where βd (·) and γd (·) are continuous, and gd (·, ·, ·) and kd (·, ·, ·) are strictly increasing in

their last argument ∀d ∈ D.

Assumption 4. (Yi, X1i, X
′
2i, Z1i, Di)′ are iid for i = 1, ..., n, defined on the probability space

(Ω,F,P), and take values in a compact set.

Assumption 5. Denote the sample size for the d-th group by nd, and the total sample size

by n = ∑
d nd. n/nd

P→ λd ∈ [1,∞) ∀d ∈ D as n → ∞.

Assumption 6. Y and X1 have conditional density that is bounded from above and away

from zero, a.s. on compact sets Y and X1, respectively. The copula Cd
UV |X2

(u, v|x2) is

uniformly continuous and differentiable with respect to its arguments a.e.

Assumption 7. For all (τ, ν) ∈ U ×U ,
(
βd (τ)′ , γd (ν)′

)′
∈ intB×G, where B×G is compact

and convex. U = [ϵ, 1 − ϵ], for some small ϵ.9

Assumption 8.

Πd (β, ι, γ, τ, ν) ≡ E


(
τ − 1

(
Y < X ′β + Φd (τ, Z)′ ι

))
ΨD (τ, Z) 1 (D = d)

(ν − 1 (X1 < Z ′γ))Z1 (D = d)



Πd (β, γ, τ, ν) ≡ E

(τ − 1 (Y < X ′β)) ΨD (τ, Z) 1 (D = d)

(ν − 1 (X1 < Z ′γ))Z1 (D = d)



where Ψd (τ, Z) ≡
[
Φd (τ, Z)′ , X ′

2

]′
, Φd (τ, Z) is a vector of transformation of instruments,

Jacobian matrices ∂
∂(β′,γ′)Πd (β, γ, τ, ν) and ∂

∂(β′
2,ι′,γ′)Πd (β, ι, γ, τ, ν) are continuous and have

full rank, uniformly over B × I × G × U × U , and the image of B × G under the mapping

(β, γ) 7→ Πd (β, γ, τ, ν) is simply-connected.

Assumption 9. wp → 1, there exists some function Φ̂d (τ, z) ∈ FZ and Φ̂d (τ, z) p→ Φd (τ, z)

uniformly in (τ, z) over compact sets, where Φd (τ, z) ∈ FZ. FZ is the class of uniformly

smooth functions in z with the uniform smoothness order ω > dim
(
(d, x1, z′)′)/2. Moreover, for

f (τ, z) ∈ F , ∥f (τ̃ , z) − f (τ, z)∥ < A |τ − τ̃ |a, A > 0, a > 0, for all (z, τ, τ̃).
9This constant serves to avoid the estimation of extreme quantiles. See, e.g., Chernozhukov and Hansen

(2005).
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Assumption 10. Cd
UV |X2

(Ud, V |x2) = Cd
UV |X2

(Ud, V |x2; θd) (i) is known up to the vector

of parameters θd ∈ int (Θ), where Θ is bounded, and its dimension, dθd
is finite; (ii) its

pdf, cd
UV |X2

(Ud, V |x2; θd), is three times continuously differentiable with respect to θ and

continuously differentiable with respect to (u, v); (iii) ∀θ̃d ̸= θd, cd
UV |X2

(
Ud, V |x2; θ̃d

)
̸=

cd
UV |X2

(Ud, V |x2; θd) a.s.

Assumption 3 imposes linearity on the two quantile processes of the triangular system,

which greatly simplifies the computation of estimator. Specifically, βd (·) can be estimated

by IVQR and γd (·) by QR. This assumption is more restrictive than other alternatives,

such as a partially linear model (Lee, 2003) or a generalized linear model with a known link

function (Horowitz et al., 2004), although such flexible approaches are subject to the curse of

dimensionality.10 Moreover, imposing linearity on both equations allows the estimator of the

counterfactual distribution to be asymptotically linear, thus attaining the
√
n convergence

rate. Regardless, note that IVQR does not require linearity of the first stage equation

(Chernozhukov and Hansen, 2005).11

Assumptions 4 and 5 describe the sampling process, whereas Assumptions 6 to 9 are

regularity conditions needed for the asymptotic Gaussianity of the IVQR and QR estimators.

In Chernozhukov and Hansen (2006), Φ̂d (τ, z) is a linear projection of X1 on Z. Additionally,

Assumption 6 rules out perfect correlation, as the copula does not have a well-defined

density. Lastly, Assumption 10 is a parametric assumption of the copula that ensures its

identification, and allows us to obtain the joint asymptotic distribution of the SQF and the

copula estimators.

Note that these assumptions differ from those considered by other authors in a similar

setting, such as Lee (2007) or Martinez-Sanchis et al. (2012). A comparison with the

estimators proposed in those papers is considered in Appendix D.

Denote the IVQR and QR estimators by β̂d (·) and γ̂d (·), respectively. These are used to
10Additionally, the linear specification requires regressors to take either positive or negative values, but

not both, as that would make the process non-monotonic. See Koenker (2005) for further details.
11I discuss the properties of the estimator when this assumption is relaxed in Appendix C.
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obtain the fitted values of individual pairs of unobservables, given by:

Ûd,i = ϵ+
� 1−ϵ

ϵ

1
(
X ′

iβ̂d (u) ≤ Yi

)
du

V̂i = ϵ+
� 1−ϵ

ϵ

1 (Z ′
iγ̂d (v) ≤ X1i) dv

Define ℓd,i (u, v, θ) ≡ log
(
cd

UV |X2
(u, v|X2i; θ)

)
1 (Di = d). The estimator of the copula

parameters, θ̂d, is given by

θ̂d = arg max
θ

1
nd

n∑
i=1

ℓd,i

(
Ûd,i, V̂i, θ

)

= arg max
θ

1
nd

n∑
i=1

ℓd,i (Ud,i, Vi, θ) + log
cd

UV |X2

(
Ûd,i, V̂i|X2i; θ

)
cd

UV |X2
(Ud,i, Vi|X2i; θ)

1 (Di = d)
 (6)

The first term in Equation 6 is the log likelihood function. However, because the actual

values of the copula are not observed, the objective function depends on a second term that

accounts for the estimated conditional ranks. The estimator of the copula is obtained by

replacing θd with θ̂d: Ĉd
UV |X2

(u, v|x2) = CUV |X2

(
u, v|x2; θ̂d

)
. Additionally, the estimator of

the counterfactual SQF, conditional on Z and V , is given by

ĝp

(
k̂q (z1, x2, v) , x2, u

)
= (z′γ̂q (v) , x2)′

β̂p (u) (7)

3.2 Counterfactual Estimators

The first kind of counterfactual involves combining several of the structural functions from

different groups. The counterfactual conditional (on Z = z) distribution of Y is given by

F̂m
Y |Z (y|z) = ϵ+

�
U2

1
(
(z′γ̂q (v) , x2)′

β̂p (u) ≤ y
)
dCr

UV |X2

(
u, v|x2; θ̂r

)
= ϵ+

� 1−ϵ

ϵ

Cr
U |V X2

(
ĝ−1

p (z′γ̂q (v) , x2, y) |v, x2; θ̂r

)
dv (8)

where ĝ−1
p (x1, x2, y) denotes the inverse with respect to its third argument.
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Define F to be the class of measurable functions that includes
{
FY |Z (y|z) : y ∈ Y , z ∈ Z

}
as well as the indicators of all the rectangles in Rdz , such that F is totally bounded under

the metric ζ
(
f, f̃

)
=
[� (

f − f̃
)2
dFZ

]1/2

; denote the space of real-valued bounded functions

defined on the index set by the supremum norm by ℓ∞; let M ≡ {(p, q, r, s) ∈ D4}. The

joint distribution of this estimator and of the vector Z, Fm
Z (z), is established in the following

proposition:12

Proposition 2. Let Assumptions 3 to 10 hold. The joint asymptotic distribution of F̂m
Y |Z (y|z)

and F̂ s
Z (z) is given by

√
n

 F̂m
Y |Z (y|z) − Fm,ϵ

Y |Z (y|z)
�

Z fd
(
F̂ s

Z (z) − F s
Z (z)

)
⇝

ZFm|Z (y, z)
√
λsZZs (f)



a stochastic process in metric space ℓ∞ (YZFM), where ZFm|Z (y, z) and ZZs (f) are zero-mean

tight Gaussian processes, defined in Appendix A, with a.s. uniformly continuous paths in

YZFM.

Remark 2. Note that the estimator F̂m
Y |Z (y|z) converges in distribution to Fm,ϵ

Y |Z (y|z) ≡

ϵ +
�

U2 1 (gp (kq (z1, x2, v) , x2, u) ≤ y) dCr
UV |X2

(u, v|x2), the counterpart of the conditional

distribution with trimmed extreme quantiles. Hence, F̂m
Y |Z (y|z) is a slightly biased estimator

of Fm
Y |Z (y|z).

The estimator of Fm
Y (y) is the sample analog of Equation 4:

F̂m
Y (y) = ϵ+ 1

ns

n∑
i=1

�
U2

1
(
(Z ′

iγ̂q (v) , X2i)′
β̂p (u) ≤ y

)
dCr

UV |X2

(
u, v|X2i; θ̂r

)
1 (Di = s)

= ϵ+ 1
ns

n∑
i=1

� 1−ϵ

ϵ

Cr
U |V X2

(
ĝ−1

p (Z ′
iγ̂q (v) , X2i, y) |v,X2i; θ̂r

)
dv1 (Di = s) (9)

The estimator of the unconditional quantile function is then calculated as:

Q̂m
Y (τ) = inf

{
y : τ ≤ F̂m

Y (y)
}

(10)
12With some slight abuse of notation, the metric spaces used for the convergence omit the spaces of group

indicators. They should be implicitly included throughout the paper.
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The following theorem characterizes their asymptotic distribution:13

Theorem 1. Let Assumptions 3 to 10 hold. The asymptotic distribution of Q̂m
Y (τ) is given

by

√
n
(
Q̂m

Y (τ) −Qm,ϵ
Y (τ)

)
⇝ ZQm (τ)

a stochastic process in metric space ℓ∞ (T M), ZQm (τ) ≡ − (fm
Y (Qm

Y (τ)))−1 ZFm (Qm
Y (τ)) is

a zero-mean tight Gaussian process with a.s. uniformly continuous paths in T M, where T

is a closed interval such that T ⊂ (0, 1). Moreover, the asymptotic distribution of F̂m
Y (y)is

given by

√
n
(
F̂m

Y (y) − Fm,ϵ
Y (y)

)
⇝ ZFm (y)

a stochastic process in metric space ℓ∞ (YM), and where ZFm (y) ≡
�

Z ZFm|Z (y, z) dF s
Z (z)+

√
λsZZs

(
Fm

Y |Z (y|z)
)

is a zero-mean Gaussian tight process, defined in Appendix A, with a.s.

uniformly continuous paths in YM.

Remark 3. As it was the case for Proposition 2, the estimators of the unconditional quantile

and the unconditional cdf converge in distribution to their trimmed counterparts, defined by

Fm,ϵ
Y (y) ≡

�
Z F

m,ϵ
Y |Z (y|z) dFZ (z), and Qm,ϵ

Y (τ) ≡ inf {y : τ ≤ Fm,ϵ
Y (y)}. Consequently, they

are slightly biased for the non-trimmed functions.

Note that the estimator of the distribution can be used to estimate any other function

that depends on it by plugging it in as in Chernozhukov et al. (2013).

The previous result would hold true if one used some alternative estimators of the SQF

and the conditional copula. As long as the resulting estimator of the conditional cdf satisfies

a Gaussian law as in Proposition 2, Theorem 1 would apply. For example, one could use

methods not based on quantile regression to estimate either Equation 1 or 2.
13The finite sample performance is shown in a Monte Carlo exercise in Appendix E.
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The second type of counterfactuals directly changes the structural determination of the

treatment. The counterfactual conditional distribution for individuals in group d is given by

F̂ d,cf
Y |Z (y|z) = ϵ+

� 1−ϵ

ϵ

Cd
U |V X2

(
ĝ−1

d

(
k̂cf

d (v) , x2, y
)

|v, x2; θ̂d

)
dv (11)

where k̂cf
d (v) ≡ ψ (z′γ̂d (v)). Denote the set of uniformly continuous functions mapping a set

W to the real line by C (W). The counterfactual unconditional cdf, F̂ d,cf
Y (y), and quantile

functions, Q̂d,cf
Y (τ), are computed as in Equations 9-10, but using F̂ d,cf

Y |Z (y|z) instead of

F̂m
Y |Z (y|z). To derive the asymptotic properties of this type of counterfactual estimator, I

impose the following regularity assumption:

Assumption 11. The map ψ (kd (z, v)) is Hadamard directionally differentiable at kd (z, v) ∈

C (ZU) tangentially to a set C (ZU) with Hadamard directional derivative ψ′
kd

: C (ZU) 7→

C (ZU).

This assumption ensures that it is possible to apply the functional delta method to

obtain the asymptotic distribution of this counterfactual estimator. It is satisfied by a

large class of counterfactuals, including the two examples presented in Section 2, for which

the Hadamard derivative equals ψ′
kd

(h) = max (h, 0) 1 (kd (z, v) = x)+h1 (kd (z, v) > x) and

ψ′
kd

(h) = 1
2h, respectively. This assumption is weaker than Hadamard differentiability, which

is not satisfied by the counterfactual of the first example.14

The asymptotic distribution of this second type of counterfactuals is a nonlinear function

of a Gaussian process. It is established by the following proposition, which is based on the

results in Fang and Santos (2019):15

Proposition 3. Let Assumptions 3 to 11 hold. The joint asymptotic distribution of F̂ d,cf
Y |Z (y|z)

14See Fang and Santos (2019) for further details.
15The asymptotic distribution of the counterfactual unconditional distribution and quantile function is

obtained analogously to that of the first kind of counterfactual, shown in Theorem 1. Its proof is omitted
for the sake of brevity.
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and F̂ d
Z (z), and those of F̂ d,cf

Y (y) Q̂d,cf
Y (τ) are given by

√
n

F̂ d,cf
Y |Z (y|z) − F d,cf,ϵ

Y |Z (y|z)
�

Z fd
(
F̂ d

Z (z) − F d
Z (z)

)
⇝

ZF cf
d

|Z (y, z)
√
λdZZd

(f)


√
n
(
F̂ d,cf

Y (y) − F d,cf,ϵ
Y (y)

)
⇝ ZF cf

d
(y)

√
n
(
Q̂d,cf

Y (τ) −Qd,cf,ϵ
Y (τ)

)
⇝ ZQcf

d
(y)

which are stochastic processes in metric spaces ℓ∞ (YZFD), ℓ∞ (YD), and ℓ∞ (T D), respectively,

where ZF cf
d

|Z (y, z), ZZd
(f), ZF cf

d
(y), and ZQcf

d
(τ) are zero-mean tight processes, defined in

Appendix A, with a.s. uniformly continuous paths in YZFD, YD, and T D, respectively.

Remark 4. Analogously to the first type of counterfactuals, these are centered around a

slightly biased version of the conditional cdf, unconditional cdf, and unconditional quantile

function, which are respectively given by F d,cf,ϵ
Y |Z (y|z) ≡ ϵ +

�
U2 1

(
gp

(
kf

d (z, v) , x2, u
)

≤ y
)

·

dCd
UV |X2

(u, v|x2), F d,cf,ϵ
Y (y) ≡

�
Z F

d,cf,ϵ
Y |Z (y|z) dFZ (z), and Qd,cf,ϵ

Y (τ) ≡ inf
{
y : τ ≤ F d,cf,ϵ

Y (y)
}
.

3.3 Nonparametric Estimator of the Copula

Assumption 10 is convenient because it reduces the estimation of the copula to a finite set of

parameters. However, because the copula is nonparametrically identified, one can consider

a nonparametric estimator of the copula by relaxing the parametric assumption:

Assumption 12. The copula of the unobservables, conditional on X2, does not depend on

X2 ∀d ∈ D, i.e., Cd
UV |X2

(u, v|x2) = Cd
UV (u, v).

In words, the copula is left unspecified, but it is the same for all values of X2. This could

be further relaxed, but the estimator of the copula would then converge at a rate slower than
√
n. The nonparametric estimator of the copula equals the empirical copula based on the

estimated values of the conditional ranks:

Čd
UV (u, v) ≡ 1

nd

Σn
j=11

(
Ûd,j ≤ u

)
1
(
V̂j ≤ v

)
1 (Dj = d) (12)

17



The estimator of the counterfactual distribution of Y , conditional on Z, is obtained by

plugging-in the nonparametric estimator of the copula:

F̌m
Y |Z (y|z) ≡ ϵ+

�
U2

1
(
(z′γ̂q (v) , x2)′

β̂p (u) ≤ y
)
dČr

UV (u, v)

= ϵ+ 1
nr

Σn
j=11

((
Z ′

j γ̂q

(
V̂j

)
, X2j

)′
β̂p

(
Ûr,j

)
≤ y

)
1 (Dj = r) (13)

As it was the case for the counterfactuals with a parametric copula, the counterfactual

unconditional cdf, F̌ d
Y (y), and quantile functions, Q̌d

Y (τ), with the nonparametric estimator

of the copula are computed like in Equations 9-10, but using F̌m
Y |Z (y|z) instead of F̂m

Y |Z (y|z).

The uniform convergence of Čr
UV (u, v) can be shown to be at a rate

√
n, so that F̌m

Y |Z (y|z),

F̌ d
Y (y), and Q̌d

Y (τ) are indeed uniformly consistent at that rate. This is established by the

following proposition:

Proposition 4. Let Assumptions 3 to 9, and 12 hold. Then,

sup
y,z,m

√
n
∣∣∣F̌m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

∣∣∣ = Op (1)

sup
y,m

√
n
∣∣∣F̌m

Y (y) − Fm,ϵ
Y (y)

∣∣∣ = Op (1)

sup
τ,m

√
n
∣∣∣Q̌m

Y (τ) −Qm,ϵ
Y (τ)

∣∣∣ = Op (1)

Note, however, that it is not possible to obtain the asymptotic Gaussianity by the usual

arguments: because of the nonlinearity of the indicator function, it is not possible to apply

the extended continuous mapping theorem. This is a consequence of the conditional ranks

not being observed. A way to overcome this problem would be to regularize the estimator

by using a smooth function that converges uniformly to the indicator function.16

16Even for such estimator it would not be possible to establish the asymptotic normality as in Theorem 1,
since the estimator of the conditional copula converges at a rate slower than

√
n. See Appendix B.7 for

further details.
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3.4 Inference

Because the asymptotic covariance matrix of the counterfactual estimators are complex and

depend on several density functions and integrals, direct estimation is impractical. Therefore,

I propose to carry out inference using the weighted bootstrap (Ma and Kosorok, 2005). The

following assumption describes the properties of the weights used by this bootstrap method:

Assumption 13. Let Wi be an iid sample of positive weights, such that E (Wi) = 1,

V ar (Wi) = ω0 > 0, and is independent of (Yi, Di, Z
′
i)

′ for i = 1, ..., n.

These weights are used for the estimation of all the structural functions required for the

counterfactual distributions.17 Specifically, γ̂∗
d (u) and β̂∗

d (u) are given by the weighted QR

and IVQR estimators, i.e.

γ̂∗
d (v) = arg min

γ∈Γ

n∑
i=1

Wiρv (X1i − Z ′
iγ) 1 (Di = d)

β̂∗
d (u) =

(
β̂∗

d,1 (u) , β̂∗
d,2

(
β̂∗

d,1 (u) , u
))

where

ρτ (u) ≡ (τ − 1 (u < 0))u

β̂∗
d,1 (u) = arg min

β1∈B1
∥ι̂∗d (β1, u)∥A∗

d
(u)(

β̂∗
d,2 (β1, u) , ι̂∗ (β1, u)

)
= arg min

(β2,ι)∈B2×I

1
nd

n∑
i=1

Wiρu

(
Yi −X ′

iβ − Φ̂∗
i (u)′ ι

)
1 (Di = d)

A∗
d (u) = 1

nd

n∑
i=1

Φ̂∗
d,i (u) Φ̂∗

d,i (u)′ 1 (Di = d)

and Φ̂∗
d,i (u) is the weighted counterpart of Φ̂ (u). The copula parameter is given by

θ̂∗
d = arg max

θ

1
nd

n∑
i=1

Wiℓd,i

(
Û∗

d,i, V̂
∗

i , θ
)

where
(
Û∗

d,i, V̂
∗

i

)
are computed like

(
Ûd,i, V̂i

)
, but substituting β̂d (·) and γ̂d (·) by β̂∗

d (·)
17Note that the weight for each individual is the same in every step.
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and γ̂∗
d (·), respectively. These estimates are then combined to obtain the bootstrapped

counterfactual distributions:

F̂m,∗
Y |Z (y|z) = ϵ+

� 1−ϵ

ϵ

Cr
U |V X2

(
ĝ∗,−1

p

(
z′γ̂∗

q (v) , x2, y
)

|v, x2; θ̂∗
r

)
dv (14)

F̂m,∗
Y (y) = ϵ+ 1

ns

n∑
i=1

� 1−ϵ

ϵ

WiC
r
U |V X2

(
ĝ∗,−1

p

(
Z ′

iγ̂
∗
q (v) , X2i, y

)
|v,X2i; θ̂∗

r

)
dv1 (Di = s)

(15)

Q̂m,∗
Y (τ) = inf

{
y : τ ≤ F̂m,∗

Y (y)
}

(16)

where ĝ∗
d (x1, x2, u) = x′β̂∗

d (u) and ĝ∗,−1
d denotes its inverse with respect to the third element.

The asymptotic validity of these estimates is established in the following theorem:18

Theorem 2. Under Assumptions 3-10, and 13, the weighted bootstrap estimators F̂m,∗
Y |Z (y|z),

F̂m,∗
Y (y), and Q̂m,∗

Y (τ) consistently estimate the limiting laws of F̂m
Y |Z (y|z), F̂m

Y (y), and

Q̂m
Y (τ). Moreover,

√
n

ω0

(
F̂m,∗

Y |Z (y|z) − F̂m
Y |Z (y|z)

)
⇝ ZFm|Z (y, z)√

n

ω0

(
F̂m,∗

Y (y) − F̂m
Y (y)

)
⇝ ZFm (y)√

n

ω0

(
Q̂∗,m

Y (τ) − Q̂m
Y (τ)

)
⇝ ZQm (τ)

which are stochastic processes in metric spaces ℓ∞ (YZM), ℓ∞ (YM), and ℓ∞ (T M), respectively.

The estimation of the asymptotic variance of these estimators is based on Algorithm 3

in Chernozhukov et al. (2013):19

1. For each repetition t = 1, ..., T , compute the bootstrapped estimator of the desired

estimator, e.g., F̂m,∗
Y,t (y).

18The bootstrap validity for the second kind of counterfactual estimators is analogously proved and
therefore omitted.

19Note that the bootstrapped covariance matrix requires additional conditions to be valid. See Kato (2011)
for further details.
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2. Estimate the covariance by Σ̂Fm (τ)1/2 = q0.75(τ)−q0.25(τ)
z0.75−z0.25

, where zp is the p-th quantile of

the standard normal distribution, and qp (τ) is the p-th quantile of the distribution of

F̂m,∗
Y,t (y), for t = 1, ..., T .

It is also possible to construct Kolmogorov-Smirnov test statistics to carry out uniformly

valid inference using these bootstrap estimators. See, e.g., Pereda-Fernández (2023).

Remark 5. The same bootstrap algorithm can be used to compute the confidence intervals of

the counterfactuals when they are Hadamard differentiable. If, in contrast, the counterfactual

is Hadamard directionally differentiable, but not Hadamard differentiable, this bootstrap

estimator is not valid. In principle, one could apply the consistent alternative proposed by

Fang and Santos (2019). However, in the current case it would not be applicable in practice

because the derivative function would depend on several density functions and integrals that

would need to be estimated. Alternatively, one could obtain the intervals by first obtaining

the intervals of the primitive parameters, and then compute the counterfactuals for the draws

that lie inside the confidence region for these parameters.20 This may also be infeasible due

to the sheer number of parameters computed with the methods presented here.

4 Empirical Application

To illustrate the methods presented in this paper, I consider the estimation of the effect

of smoking during pregnancy on child weight. Specifically, I explore some counterfactual

scenarios to estimate the proportion of newborns with Low Birth Weight (LBW, less than

2,500 grams), since newborns falling into this category have a higher chance of developing

several medical conditions later in life, including cognitive development and chronic diseases

(Case and Paxson, 2009; Almond and Currie, 2011).

I combine two datasets: the 1990 Natality Data from the National Vital Statistics System

of the National Center for Health Statistics, which records every birth in the United States
20See, e.g., Woutersen and Ham (2013).
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during 1990, and the Tax Burden of Tobacco, which includes the percentage of state taxes

over the final price of cigarettes. This variable is the instrument I use.21

I separately run the regressions for white and black mothers. The covariates I include

in the regression are a quadratic polynomial of the mother’s age, the number of years of

education, the number of gestation weeks, and dummy variables for marital status (1 if

married), and the sex of the newborn (1 if female). I restrict the data to firstborn children

of mothers aged 18-35 who smoked during pregnancy.22 Moreover, I exclude multiple births,

since they have a higher chance of having a lower birth weight. This leaves us with 144,478

births, of which over 90% correspond to white mothers. Regarding the copulas, I consider

three parametric copulas (Gaussian, Clayton and Frank), as well as the nonparametric

estimator of the copula.

4.1 Estimation of the Structural Functions

Table 1 presents some descriptive statistics of the variables used. Children of white mothers

weight on average over 200 grams more than their black counterparts. In addition, white

mothers tend to live in states with a slightly larger tax on tobacco. Despite this, daily

cigarette consumption is larger for white mothers.

Figures 1-2 show the IVQR estimates for white and black mothers, which display a

fair amount of heterogeneity. Most importantly, note that the coefficients for smoking are

substantially negative and significant for white mothers, as common wisdom would suggest.

For them, the daily consumption of an extra cigarette is associated with a weight decrease

of the baby of between 10 to 60 grams, depending on the quantile.23 On the other hand, for

black mothers it would be associated with a decrease of 30 grams, up to an increase of at most

65 grams. In contrast, the effect for black mothers is positive at most quantiles. However,

this effect is very imprecisely estimated, so it is not a significant effect. This counterintuitive
21For a more detailed description of the datasets, see Evans and Ringel (1999).
22The age variable is introduced in the regressions as actual age minus 18.
23Note that the extreme quantiles take values outside this range. Because these are less precisely estimated,

I do not comment them in the text.
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Table 1: Descriptive statistics

White Black Difference
Birth weight 3,208.8 2,976.7 232.1

(1.45) (4.98) (5.19)
Mean number of daily cigarettes smoked 12.16 8.81 3.35

(0.02) (0.06) (0.06)
State tax as a percentage of price 0.19 0.17 0.02

(0.00) (0.00) (0.00)
Age 23.54 24.02 -0.48

(0.01) (0.04) (0.04)
Years of Education 11.98 12.02 -0.04

(0.00) (0.01) (0.02)
Married 0.60 0.18 0.41

(0.00) (0.00) (0.00)
Gestation weeks 39.55 38.77 0.79

(0.01) (0.02) (0.03)
Female baby 0.49 0.49 0.00

(0.00) (0.00) (0.00)
N 132.029 12.449

Note: Standard errors in parentheses.

finding could be the result of some model misspecification or that the instrument is not valid.

Most of the remaining coefficients have the same sign for mothers of both races, with the

exception of the age polynomial. Education, being married, and the number of gestation

weeks have all positive coefficients, whereas female babies weighed over 100 grams less than

their male counterparts for the majority of the population. The difference of these coefficients

between black and white mothers are smaller and, in most cases, not significant.

To compare the estimates of the copula parameters, I report the value of the Kendall’s

τ statistics for each them in Table 2. For white mothers, the estimated parameter has

a correlation statistic of around 0.14-0.15, consistently for all estimators. In contrast, the

correlation statistics for black mothers are negative, with the exception of the Clayton copula.

The latter follows because this copula can only take positive correlation values. For the

remaining copulas, the correlation statistic is around 0.21-0.24. An interpretation of this

result is that white mothers who smoke more are those whose children weight more at birth

conditional on their observed characteristics, whereas the opposite is true for black mothers.
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Figure 1: IVQR estimates (white mothers)
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Notes: the solid lines denote the IVQR estimates, and the dashed lines denote the bootstrapped 95% uniform
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weeks; in the third row, sex of the baby, and the intercept.

Figure 2: IVQR estimates (black mothers)
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mother’s age, and mother’s age to the square; in the second row, years of education, married, and gestation
weeks; in the third row, sex of the baby, and the intercept.

24



Thus, smoking habits of pregnant women and birth weight of their children are related by

potentially different reasons for women of each race.

Table 2: Kendall’s τ statistics of estimated copula parameters
Gaussian Clayton Frank Gumbel

White 0.148 0.135 0.144 0.156
(0.007) (0.006) (0.007) (0.007)

Black -0.221 0.005 -0.214 -0.243
(0.038) (0.000) (0.023) (0.042)

Note: Bootstrapped standard errors in parentheses.

To assess the fit of the copulas to the data, I report the values of the likelihood with

the estimated copulas in Table 3. In addition, I report two measures of fit of the estimated

unconditional distribution of the outcome: the mean and maximum difference between the

estimated distributions and the empirical cdf. The results show that the parametric copula

that attained the maximum likelihood for white mothers was the Gaussian, although the

two measures suggest that the other two parametric distributions led to a similar fit. On the

other hand, the estimates for black mothers show a more differentiated level of fit: because

the estimated copula is negative, the Clayton estimate is much worse than the others, and in

this case the maximum likelihood is attained for the Frank copula. Still, the measures of fit

for the Frank and Gaussian copulas are similar. Note also that the fit for the nonparametric

copulas are much better than for the parametric ones.

4.2 Estimation of the Actual Distributions

The estimates of the unconditional distribution for the four specifications considered are

presented in Table 4. Those with the parametric copula for white mothers are almost

indistinguishable from each other, whereas those with the nonparametric copula are slightly

different, particularly on the left tail of the distribution. As such, the former estimate

roughly a 10% of LBW babies, whereas the latter the estimate is slightly below 9%. For

black mothers, the estimate with the Clayton copula is much different from the others, owing

to the fact that its correlation cannot be negative. On the other hand, the estimate with the
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Table 3: Fit of the copulas
Gaussian Clayton Frank Nonparametric

White

�
Y

∣∣∣Q0.5
(
F̂Y (y)

)
− FY (y)

∣∣∣ dy 0.0172 0.0171 0.0175 0.0097
supy

∣∣∣F̂Y (y) − FY (y)
∣∣∣ 0.0264 0.0266 0.0265 0.0224

L 3515.6 3185.7 3418.8

Black

�
Y

∣∣∣Q0.5
(
F̂Y (y)

)
− FY (y)

∣∣∣ dy 0.0217 0.0288 0.0225 0.0101
supy

∣∣∣F̂Y (y) − FY (y)
∣∣∣ 0.0431 0.0547 0.0430 0.0258

L 745.9 -29.6 799.0

Notes: The first and fourth rows represent the integral of the difference between the median across
repetitions of the estimated counterfactual cdf and the true cdf; the second and fifth rows represents
the maximum of this difference; the third and sixth rows represent the estimated likelihood function.

nonparametric copula is slightly lower than those with the other parametric copulas on the

left tail, and slightly higher on the right tail. The estimated fractions of LBW babies range

between 18% (nonparametric copula) and 19.5% (Gaussian and Frank copulas).

4.3 Estimation of the Counterfactual Distributions

To assess the impact of smoking on birth weight, I consider three types of counterfactuals.

First, I swap the copula between mothers of both races. This way, one can assess how

differences in birth weight can be linked to differences in the amount of self-selection into

smoking, i.e., how smoking is correlated to other unobserved factors that may affect birth

weight. Second, I reduce smoking intensity to each mother by half. Because this is correlated

to other unobserved factors, the change in birth weight is heterogeneous. Finally, I limit the

daily amount of smoked cigarettes to 10, which reduces smoking only for heavier smokers.24

The counterfactual estimates with the Gaussian and nonparametric copulas and the

differences with respect to the estimates of the actual distributions are respectively shown in

Tables 5 and 6.25 The first counterfactual results in an increase of LWB. For white mothers,
24As stated in the text, this counterfactual is not Hadamard differentiable, so the bootstrap does not

consistently approximate the asymptotic distribution of the estimator. Regardless, because the alternative
method reported in Remark 5 is infeasible, I report these inconsistent estimates.

25I only report the estimates with these two copulas because the Frank and Clayton copulas either yield
very similar results or fit the actual data much worse. The results with them are available upon request.
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Table 4: Actual unconditional distribution estimates
2,500 3,000 3,500 4,000 4,500

White

Gaussian 0.099 0.325 0.710 0.936 0.971
(0.001) (0.001) (0.001) (0.001) (0.001)

Clayton 0.098 0.328 0.710 0.933 0.970
(0.001) (0.002) (0.001) (0.001) (0.001)

Frank 0.100 0.323 0.710 0.935 0.970
(0.001) (0.002) (0.001) (0.001) (0.001)

Nonparametric 0.087 0.336 0.717 0.933 0.972
(0.001) (0.001) (0.001) (0.001) (0.002)

Black

Gaussian 0.195 0.507 0.804 0.958 0.976
(0.003) (0.004) (0.006) (0.004) (0.004)

Clayton 0.210 0.509 0.793 0.946 0.970
(0.008) (0.003) (0.011) (0.006) (0.004)

Frank 0.195 0.507 0.804 0.956 0.974
(0.004) (0.004) (0.006) (0.005) (0.004)

Nonparametric 0.181 0.490 0.827 0.962 0.983
(0.001) (0.002) (0.002) (0.003) (0.003)

Note: Bootstrapped standard errors in parentheses.

this increase ranges between 3.5 and 4.3 percentage points, whereas for black mothers, it

ranges between 2.4 and 4.5 percentage points. In both cases, the estimate with the parametric

copula is smaller than with the nonparametric copula. The reason for these unusual changes

are the fact that the estimates of the copula and the effect of smoking on birth weight

have the reverse sign for both groups. Thus, while we estimate that white mothers who

tend to smoke more are those whose babies would be heavier, a reversal in the amount of

self-selection would lead to a weight increase to babies in the right tail of the distribution

and a decrease for those on the left tail.

The second counterfactual reports more meaningful estimates for white women: halving

smoking intensity would reduce the fraction of LWB by over 4 percentage points, regardless

of the copula employed in the estimation. For the estimate with the nonparametric copula

it represents over a half in the incidence of LWB. This counterfactual would also have an

impact on other parts of the distribution (Figure 3). For instance, the fraction of babies

weighing less than 3,000 grams would decrease by over 10 percentage points, to about 22%.
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Table 5: Counterfactual unconditional distribution estimates
2,500 3,000 3,500 4,000 4,500

CF 1

White

Gaussian 0.134 0.349 0.691 0.923 0.971
(0.003) (0.002) (0.002) (0.002) (0.002)

Nonparametric 0.130 0.353 0.680 0.937 0.975
(0.004) (0.005) (0.005) (0.004) (0.003)

Black

Gaussian 0.219 0.511 0.788 0.940 0.966
(0.010) (0.003) (0.013) (0.008) (0.005)

Nonparametric 0.226 0.505 0.785 0.942 0.971
(0.010) (0.002) (0.014) (0.007) (0.005)

CF 2

White

Gaussian 0.057 0.223 0.631 0.916 0.970
(0.001) (0.004) (0.004) (0.002) (0.002)

Nonparametric 0.042 0.227 0.637 0.915 0.972
(0.001) (0.003) (0.003) (0.002) (0.002)

Black

Gaussian 0.250 0.600 0.833 0.968 0.980
(0.016) (0.020) (0.011) (0.006) (0.004)

Nonparametric 0.239 0.595 0.850 0.975 0.991
(0.013) (0.021) (0.011) (0.004) (0.004)

CF 3

White

Gaussian 0.069 0.264 0.665 0.923 0.970
(0.001) (0.003) (0.002) (0.001) (0.002)

Nonparametric 0.062 0.272 0.668 0.921 0.972
(0.001) (0.001) (0.002) (0.002) (0.002)

Black

Gaussian 0.215 0.538 0.823 0.963 0.977
(0.007) (0.006) (0.005) (0.004) (0.004)

Nonparametric 0.206 0.525 0.839 0.966 0.984
(0.006) (0.005) (0.004) (0.003) (0.003)

Note: Bootstrapped standard errors in parentheses.
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Table 6: Counterfactual unconditional distribution variation estimates
2,500 3,000 3,500 4,000 4,500

CF 1

White

Gaussian 0.035 0.025 -0.018 -0.013 0.000
(0.003) (0.002) (0.002) (0.001) (0.001)

Nonparametric 0.043 0.017 -0.037 0.005 0.003
(0.004) (0.004) (0.005) (0.004) (0.003)

Black

Gaussian 0.024 0.004 -0.016 -0.018 -0.010
(0.008) (0.002) (0.009) (0.007) (0.004)

Nonparametric 0.045 0.015 -0.042 -0.020 -0.012
(0.011) (0.002) (0.013) (0.008) (0.005)

CF 2

White

Gaussian -0.042 -0.102 -0.079 -0.020 0.000
(0.001) (0.002) (0.003) (0.001) (0.001)

Nonparametric -0.044 -0.109 -0.080 -0.018 0.000
(0.001) (0.003) (0.003) (0.002) (0.002)

Black

Gaussian 0.055 0.092 0.029 0.010 0.004
(0.014) (0.020) (0.013) (0.004) (0.002)

Nonparametric 0.058 0.104 0.024 0.012 0.008
(0.014) (0.023) (0.011) (0.005) (0.001)

CF 3

White

Gaussian -0.030 -0.061 -0.045 -0.012 0.000
(0.001) (0.002) (0.002) (0.001) (0.001)

Nonparametric -0.025 -0.064 -0.049 -0.012 0.000
(0.001) (0.002) (0.002) (0.001) (0.002)

Black

Gaussian 0.021 0.030 0.019 0.005 0.001
(0.005) (0.006) (0.006) (0.002) (0.000)

Nonparametric 0.025 0.035 0.013 0.003 0.001
(0.006) (0.007) (0.004) (0.001) (0.000)

Note: Bootstrapped standard errors in parentheses.
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Figure 3: Counterfactual unconditional distribution variation estimates
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Notes: The solid thick blue lines denote the estimates with the parametric copula, the dashed-dotted thin
blue lines denote their 95% confidence intervals, the dashed thick red lines denote the estimates with the
nonparametric copula, and the dotted thin red lines denote their 95% confidence intervals; uniform confidence
intervals computed using the multiplicative bootstrap.
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On the other hand, the counterfactual effect on black mothers would yield a generalized

decrease in birth weight, and the proportion of LBW would increase up to one quarter of all

births.

Finally, the third counterfactual would decrease smoking for heavier smokers, which for

white women implies a larger increase in birth weight for babies with relatively low weight.

This is confirmed by the estimates in Table 6, and the proportion of LWB would decrease

by 2.5 to 3 percentage points, whereas those weighing less than 3,000 grams would decrease

by over 6 percentage points. On the other hand, the variation for black females would be

the opposite, and the fraction of LBW would increase by over 2.5 percentage points.

4.4 Estimation of the MTE

The last estimand of interest is the MTE, which captures the variation in LBW induced

by a marginal increase in smoking intensity for a person with unobserved characteristic V .

The estimates are reported in Table 7, and they show the opposite behavior for white and

black mothers. For the former, the effect is negative throughout the entire distribution of

V and increasing. As such, mothers more likely to smoke heavily (high V ) would have a

smaller reduction on their child’s weight from smoking less than those more likely to smoke

little (low V ). On the other hand, the MTE estimates for black women are positive and

increasing, so heavier smoker mothers would have a higher decrease in their child’s weight

from smoking less.

Table 7: MTE estimates
Quantile

0.1 0.25 0.5 0.75 0.9
White -10.697 -9.779 -8.775 -7.802 -6.960

(0.788) (0.718) (0.726) (0.644) (0.612)
Black 6.657 8.270 10.172 12.126 13.878

(2.460) (2.939) (3.637) (4.458) (5.093)

Note: Bootstrapped standard errors in parentheses.

31



5 Conclusions

In this paper I propose an estimator of counterfactual unconditional distribution functions

in the presence of an endogenous continuous treatment with heterogeneous effects. This

estimator is based on the estimators of the quantile processes that characterize a triangular

system of equations, and the estimator of the distribution of the copula of the conditional

ranks, which captures the endogeneity of the treatment. The latter is nonparametrically

identified by inverting the quantile processes of the triangular system, and it can be estimated

either parametrically, resulting in an estimator that is asymptotically Gaussian with the usual
√
n convergence rate, or nonparametrically using the empirical cdf of the estimated values of

the copula of the conditional ranks. The counterfactuals I consider involve either a change

of one of the structural functions of the individuals of one group with that of another group,

or a change in the intensity of the treatment that is not independent of the unobservables.

As an empirical application I estimate the effect of birth smoking of newborns’ birth

weight, and I carry out three counterfactuals in which I respectively swap the copula between

mothers of both races, reduce the number of smoked cigarettes during pregnancy to one half

of the actual quantity, and I limit their consumption to a maximum of ten per day. The

second and third counterfactuals would increase the birth weight of newborns, though this

effect would be heterogeneous, and would substantially reduce the percentage of newborns

with low birth weight.
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Let E ≡ (Y,X1, X2, Z1, D). The following notation is used throughout the appendix:26

f 7→ En [f (E)] ≡ 1
n

n∑
i=1

f (Ei)

f 7→ Gn [f (E)] ≡ 1√
n

n∑
i=1

f (Ei) − E (f (Ei))

R̂m (E, β, ι, γ, τ, ν) ≡

φτ

(
Y −X ′β − Φ̂ (τ)′ ι

)
Ψ̂p (τ) 1 (D = p)

φν (X1 − Z ′γ)Z1 (D = q)



Rm (E, β, ι, γ, τ, ν) ≡

φτ

(
Y −X ′β − Φ (τ)′ ι

)
Ψp (τ) 1 (D = p)

φν (X1 − Z ′γ)Z1 (D = q)



Ĝm (E, β, ι, γ, τ, ν) ≡

ρτ

(
Y −X ′β − Φ̂ (τ)′ ι

)
1 (D = p)

ρν (X1 − Z ′γ) 1 (D = q)



Gm (E, β, ι, γ, τ, ν) ≡

ρτ

(
Y −X ′β − Φ (τ)′ ι

)
1 (D = p)

ρν (X1 − Z ′γ) 1 (D = q)


Qm,n (β, ι, γ, τ, ν) ≡ En

[
Ĝm (E, β, ι, γ, τ, ν)

]
Qm (β, ι, γ, τ, ν) ≡ E [Gm (E, β, ι, γ, τ, ν)]

εd = Y − X ′βd, εd (τ) = Y − X ′βd (τ), ε̂d (τ) = Y − X ′β̂d (τ), ηd = X1 − Z ′γd, ηd (ν) =

X1 − Z ′γd (ν), η̂d (ν) = X1 − Z ′γ̂d (ν), Ψd (τ) ≡
(
Φd (τ)′ , X2

)′
, Ψ̂d (τ) ≡

(
Φ̂d (τ)′ , X2

)′
,

Φd (τ) ≡ Φd (τ, Z), Φ̂d (τ) ≡ Φ̂d (τ, Z), υm (τ, ν) =
(
βp,2 (τ)′ , ιp (τ) , γq (ν)′

)′
, υ̂m (τ, ν) =(

β̂p,2 (τ)′ , ι̂p (τ) , γ̂q (ν)′
)′

, and φτ (u) ≡ (1 (u < 0) − τ).

A Mathematical Proofs

This appendix collects the proofs of the propositions and theorems stated in the text. These

are in turn based on some lemmas, which are stated and proved in Appendix B.
26Some of this notation is the standard in the literature of empirical processes. See van der Vaart (2000).
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A.1 Proof of Proposition 1

The proof is split into three steps. First, I show the identification of kd; second, I show the

identification of gd; finally, I show the identification of Cd
UV |X2

.

The identification of kd follows Matzkin (2003). By definition, kd (·, ·, ·) is continuous in

all its arguments and strictly increasing in its third. Therefore, it can be inverted:

kI
d (z1, x2, y) ≡ inf {v : x1 ≥ kd (z1, x2, v)}

Let g be a strictly increasing function and define ṽ ≡ g (v) and

k̃I
d (z1, x2, x1) ≡ g

(
kI

d (z1, x2, x1)
)

Then, it is possible to write

kd (z1, x2, v) = kd

(
z1, x2, g

−1 (ṽ)
)

= k̃d (z1, x2, ṽ)

where k̃d (z1, x2, v) is the inverse of k̃I
d (z1, x2, x1). By Lemma 1 in Matzkin (2003), kd and

k̃d are observationally equivalent. Therefore, kd and k̃d are also observationally equivalent,

so kd is identified up to a monotone transformation. By Assumption 1, V ∼ U (0, 1), so kd

is identified.

The identification of gd is instead based on Torgovitsky (2015). By the definition of gd

and kd, Assumptions G.C, G.S, and FS.S in Torgovitsky (2015) are satisfied. Moreover, by

Assumption 1, Assumptions G.N and FS.E are satisfied. These, together with Assumption 2

imply that g (·, ·, ·) is identified by Theorem 2 in Torgovitsky (2015).

Lastly, the identification of the copula is achieved by inverting the SQF and the CQF,

which is possible by the continuity and the monotonicity of both functions in their last

argument: u = g−1
d (x1, x2, y), v = k−1

d (z1, x2, x1). Hence, the copula is identified by

Cd
UV |X2 (u, v|x2) = P

(
g−1

d (X1, X2, Y ) ≤ u, k−1
d (Z1, X2, X1) ≤ v|z

)
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A.2 Proof of Proposition 2

This proof is split into several steps. By Lemma 1 and the continuity of gp and cr
U |V X2

(Assumptions 3 and 10),
√
n
(
F̂m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

)
can be written as:

√
n
(
F̂m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

)
=

√
n

�
U2

1
(
(z′γ̂q (v) , x2)′

β̂p (u) ≤ y
) [
cr

UV |X2

(
u, v|x2; θ̂r

)
− cr

UV |X2 (u, v|x2; θr)
]
dudv

+
√
n

�
U2

[
1
(
(z′γ̂q (v) , x2)′

β̂p (u) ≤ y
)

− 1
(
(z′γ̂q (v) , x2)′

βp (u) ≤ y
)]
dCr

UV |X2 (u, v|x2; θr)

+
√
n

�
U2

[
1
(
(z′γ̂q (v) , x2)′

βp (u) ≤ y
)

− 1
(
(z′γq (v) , x2)′

βp (u) ≤ y
)]
dCr

UV |X2 (u, v|x2; θr)

=
√
n

�
U2

1
(
(z′γq (v) , x2)′

βp (u) ≤ y
) [
cr

UV |X2

(
u, v|x2; θ̂r

)
− cr

UV |X2 (u, v|x2; θr)
]
dudv

+
√
n

�
U2

[
1
(
(z′γq (v) , x2)′

β̂p (u) ≤ y
)

− 1
(
(z′γq (v) , x2)′

βp (u) ≤ y
)]
dCr

UV |X2 (u, v|x2; θr)

+
√
n

�
U2

[
1
(
(z′γ̂q (v) , x2)′

βp (u) ≤ y
)

− 1
(
(z′γq (v) , x2)′

βp (u) ≤ y
)]
dCr

UV |X2 (u, v|x2; θr)

+ o∗
P (1)

Using Lemmas 4-6, the chain rule for Hadamard differentiable mappings, Lemma 1, and

the functional delta method, it follows that

√
n
(
F̂m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

)
⇝

� 1−ϵ

ϵ

[
∂

∂θ
Cr

U |V X2

(
g−1

p (z′γq (v) , x2, y) |v, x2; θr

)]
dvZθr

−
� 1−ϵ

ϵ

fm
Y |ZV (y|z, v) (z′γq (v) , x2)′ Zβp

(
Cr,−1

U |V X2

(
Fm

Y |ZV (y|z, v) |v, x2; θr

))
dv

−
� 1−ϵ

ϵ

fm
Y |ZV (y|z, v) βp,1

(
Cr,−1

U |V X2

(
Fm

Y |ZV (y|z, v) |v, x2; θr

))
z′Zγq (v) dv

≡ ZFm|Z (y, z)

in ℓ∞ (YZM). The result holds uniformly in m ∈ M because M is a finite set.

Moreover, by Assumptions 4-5, apply Lemma E.4 in Chernozhukov et al. (2013) to obtain
√
ns

�
Z fd

(
F̂ s

Z − F s
Z

)
⇝ ZZs (f) in ℓ∞ (F). Taking these results together, the desired result
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follows.

A.3 Proof of Proposition 3

By the results in Proposition 2, Lemma 1, and Assumption 11, and using the same arguments

as in Proposition 2, it follows that

√
n
(
F̂ d,cf

Y |Z (y|z) − F d,cf,ϵ
Y |Z (y|z)

)
=

√
n

�
U2

1
((
kcf

d (v) , x2
)′
βd (u) ≤ y

) [
cd

UV |X2

(
u, v|x2; θ̂d

)
− cd

UV |X2 (u, v|x2; θd)
]
dudv

+
√
n

�
U2

[
1
((
kcf

d (v) , x2
)′
β̂d (u) ≤ y

)
− 1

((
kcf

d (v) , x2
)′
βd (u) ≤ y

)]
dCd

UV |X2 (u, v|x2; θd)

+
√
n

�
U2

[
1
((
k̂cf

d (v) , x2
)′
βd (u) ≤ y

)
− 1

((
kcf

d (v) , x2
)′
βd (u) ≤ y

)]
dCd

UV |X2 (u, v|x2; θd)

+ o∗
P (1)

⇝
� 1−ϵ

ϵ

[
∂

∂θ
Cd

U |V X2

(
g−1

d

(
kcf

d (v) , x2, y
)

|v, x2; θd

)]
dvZθd

−
� 1−ϵ

ϵ

fd
Y |ZV (y|z, v)

(
kcf

d (v) , x2
)′
Zβd

(
Cd,−1

U |V X2

(
F d

Y |ZV (y|z, v) |v, x2; θd

))
dv

−
� 1−ϵ

ϵ

fd
Y |ZV (y|z, v) βd,1

(
Cd,−1

U |V X2

(
F d

Y |ZV (y|z, v) |v, x2; θd

))
z′ψ′

kd
(Zγd

(v)) dv

≡ ZF cf
d

|Z (y, z)

in ℓ∞ (YZD), and where we have used Theorem 2.1 in Fang and Santos (2019) rather than the

functional delta method, to account for the potentially Hadamard directional differentiable

counterfactual. The result holds uniformly in m ∈ M because M is a finite set. The desired

result follows immediately.

Moreover, using the same arguments as in Theorem 1, it is immediate to show that

√
n
(
F̂ d,cf

Y (y) − F d,cf,ϵ
Y (y)

)
⇝

�
Z
ZF cf

d
|Z (y|z) dF d

Z (z) +
√
λsZZd

(
F d,cf,ϵ

Y |Z (y|z)
)

≡ ZF cf
d

(y)
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uniformly in ℓ∞ (YD), and

√
n
(
Q̂d,cf

Y (τ) −Qd,cf,ϵ
Y (τ)

)
⇝ −

ZF cf
d

(
Qd,cf,ϵ

Y (τ)
)

fd
Y

(
Qd,cf,ϵ

Y (τ)
) ≡ ZQcf

d
(τ)

uniformly in ℓ∞ (T D).

A.4 Proof of Proposition 4

sup
y,z,m

√
n
∣∣∣F̌m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

∣∣∣
≤ sup

y,z,m

√
n
∣∣∣F̌m

Y |Z (y|z) − F̃m
Y |Z (y|z)

∣∣∣+ sup
y,z

√
n
∣∣∣F̃m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

∣∣∣
= sup

y,z,m

√
n

∣∣∣∣∣
� 1−ϵ

ϵ

1 (ĝp (x̂q
1 (v) , x2, u) ≤ y) d

(
Čr

UV (u, v) − Cr
UV (u, v)

)∣∣∣∣∣+OP (1)

≤ sup
r

√
n

� 1−ϵ

ϵ

d
∣∣∣Čr

UV (u, v) − Cr
UV (u, v)

∣∣∣+OP (1)

≤ sup
u,v,r

√
n
∣∣∣Čr

UV (u, v) − Cr
UV (u, v)

∣∣∣+OP (1) = OP (1)

where the first inequality follows from the triangle inequality, the first equality from the

definition of the estimators and the uniform consistency of F̃m
Y |Z (y|z) shown in Lemma 3, the

second inequality from the fact that the indicator function is no larger than one, the third

inequality by taking the supremum of the difference, and the last equality by Lemma 9.

By Lemma 4, it follows that supy,m

√
n
∣∣∣F̌m

Y (y) − Fm,ϵ
Y (y)

∣∣∣ = OP (1). Also, because the

inverse map is Hadamard differentiable uniformly with respect to an index (Chernozhukov

et al., 2010), it follows that supτ,m

√
n
∣∣∣Q̌m

Y (τ) −Qm,ϵ
Y (τ)

∣∣∣ = OP (1). Both results hold

uniformly in m ∈ M because M is a finite set.
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A.5 Proof of Theorem 1

First, I show the asymptotic distribution of F̂m
Y (y). By Proposition 2,

√
n

 F̂m
Y |Z (y|z) − Fm,ϵ

Y |Z (y|z)
�

Z fd
(
F̂ s

Z (z) − F s
Z (z)

)
⇝

ZFm|Z (y, z)
√
λsZZs (f)



in ℓ∞ (YZFM).

By Lemma D.1 in Chernozhukov et al. (2013),

√
n
(
F̂m

Y (y) − Fm,ϵ
Y (y)

)
=

√
n

�
Z

(
F̂m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

)
dF s

Z (z)

+
√
n

�
Z
Fm

Y |Z (y|z) d
(
F̂ s

Z (z) − F s
Z (z)

)
+ o∗

P (1)

⇝
�

Z
ZFm|Z (y|z) dF s

Z (z) +
√
λsZZs

(
Fm,ϵ

Y |Z (y|z)
)

≡ ZFm (y)

in ℓ∞ (YM).

Next, I show the asymptotic distribution of Q̂m
Y (τ). By the functional delta method,

√
n
(
Q̂m

Y (τ) −Qm,ϵ
Y (τ)

)
= −

√
n
(
F̂m

Y (Qm,ϵ
Y (τ)) − Fm,ϵ

Y (Qm,ϵ
Y (τ))

)
fm

Y (Qm,ϵ
Y (τ)) + o∗

P (1)

⇝ −ZFm (Qm,ϵ
Y (τ))

fm
Y (Qm,ϵ

Y (τ)) ≡ ZQm (τ)

in ℓ∞ (T M), where I have used the Hadamard differentiability of the quantile operator

(Chernozhukov et al., 2010). By Assumption 6, τ → Qm,ϵ
Y (τ) is a.s. uniformly continuous,

and together with the a.s. uniform continuity of ZFm (y), it follows that ZQm (τ) is a.s.

uniformly continuous with respect to τ . The result holds jointly in m ∈ M because M is a

finite set.
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A.6 Proof of Theorem 2

Using the same arguments used in Lemma 1 and Assumption 13, it follows that

√
n
(
ϑ̂∗

m (·, ··) − ϑm (·, ··)
)

≡
√
n


β̂∗

p (·) − βp (·)

γ̂∗
q (··) − γq (··)

θ̂∗
r − θr



=



Jp (·)−1 0

0 Hq (··)−1

G∗
nfm (E, β1 (·) , υ (·, ··) , ·, ··)

L−1
r

[
G∗

n

[
∂ℓr(Ur,V,θr)

∂θ

]
+

�
Z

�
U2

∂2ℓr(Ur,V,θr)
∂θ∂(u,v)

√
nW

Ûr − Ur

V̂ − V

 dCr
UV |X2

(Ur, V |X2; θr) dF r
Z (z)




+ o∗

P (1)

in ℓ∞ (UUM), and where f 7→ G∗
n [f (E)] ≡ 1√

n

∑n
i=1 Wi [f (Ei) − E (f (Ei))]. Consequently,

√
n
(
ϑ̂∗

m (·, ··) − ϑm (·, ··)
)
⇝ Z∗

ϑm
(·, ··) ≡ √

ω0Zϑm (·, ··), a zero-mean Gaussian process with

covariance ω0Σϑm (τ, ν, τ̃ , ν̃). By the functional delta method, Proposition 2, and Theorem 1,

it is straightforward to show that

√
n

ω0

 F̂m,∗
Y |Z (y|z) − Fm,ϵ

Y |Z (y|z)
�

Z fd
(
F̂ s,∗

Z (z) − F s
Z (z)

)
⇝

ZFm|Z (y, z)
√
λsZZs (f)

 in ℓ∞ (YZFM)

√
n

ω0

(
Q̂m,∗

Y (τ) −Qm,ϵ
Y (τ)

)
⇝ ZQm (τ) in ℓ∞ (T M)√

n

ω0

(
F̂m,∗

Y (y) − Fm,ϵ
Y (y)

)
⇝ ZFm (y) in ℓ∞ (YM)

B Auxiliary Lemmas

B.1 Asymptotic Distribution of the Structural Estimators

Lemma 1. Let γ̂p (ν) and β̂q (τ) denote the conditional QR and conditional IVQR estimators

of quantiles ν and τ of Equations 2 and 1, respectively. Under Assumptions 3 to 10, their
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joint asymptotic distribution is given by:

√
n
(
ϑ̂m (·, ··) − ϑm (·, ··)

)
≡


β̂p (·) − βp (·)

γ̂q (··) − γq (··)

θ̂r − θr

⇝

Zβp (·)

Zγq (··)

Zθr

 ≡ Zϑm (·, ··)

a stochastic process in metric space ℓ∞ (UUM), where Zϑm (τ, ν) is a zero-mean tight Gaussian

process with a.s. uniformly continuous paths in UUM.

Proof. The first step is to show the joint asymptotic distribution of the IVQR and QR

estimators. By Assumption 6, Qm (β, ι, γ, τ, ν) is continuous over B × I × G × U × U .

Furthermore, by Lemma 8, sup(β,ι,γ)∈B×I×G ∥Qm,n (β, ι, γ, τ, ν) −Qm (β, ι, γ, τ, ν)∥ P→ 0.

Hence, the uniform convergence of sup(β1,τ,ν)∈B1×U×U

∥∥∥ζ̂m (β1, τ, ν) − ζm (β1, τ, ν)
∥∥∥ P→ 0

follows by Lemma 7, which implies that sup(β1,τ)∈B1×U

∥∥∥∥ι̂p (β1, τ)∥Ap(τ) − ∥ιp (β1, τ)∥Ap(τ)

∥∥∥ P→

0, where ∥x∥A =
√
x′Ax for some uniformly positive definite matrix Ap (τ), such as Ap (τ) = I

or Ap (τ) = 1
nd

∑n
i=1 Φ̂d,i (τ) Φ̂d,i (τ)′.

By Lemma 7, supτ∈U

∥∥∥β̂p,1 (τ) − βp,1 (τ)
∥∥∥ P→ 0, and hence supτ∈U

∥∥∥β̂p,2 (τ) − βp,2 (τ)
∥∥∥ P→

0, supτ∈U

∥∥∥ι̂p (β̂p,1 (τ) τ
)

− 0
∥∥∥ P→ 0, and supν∈U ∥γ̂q (ν) − γq (ν)∥ P→ 0, which proves their

uniform consistency.

Consider a collection of closed balls Bδn (βp,1 (τ)) centered at βp,1 (τ) ∀τ , with radius δn

independent of τ and δn → 0 slowly enough. Let β1n (τ) be any value inside Bδn (β (τ)). By

Theorem 3.3 in Koenker and Bassett (1978),

O

(
1√
n

)
=

√
nEnR̂m

(
E, β1n (·) , ζ̂m (β1n (·) , ·, ··) , ·, ··

)
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By Lemma 8, the following expansion holds for any supτ∈U ∥β1n (τ) − βp,1 (τ)∥ P→ 0

O

(
1√
n

)
= GnR̂m

(
E, β1n (·) , ζ̂m (β1n (·) , ·, ··) , ·, ··

)
+

√
nER̂m

(
E, β1n (·) , ζ̂m,n (β1n (·) , ·, ··) , ·, ··

)
= GnRm (E, βp,1 (·) , ζm (β1 (·) , ·, ··) , ·, ··) + oP (1)

+
√
nER̂m

(
E, β1n (·) , ζ̂m,n (β1n (·) , ·, ··) , ·, ··

)
in ℓ∞ (UU)

= GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··) + oP (1)

+ (Jm,ζ (·, ··) + oP (1))
√
n
(
ζ̂m (β1n (·) , ·, ··) − ζm (·, ··)

)
+ (Jm,β1 (·) + oP (1))

√
n (β1n (·) − β1 (·)) in ℓ∞ (UU)

where

Jm,ζ (·, ··) ≡ ∂

∂ (β′
2, ι

′, γ′) E

φ·
(
Y −X ′

1β1 (·) −X ′
2β2 − Φp (·)′ ι

)
Ψp (·) 1 (D = p)

φ·· (X1 − Z ′γ) z1 (D = q)


∣∣∣∣∣∣∣
ζ=ζm(·,··)

Jm,β1 (·) ≡


∂

∂β1
E [φ· (Y −X ′

1β1 −X ′
2β2 (·)) Ψp (·) 1 (D = p)]

∣∣∣
β1=β1(·)

0dX×1



For any supτ∈U ∥β1n (τ) − β1 (τ)∥ P→ 0

√
n
(
ζ̂m (β1n (·) , ·, ··) −ζm (·, ··)) = −J−1

m,ζ (·, ··)GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··)

− J−1
m,ζ (·, ··) Jm,βp,1 (·) [1 + oP (1)]

√
n (β1n (·) − β1 (·)) + oP (1)

in ℓ∞ (UU). Consequently,

√
n (ι̂p (β1n (·) , ·) − 0) = −J̄m,ι (·, ··)GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··)

− J̄m,ι (·, ··) Jm,β1 (·) [1 + oP (1)]
√
n (β1n (·) − βp,1 (·)) + oP (1)

in ℓ∞ (UU), where
[
J̄m,β2 (·, ··)′ : J̄m,ι (·, ··)′ : J̄m,γ (·, ··)′

]
is the conformable partition of J−1

m,ζ (·, ··).
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By the uniform consistency of β̂p,1 (τ), wp → 1,

β̂p,1 (τ) = arg min
β1n(τ)∈Bn(β1(τ))

∥ι̂p (β1n (τ) , τ)∥Ap(τ) ∀τ ∈ U

By Lemma 8, GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··) = OP (1), so it follows that

√
n ∥ι̂p (β1n (·) , ·)∥Ap(·) =

∥∥∥OP (1) − J̄m,ι (·, ··) Jm,β1 (·) [1 + oP (1)]
√
n (β1n (·) − βp,1 (·))

∥∥∥
Ap(·)

in ℓ∞ (UU), since Ap (·) and Jm,ι (·, ··) Jm,β1 (·) have full rank uniformly in U × U . Hence,

√
n
(
β̂p,1 (·) − βp,1 (·)

)
= arg min

µ∈R

∥∥∥−J̄m,ι (·)GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··) − J̄m,ι (·, ··) J̄m,β1 (·)µ
∥∥∥

Ap(·)
+ oP (1)

in ℓ∞ (UU). So jointly in ℓ∞ (UU)

√
n
(
β̂p,1 (·) − βp,1 (·)

)
= −

(
Jm,β1 (·)′ J̄m,ι (·, ··)′ Ap (·) J̄m,ι (·, ··) Jm,β1 (·)

)−1

·
(
Jm,β1 (·)′ J̄m,ι (·, ··)′ Ap (·) J̄m,ι (·, ··)

)
GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··) + oP (1)

= OP (1)

√
n
(
ζ̂m

(
β̂p,1 (·) , ·, ··

)
− ζm (·, ··)

)
= −J−1

m,ζ (·, ··)
[
I − Jm,β1 (·)

(
Jm,β1 (·)′ J̄m,ι (·, ··)′ Ap (·) J̄m,ι (·, ··) Jm,β1 (·)

)−1

· Jβm,1 (·)′ J̄m,ι (·, ··)′ Ap (·) J̄m,ι (·, ··)
]
GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··) + oP (1)

= OP (1)
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Due to the invertibility of Jm,β1 (τ) J̄m,ι (τ, ν),

√
n
(
ι̂p
(
β̂p,1 (·) , ·

)
− 0

)
= −J̄m,ι (·, ··)

[
I − Jm,β1 (·)

[
Jm,β1 (·)′ J̄m,ι (·, ··)′

]−1
J̄m,ι (·, ··)

]
· GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··) + oP (1)

= 0 ×OP (1) + oP (1)

in ℓ∞ (UU). Because
(
β1n (·) , ζ̂m (β1n (·) , ·, ··)

)
=
(
β̂p,1 (·) , β̂p,2 (·) , 0 + oP

(
1√
n

)
, γ̂q (··)

)
, and

substituting it into the expansion yields

−GnRm (E, βp,1 (·) , ζ (·, ··) , ·, ··) =

Jp (·) 0dX

0dX
Hq (··)

√
n

 β̂p (·) − βp (·)

γ̂q (··) − γq (··)

+ oP (1)

in ℓ∞ (UU). By Lemma 8, GnRm (E, βp,1 (·) , ζm (·, ··) , ·, ··) ⇝ ZRm (·, ··) in ℓ∞ (UU), a

Gaussian process with covariate function ΣRm,m̃ (τ, ν, τ̃ , ν̃) = E
[
ZRm (τ, ν)ZRm̃ (τ̃ , ν̃)′

]
, which

yields

√
n

 β̂p (·) − βp (·)

γ̂q (··) − γq (··)

⇝
Jp (·)−1 0dX

0dX
Hq (··)−1

ZRm (·, ··) ≡ ZLm (·, ··) (17)

where

Hq (ν) ≡ E [fX1 (Z ′γq (ν) |Z)ZZ ′1 (D = q)] = 1
λq

E [fX1 (Z ′γq (ν) |Z)ZZ ′|D = q] ≡ 1
λq

Hq (ν)

Jp (τ) ≡ E [fY (X ′βp (τ) |X,Z1) Ψp (τ)X ′1 (D = p)]

= 1
λp

E [fY (X ′βp (τ) |X,Z1) Ψp (τ)X ′|D = p] ≡ 1
λp

Jp (τ)

where the expectations are with respect to F d
Z (z).
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The covariance function of the process is given by

ΣLmm̃ (τ, ν, τ̃ , ν̃) =

Σ1,1
Lmm̃

(τ, τ̃) Σ2,1
Lmm̃

(τ, ν̃)′

Σ2,1
Lm̃m

(τ̃ , ν) Σ2,2
Lmm̃

(ν, ν̃)



where

Σ1,1
Lmm̃

(τ, τ̃) = Jp (τ)−1 (τ ∧ τ̃ − τ τ̃)E
[
Ψp (τ, Z) Ψp (τ̃ , Z)′ 1 (D = p)

]
Jp (τ̃)−1 1 (p = p̃)

= λpJp (τ)−1 (τ ∧ τ̃ − τ τ̃)E
[
Ψp (τ) Ψp (τ̃)′ |D = p

]
Jp (τ̃)−1 1 (p = p̃)

Σ2,1
Lm̃m

(τ̃ , ν) = Hq (ν)−1 E
[
(1 (Y ≤ X ′βq (τ̃)) 1 (X1 ≤ Z ′γq (ν)) − τ̃ ν)ZΨq (τ̃ , z)′ 1 (D = q)

]′
· Jq (τ̃)−1 1 (q = p̃)

= λqH
−1
q (ν)E

[
(1 (Y ≤ X ′βq (τ̃)) 1 (X1 ≤ Z ′γq (ν)) − τ̃ ν)ZΨq (τ̃ , z)′ |D = q

]′
· J−1

q (τ̃) 1 (q = p̃)

Σ2,2
Lmm̃

(ν, ν̃) = Hq (ν)−1 (ν ∧ ν̃ − νν̃)E [ZZ ′1 (D = q)]Hq (ṽ)−1 1 (q = q̃)

= λqH
−1
q (ν)E [ZZ ′|D = q]Hq (ṽ)−1 1 (q = q̃)

The second step is to express the estimator of the copulas parameters as a function of

the IVQR and QR estimators. To do so, apply the mean value theorem to the score:

0 = En

∂ℓr

(
Ûr, V̂ , θ̂r

)
∂θ

 = En

∂ℓr

(
Ûr, V̂ , θr

)
∂θ

+ En

∂2ℓr

(
Ûr, V̂ , θr

)
∂θ∂θ′

 (θ̂r − θr

)

where θr lies between θ̂r and θr. Rearranging the previous equation yields

√
n
(
θ̂r − θr

)
=
En

−
∂2ℓr

(
Ûr, V̂ , θr

)
∂θ∂θ′

−1
√
nEn

∂ℓr

(
Ûr, V̂ , θr

)
∂θ

 (18)

Define the Hessian as

Lr ≡ E
[
−∂2ℓr (Ur, V, θr)

∂θ∂θ′

]
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Now I show its uniform convergence:

∥∥∥∥∥∥
∂2ℓr

(
Ûr, V̂ , θr

)
∂θ∂θ′ − ∂2ℓr (Ur, V, θr)

∂θ∂θ′

∥∥∥∥∥∥ =

∥∥∥∥∥∥vec
∂2ℓr

(
Ûr, V̂ , θr

)
∂θ∂θ′ − ∂2ℓr (Ur, V, θr)

∂θ∂θ′

∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥
∇3ℓr

(
U r, V , θr

)

Ûr − Ur

V̂ − V

θr − θr



∥∥∥∥∥∥∥∥∥∥∥

≤
∥∥∥∇3ℓr

(
U r, V , θr

)∥∥∥
∥∥∥∥∥∥∥∥∥∥∥


Ûr − Ur

V̂ − V

θr − θr



∥∥∥∥∥∥∥∥∥∥∥
≤ K · o∗

P (1) = o∗
P (1)

where Ur = ϵ +
� 1−ϵ

ϵ
1 (X ′βr (u) ≤ Y ) du, V =

� 1−ϵ

ϵ
1 (Z ′γr (v) ≤ X1) dv, ∇3ℓr (u, v, θr) is

a matrix such that its (i, k)-th element is the partial derivative of the i-th element of

vec
(

∂2ℓr(Ur,V,θr)
∂θ∂θ′

)
writh respect to the l-th element of (u, v, θ′

r)
′, vec denotes the vectorization

operator, and ∥·∥ the Euclidean norm. The first equality follows by the mean value theorem,

the first inequality by the triangular inequality, and the last inequality by Assumption 10.

Using this result,

∥∥∥∥∥∥En

−
∂2ℓr

(
Ûr, V̂ , θr

)
∂θ∂θ′

− Lr

∥∥∥∥∥∥ ≤ En

∥∥∥∥∥∥−
∂2ℓr

(
Ûr, V̂ , θr

)
∂θ∂θ′ + ∂2ℓr (Ur, V, θr)

∂θ∂θ′

∥∥∥∥∥∥
+
∥∥∥∥∥En

[
−∂2ℓr (Ur, V, θr)

∂θ∂θ′

]
− Lr

∥∥∥∥∥ = o∗
P (1)

where the inequality follows by the triangular inequality, the first term is o∗
P (1) by the

argument above, and the second term by uniform law of large numbers.

Then, I show the asymptotic distribution of
√
nEn

[
∂ℓr(Ûr,V̂ ,θr)

∂θ

]
. Apply the mean value
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theorem to
(
Ûr, V̂

)
:

√
nEn

∂ℓr

(
Ûr, V̂ , θr

)
∂θ

 = Gn

[
∂ℓr (Ur, V, θr)

∂θ

]

+
√
nEn

∂2ℓr

(
U r, V , θr

)
∂θ∂ (u, v)

Ûr − Ur

V̂ − V


 (19)

The first term is simply the usual term that appears in the maximization of the log

likelihood function, while the second term accounts for the fact that (Ur, V ) are estimated

rather than observed. Focusing on the second term, it follows that

√
nEn

∂2ℓr

(
U r, V , θr

)
∂θ∂ (u, v)

Ûr − Ur

V̂ − V


 = En

∂2ℓr (Ur, V, θr)
∂θ∂ (u, v)

√
n

Ûr − Ur

V̂ − V


+ o∗

P (1)

= En

∂2ℓr (Ur, V, θr)
∂θ∂ (u, v)

√
n

Ûr − Ur

V̂ − V


− E

∂2ℓr (Ur, V, θr)
∂θ∂ (u, v)

√
n

Ûr − Ur

V̂ − V


 (20)

+ E

∂2ℓr (Ur, V, θr)
∂θ∂ (u, v)

√
n

Ûr − Ur

V̂ − V


+ o∗

P (1)

where the first equality follows by the extended continuous mapping theorem and the uniform

consistency of β̂r (·) and γ̂r (·).

By the uniform law of large numbers, (20) is o∗
P (1). Moreover,

E

∂2ℓr (Ur, V, θr)
∂θ∂ (u, v)

√
n

Ûr − Ur

V̂ − V




=
�

Z

�
U2

∂2ℓr (Ur, V, θr)
∂θ∂ (u, v)

√
n

Ûr − Ur

V̂ − V

 dCUV |X2 (Ur, V |x2; θr) dF r
Z (z)

⇝
�

Z

�
U2

∂2ℓr (u, v, θr)
∂θ∂ (u, v) Mr (y, x1, z)ZLr (u, v) dCUV |X2 (u, v|x2; θr) dF r

Z (z)

by the extended continuous mapping theorem, Lemma 2, and Equation 17.
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Then, one can apply the functional delta method to Equation 18 to obtain

√
n
(
θ̂r − θr

)
= L−1

r

[
Gn

[
∂ℓr (Ur, V, θr)

∂θ

]

+
�

Z

�
U2

∂2ℓr (Ur, V, θr)
∂θ∂ (u, v)

√
n

Ûr − Ur

V̂ − V

 dCr
UV |X2 (Ur, V |x2; θr) dF r

Z (z)

+ o∗
P (1)

⇝ L−1
r

[
Zℓr +

�
Z

�
U2

∂2ℓr (u, v, θr)
∂θ∂ (u, v) Mr (y, x1, z)ZLr (u, v) dCr

UV |X2 (u, v|x2; θr) dF r
Z (z)

]

≡ Zθr

where

Gn

[
∂ℓr (Ur, V, θr)

∂θ

]
⇝ Zℓr

The desired result follows immediately, and it holds uniformly in m ∈ M, as M is a

finite set.

B.2 Asymptotic Distribution of the Fitted Values

Lemma 2. Under Assumptions 3 to 10,

√
n

Ûd − Ud

V̂ − V

 = Md (Y,X1i, Z)
√
n

β̂d (Ud) − βd (Ud)

γ̂d (V ) − γd (V )

+ o∗
P (1)⇝Md (Y,X1, Z)

Zβd
(Ud)

Zγd
(V )



a stochastic process in metric space in ℓ∞ (YX1ZUUD), and where

Md (y, x1, z) ≡ −

gd
Y (y|x, d) 0

0 fd
X1 (x1|z, d)


gd

Y (y|x, d) ≡ ∂

∂y

� 1

0
1 (x′βd (u) ≤ y) du

fd
X1 (x1|z, d) ≡ ∂

∂x1

� 1

0
1 (z′γd (v) ≤ x1) dv
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Proof.

√
n
(
Ûd − Ud

)
=

√
n

(� 1−ϵ

ϵ

1
(
X ′β̂d (u) ≤ Y

)
du−

� 1−ϵ

ϵ

1 (X ′βd (u) ≤ Y ) du
)

= −gd
Y (Y |X,D = d)X ′√n

(
β̂d (Ud) − βd (Ud)

)
+ o∗

P (1)

where we have used Proposition 2 in Chernozhukov et al. (2010). Note that gY d (y|x) can

be interpreted as the conditional density of Y if there was no endogeneity. By the same

argument, it can be shown that

√
n
(
V̂ − V

)
= −fd

X1 (X1|Z,D = d)Z ′√n (γ̂d (V ) − γd (V )) + o∗
P (1)

Then, we can write

√
n

Ûd − Ud

V̂ − V

 = Md (Y,X1, Z)
√
n

β̂d (Ud) − βd (Ud)

γ̂d (V ) − γd (V )

+ o∗
P (1)⇝Md (Y,X1, Z)ZLd

(Ud, V )

where the final result follows by the functional delta method and the asymptotic distribution

of the IVQR and QR estimators shown in Lemma 1.

B.3 Asymptotic Distribution of the Unfeasible Estimator

Lemma 3. Let Assumptions 3 to 10 hold. The asymptotic distribution of F̃m
Y |Z (y|z) is given

by

√
n
(
F̃m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

)
⇝ ZF̃m|Z (y, z)

a stochastic process in metric space ℓ∞ (YZM), where ZF̃m|Z (y, z) is a zero-mean tight

Gaussian processes, defined in the proof, with a.s. uniformly continuous paths in YZM.

Proof. Note that F̃m
Y |Z (y|z) is a particular case of F̂m

Y |Z (y|z) when the copula is known.
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Therefore, using the same arguments as in Proposition 2, it is immediate to show that

√
n
(
F̃m

Y |Z (y|z) − Fm,ϵ
Y |Z (y|z)

)
⇝

−
� 1−ϵ

ϵ

fm
Y |ZV (y|z, v) (z′γq (v) , x2)′ Zβp

(
Cr,−1

U |V X2

(
Fm

Y |ZV (y|z, v) |v, x2; θ̂r

))
dv

−
� 1−ϵ

ϵ

fm
Y |ZV (y|z, v) βp,1

(
Cr,−1

U |V X2

(
Fm

Y |ZV (y|z, v) |v, x2; θ̂r

))
z′Zγq (v) dv

≡ ZF̃m|Z (y, z)

in ℓ∞ (YZM). The result holds uniformly in m ∈ M because M is a finite set.

B.4 Hadamard Derivatives

Lemma 4. Let F ϵ
Y |Z (y|z) ≡ ϕF

(
FY |ZV (y|z, v)

)
= ϵ+

� 1−ϵ

ϵ
FY |ZV (y|z, v) dv and FY |ZV (y|z, v, hn) ≡

ϕF

(
FY |ZV (y|z, v) + tnhn (y, z, v)

)
, where ϕF : DϕF

⊆ ℓ∞ (YZU) 7→ ℓ∞ (YZ). Then, for all

sequences {hn} ⊂ ℓ∞ (YZU) and tn ⊂ R such that tn → 0, hn → h ∈ C (YZU) as n → ∞,

FY |ZV (y|z, v) + tnhn (y, z, v) ∈ DϕF
for all n, the mapping

ϕ′
F (h) ≡

� 1−ϵ

ϵ

h (y, z, v) dv

is continuous, linear, and satisfies

lim
n→∞

∥∥∥∥∥∥
ϕF

(
FY |ZV (y|z, v) + tnhn (y, z, v)

)
− ϕF

(
FY |ZV (y|z, v)

)
tn

− ϕ′
F (h (y, z, v))

∥∥∥∥∥∥
ℓ∞(YZ)

= 0
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Proof.

ϕF

(
FY |ZV (y|z, v) + tnhn (y, z, v)

)
− ϕF

(
FY |ZV (y|z, v)

)
tn

=
� 1−ϵ

ϵ

[
FY |ZV (y|z, v) + tnhn (y, z, v) − FY |ZV (y|z, v)

]
dv

tn

=
� 1−ϵ

ϵ
tnhn (y, z, v) dv

tn

=
� 1−ϵ

ϵ

hn (y, z, v) dv

→
� 1−ϵ

ϵ

h (y, z, v) dv = ϕ′
F (h)

in ℓ∞ (YZ) as n → ∞. The last step follows by the pointwise convergence of h (y, z, v) and

the fact that it is uniformly bounded.27 The desired result follows.

Lemma 5. Let FY |ZV (y|z, v) ≡ ϕg,c

(
g (u, v, z) , cUV |X2 (u, v|x2)

)
=

� 1−ϵ

ϵ
1 (g (u, v, z) ≤ y) ·

cUV |X2 (u, v|x2) du and FY |ZV (y|z, v, hn) ≡ ϕg,c

(
g (u, v, z) + tnhg,n (u, v, z) , cUV |X2 (u, v|x2) + tnhc,n

)
,

where ϕg,c : Dϕg,c ⊆ D 7→ ℓ∞ (YZU) ≡ E. Let the copula density, cUV |X2 (u, v|x2), exist and

be continuous with respect to (u, v). Then, for all sequences {hn} ⊂ D and tn ⊂ R such that

tn → 0, hn ≡
(
h′

g,n, h
′
c,n

)′
→

(
h′

g, h
′
c

)′
≡ h ∈ D0 as n → ∞, (g (u, v, z) + tnhg,n (u, v, z) ,

cUV |X2 (u, v|x2) + tnhc,n (u, v, z)
)

∈ Dϕg,c for all n, the mapping

ϕ′
g,c (h) ≡ −fY |ZV (y|z, v)hg

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

)
, v, z

)
+
� 1−ϵ

ϵ

1 (g (u, v, z) ≤ y)hc (u, v, z) du

is continuous, linear, and satisfies

lim
n→∞

∥∥∥∥∥∥
ϕg,c

(
g (u, v, z) + tnhg,n (u, v, z) , cUV |X2 (u, v|x2) + tnhc,n (u, v, z)

)
tn

−ϕg,c

(
g (u, v, z) , cUV |X2 (u, v|x2)

)
tn

− ϕ′
g,c (h (u, v, z))

∥∥∥∥∥∥
E

= 0

27See, e.g., Theorem 1 in Pratt (1960).
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Proof. The first step of the proof is partly based on the proof to Proposition 2 in Chernozhukov

et al. (2010).

Let Bϵ (x) be a closed ball of radius ϵ centered at x. For any δ > 0∃ϵ > 0: for u ∈

Bϵ

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

))
and for small enough tn ≥ 0

1 (g (u, v, z) + tnhn (u, v, z) ≤ y) ≤ 1
(
g (u, v, z) + tn

(
hg

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

)
, v, z

)
− δ

)
≤ y

)

whereas ∀u /∈ Bϵ

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

))

1 (g (u, v, z) + tnhn (u, v, z) ≤ y) ≤ 1 (g (u, v, z) ≤ y)

Therefore, for small enough tn ≥ 0

1
tn

[� 1−ϵ

ϵ

1 (g (u, v, z) + tnhn (u, v, z) ≤ y) cUV |X2 (u, v|x2) du

−
� 1−ϵ

ϵ

1 (g (u, v, z) ≤ y) cUV |X2 (u, v|x2) du
]

(21)

≤ 1
tn

�
Bϵ

[
1
(
g (u, v, z) + tn

(
hg

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

)
, v, z

)
− δ

)
≤ y

)
− 1 (g (u, v, z) ≤ y)] cUV |X2 (u, v|x2) du (22)

where Bϵ is shorthand for Bϵ

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

))
. By the change of variable ỹ =

F−1
Y |ZV

(
CU |V X2 (u|v, x2) |z, v

)
, then dỹ = cUV |X2 (u, v|x2) du/fY |ZV

(
F −1

Y |ZV

(
CU|V X2 (u|v, x2) |z, v

)
|z, v

)
.

Thus, Equation 22 equals

1
tn

�
J∩
[

y,y−tn

(
hg

(
C−1

U|V X2
(FY |ZV (y|z,v)|v,x2),v,z

)
−δ

)] fY |ZV (ỹ|z, v) dỹ

where J is the image of Bϵ

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

))
under u 7→ g (u, v, z). The change

of variables is possible because g (u, v, z) is a bijection betweenBϵ

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

))
and J .

Fix ϵ > 0 for tn → 0. Then, J∩
[
y, y − tn

(
hg

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

)
, v, z

)
− δ

)]
=
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[
y, y − tn

(
hg

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

)
, v, z

)
− δ

)]
and fY |ZV (ỹ|z, v) → fY |ZV (y|z, v)

as FY |ZV (ỹ|z, v) → FY |ZV (y|z, v) in E. Thus, Equation 22 is no greater than

−fY |ZV (y|z, v)
(
hg

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

)
, v, z

)
− δ

)

By a similar argument,

−fY |ZV (y|z, v)
(
hg

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

)
, v, z

)
+ δ

)

bounds Equation 21 from below. Since δ > 0 can be made arbitrarily small, the desired

result follows.

To show that the result holds uniformly in (y, z, v) ∈ K, a compact subset of YZU ,

we use Lemma B.4 in Chernozhukov et al. (2013). Take a sequence (yt, zt, vt) in K that

converges to (y, z, v) ∈ K. Then, the preceding argument applies to this sequence, since the

function fY |ZV (y|z, v)hg

(
C−1

U |V X2

(
FY |ZV (y|z, v) |v, x2

)
, v, z

)
is uniformly continuous on K.

This result follows by the assumed continuity of hg (u, v, z), FY |ZV (y|z, v), and fY |ZV (y|z, v)

in all its arguments, as well as the compactness of K.

Now note that

1
tn

[
FY |ZV (y, z, v, hn) − FY |ZV (y|z, v)

]
= 1
tn

� 1−ϵ

ϵ

1 (g (u, v, z) + tnhg,n (u, v, z) ≤ y) cUV |X2 (u, v|x2) du

− 1
tn

� 1−ϵ

ϵ

1 (g (u, v, z) ≤ y) cUV |X2 (u, v|x2) du

+ 1
tn

� 1−ϵ

ϵ

1 (g (u, v, z) + tnhg,n (u, v, z) ≤ y)
(
cUV |X2 (u, v|x2) + tnhc,n (u, v, z)

)
du

− 1
tn

� 1−ϵ

ϵ

1 (g (u, v, z) + tnhg,n (u, v, z) ≤ y) cUV |X2 (u, v|x2) du

= 1
tn

� 1−ϵ

ϵ

[1 (g (u, v, z) + tnhg,n (u, v, z) ≤ y) − 1 (g (u, v, z) ≤ y)] cUV |X2 (u, v|x2) du

+
� 1−ϵ

ϵ

1 (g (u, v, z) + tnhg,n (u, v, z) ≤ y)hc,n (u, v, z) du

→ ϕ′
g,c (h)
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in E, where the convergence follows by the first step of the proof, hn → h, and tnhg,n (u, v, z) →

0 as n → ∞. The desired result follows.

For the structural functions used in this paper, g (u, v, z) = (z′γq (v) , x2)′ βp (u) and

cUV |X2 (u, v|x2) = cr
UV |X2

(u, v|x2; θr), so D ≡ ℓ∞ (U)dz × ℓ∞ (U)dx × Rdθr × ℓ∞ (F) and D0 ≡

C (U)dz × C (U)dx × Rdθr × C (F).

Lemma 6. Let g (u, v, z) ≡ ϕβ,γ (β (u) , γ (v) , z) = (z′γ (v) , x2)′ β (u) and g (u, v, z, hn) ≡

ϕβ,γ (β (u) + tnhβ,n (u, v, z) , γ (v) + tnhγ,n (u, v, z) , z), where ϕβ,γ : Dϕβ,γ
⊆ ℓ∞ (U)dz×ℓ∞ (U)dx×

ℓ∞ (Z) 7→ ℓ∞ (UUZ). Then, for all sequences {hn} ⊂ ℓ∞ (U)dz × ℓ∞ (U)dx × ℓ∞ (Z) and

tn ⊂ R such that tn → 0, hn ≡
(
h′

β,n, h
′
γ,n

)′
→

(
h′

β, h
′
γ

)′
≡ h ∈ D0 as n → ∞, (β (u)

+tnhβ,n (u, v, z) , γ (v) + tnhγ,n (u, v, z) , z) ∈ Dϕβ,γ
for all n, the mapping

ϕ′
β,γ (h) ≡ z′hγ (u, v, z) β1 (u) + (z′γ (v) , x2)′

hβ (u, v, z)

is continuous, linear, and satisfies

lim
n→∞

∥∥∥∥∥ϕβ,γ (β (u) + tnhβ,n (u, v, z) , γ (v) + tnhγ,n (u, v, z) , z) − ϕβ,γ (β (u) , γ (v) , z)
tn

− ϕ′
β,γ (h (u, v, z))

∥∥∥
ℓ∞(UUZ)

= 0

Proof.

g (u, v, z, hn) − g (u, v, z)
tn

= (z′ (γ (v) + tnhγ,n (u, v, z)) , x2)′ (β (u) + tnhβ,n (u, v, z)) − (z′γ (v) , x2)′ β (u)
tn

= (z′ (γ (v) + tnhγ,n (u, v, z)) , x2)′ (β (u) + tnhβ,n (u, v, z)) − (z′γ (v) , x2)′ (β (u) + tnhβ,n (u, v, z))
tn

+ (z′γ (v) , x2)′ (β (u) + tnhβ,n (u, v, z)) − (z′γ (v) , x2)′ β (u)
tn

= (z′hγ,n (u, v, z) , 0)′ (β (u) + tnhβ,n (u, v, z)) + (z′γ (v) , x2)′
hβ,n (u, v, z)

→ z′hγ (u, v, z) β1 (u) + (z′γ (v) , x2)′
hβ (u, v, z) = ϕ′

β,γ (h)
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in ℓ∞ (UUZ) as n → ∞. The convergence follows because hn → h, and tnhβ,n (u, v, z) → 0

as n → ∞.

B.5 Argmax Process

Lemma 7. (Chernozhukov and Hansen, 2006) suppose that uniformly in π in a compact set

Π, and for a compact set K (i) Zn (π) is s.t. Qn (Zn (π) |π) ≥ supz∈K Qn (z|π) − ϵn, ϵ ↘ 0;

Zn (π) ∈ K wp → 1, (ii) Z∞ (π) ≡ arg supz∈K Q∞ (z|π) is a uniquely defined continuous

process in ℓ∞ (Π), (iii) Qn (·|·) p→ Q∞ (·|·) in ℓ∞ (K × Π), where Q∞ (·|·) is continuous.

Then Zn (·) = Z∞ (·) + oP (1) in ℓ∞ (Π)

Proof. See Chernozhukov and Hansen (2006).

B.6 Stochastic Expansion

Lemma 8. Under Assumptions 3 to 9, the following statements hold:

1. sup(β,ι,γ,m)∈B×I×G×M

∣∣∣En

[
Ĝm (E, β, ι, γ, τ, ν)

]
− E [Gm (E, β, ι, γ, τ, ν)]

∣∣∣ = oP (1)

2. GnRm (E, βp (·) , 0, γq (··) , ·, ··) ⇝ ZRm (·, ··) in ℓ∞ (UUM), where ZRm is a Gaussian

process with covariance function ΣRm,m̃ (τ, ν, τ̃ , ν̃) defined below in the proof.

Furthermore, for any sup(τ,ν,m)∈U×U×M

∥∥∥(β̂p (τ) , ι̂p (τ) , γ̂q (ν)
)

− (βp (τ) , 0, γq (ν))
∥∥∥ =

oP (1), sup(τ,ν,m)∈U×U×M

∥∥∥GnR̂m

(
E, β̂p (τ) , ι̂p (τ) , γ̂q (ν) , τ, ν

)
− GnRm (E, βp (τ) , 0, γq (ν) , τ, ν)

∥∥∥ =

oP (1)

Proof. Let υ = (β, ι, γ) and Υ = B × I × G, where I is a closed ball around 0. Define the

class of functions H as

H ≡

h = (Φ,Ψ, υ, τ, ν,m) 7→

φτ

(
Y −X ′β − Φ (Z)′ ι

)
Ψ (Z) 1 (D = p)

φν (X1 − Z ′γ)Z1 (D = q)

 υ ∈ Υ,Φ,Ψ ∈ FZ


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where FZ is defined in Assumption 9. The bracketing number of FZ , by Corollary 2.7.4 in

van der Vaart and Wellner (1996) satisfies

logN[·] (ϵ,FZ , L2 (P )) = O
(
ϵ− dim(z)

ω

)
= O

(
ϵ−2−δ′)

for some δ′ < 0. Therefore, FZ is Donsker with a constant envelope. By Corollary 2.7.4 in

van der Vaart and Wellner (1996), the bracketing number of

J1 ≡
{
(Φ, υ) →

(
X ′β + Φ (Z)′ ι

)
, υ ∈ Υ,Φ ∈ FZ

}

satisfies

logN[·] (ϵ,J1, L2 (P )) = O
(
ϵ− dim(x1,z)

ω

)
= O

(
ϵ−2−δ′′)

for some δ′′ < 0. Also, by Corollary 2.7.4 in van der Vaart and Wellner (1996), the bracketing

number of

J2 ≡ {υ → (Z ′γ) , υ ∈ Υ}

satisfies

logN[·] (ϵ,J2, L2 (P )) = O
(
ϵ−2−δ′)

Since the indicator function is bounded and monotone, and the density functions fY |X1Z (y|x1, z)

and fX1|Z (x1|z) are bounded by Assumption 6, the bracketing number of

E ≡
{
(Φ, υ) → 1

(
Y < X ′β + Φ (X,Z)′ ι

)
1 (D = p) + 1 (X1 < Z ′γ) 1 (D = q) , υ ∈ Υ,Φ ∈ FZ

}
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satisfy

logN[·] (ϵ, E , L2 (P )) = O
(
ϵ− dim(d,x1,z)

ω

)
= O

(
ϵ−2−δ′′′)

for some δ′′′ such that δ′′′ < δ′′. Since E has a constant envelope, it is Donsker. Then,

H ≡ U × FZ + U × FZ − E × FZ . Since H is Lipschitz over (U × FZ × E), it follows that it

is Donsker by Theorem 2.10.6 in van der Vaart and Wellner (1996).

Define

h ≡ (Φ,Ψ, υ, τ, ν) 7→ Gn

φτ

(
ε− Φ (Z)′ ι

)
Ψ (Z) 1 (D = p)

φν (η)Z1 (D = q)



h is Donsker in ℓ∞ (H). Consider the process

(τ, ν) 7→ Gn

φτ

(
εp − Φp (Z)′ ιp

)
Ψp (Z) 1 (D = p)

φν (ηq)Z1 (D = q)



By the uniform Hölder continuity of (τ, ν) 7→
(
τ, βp (τ)′ ,Φp (τ, Z)′ ,Ψp (τ, Z)′ , ν, γq (ν)′

)′

in (τ, ν) with respect to the supremum norm, it is also Donsker in ℓ∞ (H). This, together

with Assumption 5 implies

Gn

φ· (εp (·)) Ψp (·, Z) 1 (D = p)

φ·· (ηq (··))Z1 (D = q)

⇝ ZRm (·, ··)

with covariance function

ΣRmm̃ (τ, ν, τ̃ , ν̃) = E
[
ZRm (τ, ν)ZRm̃ (τ̃ , ν̃)′

]
≡

Σ11
Rmm̃

(τ, τ̃) Σ21
Rmm̃

(τ, ν̃)′

Σ21
Rmm̃

(τ̃ , ν) Σ22
Rmm̃

(ν, ν̃)


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where

Σ11
Rmm̃

(τ, τ̃) = (τ ∧ τ̃ − τ τ̃)E
[
Ψp (τ) Ψp (τ̃)′ 1 (D = p)

]
1 (p = p̃)

= 1
λp

(τ ∧ τ̃ − τ τ̃)E
[
Ψp (τ) Ψp (τ̃)′ |D = p

]
1 (p = p̃)

Σ21
Rmm̃

(τ̃ , ν) = E
[
(1 (Y ≤ X ′βq (τ̃)) 1 (X1 ≤ Z ′γq (ν)) − τ̃ ν)ZΨq (τ̃)′ 1 (D = q)

]
1 (q = p̃)

= 1
λq

E
[
(1 (Y ≤ X ′βq (τ̃)) 1 (X1 ≤ Z ′γq (ν)) − τ̃ ν)ZΨq (τ̃)′ |D = q

]
1 (q = p̃)

Σ22
Rmm̃

(ν, ν̃) = (ν ∧ ν̃ − νν̃)E [ZZ ′1 (D = q)] 1 (q = q̃)

= 1√
λqλq̃

(ν ∧ ν̃ − νν̃)E [ZZ ′|D = q] 1 (q = q̃)

Let h, h′ ∈ H. Since Ψ̂p (·) p→ Ψp (·), and Φ̂p (·) p→ Φp (·) uniformly over compact

sets and υ̂m (τ, ν) P→ υm (τ, ν) uniformly in (τ, ν), it follows by Assumptions 8 and 9 that

δn ≡ sup(τ,ν)∈U×U ξ (h′ (τ, ν) , h (τ, ν))|h′=ĥ
P→ 0, where ξ is the L2 (P ) pseudometric on H:

ξ
(
h, h̃

)
≡

√√√√√√√E

∥∥∥∥∥∥∥
φτ

(
εp − Φp (Z)′ ιp

)
Ψp (Z) 1 (D = p)

φν (ηq)Z1 (D = q)

−

φτ̃

(
ε̃p − Φ̃p (Z)′ ι̃

)
Ψ̃p (Z) 1 (D = p)

φν̃ (η̃q)Z1 (D = q)


∥∥∥∥∥∥∥

2

As δn
P→ 0

sup
(τ,ν)∈U×U

∥∥∥∥∥∥∥ Gn

φτ

(
ε̂p (τ) − Φ̂p (τ, Z)′ ι̂p (τ)

)
Ψ̂p (τ, Z) 1 (D = p)

φν (η̂q (ν))Z1 (D = q)



− Gn

φτ

(
εp (τ) − Φp (τ, Z)′ ιp (τ)

)
Ψp (τ, Z) 1 (D = p)

φν (ηq (ν))Z1 (D = q)


∥∥∥∥∥∥∥

≤ sup
ξ(h̃,h)≤δn,h̃,h∈H

∥∥∥∥∥∥∥Gn

φτ

(
εp − Φ̃p (Z)′ ι̃p

)
Ψ̃p (Z) 1 (D = p)

φν (ηq)Z1 (D = q)



− Gn

φτ

(
εp − Φp (Z)′ ιp

)
Ψp (Z) 1 (D = p)

φν (ηq)Z1 (D = q)


∥∥∥∥∥∥∥ = oP (1)
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by stochastic equicontinuity of h 7→ Gn

φτ

(
εp − Φp (Z)′ ιp

)
Ψp (Z) 1 (D = p)

φν (ηq)Z1 (D = q)

, which proves

claim 2. Note that the result is holds uniformly in m ∈ M because M is a finite set. To

prove claim 1, define

A ≡

(Φ, β, ι, γ, τ, ν) 7→

ρτ

(
ε− Φ (Z)′ ι

)
1 (D = p)

ρν (η) 1 (D = q)




This class of functions is uniformly Lipschitz over (FZ × B × I × G × U × U) and bounded

by Assumption 4, so by Theorem 2.10.6 in van der Vaart and Wellner (1996), A is Donsker.

Therefore, the following Uniform Law of Large Numbers hold:

sup
h∈H

∣∣∣∣∣∣∣En

ρτ

(
εp − Φ (Z)′ ι

)
1 (D = p)

ρν (ηq) 1 (D = q)

− E

ρτ

(
εp − Φ (Z)′ ι

)
1 (D = p)

ρν (ηq) 1 (D = q)


∣∣∣∣∣∣∣ P→ 0

which gives,

sup
(β,ι,γ,τ,ν)

∣∣∣∣∣∣∣En

ρτ

(
εp − Φ̃p (τ, Z)′ ι

)
1 (D = p)

ρν (ηq) 1 (D = q)

− E

ρτ

(
εp − Φ̃p (τ, Z)′ ι

)
1 (D = p)

ρν (ηq) 1 (D = q)


∣∣∣∣∣∣∣
Φ̃p=Φ̂p

P→ 0

By uniform consistency of Φ̂p (·) and Assumption 9, I have that

sup
(β,ι,γ,τ,ν)

∣∣∣∣∣∣∣E
ρτ

(
εp − Φ̃p (τ, Z)′ ι

)
1 (D = p)

ρν (ηq) 1 (D = q)

− E

ρτ

(
εp − Φp (τ, Z)′ ι1 (D = p)

)
ρν (ηq) 1 (D = q)


∣∣∣∣∣∣∣
Φ̃p=Φ̂p

P→ 0

These two results imply claim 1.

B.7 Uniform Consistency of Nonparametric Copula Estimators

Lemma 9. Let Assumptions 4 to 9, and 12 hold, and
(
Ûd,i, V̂i

)
be uniformly consistent

estimators for (Ud,i, Vi). Then, supu,v,d

∣∣∣Čd
UV (u, v) − Cd

UV (u, v)
∣∣∣ = OP

(
1√
n

)
.
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Proof. Define C̃d
UV (u, v) ≡ n

nd
En [1 (Ud,i ≤ u) 1 (Vi ≤ v) 1 (Di = d)] and split the proof into

showing the probability limit of C̃d
UV (u, v) and Čd

UV (u, v) is the same at the
√
n rate, and

then that C̃d
UV (u, v) is a consistent estimator of Cd

UV (u, v) at the faster parametric rate.28

By the triangular inequality,

∣∣∣Čd
UV (u, v) − C̃d

UV (u, v)
∣∣∣ = n

nd

En

∣∣∣1 (Ûd,i ≤ u
)

1
(
V̂i ≤ v

)
− 1 (Ud,i ≤ u) 1 (Vi ≤ v)

∣∣∣1 (Di = d)

≤ n

nd

En

∣∣∣1 (Ûd,i ≤ u
)

− 1 (Ud,i ≤ u)
∣∣∣1 (Di = d)

+ n

nd

En

∣∣∣1 (V̂i ≤ v
)

− 1 (Vi ≤ v)
∣∣∣1 (Di = d)

Define the following function:

σ (U, u;w) ≡


1 U ≤ u

1 − w (U − u) u < U ≤ u+ 1
w

0 U > u+ 1
w

for some w > 0. Note that, as w → ∞, σ (U, u;w) → 1 (U ≤ u). Now write

sup
u,d

En

∣∣∣1 (Ûd,i ≤ u
)

− 1 (Ud,i ≤ u)
∣∣∣1 (Di = d)

≤ sup
u,d

En

∣∣∣1 (Ûd,i ≤ u
)

− σ
(
Ûd,i, u;w

)∣∣∣1 (Di = d) (23)

+ sup
u,d

En

∣∣∣σ (Ûd,i, u;w
)

− σ (Ud,i, u;w)
∣∣∣1 (Di = d) (24)

+ sup
u,d

En |σ (Ud,i, u;w) − 1 (Ud,i ≤ u)| 1 (Di = d) (25)

For any w, (23) equals supu,d En1
(
u < Ûd,i ≤ u+ 1

w

)
1 (Di = d) P→ 1

w
P (Di = d) by Lemma 2

and the ULLN; (24) P→ 0 by the extended continuous mapping theorem and Lemma 2; (25)
28Notice that it is not possible to apply the extended continuous mapping theorem to conclude that if

Ûd,i
P→ Ud,i and V̂i

P→ Vi, then 1
(

Ûd,i ≤ u
)

P→ 1 (Ud,i ≤ u) or 1
(

V̂i < v
)

P→ 1 (Vi < v) uniformly in (u, v).
Hence, a different argument is required for the proof.
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equals supu,d En1
(
u < Ud,i ≤ u+ 1

w

)
1 (Di = d) P→ 1

w
P (Di = d) by the ULLN. Therefore,

sup
u,d

En

∣∣∣1 (Ûd,i ≤ u
)

− 1 (Ud,i ≤ u)
∣∣∣1 (Di = d)

= lim
w→∞

sup
u,d

En

∣∣∣1 (Ûd,i ≤ u
)

− 1 (Ud,i ≤ u)
∣∣∣1 (Di = d) = OP

(
1√
n

)

Hence, by Assumption 5, supu,d
n
nd
En

∣∣∣1 (Ûd,i ≤ u
)

− 1 (Ud,i ≤ u)
∣∣∣1 (Di = d) = OP

(
1√
n

)
.

Using the same argument, we can conclude that supv,d
n
nd
En

∣∣∣1 (V̂d,i ≤ v
)

− 1 (Vd,i ≤ v)
∣∣∣ ·

1 (Di = d) = OP

(
1√
n

)
. As a consequence, supu,v,d

∣∣∣Čd
UV (u, v) − C̃d

UV (u, v)
∣∣∣ = OP

(
1√
n

)
.

As for the second step, consider the class CUV D ≡ {{(x1, x2, x3) : x1 ≤ u, x2 ≤ v, x3 = d} ,

u, v ∈ [0, 1] , d ∈ D}. This is a VC class with VC dimension V (CUV D) = 3. Therefore,

by Theorem 2.6.4 in van der Vaart and Wellner (1996), its covering number is bounded:

N (ϵ, CUV D, L2 (P )) ≤ 3·43κe3ϵ−4 < ∞ for some constant κ and 0 < ϵ < 1. By Theorem 2.5.2

in van der Vaart and Wellner (1996), it is P-Donsker, so
√
n supu,v

∣∣∣C̃d
UV (u, v) − Cd

UV (u, v)
∣∣∣ =

OP (1). Moreover, the result holds uniformly in d ∈ D because D is a finite set. Hence,

sup
u,v,d

∣∣∣Čd
UV (u, v) − Cd

UV (u, v)
∣∣∣ ≤ sup

u,v,d

∣∣∣Čd
UV (u, v) − C̃d

UV (u, v)
∣∣∣+ sup

u,v,d

∣∣∣C̃d
UV (u, v) − Cd

UV (u, v)
∣∣∣

= OP

(
1√
n

)

Consider the estimator Čd
UV (u, v) defined by Equation 12. This estimator can be seen as

the integration over [0, 1] of a nonparametric estimator of the conditional copula distribution

Cd
U |V (u|v), given by

Čd
U |V (u|v) ≡ Hn + 1

nd

Σn
i=11

(
Ûd,i ≤ u

)
1
(
ν (v) ≤ V̂i < ν (v)

)
1 (Di = d)

where Hn denotes the number of evenly spaced quantiles that are used in the estimation

of the quantile process h (z1, x2, v), denoted by 0 = ν0, ν1, ..., νHn , νHn+1 = 1, and ν (v)

and ν (v) are defined as {maxi νi : νi < v} and {mini νi : νi ≥ v}. It can be checked that
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Čd
UV (u, v) = 1

Hn+1Σ(Hn+1)ν(v)
h=0 Čd

U |V (u, νh). Geometrically, I am splitting the [0, 1] interval

into Hn + 1 intervals of equal length, and each Vi belongs to one of them with probability
1

Hn+1 , since Vi ∼ U (0, 1). Hn is to be interpreted as the inverse of the bandwidth of this

kernel estimator, and Hn → ∞ as n → ∞. For each of the cells, compute the conditional

distribution of the copula. The following lemma establishes the uniform consistence of this

conditional estimator of the copula, which unlike the conditional estimator, converges at a

rate slower than
√
n.

Lemma 10. Let Assumptions 4 to 9, and 12 hold,
(
Ûd,i, V̂i

)
converge uniformly in probability

to (Ud,i, Vi) at a rate
√
n, Hn → ∞,

√
n

Hn
→ ∞, and nan

log(n) → ∞ as n → ∞, and 0 < an <

1
Hn+1 < bn < 1 for sequences an, bn such that nan

log(n) → ∞ and bn → 0 as n → ∞.

sup
u,v,d

∣∣∣Čd
U |V (u|v) − Cd

U |V (u|v)
∣∣∣ = OP

(
Hn√
n

)

Proof. The proof is split into two steps: first I show that Čd
U |V (u|v) and the unfeasible

estimator C̃d
U |V (u|v) ≡ Hn+1

nd
Σn

i=11 (Ud,i ≤ u) 1 (ν (v) ≤ Vi < ν (v)) 1 (Di = d) converge to the

same limit at the Hn√
n

rate of convergence, and then I show the consistency of C̃d
U |V (u|v) at

the usual parametric rate of convergence.

As shown in Lemma 9, supu,d
n
nd
En

∣∣∣1 (Ûd,i ≤ u
)

− 1 (Ud,i ≤ u)
∣∣∣1 (Di = d) = OP

(
1√
n

)
.

Define the following function:

σ̃ (V, v, v;w) ≡



0 V < v − 1
w

1 + w (V − v) v − 1
w
< V ≤ v

1 v ≤ V ≤ v

1 − w (V − v) v < V ≤ v + 1
w

0 V > v + 1
w

for some w > 0. As w → ∞, σ̃ (V, v, v;w) → 1 (v ≤ V ≤ v). Now write
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sup
v,d

En

∣∣∣1 (ν (v) ≤ V̂i ≤ ν (v)
)

− 1 (ν (v) ≤ Vi ≤ ν (v))
∣∣∣1 (Di = d)

≤ sup
v,d

En

∣∣∣1 (ν (v) ≤ V̂i ≤ ν (v)
)

− σ̃
(
V̂i, ν (v) , ν (v) ;w

)∣∣∣1 (Di = d) (26)

+ sup
v,d

En

∣∣∣σ̃ (V̂i, ν (v) , ν (v) ;w
)

− σ̃ (Vi, ν (v) , ν (v) ;w)
∣∣∣1 (Di = d) (27)

+ sup
v,d

En |σ̃ (Vi, ν (v) , ν (v) ;w) − 1 (ν (v) ≤ Vi ≤ ν (v))| 1 (Di = d) (28)

Using the same arguments as in Lemma 9, it follows that

sup
v,d

En

∣∣∣1 (ν (v) ≤ V̂i ≤ ν (v)
)

− 1 (ν (v) ≤ Vi ≤ ν (v))
∣∣∣1 (Di = d)

= lim
w→∞

sup
v,d

En

∣∣∣1 (ν (v) ≤ V̂i ≤ ν (v)
)

− 1 (ν (v) ≤ Vi ≤ ν (v))
∣∣∣1 (Di = d) = OP

(
1√
n

)

Hence, by Assumption 5, supv

√
n n

nd
En

∣∣∣1 (ν (v) ≤ V̂i ≤ ν (v)
)

− 1 (ν (v) ≤ Vi ≤ ν (v))
∣∣∣ ·

1 (Di = d) = OP (1). The result holds uniformly in d ∈ D because D is a finite set.

Consequently, using the results in Lemma 9 yields

sup
u,v,d

∣∣∣Čd
U |V (u|v) − C̃d

U |V (u|v)
∣∣∣ = Hn + 1

n

n

nd

∣∣∣∣∣
n∑

i=1
1
(
Ûd,i ≤ u

)
1
(
ν (v) ≤ V̂i < ν (v)

)
−

n∑
i=1

1 (Ud,i ≤ u) 1 (ν (v) ≤ Vi < ν (v))
∣∣∣∣∣

≤ (Hn + 1) n
nd

E
∣∣∣1 (Ûd,i ≤ u

)
− 1 (Ud,i ≤ u)

∣∣∣
+ (Hn + 1) n

nd

E
∣∣∣1 (ν (v) ≤ V̂i < ν (v)

)
− 1 (ν (v) ≤ Vi < ν (v))

∣∣∣
≤ (Hn + 1)OP

(
1√
n

)
= OP

(
Hn√
n

)

Consider the class C ′
UV D ≡ {{(x1, x2, x3) : x1 ≤ u, vl ≤ x2 < vu, x3 = d} , u, vl, vu ∈ [0, 1] ,

vl < vu, d ∈ D}. It is a VC class with VC dimension V (C ′
UV D) = 4. Hence, by Theorem 2.6.4

in van der Vaart and Wellner (1996), its covering number is bounded: N (ϵ, C ′
UV D, L2 (P )) ≤
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45κe4ϵ−6 < ∞ for some constant κ and 0 < ϵ < 1. By Corollary 1 in Einmahl et al. (2005)

lim
n→∞

sup
an≤ 1

Hn+1 ≤bn

sup
(u,v)∈[0,1]

∣∣∣C̃d
U |V (u|v) − Cd

U |V (u|v)
∣∣∣ = 0

This result implies that sup(u,v)∈[0,1]

∣∣∣C̃d
U |V (u|v) − Cd

U |V (u|v)
∣∣∣ = oP (1). By the triangle

inequality,

∣∣∣Čd
U |V (u|v) − Cd

U |V (u|v)
∣∣∣ ≤

∣∣∣Čd
U |V (u|v) − C̃d

U |V (u|v)
∣∣∣+ ∣∣∣C̃d

U |V (u|v) − Cd
U |V (u|v)

∣∣∣
Because D is a finite set, it follows that supu,v,d

∣∣∣Čd
U |V (u|v) − Cd

U |V (u|v)
∣∣∣ = OP

(
Hn√

n

)
.

Some remarks are in order. First, this lemma limits the rate of growth of the number of

cells of the unit interval, which has to satisfy Hn = oP

(
min

{
n

log(n) ,
√
n
})

. This, however,

does not imply that the estimator achieves the maximum possible convergence rate. The

kernel K (Vi, v,Hn) ≡ (Hn + 1) 1 (ν (v) ≤ Vi < ν (v)) is not symmetric around zero, which

would improve the convergence rate of the estimator. Furthermore, it depends on two

nonlinear functions of v: ν (v) and ν (v), which means that one cannot use a Taylor expansion

around v to establish the asymptotic normality of this estimator.

Second, one could regularize the indicator function as suggested in Section 3.3 to be

able to apply the extended continuous mapping theorem. Thus, it would be possible to

estimate Cd
U |V (u|v) by C̀d

U |V (u|v) = 1
nhn

Σn
i=1f̀ (Ud,i, u, n) K̀

(
Vi−v

hn

)
, where f̀ (Ud,i, u, n) is the

regularized indicator function, and K̀
(

Vi−v
hn

)
is a kernel function that is continuous in its

argument and that, in order to improve the convergence rate, is symmetric around zero.

Studying the asymptotic properties of such estimator is beyond the scope of this paper.

C Nonparametric First Stage Equation

Assume that the first stage equation is an unknown function, rather than linear in the

covariates as in Assumption 3. The IVQR estimator of β̂ (·) does not require the linearity
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of h to be consistent and asymptotically Gaussian the
√
n convergence rate. However, the

estimators of the counterfactual distributions F̂ cf
Y (y) and F̌ cf

Y (y) use an estimator of h as

an input, which has an impact on their asymptotic convergence.

Let ĥ ≡ ĥ (z1, x2, v) denote the estimator of the CQF and F̂ cf
Y

(
y, ĥ

)
the estimator of the

counterfactual distribution. Newey (1991, 1994), Andrews (1994), or Ichimura and Newey

(2022) have already studied such estimators, establishing conditions under which they are

consistent at the
√
n convergence rate. One of these conditions is the asymptotic linearity

of the semiparametric estimator, i.e., it can be rewritten as the sum of the sample average

of an influence function whose variance is finite and a stochastic term that is OP

(
1√
n

)
.

For the counterfactual estimators considered in this paper, which are non-linear functions

of h, asymptotic linearity requires the estimator ĥ to converge at a rate faster than 4
√
n.

Even when the dimension of X2 is small, most popular nonparametric estimators of h would

typically converge at a slower rate. For example, the Nadayara-Watson kernel regression

estimator would converge at most at the n
1

dX2 +4 unless one is willing to use higher-order

kernels, which are not typically used in empirical work. Consequently, although it is possible

to use nonparametric estimators of the first stage equation that would allow the estimator of

the counterfactual distribution of Y to be asymptotically linear, deriving sufficient conditions

for these nonparametric estimators lies beyond the scope of this paper.

D Comparison with Alternative Methods

In principle, one could estimate the triangular equation model using a control function

approach, and then estimate the counterfactual distribution of Y based on these estimates.

For example, Lee (2007) proposed a control function quantile regression estimator for the

following triangular model:

Y = Xβ (τ) + Z ′
1γ (τ) + U

X = µ (α) + Z ′π (α) + V
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The identification of this model is based on different conditions than those considered

in this paper. In particular, Lee (2007) assumes that QU |XZ (τ |x, z) = QU |V (τ |v) ≡ λτ (v),

so this and the baseline model of this paper are not nested. In this model, the distribution

of U is independent of both the endogenous treatment and the remaining covariates, after

controlling for V . Further, he imposes additivity of a function of V in the second stage

equation, and therefore the joint distribution of U and V differs from the copula given in

Assumption 1.

Martinez-Sanchis et al. (2012) proposed an estimator of the unconditional distribution of

Y based on Lee (2007). This estimator can consistently estimate the actual distribution of

Y , and the counterfactual distribution when the distribution of Z is changed. However, it is

not possible to consistently estimate the types of counterfactuals considered in this paper:

by definition, U and V are heteroskedastic in the covariates, and the structural change in the

determination of the treatment implies a different conditional distribution of (U, V ) given

Z, which is not captured by the estimated values of (U, V ). On the other hand, the copula

approach proposed in this paper explicitly accounts for the structural relation between the

dependent variable, the treatment, and the unobservables. Therefore, it can be used to

estimate the counterfactual distribution of Y when this structural dependence is changed.

Finally, one could follow Chernozhukov et al. (2013) to compute the counterfactuals based

on the IVQR estimator and the counterfactual distribution of the treatment. However, this

estimator is biased as long as the counterfactual treatment intensity is correlated with the

unobservables. Hence, this method would be appropriate if the policy maker could assign

treatment intensity at random or if treatment intensity was the same for everyone, but not

if individuals have the ability to choose the treatment intensity.

E Monte Carlo

To evaluate the finite sample performance of the estimator, I carried out a simulation study.

I split the sample into two groups, and the data generating process for each of them is as
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follows:

X1i = Z1iγ1 (Vi) +X2iγ2 (Vi) + γ3 (Vi)

Yi = X1iβ1 (Ud,i) +X2iβ2 (Ud,i) + β3 (Ud,i)

For the first group, the parameters equal γ (ν) =
[
2 + ν, 1 + 1.5 log (1 + ν) , F−1

t5 (ν)
]′

,

and β (τ) =
[
1 + 2 tan (τ) , 1 + 2 (τ − 0.5)3 ,Φ−1 (τ)

]′
, the instrument and the exogenous

variables are drawn from Z1i ∼ U (1, 10), X2i ∼ U (10, 15), and the copula is drawn from

(U1,i, Vi) ∼ Clayton (1.5). For the second group, all parameters are the same with two

exceptions: the correlation parameter equals 3, and β1 (τ) = 0.5 + tan (τ). The sample size

equals N = 2000, the number of repetitions is R = 1000, and the quantile grid for both the

first and second stage equations estimation was made out of 99 evenly spaced quantiles.

Figure 4 compares the performance of the different estimators of the actual distribution:

two estimators with a parametric copula, one correctly specified and one misspecified (with

a Gaussian copula), the estimator with the nonparametric copula, the estimator proposed by

Martinez-Sanchis et al. (2012) (MMK ), and the estimator proposed by Chernozhukov et al.

(2013) (CFM ). All three proposed estimators, as well as the MMK estimator approximate

the actual distributions reasonably well. As shown in Table 8, among these, the correctly

specified estimator provides the best approximation, whereas the incorrectly specified one

and the MMK perform slightly worse. On the other hand, the CFM estimator is biased in a

large part of the distribution. Moreover, at certain points of the distribution it is slightly less

precise than the other five estimators, as highlighted by the maximum interquantile range.

I consider two different counterfactuals. In the first one, I swap the IVQR of group

1 for those of group 2, whilst keeping the remaining parameters constant. The difference

with respect to the baseline estimates would represent the coefficients component in an

Oaxaca-Blinder decomposition. The second one sets a compulsory minimum treatment: x1 =

max {z′γ (v) , 40}. Figure 5 shows, for each of the five estimators, the difference between the

counterfactual and the actual distributions, i.e., the unconditional distributional effect of the
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Figure 4: Unconditional cdf estimators
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Notes: in each graph, the solid blue line represents the actual distribution of Y , the dashed red line represents
the median (pointwise) across repetitions of the estimator, and the dotted green lines represent the 2.5
and 97.5 percentiles (pointwise) across repetitions. Clayton, Gaussian, Nonparametric, MMK and CFM
denote the estimator with a Clayton copula, the estimator with a Gaussian copula, the estimator with a
nonparametric copula, the estimator proposed by Martinez-Sanchis et al. (2012), and the estimator proposed
by Chernozhukov et al. (2013).
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Table 8: Fit of the actual distributions
Cla Gau NP MMK CFM

Group 1

�
Y

∣∣∣Q0.5
(
F̂Y (y)

)
− FY (y)

∣∣∣ dy 0.002 0.006 0.003 0.006 0.026
supy

∣∣∣F̂Y (y) − FY (y)
∣∣∣ 0.005 0.015 0.010 0.010 0.055�

Y ∇0.975
0.025Q

(
F̂Y (y)

)
dy 0.029 0.029 0.028 0.027 0.028

supy ∇0.975
0.025Q

(
F̂Y (y)

)
0.055 0.055 0.058 0.057 0.068

Group 2

�
Y

∣∣∣Q0.5
(
F̂Y (y)

)
− FY (y)

∣∣∣ dy 0.002 0.004 0.006 0.008 0.021
supy

∣∣∣F̂Y (y) − FY (y)
∣∣∣ 0.006 0.011 0.010 0.012 0.065�

Y ∇0.975
0.025Q

(
F̂Y (y)

)
dy 0.017 0.017 0.016 0.015 0.016

supy ∇0.975
0.025Q

(
F̂Y (y)

)
0.058 0.059 0.059 0.061 0.076

Notes: for each group, the first row represents the integral of the difference between the median
across repetitions of the estimated counterfactual cdf and the true cdf; the second row represents
the maximum of this difference; the third and fourth rows represent the same differences between
the 97.5 and 2.5 percentiles. Cla, Gau, NP, MMK, and CFM denote the estimator with a
Clayton copula, the estimator with a Gaussian copula, the estimator with a nonparametric
copula, the estimator proposed by Martinez-Sanchis et al. (2012), and the estimator proposed
by Chernozhukov et al. (2013).

policy. For the first counterfactual, correctly specified parametric, the nonparametric, and

the MMK estimators correctly estimate the actual difference. The misspecified parametric

estimator is slightly biased, although the true difference between the distributions lies inside

the 95% confidence bands. On the other hand, the CFM estimator is biased at large segments

of the distribution, with the sign of the bias varying at different points. Table 9 shows that

the level of accuracy is similar for all estimators, although the lowest is attained by the

correctly specified parametric one.

Regarding the second counterfactual, the MMK and CFM estimators are biased. This

is not surprising, since in this counterfactual the structural relation between the treatment

variable and the unobservables is changed. Since the counterfactual sets a minimum treatment

value, it mostly affects the lower part of the distribution, which is where these two estimators

display the greatest amount of bias.

Therefore, one can conclude that the CFM estimator does a good job whenever treatment

is randomly or equally assigned, as well as when one fits the actual distribution. On the

other hand, the MMK estimator can approximate well counterfactuals that do not break
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Figure 5: Difference between the actual and counterfactual unconditional cdf estimators
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Notes: in each graph, the solid blue line represents the difference between the counterfactual and the actual
distribution of Y , the dashed red line represents the median (pointwise) across repetitions of the estimated
difference, and the dotted green lines represent the 2.5 and 97.5 percentiles (pointwise) across repetitions.
Clayton, Gaussian, Nonparametric, MMK, and CFM denote the estimator with a Clayton copula, the
estimator with a Gaussian copula, the estimator with a nonparametric copula, the estimator proposed by
Martinez-Sanchis et al. (2012), and the estimator proposed by Chernozhukov et al. (2013).
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Table 9: Fit of the difference between the counterfactual and actual distributions
Cla Gau NP MMK CFM

Counterfactual 1

�
Y

∣∣∣Q0.5
(
F̂Y (y)

)
− FY (y)

∣∣∣ dy 0.003 0.007 0.004 0.002 0.023
supy

∣∣∣F̂Y (y) − FY (y)
∣∣∣ 0.006 0.023 0.010 0.008 0.078�

Y ∇0.975
0.025Q

(
F̂Y (y)

)
dy 0.033 0.033 0.032 0.033 0.032

supy ∇0.975
0.025Q

(
F̂Y (y)

)
0.062 0.066 0.063 0.072 0.070

Counterfactual 2

�
Y

∣∣∣Q0.5
(
F̂Y (y)

)
− FY (y)

∣∣∣ dy 0.001 0.003 0.003 0.013 0.021
supy

∣∣∣F̂Y (y) − FY (y)
∣∣∣ 0.006 0.009 0.007 0.067 0.077�

Y ∇0.975
0.025Q

(
F̂Y (y)

)
dy 0.047 0.047 0.045 0.043 0.047

supy ∇0.975
0.025Q

(
F̂Y (y)

)
0.095 0.094 0.097 0.098 0.094

Notes: the first row represents the integral of the difference between the median across repetitions of the
estimated counterfactual cdf and the true cdf; the second row represents the maximum of this difference;
the third and fourth rows represent the same differences between the 97.5 and 2.5 percentiles. Cla, Gau,
NP, MMK, and CFM denote the estimator with a Clayton copula, the estimator with a Gaussian copula,
the estimator with a nonparametric copula, the estimator proposed by Martinez-Sanchis et al. (2012),
and the estimator proposed by Chernozhukov et al. (2013).

the structural relation between the treatment and the conditional ranks, such as a change

in the parameters. On the other hand, the proposed estimators perform well in all these

counterfactual scenarios, even if the copula estimator is not correctly specified.
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