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A B S T R A C T

This paper considers the offline assignment of fixed priorities in partitioned preemptive real-time systems
where tasks have precedence constraints. This problem is crucial in this type of systems, as having a good fixed
priority assignment allows for an efficient use of the processing resources while meeting all the deadlines. In
the literature, we can find several proposals to solve this problem, which offer varying trade-offs between
the quality of their results and their computational complexities. In this paper, we propose a new approach,
leveraging existing algorithms that are widely exploited in the field of Machine Learning: Gradient Descent, the
Adam Optimizer, and Gradient Noise. We show how to adapt these algorithms to the problem of fixed priority
assignment in conjunction with existing worst-case response time analyses. We demonstrate the performance
of our proposal on synthetic task-sets with different sizes. This evaluation shows that our proposal is able to
find more schedulable solutions than previous heuristics, approximating optimal but intractable algorithms
such as MILP or brute-force, while requiring reasonable execution times.
1. Introduction

Real-time systems, which impose both functional and timing con-
straints, can be found in many mission-critical applications in domains
such as automotive, aerospace and healthcare. These systems are usu-
ally composed of a set of tasks that are concurrently scheduled by
a scheduler provided by a Real-Time Operating System (RTOS). Al-
though already proposed more than half a century ago [1] in the
form of Rate Monotonic Scheduling, Fixed Priority Scheduling (FPS)
nowadays remains the most common scheduling policy used in real-
time systems [2], and is extensively supported in current RTOSs and
programming languages [3]. With FPS, each task is assigned at de-
sign time a static fixed priority. At runtime, the scheduler selects for
execution the active task with the highest priority.

The assignment of fixed priorities is a vital step in the design of
FPS real-time systems. A bad selection of a priority assignment may
result in an under-utilization of the resources to be able to meet the
timing constraints. On the contrary, a good priority assignment allows
for higher utilization of the resources while complying with the timing
constraints, and thus reduced costs.

We consider real-time systems characterized by precedence relation-
ships, akin to those encountered in distributed systems. The challenge
of finding a fixed priority assignment that meets the timing constraints
in this type of systems is known to be NP-hard [4]. Several heuristics
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have been proposed to work-around this problem offering sub-optimal
solutions [3], ranging from the application of general purpose tech-
niques such as Genetic Algorithms [5,6] or Simulated Annealing [4], to
tailor-made algorithms such as HOPA [7]. An interesting technique that
has been proposed is Mixed Integer Linear Programming (MILP) [8].
While MILP is in theory able to provide optimal solutions, its main
drawback lies in its scalability issues, which become apparent when
the complexity of the system increases.

Nowadays, the field of Artificial Intelligence, and more specifically
Machine Learning, is experiencing the highest rates of research in-
terest and production in the area of Computer Science. This push is
specially felt in the advancements reported on areas such as Natural
Language Processing, Image Generation or Autonomous Systems. In
its most basic building blocks, these systems are usually composed of
vast neural networks that must be subject to a computing intensive
training process in order to produce useful results. This training is
essentially an optimization process, in which the parameters of the
neural networks (e.g. weights and biases) are iteratively tuned to
minimize a cost function. Currently, Gradient Descent (GD) is the de
facto algorithm for training such neural networks [9]. GD is a general-
purpose optimization algorithm that is used to minimize differentiable
mathematical functions. It achieves this by repeatedly making small
adjustments to the parameters of the cost function in the opposite
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direction of the gradient. The field of Machine Learning has produced
further variants and optimizations to the original GD algorithm, that
have demonstrated their effectiveness in locating minima of the cost
function in large search spaces, such as deep neural networks [9].

In this paper, we propose exploiting these advancements on efficient
training of neural networks, by adapting the Gradient Descent optimiza-
tion algorithm to the problem of assigning fixed priorities in real-time
systems. Additionally, from the literature of Machine Learning we pick
two techniques that enhance the behavior of Gradient Descent: the
Adam optimizer and Gradient Noise. By employing Gradient Descent
and subsequent optimizations, we aim to define a priority assignment
algorithm that approximates an optimal assignment, while avoiding the
scalability issues of optimal techniques such as MILP.

This paper is organized as follows. In Section 2, we describe the
system model for real-time systems that we assume in this paper.
In Section 3, we describe how a generic gradient descent algorithm
operates, and also we list state-of-the-art algorithms to assign fixed
priorities in real-time systems that conform with our model. Section 4
describes the main contribution of this paper, a Gradient Descent-based
algorithm to assign fixed priorities. Section 5 proposes an optimization
of the previous algorithm to accelerate its execution. In Section 6, we
present the results of an exhaustive evaluation of our proposal. Finally,
in Section 7, we present the main conclusions of this work.

2. System model

To describe the system model we follow the terminology of the OMG
MARTE specification for Schedulability Analysis Modeling (SAM) [10].
An implementation of this specification can be found in the MAST
modeling framework [11,12].

We consider real-time systems composed of 𝑁 steps statically allo-
cated to processing resources. A step can model a task that executes
on a CPU processing resource. The steps (i.e. tasks) are grouped into
end-to-end (e2e) flows that establish precedence relationships among
the steps. For simplifying purposes, in this paper we consider linear
e2e flows in which each step may have at most one successor and
predecessor step. Therefore, each e2e flow 𝛤𝑖 is composed of a linear
sequence of 𝑁𝑖 steps. The j-th step of e2e flow 𝛤𝑖 is denoted as 𝜏𝑖𝑗 . A
step 𝜏𝑖𝑗 has a worst-case execution time (WCET) denoted as 𝐶𝑖𝑗 , and is
statically allocated to processing resource 𝑃𝑅𝑘.

Each end-to-end flow 𝛤𝑖 is released by a periodic sequence of
external events with period 𝑇𝑖. Sporadic events are also supported, in
which case the period is considered as the minimum inter-arrival time
of the events. We assume that all event sequences that arrive at the
system and their worst-case rates are known in advance. The relative
phasing of the activations of different end-to-end flows is assumed to
be arbitrary and unknown.

Deadlines can be set for individual steps or for the whole end-to-
end flow. In this paper, to simplify the notation and without loss of
generality, we only consider e2e deadlines. We define 𝐷𝑖 as the e2e
deadline that flow 𝛤𝑖 must meet, counting from the release of the e2e
flow until its last step finishes its execution. End-to-end deadlines have
no restrictions in relation to the periods. Specifically, deadlines can be
longer than the periods. The e2e flow 𝛤𝑖 is released by the arrival of
an external event 𝑒𝑖 with period 𝑇𝑖 and e2e deadline 𝐷𝑖. Assuming that
the event 𝑒𝑖 arrives at time 𝑡, this deadline imposes that the execution
of the whole end-to-end flow must finish before 𝑡 + 𝐷𝑖. Fig. 1 shows
two simple e2e flows composed of 3 steps, that traverse 3 different
processing resources (𝑃𝑅1, 𝑃𝑅2 and 𝑃𝑅3).

We assume that each processing resource is governed by a fixed
priority preemptive scheduler, and that each step is scheduled by their
statically assigned fixed priority. The fixed priority of step 𝜏𝑖𝑗 is denoted
as 𝑃𝑖𝑗 . Although the values of the fixed priorities are usually restricted
to integers, in this paper we relax this restriction to allow any real
number: 𝑃𝑖𝑗 ∈ R. Moreover, step 𝜏𝑖𝑗 is said to have a higher priority
than 𝜏 if 𝑃 > 𝑃 , where 𝑃 is the priority of step 𝜏 .
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Fig. 1. Two end-to-end flows (𝛤1 and 𝛤2), composed of 3 steps, that traverse 3
processing resources (𝑃𝑅1, 𝑃𝑅2 and 𝑃𝑅3).

We define the worst-case response time (WCRT) of a step as the
longest possible (or an upper bound) interval counting from the release
of its end-to-end flow till the step’s completion. For a step 𝜏𝑖𝑗 , we denote
its WCRT as 𝑅𝑖𝑗 . We assume that a step 𝜏𝑖𝑗 can have a real response time
between 0 and 𝑅𝑖𝑗 . We define the WCRT of a flow 𝛤𝑖 as the WCRT of
its last step, and denote it as 𝑅𝑖. When every end-to-end flow meets its
deadline, that is 𝑅𝑖 ≤ 𝐷𝑖∀𝑖, we say that the system is schedulable.

We allow steps to have input jitter, which models the maximum
amount of time the release of a step may be delayed. The jitter of step
𝜏𝑖𝑗 is denoted as 𝐽𝑖𝑗 . Jitters can have any arbitrary positive value. There
is an inter-dependency between the jitters and WCRTs because of the
precedence constraints: the start time of a step depends on the finish
time of its predecessor, which is not constant, as its response time can
range from 0 to its WCRT.

The WCRTs of the steps, and by extension of the end-to-end flows,
are obtained by applying a WCRT analysis. Since the problem of
obtaining exact WCRTs is NP-hard [13], these analyses generally obtain
safe upper bounds. In the literature, we can find several such analyses
that support this system model, with varying degrees of pessimism and
time complexity. For instance, the Holistic analysis [14,15] makes the
simplifying but safe assumption that the dependency among tasks in the
same e2e flow is only indirectly taken into account by the propagation
of their jitters. Offset-Based techniques [16,17] model the in-flow step
inter-dependencies more exactly through the use of offsets, resulting in
generally less pessimistic WCRTs. Implementations of these techniques
can be found in the open source MAST Analysis tool [11,18].

In this paper only tasks executed on CPUs and linear e2e flows
are considered, but the MAST model and available WCRT analyses
support a wider range of systems. For instance, distributed systems
can be modeled by viewing messages as steps transmitted through
network processing resources. The analysis of this message traffic on
the networks can be carried out using similar techniques to those used
in the CPUs, by adding a blocking term that accounts for the non
preemptability of the message packets [15,16]. Non-linear end-to-end
flows with fork and join events are also supported [19]. More specific
and industry-relevant standards, such as Logical Execution Time (LET)
in the automotive sector, or ARINC-653 in aerospace applications, can
also be supported [20–22].

3. Related work

In this section we provide the context of this work. First, in Sec-
tion 3.1 we present a review of the state-of-the-art on the assignment
of fixed priorities. Then, in Section 3.2, we describe how a generic

Gradient Descent algorithm operates.
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3.1. Fixed priority assignment

The problem of finding a schedulable fixed priority assignment for
a real-time system is known to be NP-hard [4]. The works we can
find in the literature [3] offer different balances between their degree
of optimality and their computational complexities. Here, we consider
an algorithm as sub-optimal if it may be unable to find a schedulable
priority assignment when one exists.

One of the first solutions proposed was to leverage the general
purpose Simulated Annealing (SA) algorithm [4]. SA is a global opti-
mization technique that attempts to find the lowest point in an energy
landscape, by emulating the physical process of heating and controlled
cooling of a material to alter its physical properties. This algorithm
was proposed to both find schedulable priority assignments and to map
steps to processing resources.

Another algorithm found in the literature is HOPA [7]. This iterative
technique was created ad-hoc, and it is based on the distribution of the
end-to-end deadlines among the steps, in the form of virtual deadlines,
taking into account the steps’ worst-case response times. These virtual
deadlines are then transformed into fixed priorities by following a
Deadline Monotonic criterion. HOPA has demonstrated to be capable of
finding more schedulable priority assignments than SA, in significantly
less time [7].

Proportional Deadlines (PD) [23] is another technique that can be
used to assign fixed priorities. PD is a non-iterative algorithm that
distributes the end-to-end deadlines among the steps proportionally to
the WCETs. As in HOPA, these virtual deadlines are then transformed
into fixed priorities by applying a Deadline Monotonic principle. As it is
non-iterative, PD lacks the capability to improve on the initial priority
assignment, and generally is outperformed by iterative algorithms.
Nonetheless, it is a very fast algorithm that can be useful as a seed
in iterative algorithms, such as HOPA.

Genetic Algorithms are part of the so-called evolutionary algo-
rithms, which imitate biological mechanisms that guide the evolution
process in species, and which are used to look for solutions to diverse
problems in wide search spaces. In the context of optimizing real-
time systems, they have been used as a part of a multi-objective
strategy, for example: (1) to allocate tasks in identical processors and
to determine cyclic scheduling [24,25]; (2) to allocate independent
tasks in heterogeneous distributed real-time systems, to which fixed
priorities are assigned following the Rate Monotonic scheme [26]; or
(3) to assign priorities to tasks, as well as to determine the timing slots
for the messages transmitted through a TDMA network [6]. The work
in [5] develops a permutational genetic algorithm for the assignment of
priorities to tasks and messages in a distributed real-time system, where
the results are compared to those obtained by HOPA [5], showing a
slight improvement (up to 4% higher schedulable utilization), but at a
much higher cost in computation time.

Similarly, the authors of [27] propose a multi-objective competi-
tive co-evolution algorithm. This work considers tasks that may have
precedence constraints, but presents two main incompatibilities with
our model, (1) the exact activation instants of the flows are known
beforehand (i.e. the relative phasings of the flows are known), and (2)
the tasks are dynamically assigned a processor at runtime according to
their global priority. The algorithm is evaluated using simulations on a
set of industrial examples, and compares positively to relatively simple
algorithms (manual expert assignment, random search and sequential
search). The execution times range from less than 2 min to 16 h in the
more complex example.

Mixed Integer Linear Programming (MILP) is a promising technique
that has been applied to both step-to-processor mapping and priority
assignment problems [8]. In MILP, the problem is described as a
set of linear constraints and a linear objective function, which gets
optimized within those constraints. The main benefit of MILP is that,
in theory, it is an optimal algorithm, that is, it will find a schedulable
3

solution if one exists. Existing commercial libraries such as Gurobi [28]
provide efficient environments to define MILP problems. Nevertheless,
we identify that MILP has two main challenges in its applicability to
our system model.

First, it is known to be NP-hard itself. This translates into becoming
intractable as the search space becomes bigger, which is confirmed
in empirical evaluations [8]. Second, MILP requires the definition of
linear constraints, which may not be available. For the problem we
are tackling in this paper, that is, to find a schedulable priority assign-
ment, we would require linear equations that model a schedulability
test compatible with our system model. As far as we know, no such
equations have yet been defined that could be feasibly applied to MILP.
Generally, simplifying assumptions must be included in the model to
obtain feasible equations. For instance, in [8] the distributed model
assumes a strictly periodic activation of the steps, with constrained
deadlines. This greatly simplifies the problem, and makes that work
incompatible with our system model. Recent efforts [29] aim to relax
those previous restrictions imposed on the system model, but still
include several simplifications that make it incompatible with our
model. Namely, it assumes that every step in an e2e flow has the same
priority, the end-to-end deadlines are constrained, and that the jitters
are assumed to be known before-hand and kept constant. In our model,
there is an inter-dependency between jitters and worst-case response
times that cannot be solved exactly if jitters are assumed constant.

The scalability issues of MILP were tackled in [30], which proposes
a more efficient and near-optimal algorithm that exploits the idea of
finding the maximum virtual deadlines that would render the system
not schedulable. These values are iteratively computed with an in-loop
standard Integer Linear Programming (ILP) optimization with relaxed
constraints. Similarly to [8], this paper considers a simpler system
model, with constrained deadlines and independent tasks without jitter.

In this paper, we are aiming to improve upon the performance of
sub-optimal algorithms such as HOPA, while avoiding the scalability
issues that an optimal technique such as MILP suffers.

3.2. Generic gradient descent algorithm

Gradient Descent (GD) is an optimization algorithm for minimizing
differentiable mathematical functions. GD is extensively used in the
field of Machine Learning to optimize parameters such as coefficients
in linear regression problems or weights in neural networks.

The GD algorithm starts with an initial guess for the function input
parameters, and then iteratively adjusts them in the direction that
reduces the value of the function the most, until a minimum (or some
other criteria) is reached. To achieve this behavior, GD employs the
gradient of the function. The gradient of a function at a given input
is a vector that points in the direction of the steepest increase of the
function at said input. GD leverages this observation by updating the
current input parameters in the opposite direction of the gradient, as
this represents the direction of steepest descent. The size of this update
is usually modulated by a factor called learning rate.

In formal terms, given an 𝑛-dimensional function 𝑓 (𝑥1,… , 𝑥𝑛), its
input can be represented as an 𝑛-dimensional point 𝑝 = (𝑝1,… , 𝑝𝑛).
Function 𝑓 is usually called the cost function. Therefore, GD is said
o minimize the cost function. The gradient of function 𝑓 at point 𝑝 is
epicted as ∇𝑓 (𝑝), which can be expressed as a vector of the partial
erivatives of 𝑓 at point 𝑝 as follows:

𝑓 (𝑝) =
[

𝜕𝑓
𝜕𝑥1

(𝑝),
𝜕𝑓
𝜕𝑥2

(𝑝), …
𝜕𝑓
𝜕𝑥𝑛

(𝑝)
]

(1)

At a given iteration number 𝑡, the next point 𝑝𝑡+1 is calculated by
moving the current point 𝑝𝑡 in the opposite direction of the gradient,
which is scaled by a learning rate 𝜂:

𝑝𝑡+1 = 𝑝𝑡 − 𝜂∇𝑓
(

𝑝𝑡
)

(2)

Starting from an initial point 𝑝0, Eq. (2) is iteratively applied. If
an appropriate 𝜂 factor is applied, and function 𝑓 is differentiable
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around 𝑝𝑡, the inequality 𝑓 (𝑝𝑡+1) ≤ 𝑓 (𝑝𝑡) is respected. Therefore, by
repeatedly applying Eq. (2), GD will traverse function 𝑓 along a path
that keeps minimizing 𝑓 , until a point that produces a minimum of
the function is reached. Further stopping criteria could be added, for
instance establishing a maximum number of iterations.

Parameters such as the learning rate (𝜂) are usually called hyper-
parameters. A hyper-parameter is defined as a configuration variable
that can tweak the behavior of the algorithm, but it is not a parameter
that is being optimized. Typically, known good values for the hyper-
parameters are selected and kept unchanged. For instance, a very low
positive value for the learning rate (≈ 0.01) is usually considered as a
good candidate in the context of training neural networks.

The main challenge for GD is that there is no guarantee that a
global minimum will be found: depending on the starting point and the
shape of 𝑓 , following the gradient may lead to different local minima.
Furthermore, GD may get stuck in flat areas of the function, as the
gradient there evaluates to 0.

The chances of finding a global minimum can be increased by
enhancing GD with the idea of momentum, which can be intuitively
explained if we visualize the Gradient Descent algorithm in the physical
world. If we imagine the function 𝑓 as a 3D shape, and the starting
point as the location at which we release a ball, the ball will follow
a downward path along the slopes of the shape, i.e. a path opposite
to the gradients of the shape. The ball will continue its descent until
reaching a resting state at a local minimum. If we add mass to the
ball and consider gravity, the ball will accumulate momentum as it
accelerates down steep slopes. This momentum may be sufficient for
the ball to surpass the first local minimum it encounters, thus increasing
the possibility of finding further lower minima.

Several techniques have been proposed that leverage this idea of
momentum [9], which have proved to be effective when optimizing
vast neural networks comprised of cost functions with millions of
parameters. It is worth stating that it is not the objective of this paper
to propose new solutions in the field of Machine Learning, but to select
and exploit existing and successful techniques, adapting them to the
problem of fixed priority assignment, which will be carried out in the
next section.

4. Gradient descent priority assignment

The problem we aim to solve can be defined as follows: given a real-
time system composed of end-to-end flows as described in Section 2, we
want to find a fixed priority assignment for every step in the system in
such a way that the system becomes schedulable. That is, we want to
find a fixed priority value 𝑃𝑖𝑗 for every step 𝜏𝑖𝑗 , so that the worst-case
response times of every end-to-end flow are less than or equal to their
end-to end deadlines, 𝑅𝑖 ≤ 𝐷𝑖,∀𝑖. We assume that every step is already
mapped to a processing resource. Any new step-to-processor mapping
would require a re-computation of the fixed priority values.

We define 𝛱 as a priority assignment, which is a vector containing
a particular mapping of a fixed priority value to each step. Therefore,
a priority assignment 𝛱 is a flat view of the priority values assigned to
a system. The ordering inside a priority assignment vector 𝛱 follows
the ordering of the e2e flows and their steps, as shown in Eq. (3).

𝛱 =
[

𝑃11, 𝑃12,… , 𝑃21, 𝑃22,…
]

(3)

We propose adapting the Gradient Descent (GD) algorithm to assign
fixed priorities. The resulting algorithm is called Gradient Descent
Priority Assignment (GDPA). As previously described in Section 3.2,
the basic idea of the generic Gradient Descent algorithm involves
iteratively adjusting the input parameters of a cost function in the
direction that makes the function decrease the most. GDPA mirrors this
behavior by iteratively adjusting the fixed priority values of every step
in the direction that reduces the worst-case response times in relation
to the imposed deadlines
4

t

Fig. 2. Gradient Descent Priority Assignment flowchart.

GDPA is an iterative algorithm that will compute and evaluate one
priority assignment per iteration. Accordingly, we denote as 𝛱 𝑡 the
priority assignment evaluated at iteration 𝑡. By extension, we define
𝑃 𝑡
𝑖𝑗 as the fixed priority value assigned to step 𝜏𝑖𝑗 at iteration 𝑡.

Fig. 2 shows a high level overview of the GDPA algorithm. GDPA is
composed of 6 main phases: (1) initial priority assignment, (2) initial
priority compression, (3) stop condition, (4) gradient computation, (5)
gradient optimization, and (6) new priority assignment. These phases
will be described in detail in the following sub-sections.

4.1. Initial priority assignment

Any Gradient Descent algorithm requires an initial set of input
values from which to start the optimization process. In the case of
GDPA, these initial values represent an initial priority assignment,
denoted as 𝛱 𝑖𝑛𝑖. GDPA does not impose any restriction on this initial
priority assignment. A technique such as PD [23] is a good candidate,
as it is a fast algorithm. A better starting point can be provided by
employing a more advanced but slower technique such as HOPA [7].
A completely random priority assignment can also be used.

4.2. Initial priority compression

In any Gradient Descent algorithm, the next candidate solution is
always calculated by adding some values to the previous candidate.
Consequently, in the case of GDPA, after several iterations there is
a risk of inducing runaway priority values that could diverge as the
algorithm progresses. To avoid this problem, we add a priority normal-
ization stage by defining a compression function 𝑐, which constrains
the priority values into the range [−1, 1]. The compression function 𝑐 is
defined as follows:

𝑐 (𝛱) = 𝛱
𝑚𝑎𝑥 (|𝛱|)

(4)

here 𝛱 is a priority assignment, and 𝑚𝑎𝑥(|𝛱|) represents the maxi-
um of the absolute values of every priority value in 𝛱 .

Before feeding the initial priority assignment into GDPA, the com-
ression function 𝑐 is applied to make sure the priority values get
onstrained within the expected range [−1, 1]. The resulting priority
ssignment is labeled as 𝛱0, indicating that this is the first priority
ssignment evaluated by GDPA, that is, the priority assignment at
teration t=0. Formally:
0 = 𝑐

(

𝛱 𝑖𝑛𝑖) (5)

It is worth noting that the compression function 𝑐 does not modify
he actual priority ordering of the steps. Therefore, it has no impact on
he results of the schedulability analysis.



Journal of Systems Architecture 153 (2024) 103198J.M. Rivas et al.

G

[

a
t
w
c
b

o

t
o
d
e
𝑖
p
i
t
u
a

4

t
i
v
c
n

c
w
p
t
b

∇

t
𝛱
p
f
𝑖

t

4.3. Stop condition

The priority assignment computed at each iteration is evaluated to
determine whether the GDPA algorithm should terminate. In the case
of the first iteration t=0, the priority assignment 𝛱0 is evaluated. In

DPA, the algorithm stops if any of the following criteria is met:

1. The current priority assignment 𝛱 𝑡 is schedulable.
2. A maximum number of iterations has been reached.

To determine if a priority assignment is schedulable, any schedula-
bility test compatible with the system model described in Section 2 can
be employed. Typically, the schedulability of the priority assignment
can be determined by applying a worst-case response time analysis, and
then comparing the resulting WCRTs with the deadlines. Techniques
such as the Holistic analysis [15] or Offset-Based analyses [16,17] can
be applied. The selection of which analysis to employ must balance the
trade-offs between computing time and the pessimism in the obtained
WCRTs.

Regardless of which stopping criteria was met to terminate the algo-
rithm, GDPA will always return the priority assignment that produces
the lowest value of the cost function, among all the priority assignments
evaluated. The cost function in GDPA is detailed in Section 4.4.1.

The stop condition could be extended by allowing further iterations
after a schedulable priority assignment has already been found. This
may enable finding solutions with lower cost values. We leave the study
of such capability outside of the scope of this work, in order to show
the ability of GDPA of finding a schedulable solution more clearly.

4.4. Gradient computation

The objective of this phase is to obtain the gradient of the cost
function at the current priority assignment. To achieve this we must
first define a suitable cost function. This is described in the following
Section 4.4.1. Later, Section 4.4.2 will outline a method to calculate
the gradient of the selected cost function.

4.4.1. Cost function
In this section, we define a suitable cost function that can be

employed in the GDPA algorithm. In general, the cost function should
have as input the parameters we aim to optimize, i.e., we want to
find the input at which the cost function is minimized. Moreover,
the cost function should represent a metric that we aim to optimize.
Accordingly, for the problem of fixed priority assignment, we identify
that a cost function 𝑓 suitable for GDPA should comply with the
following 2 requirements:

1. The input of the cost function should be a priority assignment:
the cost function maps each priority assignment to a cost value.

2. The cost function should inversely reflect the schedulability of the
system: lower values of the cost should indicate a better schedu-
lability situation. Therefore, by minimizing the cost function
we are effectively maximizing the schedulability. Although the
schedulability status of a system is binary (it is either schedula-
ble or not), here schedulability refers to a hypothetical continuous
value that quantifies how close (or far) the system is to become
schedulable in terms of the distance between its WCRTs and its
deadlines.

By applying Gradient Descent with a hypothetical cost function
𝑓 with the characteristics described above, we would iteratively find
new priority assignments that could potentially converge towards a
minimum of the cost function, that is, a maximum of the schedulability.

To define the cost function, we will leverage the worst-case response
times (WCRT) of the end-to-end flows, as these provide the clearest
5

indication of the schedulability of the system. Therefore, we assume
the availability of a response-time analysis that is able to calculate the
WCRT of every e2e flow.

Given a set of worst-case response times for each e2e flow, 𝑅 =
𝑅1,… , 𝑅𝑁

]

, a straightforward cost function we could consider is the
verage WCRT of the system, as this function seems to comply with
he 2 requirements set above: (1) for any given priority assignment
e get one cost value (i.e. the average WCRT), and (2), lowering the

ost function (i.e. lowering the average WCRT) seems to indicate a
etter schedulability. The problem of using the average WCRT as the cost

function is that it does a poor job reflecting the overall schedulability of
the system, as it does not take into account the deadlines. Each iteration
of the Gradient Descent algorithm would tend to lower the WCRTs of
every e2e flow, regardless of the schedulability status of each particular
flow.

Instead, in this paper we use as cost function a metric we call the
inverse slack, or 𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘, which we define as follows:

𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘(𝛱) = max
∀𝑖

(

𝑅𝑖 −𝐷𝑖
𝐷𝑖

)

(6)

where 𝛱 is a priority assignment, 𝑅𝑖 is the WCRT of flow 𝛤𝑖 computed
for the given priority assignment 𝛱 , and 𝐷𝑖 is the end-to-end deadline
f the same e2e flow.

The main property of 𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘 is that it focuses on the worst flow,
hat is, the flow with the largest (𝑅𝑖−𝐷𝑖) value. Hence, a positive value
f 𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘 indicates that at least one end-to-end flow is not meeting its
eadline. On the other hand, a negative value of 𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘 signals that
very flow is meeting its deadline. Additionally, aiming to minimize
𝑛𝑣𝑠𝑙𝑎𝑐𝑘 will tend to increase the schedulability of the worst flow by
ossibly trading off some of the schedulability of other flows, that were
n a better situation. With this approach, at each iteration GDPA will
ry to improve the worst flow (which may be different each iteration),
ntil the worst flow becomes schedulable, at which point the system as
whole is by extension also schedulable.

.4.2. Calculating the gradient of the cost function
Once a suitable cost function has been selected, the objective now is

o specify a method to calculate its gradients. The cost function has as
ts input parameter a priority assignment 𝛱 , which assigns a priority
alue to each step in the system. Although this section will focus on
alculating the gradient of the 𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘 cost function, to simplify the
otation, in the following we will denote the cost function as 𝑓 .

As described previously, the gradient of cost function 𝑓 can be
omputed as a vector of the partial derivatives of the cost function
ith respect to each of its parameters. In the case of 𝑖𝑛𝑣𝑠𝑙𝑎𝑠𝑘, its
arameters are the priorities of each step in the system (𝑃𝑖𝑗). Therefore,
he gradient of the cost function 𝑓 at a given priority assignment 𝛱 can
e represented as the following vector:

𝑓 (𝛱) =
[

𝜕𝑓
𝜕𝑃11

(𝛱),
𝜕𝑓
𝜕𝑃12

(𝛱),…
]

(7)

To calculate these partial derivatives we start by studying the
classical definition:
𝜕𝑓
𝜕𝑃𝑖𝑗

(𝛱) = lim
ℎ→0

𝑓 (𝑃11,… , 𝑃𝑖𝑗 + ℎ,…) − 𝑓 (𝑃11,… , 𝑃𝑖𝑗 ,…)
ℎ

(8)

Eq. (8) implies that to calculate one partial derivative, the cost
function must be computed twice: one time with the current priority
assignment 𝛱 , and another with a different priority assignment in
which 𝑃𝑖𝑗 is increased by an infinitesimal value ℎ. For this equation
o be useful, function 𝑓 must be differentiable around input value

. Intuitively, this property requires that infinitesimal changes in a
riority assignment should induce a change in the output of the cost
unction. It is trivial to confirm that this property does not hold for
𝑛𝑣𝑠𝑙𝑎𝑐𝑘, as its input (i.e. priorities) have effectively discrete values.

To illustrate the problem, consider a simple system composed of
wo steps 𝜏11 and 𝜏21, located in the same processor. Let us assume a

priority assignment 𝛱 = 1, 2 , that is, 𝜏 has a lower priority than 𝜏 .
[ ] 11 21
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Let us also assume a cost value for 𝛱 equal to 𝑋, that is 𝑓 (𝛱) = 𝑋.
et us now make an infinitesimal change on the priority assignment,
btaining 𝛱 ′ = [1.001, 2]. Although the priority values have changed,
he actual priority ordering remains the same, therefore the cost value
lso remains unchanged: 𝑓 (𝛱 ′) = 𝑋. Consequently, if we were to
se Eq. (8) to calculate the partial derivatives, the gradients would
robably always be 0, and GDPA would get stuck at the first priority
ssignment indefinitely.

To circumvent the problem of the non-differentiability of 𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘,
we will approximate its partial derivatives using a non-infinitesimal and
constant value for ℎ, which we rename 𝐻 . We define 𝐻 as the average
priority value separation between consecutive steps inside flat priority
vector 𝛱 . Formally, 𝐻 is calculated as follows:

𝐻 = 𝜆
∑𝑁−1

𝑖=0 |𝛱𝑖+1 −𝛱𝑖|

𝑁 − 1
(9)

where 𝑁 is the number of steps in the system, 𝛱𝑖 is the priority value
for the step located at position 𝑖 in the priority assignment vector 𝛱 ,
nd 𝜆 is a hyper-parameter to control the size of 𝐻 .

We modify Eq. (8) to take into account the non-infinitesimal value
. The resulting equation to approximate the partial derivatives is

epicted in Eq. (10). By applying a larger non-infinitesimal step size
𝐻 (+𝐻 to −𝐻), this equation will have a greater chance of changing
he priority ordering of the steps, and thus providing a non-zero value
or the partial derivatives. It is worth noting that, although Eq. (10) is
ot a formal partial derivative, to simplify the notation we still denote it
s such, as it approximately quantifies the slope between two different
riority assignments.

𝜕𝑓
𝜕𝑃𝑖𝑗

(𝛱) =
𝑓 (𝑃11,… , 𝑃𝑖𝑗 +𝐻,…) − 𝑓 (𝑃11,… , 𝑃𝑖𝑗 −𝐻,…)

2𝐻
(10)

According to Eq. (10), to calculate the partial derivative of 𝑓 with
espect to the priority of step 𝜏𝑖𝑗 , the cost function must be computed
or two different priority assignments: one in which the priority of step
𝑖𝑗 is increased by 𝐻 , and another in which its priority is decreased

by 𝐻 . Consequently, to calculate the gradient of a system composed of
𝑁 steps, the cost function must be computed for 2𝑁 different priority
assignments.

It is worth noting that each computation of the cost function re-
quires invoking a response time analysis. Therefore, calculating the
gradient of said system composed of 𝑁 steps requires executing 2𝑁
analyses. As an example, let us consider a realistic scenario in which 10
iterations of GDPA are executed with a system composed of 100 steps.
Under this scenario, considering that in each iteration the gradient will
be computed once, in total the response time analysis will be invoked
2000 times.

Any response time analysis compatible with the model presented
in Section 2 can be used to compute the cost function, but taking into
account that it may potentially be invoked on numerous occasions, it is
preferable to select an analysis that tends to be fast, such as the Holistic
analysis [15].

It is important to highlight that the response time analysis to
compute the gradients, and the response time analysis to determine the
stop condition (Section 4.3), do not need to be the same. This property
can be exploited by employing a fast analysis for the computation of
the gradients, and a slower but more precise analysis to determine the
stopping conditions. This can be useful if the results of the fast analysis
are correlated with those of the slower but more precise one.

This potential for a high number of invocations of the response
time analysis represents the main bottleneck of the GDPA algorithm. To
manage this, Section 5 presents a method to accelerate the computation
of the gradients by vectorizing a response time analysis technique.
6

4.5. New priority assignment

In GDPA, instead of utilizing Eq. (2) directly to calculate the next
priority assignment 𝛱 𝑡+1, we employ the more flexible concept of
pdate vector, which abstracts away the learning rate and gradient terms.

Accordingly, the new priority assignment is calculated by adding the
update vector 𝑈 𝑡 to the current priority assignment 𝛱 𝑡, as shown
in Eq. (11).

𝛱 𝑡+1 = 𝑐
(

𝛱 𝑡 + 𝑈 𝑡) (11)

where 𝑡 is the current iteration number, 𝛱 𝑡 is the current priority
ssignment, 𝑈 𝑡 is the update vector in the current iteration, and 𝑐 is

the compression function (described in Eq. (4)).
The inclusion of the update vector into the formulation facilitates

the incorporation of gradient optimization techniques that will increase
the chances of finding the global minimum of the cost function. The
field of machine learning, in which the Gradient Descent algorithm
is extensively used, has proposed several such optimizations [9]. For
this paper we have selected two: Gradient Noise [31], and the Adam
optimizer [32]. The update vector 𝑈 𝑡 is constructed by sequentially
applying both techniques. In the following, we provide a more detailed
explanation of each technique, and how its notation is adapted to
GDPA.

4.5.1. Gradient noise
The Gradient Noise technique adds a Gaussian noise with mean 0

and variance 𝜎2𝑡 to the gradient. In a given GDPA iteration 𝑡, we denote
as 𝐺𝑡 the gradient vector with the added noise as follows:

𝐺𝑡 = ∇𝑡𝑓
(

𝛱 𝑡) +
(

0, 𝜎2𝑡
)

(12)

where  denotes a normal or Gaussian distribution.
The variance of the Gaussian noise decays with the iterations of the

optimization process, as given in Eq. (13), in which 𝜂 is the learning
rate, 𝑁 is the number of steps in the system, and 𝛾 is an additional
hyper-parameter to control the noise decay:

𝜎2𝑡 =
𝜂

(1 +𝑁 + 𝑡)𝛾
(13)

Parameter 𝑁 in Eq. (13), which was not included in the original
ormulation of Gradient Noise, is added to modulate the effect of
he noise in systems with many steps. In such systems, less noise is
equired to induce slight variations in the priority ordering of the
teps, considering that the priority values of all the steps always get
ompressed into the range [−1, 1].

.5.2. Adam optimizer
Adam is a momentum based gradient optimizer that effectively

omputes specific learning rates for each optimization parameter. It
efines two vectors, 𝑚 and 𝑣, which are the first and second moment
f the gradient respectively. In a given iteration 𝑡, these vectors are
efined as follows:
𝑚𝑡 = 𝛽1𝑚

𝑡−1 + (1 − 𝛽1)𝐺𝑡

𝑡 = 𝛽2𝑣
𝑡−1 + (1 − 𝛽2)(𝐺𝑡)2

(14)

here 𝛽1 and 𝛽2 are hyper-parameters to control the effect of the
omentum, and (𝐺𝑡)2 is the element-wise square of the noisy gradient.

It is worth noting that in this formulation we are directly optimizing
he noisy gradient 𝐺𝑡. The vectors 𝑚 and 𝑣 are bias-corrected as follows:

̂ 𝑡 = 𝑚𝑡

1 −
(

𝛽1
)𝑡

𝑣̂𝑡 = 𝑣𝑡
( )𝑡

(15)
1 − 𝛽2
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Algorithm 1 Gradient Descent Priority Assignment algorithm

Input: Input system S, initial priority assignment 𝛱 𝑖𝑛𝑖, maximum
iterations 𝑡𝑚𝑎𝑥
Output: Best priority assignment
𝑡 ← 0 ⊳ iteration index
𝛱 ← 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝛱 𝑖𝑛𝑖) ⊳ priority assignment
𝛱𝑏 ← 𝛱 ⊳ best priority assignment
𝑏𝑒𝑠𝑡 ← ∞ ⊳ best cost value found
while true do

𝑣𝑎𝑙𝑢𝑒 ← 𝑐𝑜𝑠𝑡(𝛱) ⊳ current cost value
if 𝑣𝑎𝑙𝑢𝑒 < 𝑏𝑒𝑠𝑡 then

𝑏𝑒𝑠𝑡 ← 𝑣𝑎𝑙𝑢𝑒 ⊳ record best cost value
𝛱𝑏 ← 𝛱 ⊳ save best priority assignment

end if

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒 ← 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑆,𝛱) ⊳ Schedulability test
if 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒 or 𝑡 ≥ 𝑡𝑚𝑎𝑥 then

break ⊳ stop when schedulable or max. iterations
end if

∇(𝛱) ← 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑆,𝛱) ⊳ gradient
𝑈 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒(∇(𝛱)) ⊳ update vector
𝛱 ← 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝛱 + 𝑈 ) ⊳ new priority assignment
𝑡 ← 𝑡 + 1

end while
return 𝛱𝑏 ⊳ return priority assignment with lowest cost

Table 1
Parameters of the illustrative example.

𝐶𝑖𝑗 𝑃𝑖𝑗 𝑝𝑟𝑜𝑐. 𝑇𝑖𝑗 𝐷𝑖𝑗

𝜏11 5 1 1 30
𝜏12 2 2 2
𝜏13 20 3 3 35
𝜏21 5 1 3 40
𝜏22 10 2 2
𝜏23 10 1 1 45

4.5.3. Update vector
The bias-corrected vectors described in Eq. (15) are combined as in

the original formulation of the Adam optimizer [32] to construct the
update vector as follows:

𝑈 𝑡 = −
𝜂

√

𝑣̂𝑡 + 𝜖
𝑚̂𝑡 (16)

where 𝜂 is the learning rate, and 𝜖 is a hyper-parameters to control the
update vector.

Finally, given Eqs. (11) and (16), the next priority assignment 𝛱 𝑡+1

s calculated as follows:

𝑡+1 = 𝑐

(

𝛱 𝑡 −
𝜂

√

𝑣̂𝑡 + 𝜖
𝑚̂𝑡

)

(17)

It is important to note that, as in the original Adam formulation,
in this equation the vector operations are meant to be performed
element-wise.

To summarize, Algorithm 1 shows the pseudo-code of GDPA.

4.6. Illustrative example

We present here a simple example to illustrate how GDPA can be
applied on a particular system. The example is adapted from [15], and
is composed of 2 e2e flows with 3 steps each, for a total of 6 steps,
which traverse 3 processing resources. The basic parameters of the
system are shown in Table 1, including the initial priority assignment.
For this example we use the Holistic analysis [15] as the WCRT analysis
7

to both determine the schedulability of the system and to compute
the gradients. For illustration purposes, in this example we use the
following GDPA hyper-parameter values: 𝜆 = 1.5, 𝜂 = 3, 𝛽1 = 0.9,
𝛽2 = 0.999, 𝜖 = 0.1. Section 6.3.1 provides a justification for these
alues, which were obtained empirically.

GDPA starts by compressing the initial priority assignment. The
esult of this compression is shown in the second column of Table 2,
abeled 𝛱0. The first column, labeled 𝛱 𝑖𝑛𝑖 shows the uncompressed
nitial priority assignment.

The next phase of GDPA requires evaluating the Stop Condition,
hich involves determining whether assignment 𝛱0 is already schedu-

able. By applying the Holistic analysis, it is determined that 𝛱0 is not
chedulable, with an initial cost value 𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘 = 9.33. Therefore, GDPA
ontinues to the next phase, the Gradient Computation.

As shown in Eq. (7), the gradient is a vector of the partial derivatives
f the priorities of each step (i.e. task). In GDPA, each partial derivative
s calculated using Eq. (10), which involves computing the cost function
wice, using a non-infinitesimal value H. Eq. (9) is used to calculate 𝐻 ,
hich is the average separation of the priority values of 𝛱0, which in

his case is 𝐻 = 0.6.
In this example composed of 6 steps, the gradient requires a total

f 12 computations of the cost function, each with a different priority
ssignment. Each of these priority assignments is obtained by summing
or subtracting) value 𝐻 to the priority of one task. The resulting
2 priority assignments are depicted in the Table 2, from column 3
nwards. The columns labeled 𝑃𝑖𝑗 +𝐻 contain the priority assignment
n which the priority of step 𝜏𝑖𝑗 is increased by H. Similarly for the
olumns labeled 𝑃𝑖𝑗 −𝐻 .

Next, the cost function is evaluated for each one of those 12 pri-
rity assignments. The resulting cost values are depicted in the first
columns of Table 3. A cell located at row 𝜏𝑖𝑗 and column 𝑓 (+𝐻)

ontains the value of cost function invslack for a priority assignment in
hich the priority of 𝜏𝑖𝑗 was increased by 𝐻 . Similarly for the column

abeled 𝑓 (−𝐻). The third column of Table 3 (labeled 𝜕𝑓∕𝜕𝑃𝑖𝑗), shows
he final partial derivative values for each step, obtained by applying
q. (10). The whole column represents the elements of the gradient
𝑓 (𝛱0).

In a simple Gradient Descent algorithm, the next priority assignment
1 would be calculated by adding the gradient (last column of Table 3)

caled by a learning rate to the current priority assignment 𝛱0. This is
epresented in Eq. (2). In GDPA, we optimize the gradient by adding
decaying noise and applying the Adam optimizer, as explained in

ection 4.5. The results of this process are shown in Table 4, which
re decomposed as follows: (1) column 𝛱0 is the current priority
ssignment at iteration t=0, (2) column 𝑈0 is the resulting update
ector after applying Gradient Noise and Adam, (3) column 𝛱1∗ is
he non-compressed new priority assignment which is computed as
he summation of 𝛱0 and 𝑈0, and (4) column 𝛱1 is the new priority
ssignment, which results from compressing column 𝛱1∗.

GDPA continues by evaluating the Stop Condition on 𝛱1. The holis-
ic analysis now deems this new priority assignment as schedulable,
ith a cost value 𝑖𝑛𝑣𝑠𝑙𝑎𝑐𝑘 = −0.09. Therefore, GDPA now stops and

eturns 𝛱1 as the best priority assignment it has found.

. Accelerating the gradient computation

In this section, we aim to improve the computation times of the
DPA algorithm. In Section 4 we identified that the Gradient Computa-

ion phase of GDPA is its main computational bottleneck, as it requires
omputing the cost function twice per step in the system, which by
xtension requires invoking the response time analysis. In total, for a
ystem with 𝑁 steps, each iteration of GDPA requires 2𝑁 invocations
f a response time analysis.

Also in Section 4.4.2 we observed that each of the invocations of
he response time analysis to compute a gradient differs only in the
riority assignment it is analyzing. That is, for a system with 𝑁 steps,
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Table 2
Example of the priority assignments involved in one iteration of GDPA.

𝛱 𝑖𝑛𝑖 𝛱0 𝑃11 +𝐻 𝑃11 −𝐻 𝑃12 +𝐻 𝑃12 −𝐻 𝑃13 +𝐻 𝑃13 −𝐻 𝑃21 +𝐻 𝑃21 −𝐻 𝑃22 +𝐻 𝑃22 −𝐻 𝑃23 +𝐻 𝑃23 −𝐻

𝜏11 1 0.33 0.93 −0.27 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
𝜏12 2 0.67 0.67 0.67 1.27 0.07 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
𝜏13 3 1.00 1.00 1.00 1.00 1.00 1.60 0.40 1.00 1.00 1.00 1.00 1.00 1.00
𝜏21 1 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.93 −0.27 0.33 0.33 0.33 0.33
𝜏22 2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 1.27 0.07 0.67 0.67
𝜏23 1 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.93 −0.27
Table 3
Cost values, and coefficients of the resulting gradient.

𝑓 (+𝐻) 𝑓 (−𝐻) 𝜕𝑓∕𝜕𝑃𝑖𝑗

𝜏11 2.82 9.33 −5.43
𝜏12 3.84 9.33 −4.57
𝜏13 9.33 9.33 0.00
𝜏21 9.33 9.33 0.00
𝜏22 9.33 3.84 4.57
𝜏23 9.33 2.82 5.43

Table 4
New priority assignment.

𝛱0 𝑈 0 𝛱1∗ 𝛱1

𝜏11 0.33 1.27 1.61 0.83
𝜏12 0.67 1.27 1.94 1.00
𝜏13 1.00 −1.26 −0.26 −0.13
𝜏21 0.33 1.27 1.60 0.83
𝜏22 0.67 −1.27 −0.61 −0.31
𝜏23 0.33 −1.27 −0.94 −0.48

2𝑁 known priority assignments are evaluated to calculate a gradient.
Here we exploit this observation by proposing a method to effectively
calculate the WCRTs of all the required priority assignments at the same
time.

We propose a strategy that can be summarized in the following two
points:

1. Selection of an efficient response time analysis to calculate the
gradients. To our knowledge, the Holistic analysis [15] is the
fastest analysis available that is compatible with the system
model laid out in Section 2.

2. Vectorization of the Holistic analysis for a faster execution.
Moreover, 3D matrices will be employed to effectively analyze
several priority assignments at the same time.

A vectorization is a process that involves minimizing the use of
loop and conditional operations in a particular piece of code, replacing
them with vector and matrix operations. This generally enables a faster
execution, as vector operations are typically optimized in modern CPUs,
especially when an appropriate library is used. Examples of such li-
braries implement the BLAS specification [33] such as OpenBLAS [34].
Higher level libraries such as Numpy [35] for Python rely on efficient
BLAS libraries.

In this section we simplify the step notation to include just one
index, that is, we denote the i-th step as 𝜏𝑖. Following this notation,
Eq. (18) depicts the main equation of the Holistic Analysis, for a step
𝜏𝑎 under analysis. Here we follow the formulation presented in Palencia
et al. [15].

𝑤𝑛+1
𝑎 (𝑝) = 𝑝𝐶𝑎 +

∑

∀𝑏∈ℎ𝑝(𝑎)

⌈𝐽𝑏 +𝑤𝑛
𝑎(𝑝)

𝑇𝑏

⌉

𝐶𝑏 (18)

here:
8

ℎ𝑝(𝑎) is the set of steps that can preempt step 𝜏𝑎. A step 𝜏𝑏
can preempt 𝜏𝑎 if both are located in the same
processor, and 𝑃𝑏 > 𝑃𝑎.

𝐽𝑏 is the jitter of step 𝜏𝑏, which in the Holistic analysis is
simplified as the worst-case response time of the
previous step in its e2e flow.

𝑝 is the index of the current instance of the step under
analysis, as more than once instance of the same step
must be taken into account when deadlines are higher
than the periods. The first instance is given a value
p=1.

𝑇𝑏 is the period of step 𝜏𝑏, which is equal to the period of
its end-to-end flow

A typical implementation of the Holistic analysis embeds Eq. (18)
inside 3 loops: (1) an inner loop to solve recursive value 𝑤𝑎 of the
equation for a given 𝑝 value, (2) a middle loop that iterates the value
𝑝 and registers the activation number that incurred in the longest
response time, and (3) an outer loop that updates the jitters of every
step according to the currently found WCRT, and stops when two
consecutive outer loops reach the same WCRT. Ideally all these loops
should be replaced by pure vector operations, however due to the
complexity of this endeavour, in this paper we will focus on vectorizing
just Eq. (18), keeping the resulting vectorization inside the same 3
aforementioned loops. In the evaluation section (Section 6), we will
show how this limited vectorization still produces sizeable speed-ups.

To vectorize Eq. (18) we employ a two-pronged approach. First,
we replace every step attribute in the equation (e.g. 𝐶𝑎, etc.), by an
equivalent vector that contains the attribute of every step. Accordingly,
we define the following three vectors:

𝐶 = [𝐶1, 𝐶2,…] WCETs vector
𝐽 = [𝐽1, 𝐽2,…] Jitters vector
𝑇 = [𝑇1, 𝑇2,…] Periods vector

Second, we implement the summation in Eq. (18) with a pure matrix
multiplication. To achieve this we leverage the concept of a priority
matrix. We define each element 𝑝𝑚𝑎𝑏 of a priority matrix 𝑃𝑀 as follows:

𝑝𝑚𝑎𝑏 =

{

1 if step 𝜏𝑏 can preempt step 𝜏𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(19)

The idea of the priority matrix is also used in the linearization of
schedulability tests, to codify them as linear constraints for MILP [8].
Essentially, a priority matrix contains all the necessary priority ordering
information of one priority assignment 𝛱 . We propose extending this
priority matrix to include the priority information of several priority
assignments at the same time.

We define 𝛹 as a set of 𝑀 priority assignments as follows:

𝛹 =
[

𝛱1,𝛱2,… ,𝛱𝑀 ]

(20)

where 𝛱𝑚 is the m-th priority assignment.
It is important to note that the set 𝛹 does not assume or impose any

type of relation among the priority assignments it contains. Specifically,
the index 𝑚 is unrelated to the iteration index used in Section 4 to label

the priority assignment in a given GDPA iteration.
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In this paper, we propose constructing a 3D priority matrix, by
stacking together the priority matrices of several priority assignments.
We denote this extended priority matrix as 𝐻𝑃 . For a given set 𝛹 , we
define 𝐻𝑃 as a binary 3D matrix, in which each of its elements ℎ𝑝𝑚𝑎𝑏
is defined as follows:

ℎ𝑝𝑚𝑎𝑏 =

⎧

⎪

⎨

⎪

⎩

1 if step 𝜏𝑏 can preempt step 𝜏𝑎 in the
priority assignment 𝛱𝑚

0 otherwise
(21)

Intuitively, we can visualize each slice of 3D matrix 𝐻𝑃 as contain-
ing one 2D priority matrix 𝑃𝑀 .

We can now vectorize Eq. (18) employing the priority matrix 𝐻𝑃
as follows:

𝑊 𝑛+1(𝑝) = 𝑝𝐶 +𝐻𝑃 ×
⌈

𝐽𝑇 +𝑊 𝑛(𝑝)
𝑇 𝑇

⌉

𝐶 (22)

here 𝑝 is the step instance index, 𝐽𝑇 and 𝑇 𝑇 are the transposed Jitter
nd Period vectors respectively, and 𝑊 is a matrix in which each of its
lements 𝑤𝑚𝑎 contains the value 𝑤 for step 𝜏𝑎 (i.e. 𝑤𝑎) associated with
riority assignment 𝛱𝑚.

The recursive Eq. (22) is solved iteratively, with an initial 𝑊 matrix
nitialized to zero, stopping when two consecutive iterations yield the
ame results, that is, when 𝑊 𝑛+1(𝑝) = 𝑊 𝑛(𝑝). As in the original
ormulation, the 𝑝 value is initialized to 1.

The original Holistic analysis provides the equations to derive the
CRT of a step from its 𝑤 value. These equations can be employed di-

ectly here too, obtaining the WCRT of every step, and for every priority
ssignment, at the same time. It is worth noting that Eq. (22) assumes
hat any matrix shape incompatibilities are automatically solved, for
xample by employing broadcasting [35]. If such capabilities are not
vailable, then the vectors should be manually padded to make their
imensions compatible.

Eq. (22) can be exploited in GDPA to compute a gradient of the
ost function with just 1 invocation of the Holistic analysis. This
an be achieved by constructing a 𝛹 set containing all the priority
ssignments needed to compute a gradient (Eqs. (7) and (8)). As a result
f this analysis, the WCRT of every flow in every priority assignment
s obtained, which can be used to calculate all the partial derivatives
hat compose the gradient (Eq. (8)).

To better contextualize the effect of this acceleration method, we
an study the computational complexity of GDPA before and after the
ectorization process, with respect to the number of tasks 𝑛. The com-
lexity of the original Holistic analysis (i.e. before vectorization) can
e bounded to 𝑂(𝑛2), as it nests two loops that iterate the whole task-
et: one to determine which tasks have higher priority (the summation
hown in Eq. (18)), and another outer loop that iterates each task.
onsidering that GDPA must execute the analysis 2𝑛 times in each

teration to compute the gradient, this yields a total complexity of
DPA of 𝑂(𝑛3).

Although the vectorized Holistic Eq. (22) has 𝑂(1) complexity, there
re previous setup stages that constructs set 𝛹 (Eq. (20)) and the
ecessary vectors and matrices, which can be computed with linear
omplexity 𝑂(𝑛). Therefore, the whole complexity of GDPA with the
ectorized analysis can be bounded to 𝑂(𝑛).

It is common for a vectorization process to trade off computational
omplexity with a space complexity penalty. In our case, GDPA without
he vectorization optimization offers a 𝑂(𝑛) space complexity, while the
ectorized optimization of GDPA has a 𝑂(𝑛3) space complexity, due to
D matrix 𝐻𝑃 (Eq. (21)), which has a size (𝑛 × 𝑛 × 2𝑛).

. Evaluation

In this section we present the evaluation results of the GDPA algo-
ithm. This section is organized as follows: in Section 6.1 we provide
mplementation details of GDPA and other algorithms that we have
mplemented for this comparison; in Section 6.2 we study the execution
ime speed-ups obtained by vectorizing the Holistic analysis; and in
ection 6.3 we evaluate the GDPA algorithm by analyzing its ability
o find schedulable solutions and its computation times.
9

.1. Implementation details

We implemented GDPA in Python, with the code publicly avail-
ble in a Github repository [36]. Although this implementation was
reated to evaluate GDPA, it is meant to be extensible. As such, it
rovides classes to model real-time systems and interfaces to implement
lgorithms other than GDPA.

Two versions of the Holistic analysis were implemented: a standard
on-vectorized version directly following the original formulation [15],
nd another vectorized version adopting the methodology described in
ection 5. The latter leverages the Numpy [35] numerical library to
fficiently perform the vector operations.

Apart from GDPA, the PD and HOPA priority assignment algo-
ithms were also implemented. Moreover, two optimal fixed priority
ssignments were implemented: a brute-force algorithm, and another
ne employing MILP. We consider an algorithm as optimal if it is
lways capable of finding a schedulable priority assignment if such an
ssignment exists.

The brute-force algorithm simply evaluates every possible priority
rdering. To accelerate this process, it leverages the vectorized Holistic
nalysis by analyzing at the same time batches of 10000 priority assign-
ents. Nevertheless, this brute-force algorithm is still intractable for all

ut small systems. For instance, a system composed of 5 processors,
ith 10 steps mapped to each processor, offers 10!5 ≈ 6.29 × 1032

ossible priority assignments, which is not feasible even when taking
dvantage of the vectorized analysis.

For the MILP algorithm we faced the challenge of the unavailability
f feasible linear equations to describe a schedulability test for our
ystem model. Because of this, our implementation of a priority assign-
ent algorithm with MILP only defines restrictions that declare when
fixed priority assignment is valid. For this, it employs a square binary
riority matrix, defined with Eq. (19), with the same linear restrictions
s in [8]. Each valid priority assignment is evaluated externally using

a callback, which invokes a schedulability test to determine whether
the valid priority assignment is also schedulable. The algorithm is
terminated as soon as a schedulable priority assignment is found. This
MILP algorithm is implemented with Gurobi [28]. This implementation
of MILP is still optimal (i.e. it will find a schedulable solution if
one exists), but may incur in a computation time penalty due to the
unavailability of feasible linear constraints that completely support our
system model. The definition of such linear constraints falls outside the
scope of this paper.

To widen the availability of response time analyses, a bridge be-
tween Python and the MAST tool [18] was implemented too. This
bridge automatically performs the transformation between Python
model classes and MAST input and output files, and the execution of
the MAST tool executable on those files. This bridge allows any algo-
rithm implemented in MAST to be invoked transparently directly from
Python code. This bridge enables an Offset-Based analysis technique
implemented in MAST to be used in the evaluation of the stop condition
in GDPA.

We also implemented an automatic generator of synthetic systems.
It generates random systems given a number of e2e flows, steps per
flow, processors, processor utilization, and the selection ranges for the
periods and deadlines. To compute the WCETs, it employs the widely
used UUNIFAST algorithm [37], and the periods are selected using a
log-uniform distribution. The specific characteristics of the synthetic
systems are described within each evaluation (Sections 6.2 and 6.3).

The utilization of a processing resource 𝑃𝑅𝑘, which we denote as
𝐿𝑘, is defined with Eq. (23). The system utilization is defined as the
average utilization of its processing resources.

𝐿𝑘 =
∑ 𝐶𝑖𝑗

𝑇
(23)
∀𝜏𝑖𝑗∈𝑃𝑅𝑘 𝑖
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Fig. 3. Total execution times of analyzing a set of priority assignments, normalized to
the execution times of holistic, for systems with (a) 20 steps, and (b) 64 steps.

.2. Vectorization speed-ups

The objective here is to measure the execution time speed-ups
ained by vectorizing the Holistic analysis as described in Section 5. For
his, we measure the total execution times of analyzing 1, 10, 100, 1000
nd 10000 priority assignments, comparing three different approaches:

• holistic: each priority assignment is analyzed sequentially and
independently with the Holistic analysis implemented in Python
with no vectorization (i.e. Numpy is not used).

• holistic-mast : each priority assignment is analyzed sequentially
and independently with the Holistic analysis provided by the
MAST tool, leveraging the MAST-Python bridge. The analysis in
MAST is written in Ada and compiled into native executables.

• holistic-vector : all the priority assignments are analyzed at the
same time leveraging the capabilities of the vectorized Holistic
analysis described in Section 5, employing the Numpy library.

We generate synthetic systems with two different total numbers of
teps: 20 steps and 64 steps. Every system has a utilization of 70%
n every processor. The priority assignments are randomized, but the
ame ones are analyzed in the 3 approaches. The measured execution
imes are shown in Fig. 3 for both system sizes. The execution times
re normalized to those of holistic.

For systems with 20 steps (Fig. 3(a)), we can observe that when only
priority assignment is analyzed, the vectorized analysis offers a slight

peed-up over the non-vectorized version. However, as the number
f priority assignments increases, the benefits of the vectorization
ecome clear, with total execution times that are 10 times lower than
olistic. On the other hand, analyzing with MAST (holistic-mast) incurs
n execution times 10 times higher than the baseline (holistic). These
verheads are due to the necessity to write and read a file each time a
riority assignment is analyzed with MAST.

For larger systems with 64 steps (Fig. 3(b)), the vectorized analysis
10

s still clearly the faster approach, with execution times that are always
ore than one order of magnitude faster than holistic. Similarly, holistic-
ast also shows execution times around 0.2 times those of holistic.
ere the systems are more complex and require more computations

o be analyzed. Therefore the native compiled binary of MAST clearly
ecomes faster than the non-vectorized Python implementation, even
onsidering the necessary file read and write overheads.

.3. GDPA evaluation

The objective is to compare GDPA against other priority assignment
lgorithms. We will measure two aspects in this evaluation: the ability
f each algorithm to find schedulable solutions, and their respective
omputation times.

In total the evaluation compares seven priority assignment algo-
ithms, including GDPA with three different initializations:

• pd: the non-iterative PD priority assignment [23].
• hopa: the HOPA iterative algorithm [7].
• brute-force: the brute force algorithm described in Section 6.1.
• milp: our ad-hoc implementation of a MILP algorithm, described

in Section 6.1.
• gdpa-random: GDPA with an initial random priority assignment.
• gdpa-pd: GDPA with an initial PD priority assignment.
• gdpa-hopa: GDPA with an initial HOPA priority assignment.

The evaluation will be performed on a pool of synthetic systems,
hich were created taking into account the characteristics of publicly
vailable real use cases. For instance, the authors of [38] provide a
escription of a cruise-control system composed of 11 tasks divided
nto 2 e2e flows that traverse 2 processing resources. Furthermore, the
eneric military avionics system described in [39] is composed of 23
asks running on 2 processing resources. Thus, we generated synthetic
ystems with 3 different sizes: 16 steps (4 flows with 4 steps each, 4
rocessors); 30 steps (6 flows with 5 steps each, 5 processors); and
2 steps (12 flows with 6 steps each, 7 processors). Utilizations are
wept up from 50% to 90% with 20 intermediate utilizations. The
CETs are generated with UUNIFAST. The step to processor mapping

eeps the load balanced, resulting in all processors having the same
tilization. Periods are randomly selected in the range [100, 100000]
sing a log-uniform distribution. The end-to-end deadline of each flow
𝑖 is randomly selected in the range [0.5 ⋅ 𝑇𝑖 ⋅ 𝑁𝑖, 𝑇𝑖 ⋅ 𝑁𝑖]. To obtain
elevant results, 50 systems were generated for each configuration.

To contextualize the problem, for the systems with 16 steps and 4
rocessors, there are 4!4 = 331776 possible priority assignments. For
he systems with 30 steps and 5 processors there are 6!5 ≈ 1.93 × 1014

ossible priority assignments. Finally, for the largest systems, which
ontain 72 steps in 7 processors, the search space is composed of
72∕7)!7 ≈ 9.39 × 1047 candidate priority assignments. Consequently,
he optimal algorithms (brute-force and milp) were only applied to the
ystems with 16 steps. For the other system sizes, which offer larger
earch spaces, these algorithms become intractable.

Unless otherwise specified, we employ the Holistic analysis to de-
ermine the schedulability of a priority assignment. In the case of
DPA, we always employ the vectorized Holistic analysis to compute

he gradients. The initial priority assignment in HOPA is performed
ith PD. The maximum number of iterations was set to 100 for GDPA
nd 120 for HOPA. A common configuration of HOPA was used: 𝑘𝑎 =
1, 1.8, 3, 1.5] and 𝑘𝑟 = [1, 1.8, 3, 1.5].

This evaluation is organized into 3 sections. Section 6.3.1 performs
preliminary evaluation in which appropriate values for the hyper-

arameters are determined. Also, the individual contributions to the
erformance of GDPA of Adam and Gradient Noise are quantified.
ection 6.3.2 evaluates the ability of each priority assignment algorithm
f finding schedulable solutions. Finally, Section 6.3.3 evaluates the
omputation times incurred by each of the algorithms under study.
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Fig. 4. Number of schedulable solutions found, for systems with (a) 16 steps, (b) 30 steps, and (c) 72 steps.
.

Fig. 5. Number of schedulable solutions found, applying an Offset-Based analysis to
evaluate the Stop Condition.

Table 5
Number of schedulable solutions found for different hyper-parameters, with gdpa-hopa
𝛽1 𝛽2 𝜂 𝜆 𝜖 𝛾 Schedulable solutions

0.9 0.999 3 1.5 0.1 0.9 867
0.7 0.999 3 1.5 0.1 3 867
0.9 0.7 3 1.5 0.1 0.9 861
0.9 0.999 3 1.5 0.1 1.5 860
0.9 0.999 3 2 0.01 0.9 852
0.9 0.999 0.1 2 0.1 3 844
0.7 0.999 0.1 2 0.01 3 820

6.3.1. Preliminary evaluation
As shown in Section 4, GDPA offers 6 hyper-parameters that can be

used to tweak its behavior: 𝛽1, 𝛽2, 𝜂, 𝜆, 𝜖, and 𝛾. Before carrying out
he full evaluation of GDPA, we executed a preliminary evaluation to
etermine appropriate values for these hyper-parameters.

This preliminary evaluation consisted on executing gdpa-hopa (i.e.
DPA with a HOPA initial assignment), with different values for the
yper-parameters, on the small synthetic systems (16 steps). In total,
000 systems were studied, with utilizations ranging from 50% to 90%.
or each hyper-parameters configuration, the total number of systems
or which a schedulable solution was found was recorded. Table 5
ollects a representative selection of the results obtained. From these
esults, it can be concluded that the hyper-parameters have a clear
mpact on the performance of GDPA. Furthermore, we determined
hat the following values provide good results, and were chosen for
ll subsequent evaluations: 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜂 = 3, 𝜆 = 1.5,
= 0.1, 𝛾 = 0.9. It is worth indicating that this preliminary evaluation is

imited in scope, and a more comprehensive study is needed to precisely
etermine the effect of each hyper-parameter, including more types of
ystems. This is left for future work.

Additionally, we performed a further evaluation to quantify the
ndividual contributions that the Adam optimizer and Gradient Noise
ave on the performance of GDPA. For this, we tested GDPA with 4 dif-
erent configurations: (1) standard GDPA with Adam + Gradient Noise,
11
Table 6
GDPA optimizers comparison.
GDPA configuration Schedulable solutions

gdpa-pd (adam + noise) 864
gdpa-pd (adam) 860
gdpa-pd (noise) 854
gdpa-pd (none) 839
hopa 819

(2) GDPA with just Adam, (3) GDPA with just Gradient Noise, and (4)
GDPA with neither Adam nor Gradient Noise. Every configuration starts
with a PD assignment, and the same pool of synthetic systems as the
previous evaluation was used. (i.e. 1000 systems with 16 steps each).
The number of systems for which a schedulable solution was found for
each configuration is shown in Table 6. For added context, the results
for HOPA are also included. From these results, it can be confirmed
that each optimizer (Adam and Gradient Noise) positively contributes
to the gradient descent algorithm in its search for a schedulable priority
assignment, being the combination of both (i.e. Adam + Noise) the
scenario that produces the best recorded performance.

6.3.2. Schedulable solutions
Here we measure how many systems each algorithm was able to

schedule successfully, for the different system complexities under study.
The results are shown in Fig. 4 for each system size, and given as a
function of the average processor utilization. It is worth noting that
the maximum number of systems each algorithm can schedule is 50, as
this is the number of systems that were generated for each utilization
level.

For systems with 16 steps (Fig. 4(a)), we observe that both brute-
force and MILP dominate, and also were able to schedule the same
number of systems. This is expected, as these 2 algorithms are optimal,
in the sense that if a schedulable solution exists, they will find it.
We also observe that all the GDPA variants closely approximate the
optimal algorithms, clearly outperforming HOPA. It is worth bearing
in mind that both gdpa-pd and HOPA start with the same PD priority
assignment. In the case of gdpa-random, it shows slightly worse results
than the rest of GDPA variants, but still clearly above HOPA. This
indicates that GDPA has the capability of correctly exploring the search
space, even when starting from very poor priority assignments.

For more complex systems with 30 steps (Fig. 4(b)), the evaluation
shows similar results, although here gdpa-random has a performance
closer to gdpa-pd. The GDPA variants clearly outperform HOPA, with a
slight advantage of gdpa-hopa for higher utilizations. Here brute-force
and MILP algorithms were not applied due to their high computation
times. Therefore it is not possible to measure whether there is any room
to improve above gdpa-hopa. However, considering the differences
observed in systems with 16 steps, and in general the maximum schedu-
lable utilizations that are reached with fixed priorities scheduling, we
expect that here an optimal algorithm would not be able to schedule

many more systems than GDPA.
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The same conclusions can be reached for systems with 72 steps
(Fig. 4(c)). To bound the computation times of the evaluation, we only
applied gdpa-hopa, as we have confirmed previously it is the best of the
GDPA variants. Here, the difference between gdpa-hopa and HOPA is
very similar to that observed for the previous system. This indicates that
the capability of finding solutions of GDPA is not relatively hindered by
increasing the size of the search space.

We now put to test a different configuration of GDPA, in which
the stop condition is evaluated using a less pessimistic Offset-Based
analysis [16], while keeping the same vectorized Holistic analysis to
compute the gradients. The results for systems with 30 steps are shown
in Fig. 5. Both PD and HOPA are also using the same Offset-Based
analysis. This result depicts a very similar situation to that of Fig. 4(b),
with the main difference being that the results are slightly better,
equally for all algorithms. This is due to the usage of a less pessimistic
analysis. This result validates the idea of employing a fast Holistic-
type analysis to direct the optimization process (i.e. to compute the
gradients), while using a different less pessimistic but slower analysis
to validate the results. Further, this observation also suggests that there
is a correlation between the WCRTs of the Holistic analysis and those
from the less pessimistic Offset-Based analysis.

6.3.3. Computation times
We have shown that GDPA is able to schedule more systems than

HOPA, approximating an optimal algorithm (at least in the situations
in which the optimal algorithms are tractable). Here we evaluate the
computation times of GDPA in comparison with the other techniques.

Fig. 6 shows the average computation times each algorithm required
to find a schedulable solution, for systems with 16, 30 and 72 steps. The
computation times of GDPA and HOPA include the times required to
calculate the initial priority assignments. For instance, the computation
times of gdpa-hopa include the computation times required by HOPA to
alculate the initial priority assignment.

As a general observation we can confirm that all the GDPA variants
equired longer computation times than HOPA, specially for systems
12

t

with utilizations above 70%. This matches the results previously re-
ported in Fig. 4, in which the scheduling improvements of GDPA
over HOPA manifested for systems with utilizations higher than 70%.
This indicates that the extra computation time required by GDPA is
effectively employed in finding more schedulable solutions.

Among the GDPA variants, in Fig. 6(a) we can observe that gdpa-
andom is clearly the slowest. This is expected, as it usually starts with
ery poor priority assignments, that should require more iterations to
mprove upon them. Moreover, the reported difference in computation
imes between gdpa-pd and gdpa-hopa is not significant.

For systems with 90% utilization, which are the most complex to
nalyze, GDPA required on average around 1 s, 10 s and 1500 s to
ind a schedulable solution in the systems with 16, 30 and 72 steps
espectively. 90% is a very high utilization that is not usually reached
n industrial settings. For the more realistic range up to a utilization of
0%, GDPA required on average 100 s to find a solution in the systems
ith 72 steps.

Focusing on the available comparison with the optimal algorithms
Fig. 6(a)), we can confirm that all the GDPA variants were significantly
aster than both MILP and the brute-force algorithms. It is important to
ote that we have previously showed that for these systems with 16
teps, GDPA demonstrated a capability to find schedulable solutions
ery close to that of those optimal algorithms (see Fig. 4(a)). Summa-
izing, although GDPA exhibits scheduling capabilities that are close to
ptimal, its computational complexity is closer to that of HOPA.

It is important to note that the very high computation times of MILP
n this evaluation should not be used to conclude that MILP is not

valid method to assign fixed priorities for systems that follow our
ystem model. Rather, these results signal the need for the definition of
inear equations to model a schedulability test with sufficient precision.

e believe that, if such equations existed, the performance of MILP
ere may be greatly improved.

In Fig. 7, we show the average number of iterations each algorithm
equired to find a schedulable solution. This metric adds more context

o the computation times previously reported. The optimal algorithms
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are not included here because they are both in essence brute-force algo-
rithms in which the number of iterations required can be considered as
arbitrary. Similarly, PD is not included because it is not an iterative
algorithm. In general we observe in the figure that GDPA does not
need a high number of iterations to find a schedulable solutions. If we
focus on the GDPA variants that start with good priority assignments
(gdpa-pd and gdpa-hopa), and on the more complex systems with 90%
utilization, we can observe that on average they required less than 5,
30 and 55 iterations for systems with 16, 30 and 72 steps respectively.
These results highlight that the current maximum number of iterations
set for GDPA (i.e. 100), should not noticeably constrain its ability to
find schedulable solutions.

In the Figs. 7(a) and 7(b) (16 and 30 steps respectively), we con-
firm that gdpa-random requires more iterations than the other GDPA
variants. This observation reaffirms the conclusion that the longer
computation times of gdpa-random are due to its need to overcome a
worse initial priority assignment.

7. Conclusions and future work

In this paper, we presented a new algorithm to assign fixed priori-
ties in real-time systems, called Gradient Descent Priority Assignment
(GDPA). As far as we know, this is the first time a Gradient Descent
algorithm has been employed in this particular type of problem.

We evaluated GDPA on a variety of synthetic systems and showed
that it is able to find more schedulable solutions than previous custom
heuristics such as HOPA. We also showed that GDPA closely approxi-
mates the success rate of optimal algorithms, at least in those situations
in which those optimal algorithms were tractable. Crucially, the eval-
uation showed that GDPA achieves this performance while requiring
reasonable amounts of computation time. In the more extreme systems
tested, with 72 steps and very high processor utilizations of 90%, GDPA
was able to find schedulable solutions on average in less than 25 min.
For more reasonable utilizations around 80%, which are still considered
as high, the computation times were on average less than 100 s for the
more complex systems tested with 72 steps.

We are planning to extend this evaluation, to include a deeper
study of the effects of the hyper-parameters on a wider set of systems,
including more specific system models with multipath e2e flows. Also,
the ability of GDPA of optimizing already schedulable solutions will be
explored.

As a more general conclusion, this work also hints at the potential
of Gradient Descent as an algorithm to optimize real-time systems in
general due to its flexibility. In this regard, we plan to generalize
the Gradient Descent algorithm, to optimize other parameters such as
scheduling deadlines for EDF, or task to processor mapping.
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