
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:13738–13753
https://doi.org/10.1007/s11227-024-05988-z

1 3

Enhancing heterogeneous cluster efficiency
through node‑centric scheduling

Esteban Stafford1 · Jose Luis Bosque1

Accepted: 9 February 2024 / Published online: 11 March 2024
© The Author(s) 2024

Abstract
This article delves into the critical realm of modern computer cluster management.
It focuses on the effect that the increasing heterogeneity of the clusters has on the
workload managers. The proposed schedulers consider node properties instead of job
properties to make decisions, which is something not currently done by mainstream
scheduling algorithms. In order to increase the knowledge in this topic, this paper
proposes two novel algorithms whose main task is to choose the best compute nodes
to schedule the incoming jobs. To this effect, they exclusively take into account the
properties of the nodes, instead of the common trend of considering the properties
of the jobs. The experimental results show that these algorithms outperform well-
known heuristic algorithms found in the literature.

Keywords Heterogeneous clusters · Scheduler · Energy efficiency · Performance

1 Introduction

Modern society relies heavily on the computing capacity of thousands of data
centres spread around the world. These centralised hubs of computational power
are the backbone of numerous industries, ranging from cloud computing and
e-commerce to scientific research and artificial intelligence. Commonly, they
house computer clusters of different sizes, that execute massive amounts of com-
puting jobs. The huge growth experimented by these systems in the last years has
greatly increased the energy consumption of the IT industry in general. Therefore,

Stafford Esteban and Bosque Jose Luis have contributed equally to this work.

 * Esteban Stafford
 esteban.stafford@unican.es

 Jose Luis Bosque
 joseluis.bosque@unican.es

1 Department of Computer Engineering and electronics, Universidad de Cantabria, Avda. los
castros, s/n, 39005 Santander, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05988-z&domain=pdf

13739

1 3

Enhancing heterogeneous cluster efficiency through…

efficiently exploiting these resources not only translates to improved performance,
but also reduced energy consumption and enhanced environmental sustainability.

Workload managers and schedulers are a very important part of the adequate
management and operation of large high-performance computing (HPC) clusters
[1]. This software is in charge of receiving jobs from different users and assigning
them the necessary resources for their correct execution. This allocation generally
seeks to optimise a specific objective, such as application performance, cluster
utilisation or, more recently, energy consumption or efficiency.

It is well known that the resource allocation problem is NP-Complete [2].
Several optimisation algorithms have been proposed that focus on optimising
objectives in the short term, but they are very time-consuming and not very
practical [3]. For this reason, current workload managers, such as Slurm [4], PBS
[5], Moab/Torque [6] or Cobalt [7], use simple heuristic algorithms to solve the
problem, such as first come first served (FCFS) or backfill [8]. These algorithms
focus on selecting the most appropriate job to schedule at each moment in time.
However, they do not take into account the details of the computation nodes and
simply choose the first one that is available, without any specific criteria. Even
new proposals of much more sophisticated scheduling algorithms, such as DRAS
[9] or RLScheluder [10], completely ignore the characteristics of the system,
considering the cluster as a set of identical computational resources.

These approaches oversimplify modern clusters that are becoming increasingly
heterogeneous [11]. That is, they have a large number of resources with different
properties, like number of cores, frequency or energy consumption [12]. In these
heterogeneous systems, the choice of the node on which to execute a particular
job can have a very strong impact on the objective pursued by the scheduler.
Hence, the choice of the node becomes as important, or even more, than the
choice of the job to be scheduled. Therefore, in this paper we hypothesise that
for heterogeneous clusters, it is possible to define simple heuristic node-selecting
algorithms that outperform traditional algorithms that focus on job selection
instead.

In this paper, we propose a study of two simple greedy scheduling algorithms,
which put their intelligence in the selection of the compute node. The algorithms
consider that the nodes are composed solely of general purpose CPUs, without
any accelerators. Since they only focus on node selection, the job selection policy
is in all cases FCFS. The algorithms adhere to the shared-memory paradigm,
allocating jobs entirely to a single node. The first proposal, called HighGFlops,
always selects the best performing node from those available at each scheduling
step. The second one, called LowPower, always selects the node that consumes
the least power, from those available at any given time. The experimental results
presented in this article confirm our hypothesis, since the algorithms achieve
reductions of 11.5% in the total execution time over the baseline algorithms and a
17% in energy consumption.

The main contributions of this article are the following:

• To purpose and validate two heuristic and greedy scheduler algorithms, based on
the selection of the compute nodes, instead of the jobs to be scheduled.

13740 E. Stafford, J. L. Bosque

1 3

• To analyse the impact that the cluster heterogeneity has in the scheduling, for
different objectives, such as performance, energy consumption and energy
efficiency.

This article is structured as follows. Section 2 presents the proposed algorithms.
Section 3 describes the experimental methodology. Section 4 shows the experimental
results. Finally, Sect. 6 presents the conclusions and future work.

2 Algorithm proposal

In the context of heterogeneous cluster computing environments, it is pertinent to
highlight the stark contrast between the variability of the characteristics of the jobs
and the relatively constant properties of the nodes that compose a heterogeneous
cluster [13].

In the literature, there are plenty of examples of studies pondering on the wide
array of attributes and parameters that describe a computational task [1, 3, 8–10,
14–19]. These can include factors such as the computational intensity of a task,
its memory requirements, parallelisation potential or data access patterns. These
characteristics can vary significantly when users execute different applications,
change the size or complexity of their data-sets, or simply shift from a parameter
search with serial codes to a massively parallel simulation. In fact, nowadays there is
a large proliferation of big-data and artificial intelligence (AI) applications that have
very different requirements and memory access patterns compared to traditional
scientific or engineering workloads. All in all, it can be argued that endeavouring
to accommodate the ever-changing complexity of job characteristics presents a
formidable challenge. Nonetheless, there are numerous scheduling algorithms that
attempt to order jobs in a way that gives a performance improvement.

Modern clusters have evolved into heterogeneous environments, where the
diversity of hardware components and configurations presents new scheduling
opportunities. These are often disregarded by traditional scheduling algorithms that
were primarily designed for homogeneous clusters and consider clusters as a set of
identical computing resources. Since the hardware of clusters usually represents a
huge economic investment, the properties of their nodes can be considered almost
constant [20]. These properties encompass a range of hardware specifications,
such as processor architectures, clock speeds, memory sizes and storage capacities.
Additionally, they can include information about the network connectivity, power
consumption profiles and hardware accelerators present in each node.

This study presents a novel paradigm for scheduling algorithms that are explicitly
designed to address the inherent heterogeneity of nodes within the cluster. Unlike
conventional scheduling methodologies, the proposed node-centric approach
refrains from any form of job prioritisation or sorting. Instead, it can be considered
as a heterogeneous variant of the FCFS scheduling policy. The primary objective of
these algorithms is to make informed decisions regarding the selection of nodes for
the execution of incoming jobs, leveraging the relative stability of node properties.

13741

1 3

Enhancing heterogeneous cluster efficiency through…

Each one of the presented algorithms is tailored to improve different metrics
and tackle different scenarios. The HighGFlops scheduling algorithm is designed
to improve computational performance. In contrast, the LowPower scheduling
algorithm seeks to improve energy consumption. These algorithms collectively offer
versatile solutions to accommodate the diverse demands of modern heterogeneous
computer clusters.

Both algorithms work with a job queue ordered by submission time,
encompassing a diverse collection of application types. The heterogeneous cluster
that will execute the jobs is composed of compute nodes, characterised by unique
properties such as the number of cores, clock frequency, instructions per cycle (IPC)
or power consumption. Consequently, the allocation of applications to specific nodes
yields varying response times and energy consumption levels based on the inherent
attributes of the selected nodes.

These algorithms are subject to the constraint that each job must be assigned to
a single node, and each task or thread in the job must be executed exclusively by a
single core. This limitation is derived from the simulator used in the evaluation, that
does not feature a network communication model and therefore is unable to provide
accurate results for distributed applications.

The power consumption of a node is modelled in three fundamental states. Firstly,
when all cores are in an idle state the node consumes a minimal amount of power.
Secondly, a static power consumption level rises when at least one core is actively
running, indicating that common circuitry in the node is supporting some sort of
computation. Finally, each core individually incurs its specific energy consumption
while actively running, contributing to the overall power consumption of the system.

2.1 HighGFlops

The HighGFlops scheduling algorithm is based on choosing the fastest node available
in the cluster that has enough cores to execute the incoming job. Determining this is
possible considering a simplification of the processor performance equation (PPE)
[21]. This equation relates the execution time of a task t to its number of instructions
of the application I, the clock frequency of the CPU f and the instructions per cycle
(IPC) factor with the following expression:

The number of instructions is determined by the application and does not change
based on scheduling decisions, but estimating IPC proves challenging due to its
dependence on the specific interplay between the executed applications and the
underlying CPU architecture. Therefore, the HighGFlops algorithm simplifies this
model by considering the IPC is constant for all the jobs and nodes in the cluster.
Then, to improve the execution time t it tries to allocate incoming jobs to the cores
with the highest clock frequency f available.

The consideration of IPC as a constant factor across all jobs and nodes represents
a pragmatic approach by the HighGFlops algorithm. While this simplification may

t =
I

f ⋅ IPC

13742 E. Stafford, J. L. Bosque

1 3

not capture the nuanced variations in IPC that arise from different applications and
CPU architectures, it allows for more straightforward scheduling decisions. By
prioritising cores with higher clock frequencies, HighGFlops aims to expedite task
execution, particularly benefiting compute-intensive workloads. The algorithm’s
adherence to memory-sharing paradigms and the constraint that all allocated
cores must belong to a single node further refines its approach, aligning resource
allocation strategies with the practicalities of cluster computing. This algorithmic
approach, while simplifying certain aspects of the performance model, endeavours
to enhance overall computational performance in a manner favourable to real-world
cluster scenarios.

This algorithm is particularly effective when dealing with CPU-bound
applications characterised by a limited IPC range. In such cases, the algorithm
optimally assigns jobs to nodes with the highest clock frequencies while leaving
slower nodes idle, efficiently utilising computational resources. However, it is
important to notice that the power consumption of nodes is intimately related to
their clock frequency, causing faster nodes to consume more power. Also, since the
energy is defined as the product of time and power:

The energy consumption is affected by these two factors. The HighGFlops algorithm
reduces the execution time of the jobs by using the faster nodes, which has a positive
impact on the energy consumption. On the other hand, the use of these nodes will
increase the power consumption and, therefore, can negatively affect the energy
consumption of the cluster. The result of these contrasting effects will need to
undergo evaluation via experimentation.

2.2 LowPower

Concerns regarding power consumption have become a crucial issue in the
context of computer clusters. Furthermore, the overall power usage of a cluster is
closely linked to the decisions made by the scheduling algorithm. The LowPower
scheduling algorithm has been devised to address these concerns. It is known that
manufacturers typically label their products with a maximum power specification,
effectively condensing the complex power consumption of their products into
a single value. The operation of the LowPower algorithm is as follows: incoming
jobs are systematically assigned to nodes that have enough idle cores and the lowest
power consumption level.

This algorithm minimises the power consumption of the nodes, which is expected
to have a positive impact in the energy consumption of the cluster. However, the
nodes with the least power consumption are commonly less performant. Then,
the execution time of the jobs will be higher, consequently increasing the energy
consumption. Therefore, it is likely that the LowPower algorithm will not have
the best performance, but it is reasonable to believe that it will have a good
behaviour in terms of energy consumption. This is something that will be evaluated

e = t ⋅ P

13743

1 3

Enhancing heterogeneous cluster efficiency through…

experimentally as it depends on the balance between the energy saving and the
increase of the execution time.

Figure 1 shows an example of how the presented algorithms operate. It can be
seen that HighGFlops allocates the first task (0) to the fastest node (3GHz), the sec-
ond (1) to the next node in speed (2GHz) and so forth. Since power consumption is
proportional to frequency in this example, the LowPower algorithm does the oppo-
site. Note that the first (0) task goes to the slowest node (1GHz) in this case.

3 Methodology

It can be argued that the evaluation of these algorithms could be done in a real
cluster, but this would be a very expensive and time-consuming task. Therefore,
it has been carried out in IRMaSim, a simulator designed to study the behaviour
of scheduling algorithms in computer clusters [22]. Its main requirement is that it
must model the behaviour of clusters in the most realistic way but with very high
speedups. IRMaSim allows a more precise cluster simulation, compared to similar
solutions, by supporting finer grain modelling of node architectures, and giving
the possibility of configuring heterogeneous clusters, where nodes do not have to
be identical. It simulates contention from shared resources, such as memory, and
features a more suitable power consumption model for multi-core architectures.
Both contention and power models were validated against a real cluster.

To evaluate the new proposals of this article, these are compared to other
scheduling algorithms, MinMin, MaxMin and Duplex [23]. These were chosen
because, unlike other classic algorithms like FCFS or shortest job first (SJF), they
consider the heterogeneity of the cluster. The main idea behind these algorithms
is a non-greedy scheduling that aims to allocate tasks to compute resources in
a way that minimises their response time. The MinMin does this with the jobs
sorted in growing request time order, and conversely the MaxMin sorts the jobs
in diminishing request time. This behaviour is illustrated in Fig. 1. Note how the

Fig. 1 Example scheduling of different algorithms

13744 E. Stafford, J. L. Bosque

1 3

MinMin algorithm allocates the shortest jobs (1,2) to the fastest nodes first and it
does not use the slowest node (1GHz) since the long jobs would greatly increase
the total execution time. In contrast, MaxMin allocates the longest jobs (0,3) to
the fastest nodes and is able to allocate one of the sort jobs (2) to the slow node
(1GHz) without compromising the total execution time. The Duplex algorithm,
actually compares the scheduling of both MinMin and MaxMin and selects the
one with the shortest global completion time. In order to estimate the response
time of each task, these algorithms consider the requested time of the job and the
clock frequency of the nodes, thus becoming aware of the heterogeneity of the
cluster. As depending on the clock frequency of the nodes, the jobs are going to
have different execution time estimations.

The experiments presented are based on a simulated cluster that has 16 nodes
as described in Table 1. Every row describes a group of nodes, starting with the
node count and continuing with its properties. The Min column gives the power
consumption when all the cores are idle, the Static column expresses the power
drawn by the node when at least one core is allocated, and the Dynamic column is
the power needed to feed one running core.

The workloads are based on the KIT-FH2-2016-1 workload trace. This job log
contains the activity of the Karlsruhe Institute of Technology ForHLR II System
over 582 days scheduling more than 114 thousand jobs, with an average 199 jobs
per day. The average duration of the jobs is 4.9h and the maximum number of
cores per job has been artificially reduced to 64 to emulate the shared-memory
jobs. The average number of cores per job is 24.6.

Various metrics have been used to evaluate the effectiveness of the different
schedulers.

• Makespan is the total time needed to execute all the jobs in the trace.
• Average waiting time considers the time each job is queued before it executes.
• Slowdown is the ratio of the response time of each job to its baseline execution

time.
• Energy measures the consumption of the cluster during the makespan.
• Energy delay product (EDP) is an efficiency metric calculated as the product of

the makespan and the energy [24].

Table 1 Composition of the
cluster

Count Cores Freq. Power

Min Static Dynamic

4 64 1GHz 0.4W 3.9W 0.4W
4 64 2GHz 0.4W 15.6W 1.5W
4 64 3GHz 0.4W 35.1W 3.3W
4 64 4GHz 0.4W 62.4W 5.9W

13745

1 3

Enhancing heterogeneous cluster efficiency through…

Note that the slowdown is defined slightly different than in other articles. In
homogeneous clusters, the slowdown is calculated with the execution time of the
job.

where tw is the waiting time and te is the execution time. Since in heterogeneous
clusters te varies depending on the node that executes the job, this definition is no
longer accurate. Therefore, in this article it is replaced in the denominator by the
baseline execution time tb . This is defined as the estimated execution time of the job
running alone in the slowest node of the cluster.

This expression preserves the spirit of the slowdown as a metric of user
dissatisfaction, but it includes the beneficial effect of running on the faster nodes of
a cluster. If a value of 1 in the traditional definition means that there was no waiting
time, in the above expression the result can be lower than 1 if the job was executed
in one of the faster nodes. Values lower than 1 can happen in the presence of waiting
time if the executing node is fast enough.

4 Evaluation

To better assess the effectiveness of the schedulers, the trace has been divided into
weeks and these have been simulated independently. The results of these weekly
simulations are presented in the box-and-whisker graphs shown in Fig. 2. There is
one graph for each metric, where the x-axis covers all the schedulers and the y-axis
represents the value of each metric. The boxes show the 25 and 75 percentile, the
line in the box indicates the median and the whiskers represent extreme values.

From a performance perspective, the relevant metrics are makespan, waiting time
and slowdown. Regarding the waiting time results, the proposed algorithms are
usually capable of launching jobs as soon as they are submitted. Both have fairly
low waiting times. The LowPower median is 75% lower than the baseline and for the
HighGFlops it is 80% lower. In both cases, Q3 is close to zero, meaning that in 25%
of the weeks there is almost no waiting time.

Regarding the slowdown results, the proposed algorithms show an excellent
improvement over the baseline ones. In detail, the median slowdown for LowPower
is 75% less than the baseline algorithms. This can be attributed to the good waiting
times it showed. But with HighGFlops, the results are much better because it
systematically chooses the fastest nodes available, further reducing the response
time over the baseline execution time. It can be seen that the median slowdown of
HighGFlops is 94% lower than the baselines.

As each of the algorithms favour a type of node, they have a different impact
in the makespan and energy metrics. The HighGFlops sends jobs to the fastest

Slowdown =

tw + te

te

Slowdown =

tw + te

tb

13746 E. Stafford, J. L. Bosque

1 3

nodes if they are available. As a consequence, it is able to give very good results
in the total execution time of the traces, with a 11.5% reduction in the median
of the makespan. On the contrary, LowPower chooses the nodes with the least
possible power consumption, which are also the slowest. This has a bad effect in
the makespan results, in fact its median is 11% worse than those of the baseline
schedulers.

Attending to the energy results, the HighGFlops scheduler has good results,
in fact it has a 10% better consumption than the baseline. But the LowPower
scheduler is the best with a median improvement of 17%. These results help
understand the impact that the power consumption of the nodes and their
execution speeds have in the overall energy consumption of the cluster. In this
case, the LowPower scheduler benefits from using slower nodes that consume
less power, even if they take longer to execute.

Finally, the EDP metric is a combination of the makespan and the energy,
reflecting the energy efficiency of the cluster. The LowPower has some improve-
ment over the baselines, with a median that is 10% lower. It is noteworthy that the
good energy consumption of this algorithm overcomes its lack in performance.

Fig. 2 Performance and energy results

13747

1 3

Enhancing heterogeneous cluster efficiency through…

But the HighGFlops has much better results with a 33% lower median, which
comes as a consequence that its good results in makespan and energy.

The previous results reduce the weekly results to their statistical values. In order
to better understand the behaviour of the algorithms, Fig. 3 shows the number of
weeks each algorithm is the best in each metric. The x-axis represents the algorithms
and the y-axis the number of weeks. It is noteworthy, that these counts consider ties
for the best result, in which case both are considered best. This different perspec-
tive confirms the previous evaluation and reveals the good results of the proposed
algorithms compared to the baseline. Indeed, they show that HighGFlops is the most
frequent winner in makespan and EDP. The opposite happens in energy consump-
tion where the LowPower is most often the best scheduler.

To better understand the behaviour of the algorithms regarding their performance
and energy consumption, a representative week has been selected, for which detailed
graphs of various metrics are shown. To avoid clutter, only the Duplex baseline
algorithm appears in the graphs. It was chosen for being the most sophisticated
among the baselines.

This analysis is summarised in two graphs, Fig. 4 shows the amount of energy
consumed by the cluster under the management of three different schedulers. The

Fig. 3 Number of weeks each algorithm is the best

Fig. 4 Time evolution of energy consumption

13748 E. Stafford, J. L. Bosque

1 3

maximum x value of each of the curves indicates the makespan. Figure 5 represents
the evolution of the number of running and queued jobs at each moment in time.
Also, the makespan is indicated by a black dot on the x-axis. The experiment con-
siders the full execution of all the tasks submitted during this time. Thus, makespan
values are usually well above the weekly 168 h.

The bad results of the Duplex scheduler are apparent in both Figures. It can be
seen in Fig. 4 that for most of the execution the energy consumption is similar to
that of HighGFlops, but after a point, due to an inability to schedule jobs at the
submission rate, it ends up taking more time and consuming more energy.

The Duplex algorithm relies on an precise execution time prediction to achieve
a tight packing of the jobs. However, the inherent inaccuracy of the user-requested
time, which references the slowest node, coupled with how this time is scaled on
faster nodes, leads to subpar decisions by the algorithm.

The Figures also illustrate that by employing the lowest-power nodes, the
LowPower scheduler achieves the lowest energy consumption, albeit at the cost
of a longer makespan compared to HighGFlops. On the contrary, the HighGFlops
consumes more energy, but finalises all the job sooner than LowPower. The
difference in energy consumption and performance of these two schedulers, that
concentrate the jobs in certain nodes, is possible because there are times at which
the cluster is not fully occupied. This means that LowPower does not have to resort
to the fast and power-hungry nodes and, conversely, the HighGFlops can avoid using
the slow nodes of the cluster. Note how the slope of the energy graph, which is the
power, is similar in the three algorithms when there are queued jobs, but diverges
when the machine is less busy.

Fig. 5 Running and queued job evolution over time

13749

1 3

Enhancing heterogeneous cluster efficiency through…

5 Related work

The introduction of this work stated that scheduling in HPC systems is performed
by a software called workload manager, being the most known Slurm [4], PBS
[5], Moab/Torque [6] or Cobalt [7]. These workload managers implement simple
heuristic algorithms, which are based on selecting jobs waiting in a queue sorted
according to different job properties, and assigning them to the first available
node in the cluster. These range from simple one-parameter heuristic priority
functions such as FCFS to complex metrics combining multiple parameters like
WFP, UNICEP [25] or F1 [26].

Another frequently employed technique is resource reservation or backfilling
[8]. This is a look-ahead approach that creates a job schedule, usually based on
a traditional algorithm like FCFS, but it uses the user-provided execution time
estimation to fill idle gaps that may appear in the schedule with lower priority
jobs. EASY backfilling is a more aggressive refinement that allows the lower
priority jobs to delay the original schedule [13]. Backfilling provides good results
on production systems, but relies heavily on job execution time estimates being
realistic, and its performance is greatly affected by inaccuracies [27]. In any
case, these algorithms are centred on the ordering and selection of jobs, but they
always select any free node of the cluster, regarding the cluster as a homogeneous
set of nodes.

Another relevant aspect influencing cluster performance is the choice
between two scheduling paradigms: list scheduling or pack scheduling [28].
In list scheduling, pending jobs are initially organised in a queue before being
dispatched sequentially, while in pack scheduling, jobs are partitioned into packs.
Jobs within each pack are scheduled concurrently, and the next pack cannot start
executing until all the jobs in the previous pack have finished running. While this
distinction affects the organisation of jobs in the queue, the system is once again
modelled as a homogeneous cluster.

Tackling the heterogeneous nature of current computer clusters has been
attempted in previous articles. In addition to the baselines described above,
MinMin, MaxMin and Duplex, there are others like A* [29]. A* is a complex
heuristic based on a tree structure. In the context of job scheduling, the search
tree represents possible sequences of job schedules. The algorithm explores this
tree while using heuristics to guide its search towards the most promising leafs,
ultimately reaching the optimal solution [30].

This article primarily emphasises heuristic algorithms due to their lightweight
nature. However, recently machine learning techniques have been applied to
address the job-scheduling problem. For instance, RLScheduler [10] uses deep
reinforcement learning (DRL), feeding a neural network-based agent a vector
that contains the attributes of all the eligible jobs. The agent selects one job
that is allocated to the first free node. RLSchert [19] is also based on DRL and
remaining runtime prediction. It estimates the state of a cluster by means of a
dynamic job remaining runtime predictor that employs a recurrent neural network
to encode time series information. Deep reinforcement agent for scheduling

13750 E. Stafford, J. L. Bosque

1 3

(DRAS) [31] takes advantage of the resource reservation technique, combining
backfilling with a DRL on a hierarchical neural network for decision-making.
All these algorithms are focused in selecting jobs and model the cluster as a set
of homogeneous nodes, without consider heterogeneity. Some efforts have been
made to extend the RLScheduler to heterogeneous clusters [32], but this work
focused on performance optimisation, not energy consumption or efficiency.

6 Conclusion

This article introduces two novel heuristic algorithms for job scheduling in
heterogeneous clusters. These algorithms are primarily focused on improving
various metrics, mainly the makespan and the energy consumption. To do this,
they take into account the heterogeneity of the components of the cluster. The
HighGFlops consider the different clock frequencies of the cluster nodes and, by
prioritising faster nodes, it attempts to reduce the execution time of the jobs. In
contrast, the LowPower scheduler is designed to reduce the total energy consumption
of the cluster by sending jobs to nodes that consume less power whenever possible.
These algorithms were compared to a set of schedulers known as MinMin, MaxMin
and Duplex, that are also sensitive to the properties of the nodes. But the presented
schedulers have the ability of reducing waiting times, contributing to favourable
outcomes, and do not rely on user-provided estimations of execution time. In fact,
the evaluation results indicate that these heuristics can outperform traditional
schedulers in multiple metrics, with at least one algorithm emerging as the winner in
each metric. Based on these results, it can be said that the LowPower scheduler is the
one indicated to reduce the energy consumption, whereas the HighGFlops should
be the one to choose if a improvement of the makespan or the energy efficiency is
required.

Future developments related to this research are the following. First, the IRMaSim
simulator could be improved to enhance the realism of traces containing message
passing interface (MPI) jobs. This entails building a model into the simulator to
predict the performance penalties derived from network communication among
tasks. Additionally, IRMaSim could also incorporate dynamic voltage and frequency
scaling (DVFS) modelling, aiming to better simulate the energy consumption of
modern processors. Modern heterogeneous clusters include accelerators of different
kinds. The presented algorithms could be improved to successfully tackle these
cases. Seeing that none of the presented algorithms is the best for all the metrics, it
could be worthwhile to explore a method for intelligently selecting the most suitable
scheduler for each job. This approach would enable the utilisation of the strengths
of both algorithms, leading to enhanced overall system performance and efficiency.
Finally, by integrating these algorithms into real-world workload managers, tangible
improvements in system performance and efficiency could be achieved.

Acknowledgements The KIT ForHLR II workload log (https:// www. cs. huji. ac. il/ labs/ paral lel/ workl
oad/l_ kit_ fh2/ index. html) was graciously provided by Mehmet Soysal.

https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html

13751

1 3

Enhancing heterogeneous cluster efficiency through…

Author contributions Both authors contributed equally to the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work has been supported by the Spanish Science and Technology Commission under contracts
PID2019-105660RB-C22 and PID2022-136454NB-C21, the Ministerio de Ciencia e Innovación;
Proyectos de Transición Ecológica y Digital 2021 under grant TED2021-131176B-I00 and the European
HiPEAC Network of Excellence.

Data availability The trace data used in this study is available at https:// www. cs. huji. ac. il/ labs/ paral lel/
workl oad/l_ kit_ fh2/ index. html

Code availability The simulator used in this study, IRMaSim, is available at https:// github. com/ irmas im/
IRMaS im.

Declarations

 Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Allcock W, Rich P, Fan Y, Lan Z (2018) Experience and practice of batch scheduling on leadership
supercomputers at argonne. In: Job scheduling strategies for parallel processing: 21st international
workshop, JSSPP 2017, Orlando, FL, USA, June 2, 2017, Revised Selected Papers 21, pp 1–24.
Springer

 2. Ullman JD (1975) Np-complete scheduling problems. J Comput Syst Sci 10(3):384–393
 3. Fan Y, Lan Z, Rich P, Allcock WE, Papka ME, Austin B, Paul D (2019) Scheduling beyond cpus for

hpc. In: Proceedings of the 28th International Symposium on High-Performance Parallel and Dis-
tributed Computing. HPDC ’19, pp 97–108. Association for Computing Machinery, New York, NY,
USA

 4. Yoo AB, Jette MA, Grondona M (2003) Slurm: Simple linux utility for resource management. In:
Feitelson D, Rudolph L, Schwiegelshohn U (eds) Job Scheduling Strategies for Parallel Processing.
Springer, Berlin, Heidelberg, pp 44–60

 5. Feng H, Misra V, Rubenstein D (2007) Pbs: a unified priority-based scheduler. In: Proceedings of
the 2007 ACM SIGMETRICS International Conference on Measurement and Modeling of Com-
puter Systems, pp 203–214

 6. Declerck TM, Sakrejda I (2013) External torque/moab on an xc30 and fairshare. Technical report,
NERSC

 7. Desai N (2005) Cobalt: an open source platform for hpc system software research. In: Edinburgh
BG/L System Software Workshop, pp 803–820

 8. Leonenkov S, Zhumatiy S (2015) Introducing new backfill-based scheduler for slurm resource man-
ager. Procedia Comput Sci 66:661–669 (4th International Young Scientist Conference on Com-
putational Science)

https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://github.com/irmasim/IRMaSim
https://github.com/irmasim/IRMaSim
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

13752 E. Stafford, J. L. Bosque

1 3

 9. Fan Y, Li B, Favorite D, Singh N, Childers T, Rich P, Allcock W, Papka ME, Lan Z (2022) Dras:
Deep reinforcement learning for cluster scheduling in high performance computing. IEEE Trans
Parallel Distrib Syst 33(12):4903–4917

 10. Zhang D, Dai D, He Y, Bao FS, Xie B (2020) RLscheduler: an automated HPC batch job scheduler
using reinforcement learning. In: SC20: Int. Conf. for High Performance Computing, Networking,
Storage and Analysis, pp 1–15. IEEE

 11. Stafford E, Bosque JL (2020) Improving utilization of heterogeneous clusters. J Supercomput
76(11):8787–8800

 12. Bosque JL, Toharia P, Robles OD, Pastor L (2013) A load index and load balancing algorithm for
heterogeneous clusters. J Supercomput 65(3):1104–1113

 13. Mu’alem AW, Feitelson DG (2001) Utilization, predictability, workloads, and user runtime esti-
mates in scheduling the ibm sp2 with backfilling. IEEE Trans Parallel Distrib Syst 12(6):529–543

 14. Mao H, Schwarzkopf M, Venkatakrishnan SB, Meng Z, Alizadeh M (2019) Learning scheduling
algorithms for data processing clusters. In: Proceedings of the ACM Special Interest Group on Data
Communication. SIGCOMM ’19, pp 270–288

 15. Maroulis S, Zacheilas N, Kalogeraki V (2019) A holistic energy-efficient real-time scheduler for
mixed stream and batch processing workloads. IEEE Trans Parallel Distrib Syst 30(12):2624–2635

 16. Shamsa E, Kanduri A, Liljeberg P, Rahmani AM (2021) Concurrent application bias scheduling for
energy efficiency of heterogeneous multi-core platforms. IEEE Trans Comput 71(4):743–755

 17. Fan Y (2021) Job scheduling in high performance computing
 18. Dupont B, Mejri N, Da Costa G (2020) Energy-aware scheduling of malleable hpc applications

using a particle swarm optimised greedy algorithm. Sustain Comput: Inf Syst 28:100447
 19. Wang Q, Zhang H, Qu C, Shen Y, Liu X, Li J (2021) Rlschert: an hpc job scheduler using deep rein-

forcement learning and remaining time prediction. Appl Sci 11(20):9448
 20. Nozal R, Perez B, Bosque JL, Beivide R (2019) Load balancing in a heterogeneous world: Cpu-

xeon phi co-execution of data-parallel kernels. J Supercomput 75(3):1123–1136
 21. Hennessy JL, Patterson DA (2017) Computer Architecture, Sixth Edition: A Quantitative Approach,

6th edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
 22. Herrera A, Ibáñez M, Stafford E, Bosque J (2021) A simulator for intelligent workload managers in

heterogeneous clusters. In: 2021 IEEE/ACM 21st Int. Sym. on Cluster, Cloud and Internet Comput-
ing (CCGrid), pp 196–205

 23. Maheswaran M, Ali S, Siegal HJ, Hensgen D, Freund RF (1999) Dynamic matching and schedul-
ing of a class of independent tasks onto heterogeneous computing systems. In: Proceedings. Eighth
Heterogeneous Computing Workshop (HCW’99), pp 30–44

 24. Castillo E, Alvarez L, Moreto M, Casas M, Vallejo E, Bosque JL, Beivide R, Valero M (2018)
Architectural support for task dependence management with flexible software scheduling. In: 2018
IEEE International Symposium on High Performance Computer Architecture (HPCA), pp 283–295

 25. Tang W, Lan Z, Desai N, Buettner D (2009) Fault-aware, utility-based job scheduling on blue,
gene/p systems. In: IEEE International Conference on Cluster Computing and Workshops, pp 1–10

 26. Tang W, Lan Z, Desai N, Buettner D (2009) Fault-aware, utility-based job scheduling on blue,
gene/p systems. In: 2009 IEEE International Conference on Cluster Computing and Workshops, pp
1–10

 27. Tsafrir D, Etsion Y, Feitelson DG (2007) Backfilling using system-generated predictions rather than
user runtime estimates. IEEE Trans Parallel Distrib Syst 18(6):789–803

 28. Sun H, Elghazi R, Gainaru A, Aupy G, Raghavan P (2018) Scheduling parallel tasks under multiple
resources: List scheduling vs. pack scheduling. In: 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp 194–203

 29. Braun TD, Siegel HJ, Beck N, Bölöni LL, Maheswaran M, Reuther AI, Robertson JP, Theys MD,
Yao B, Hensgen D, Freund RF (2001) A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems. J Parallel Distribut Comput
61(6):810–837

 30. Shahul S, Zaki A, Sinnen O (2010) Scheduling task graphs optimally with a*. J Supercomput
51(3):310–322

 31. Fan Y, Li B, Favorite D, Singh N, Childers T, Rich P, Allcock W, Papka ME, Lan Z (2022) Dras:
Deep reinforcement learning for cluster scheduling in high performance computing. IEEE Trans
Parallel Distrib Syst 33(12):4903–4917

 32. Fomperosa J, Ibáñez M, Stafford E, Bosque JL (2022) Task scheduler for heterogeneous data centres
based on deep reinforcement learning. In: 14th International Conference Parallel Processing and

13753

1 3

Enhancing heterogeneous cluster efficiency through…

Applied Mathematics PPAM 2022, Gdansk, Poland, September 2022. Lecture Notes in Computer
Science, vol. 13826, pp 237–248

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Enhancing heterogeneous cluster efficiency through node-centric scheduling
	Abstract
	1 Introduction
	2 Algorithm proposal
	2.1 HighGFlops
	2.2 LowPower

	3 Methodology
	4 Evaluation
	5 Related work
	6 Conclusion
	Acknowledgements
	References

