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Resumen

El teorema de Peierls establece que cualquier cadena unidimensional con los átomos equidistantes entre sí es
inestable respecto de una deformación de la red que elimine la degeneración en el nivel de Fermi. Este tipo de
distorsión viene caracterizada por un fonón en el borde de la primera zona de Brillouin, en última instancia,
la dimerización de la cadena: los átomos se disponen en pares, dando lugar a enlaces largos y cortos. Esta
transición surge de la competencia entre las dos componentes energéticas principales de los sistemas sólidos:
la electrónica y la elástica. La energía electrónica se ve reducida por la dimerización, contrariamente a la
elástica.

En este trabajo se ha desarrollado un modelo teórico analítico en el que se profundiza en las característi-
cas electrónicas y de red de una cadena monoatómica unidimensional, estudiando ambas componentes de
forma independiente para posteriormente acoplar la interacción electrón-red y analizar la competencia entre
las mismas, comprobando así el teorema de Peierls y analizando las características de la dimerización: la
ganancia energética, el desplazamiento de los átomos de la red, la apertura del gap y la densidad de estados.

Posteriormente, se llevan a cabo simulaciones computacionales desde primeros principios con SIESTA, en
las que se analiza esta transición con un modelo profundo y robusto basado en la teoría del funcional de
la densidad (DFT, por sus siglas en inglés). Adicionalmente, se va a someter a la cadena unidimensional
a una serie de potenciales externos que modifican la intensidad de las interacciones dentro de la red y, por
tanto, las características de la dimerización, para estudiarlas en diferentes regímenes. Finalmente, se integran
ambos modelos teóricos para su consiguiente comparación, analizando sus diferencias y la validez del modelo
analítico.

Palabras clave: Peierls, dimerización, transición, unidimensional, SIESTA, primeros principios, enlace fuerte.



Abstract

The Peierls theorem states that any one-dimensional chain with equidistant atoms is unstable with respect
to a lattice deformation that lifts up the degeneracy at the Fermi level. This distortion is characterized by
a phonon at the edge of the 1st Brillouin zone, ultimately leading to the dimerization of the chain: atoms
arrange into pairs (dimers), thereby forming long and short bonds. This transition arises from the competition
between the two primary energy components of solid systems: electronic and elastic. Electronic energy is
reduced by the dimerization, contrary to the elastic energy.

In this study, a theoretical analytical model has been developed to delve into the electronic and lattice char-
acteristics of a one-dimensional monoatomic chain, investigating both components independently and sub-
sequently coupling the electron-lattice interaction. This allows the analysis of their interplay, leading to the
verification of the Peierls theorem and the study of the characteristics of the dimerization: the energy gain,
the atomic displacements, the gap opening, and the density of states.

Besides, first-principles computational simulations are carried out with SIESTA, which allows the study of
this transition within a comprehensive framework: the density functional theory (DFT). Additionally, the
one-dimensional chain is subjected to various external potentials altering the lattice interactions and thereby
dimerization characteristics across different regimes. Finally, both theoretical models are combined for a
comparative analysis, evaluating the differences and the validity of the analytical model.

Key words: Peierls, dimerization, transition, one-dimensional, SIESTA, first-principles, tight-binding.
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José B. Herrera Historical background and motivation

1 Historical background and motivation

Rudolf Ernst Peierls, from now on, Peierls, is recognized as a significant figure in 20th-century theoretical
physics, particularly in the realm of Solid State Physics, now termed Condensed Matter Physics. Born on
June 5, 1907, in a suburb of Berlin, Peierls initially aspired to pursue engineering. However, due to the fact
that he “was rather clumsy” with his hands [1], he decided to pursue Physics studies instead. His career
has been marked by several great physicists of the time, such as Sommerfeld, Heisenberg, Bloch, Pauli, and
many more. His academic trajectory has been profoundly connected to Solid State Physics. He began his
journey in this field when he attended some lectures imparted by Heisenberg in Leipzig during his stay in
1928, where he met Felix Bloch, a scientist from whom he “benefited greatly” [1]. In Leipzig, Peierls delved
into an investigation of the anomalous Hall effect under Heisenberg’s guidance, which subsequently led to
him joining Wolfgang Pauli in spring of 1929 at the ETH in Zurich, where he embarked on investigations into
the vibrations of atom within crystal lattices, that he later synthesized into his thesis. Later on, he became
Pauli’s student, and worked with other great figures like Lev Landau. In Peierls’ words, the 1920s were “an
exciting time in Physics” [1], given the rise of the new Physics.

Peierls belonged to the first generation of physicists to make use of the Quantum Theory, specially in the
1930s, after he decided to emigrate to England in order to escape from the Nazi Germany [1]. Anyway,
Peierls did not focus his studies in Solid State Physics during that time, even though he kept working as
a theoretical physicist, slightly focused on quantum electrodynamics and quantum field theory. He would
consider himself as a generalist, a person that “learns less and less about more and more until he knows
nothing about everything” [1]. It was not until 1953, when he gave a course of lectures on Solid State
Physics at the summer school at Les Houches, that he realized that most of the problems within this field
that he had regarded as open questions fifteen years earlier were still unsolved, and he decided to go back to
them, in particular to those related to the theory of conductivity.

The classes Peierls imparted in 1953 “required, for once, written lecture notes”, which he decided to turn
into a book [1], called Quantum Theory of Solids. In the words of David Mermin, in his autobiography [2]:
“It was beautifully written, much more thoughtful and coherent than any of the few existing texts”. The next
quotation, extracted directly from Peierls’ autobiography “Bird of Passage: Recollections of a Physicist” [1],
regarding his book about Solid State Physics, is crucial for this work:

“In the course of tidying up the material for my book, I looked carefully at the way the atoms in a
metal crystal hang together, partly as a result of the almost free electrons moving between them.
I noticed that in one dimension, i.e., in a linear chain, the periodic structure, with all distances
between adjacent atoms equal, is not stable and will always suffer some distortion. This seemed
at first a very bizarre result, and I wondered whether there was a flaw in my reasoning. I put my
argument to Maurice Pryce, then in Oxford and one of the most critical theoreticians I know, but
he could not see anything wrong. So I put the argument in my book. It seemed an academic point,
as there are no one-dimensional metals in nature. Some twenty years later, when experiments on
nearly one-dimensional organic crystals, in which molecules are arranged in long chains, showed
a novel type of transition, my old result was remembered. The “Peierls transition” or “Peierls
instability” has now become a standard term.”

Where it can be seen that the so-called Peierls’ transition was first mentioned in his book, just as a result.
Nowadays, it is perceived as a theorem, which states that any linear chain with equidistant atoms is unstable.
To be precise, it is unstable with respect to a lattice distortion that lifts up the degeneracy at the Fermi level
[3]. This instability arises from the competition between the two main energy components of the system: the
electronic and the elastic contributions. From an electronic perspective, the system is energetically favored
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when it dimerizes, alternating short (strong) and long (weak) bonds. Conversely, from an elastic standpoint,
the dimerized configuration is inherently unstable, and the system tends to revert to the equidistant state.
Peierls instability manifests when the electronic energy component dominates, leading to the dimerization of
the system despite the opposing elastic forces. Upon dimerization, the electronic band structure of the system
is altered. A gap emerges at the edge of the first Brillouin zone, separating the valence and conduction bands,
and therefore lifting the degeneracy at the Fermi level. This results in a reduction of the system’s electronic
energy, giving place to a metal-insulator transition.

Initially, in this work we will conduct an analytical study of a monoatomic linear chain composed of Hydrogen
atoms [Sec. 2.2]. The model will assume an orthogonal basis of s-symmetry orbitals, one per site, and will
restrict interactions to nearest neighbors. The electronic properties will be treated using the tight-binding
model [Sec. 2.1], while the elastic properties will be analyzed using phonon theory [Sec. 2.3]. Further-
more, the electron-lattice coupling will be studied to understand the interplay between electronic and elastic
components of the system [Sec. 2.4]. Subsequently, the complexity of the model will be increased. The
orthogonality of the orbitals will be removed, and interactions will be extended beyond nearest neighbors
for both electronic and lattice components. To achieve this, first-principles numerical simulations will be
performed using SIESTA [4] [Sec. 3]. Finally, the two models will be quantitatively compared, extracting
parameters for the simplified analytical model from the first-principles atomistic simulations [Sec. 3.4].

Peierls instability serves as an example that band theory is an insufficient model to explain some of the in-
teresting phenomena occurring within Solid State Physics. If only band theory is considered to analyze a
one-dimensional monoatomic chain, it predicts that the system behaves like a metal, being its most stable
configuration the one with equidistant atoms, which, as will be demonstrated throughout this work, is not
true. There are other phenomena that produce metal-insulator transitions that take place when more sophis-
ticated treatments are done, going beyond simple band theory, such as the Jahn-Teller distortion [5], [6],
[7], the Crystal-Field splitting [8], and the magnetic ordering [9], [10].

Besides, this instability is not merely a theoretical phenomenon. There are compounds, such as polymer
chains forming rings, that exhibit the Peierls distortion. In fact, this case is of great interest due to the pos-
sibility of modulating the transition by varying the magnetic flux through the ring [11]. Another example
of a compound that exhibits the Peierls transition is the Au-induced atomic wire array on a stepped Si(553)
surface, which actually shows two simultaneous distortions with different periodicities and transition temper-
atures. These transitions have been observed through angle-resolved photoemission [12]. Besides, since this
phenomena imply the rearrangement of the ions in solid systems, it produces fluctuations in the electronic
density, known as charge density waves (CDW). Materials such as NbSe2 and K0.3MoO3 exhibit these CDW
[13]. This transition finds applications in fields such as nanotechnology [14], [15], superconductivity [16],
[17], and quantum computing [18].

From an academic perspective, this work requires knowledge and application of various areas within Physics
and Mathematics, integrated throughout its development. Fundamental areas include Condensed Matter
Physics, core to this study, Quantum Mechanics (theory of atomic orbitals, resolution of the time-independent
Schrödinger equation, eigenvalues of the Hamiltonian operator...), Computational Physics, Classical Mechan-
ics (theory of elasticity and oscillatory motion), Differential and Integral Calculus, among others.
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2 Theoretical analytical model

2.1 Brief revision of the tight-binding approach

2.1.1 A basis set of atomic orbitals

Let’s start our discussion with a set of local orbital basis ϕα(r⃗− R⃗I), each associated with an atom in the unit
cell at position R⃗I .

In principle, α might run over all the atomic orbitals of a given atom (1s, 2s, 2p, 3d, ...). In practice, we
shall restrict the atomic orbitals that will be explicitly included in the simulation to a given subset, typically
only the atomic orbitals that participate in the description of the states at the energy window of interest are
retained. In order to simplify the notation, we will let µ denote both α and the site I, so that µ runs from 1
to Nbasis (the total number of atomic orbitals retained in the basis set in a unit cell). With this new notation,
the atomic orbital can also be written as ϕµ(r⃗− R⃗µ). In a crystal, the atoms in a unit cell are at positions τ⃗κ,j ,
where τ⃗κ,j is the position of the j = 1, . . . , nκ atoms of type κ. The composite index {κ, j, α → µ} allows the

entire basis to be specified by ϕµ
[
r⃗ −

(
τ⃗µ + T⃗

)]
, where T⃗ is a translation vector of the Bravais lattice.

We know that the eigenstates of a Hamiltonian in a periodic potential must comply with the Bloch theorem,

ψnk⃗(r⃗) = eik⃗·r⃗unk⃗(r⃗), (1)

where n is a band index, k⃗ is a wavevector in the first Brillouin zone, and unk⃗(r⃗) is a function with the
periodicity of the Bravais lattice.

unk⃗(r⃗) = unk⃗(r⃗ + T⃗ ). (2)

As a corollary of the Bloch theorem, we can also state that

ψnk⃗(r⃗ + T⃗ ) = eik⃗·T⃗ψnk⃗(r⃗). (3)

A good starting point to represent the eigenstate ψnk⃗(r⃗) in a basis of localized atomic orbitals is to define a
basis that complies also with the Bloch theorem, i.e. by defining a basis state with wavevector k⃗

ϕµk⃗(r⃗) = Aµk⃗

∑
T⃗

eik⃗·T⃗ϕµ(r⃗ − τ⃗µ − T⃗ ). (4)

where τ⃗µ is the position of the atom within the unit cell to which orbital ϕµ belongs, and Aµk⃗ is a normaliza-
tion factor.

2.1.2 The Hamiltonian matrix elements

The next step is the computation of the Hamiltonian matrix elements in these basis of numerical atomic
orbitals. From the expressions given in Eq. (4)

⟨ϕµ(k⃗)|Ĥ|ϕν(k⃗
′
)⟩ = A∗

µk⃗

∑
T⃗

e−ik⃗·T⃗
∫
all space

dr⃗ϕ∗µ(r⃗ − τ⃗µ − T⃗ )Ĥ

Aνk⃗′

∑
T⃗ ′

eik⃗
′
·T⃗

′

ϕν(r⃗ − τ⃗ν − T⃗
′
)


= A∗

µk⃗
Aνk⃗′

∑
T⃗

∑
T⃗ ′

e
i
(
k⃗
′
·T⃗

′
−k⃗·T⃗

) ∫
all space

dr⃗ϕ∗µ(r⃗ − τ⃗µ − T⃗ )Ĥϕν(r⃗ − τ⃗ν − T⃗
′
)

 . (5)
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In the sum in brackets, the translation vector T⃗ is fixed. We can therefore make the following change of
variables in the integral r⃗

′
= r⃗ − T⃗ ,

⟨ϕµ(k⃗)|Ĥ|ϕν(k⃗
′
)⟩ = A∗

µk⃗
Aνk⃗′

∑
T⃗

∑
T⃗ ′

e
i
(
k⃗
′
·T⃗

′
−k⃗·T⃗

) ∫
all space

dr⃗
′
ϕ∗µ(r⃗

′
+ T⃗ − τ⃗µ − T⃗ )Ĥϕν(r⃗

′
+ T⃗ − τ⃗ν − T⃗

′
)


= A∗

µk⃗
Aνk⃗′

∑
T⃗

∑
T⃗ ′

e
i
(
k⃗
′
·T⃗

′
−k⃗·T⃗

) ∫
all space

dr⃗
′
ϕ∗µ(r⃗

′
− τ⃗µ)Ĥϕν

[
r⃗
′
− τ⃗ν −

(
T⃗

′
− T⃗

)] .

(6)

Now, making the change in variables T⃗ ′ − T⃗ = T⃗
′′
,

⟨ϕµ(k⃗)|Ĥ|ϕν(k⃗
′
)⟩ = A∗

µk⃗
Aνk⃗′

∑
T⃗

∑
T⃗ ′′

e
i
(
k⃗
′
·
(
T⃗

′′
+T⃗

)
−k⃗·T⃗

) ∫
all space

dr⃗
′
ϕ∗µ(r⃗

′
− τ⃗µ)Ĥϕν(r⃗

′
− τ⃗ν − T⃗

′′
)


= A∗

µk⃗
Aνk⃗′

∑
T⃗

e
i
(
k⃗
′
−k⃗

)
·T⃗

∑
T⃗ ′′

eik⃗
′
·T⃗

′′
∫
all space

dr⃗
′
ϕ∗µ(r⃗

′
− τ⃗µ)Ĥϕν(r⃗

′
− τ⃗ν − T⃗

′′
)


= Nδk⃗,⃗k′A∗

µk⃗
Aνk⃗′

∑
T⃗ ′′

eik⃗
′
·T⃗

′′
∫
all space

dr⃗
′
ϕ∗µ(r⃗

′
− τ⃗µ)Ĥϕν(r⃗

′
− τ⃗ν − T⃗

′′
)

 , (7)

where we have used Eq. (8a) [see Ref. [19], Eq. (F.4)]

∑
T⃗

eik⃗·T⃗ = Nδk⃗,⃗0, (8a)

∑
k⃗

eik⃗·T⃗ = NδT⃗ ,⃗0, (8b)

where T⃗ runs through the N sites of the Bravais lattice in Eq. (8a), and the sum on k⃗ in Eq. (8b) runs through
all the sites in the first Brillouin zone consistent with the Born-von Karman boundary condition.

Now, denoting the matrix element of the hamiltonian of a orbital µ in the unit cell at the origin and an orbital
ν in the cell labeled by translation vector T⃗

′′
,

Hµν(T⃗
′′) =

∫
all space

dr⃗′ϕ∗µ(r⃗
′
− τ⃗µ)Ĥϕν(r⃗

′ − τ⃗ν − T⃗ ′′), (9)

Eq. (7) transforms into

⟨ϕµ(k⃗)|Ĥ|ϕν(k⃗′)⟩ = Nδk⃗,⃗k′A
∗
µk⃗
Aνk⃗′

∑
T⃗ ′′

eik⃗
′
·T⃗ ′′

Hµ,ν(T⃗
′′)

 . (10)

Finally, assuming that the normalization factors of the Bloch orbitals are 1√
N

, we finally arrive to

Hµν(k⃗) = ⟨ϕµ(k⃗)|H|ϕν(k⃗)⟩ =
∑
T⃗

eik⃗·T⃗Hµν(T⃗ ). (11)

2.1.3 The Overlap matrix elements

By analogy, the matrix elements of the overlap matrix between Bloch basis orbitals ϕµ(k⃗) and ϕν(k⃗
′
) are also

diagonal in k⃗ and equals
Sµν(k⃗) = ⟨ϕµ(k⃗)|ϕν(k⃗)⟩ =

∑
T⃗

eik⃗·T⃗Sµν(T⃗ ). (12)

4
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2.1.4 The secular equation

Since the hamiltonian conserves k⃗, an eigenfunction of the Schrödinger equation, ψnk⃗(r⃗), can be approxi-
mated as a linear combination of atomic orbitals, that can be written in the form

ψnk⃗(r⃗) =
∑
µ

cµn(k⃗)ϕµk⃗(r⃗). (13)

Inserting this expansion of the eigenfunctions into the Schrödinger equation,

Ĥψnk⃗(r⃗) = εn(k⃗)ψnk⃗(r⃗),

Ĥ

(∑
µ

cµn(k⃗)ϕµk⃗(r⃗)

)
=
∑
µ

cµn(k⃗)Ĥϕµk⃗(r⃗) = εn(k⃗)
∑
µ

cµn(k⃗)ϕµk⃗(r⃗), (14)

Multiplying both sides of Eq. (14) by ϕ∗
νk⃗
(r⃗) and integrating over all space,∑

µ

cµn(k⃗)

∫
all space

dr⃗ϕ∗
νk⃗
(r⃗)Ĥϕµk⃗(r⃗) = εn(k⃗)

∑
µ

cµn(k⃗)

∫
all space

dr⃗ϕ∗
νk⃗
(r⃗)ϕµk⃗(r⃗),∑

µ

cµn(k⃗)Hνµ(k⃗) = εn(k⃗)
∑
µ

cµn(k⃗)Sνµ(k⃗). (15)

Transposing all the terms to the left hand side in Eq. (15),∑
µ

(
Hνµ(k⃗)− εn(k⃗)Sνµ(k⃗)

)
cµn(k⃗) = 0. (16)

This secular equation can be written in matrix notation as H(k⃗)


N×N

cn(k⃗)


N×1

= εn(k⃗)

 S(k⃗)


N×N

cn(k⃗)


N×1

(17)

Non-trivial solutions (matrix of coefficients different from zero) can be found solving the secular equation,
which is immediately obtained from Eq. (16),

|H(k⃗)− εn(k⃗)S(k⃗)| = 0. (18)

2.2 Tight-binding model for a one-dimensional monoatomic chain

2.2.1 No dimerization case: one atom per unit cell

We can particularize the previous formalism to the case of a one-dimensional monoatomic solid consisting of
Hydrogen atoms with lattice parameter a, as shown in Fig. 1.

Figure 1: Sketch of a linear chain with one atom per unit cell, separated by a lattice constant a.

Let us assume the most simple case, where each atom contributes with only one orbital of s-symmetry,
ϕs(r⃗− τ⃗s− T⃗ ), where τ⃗s is the position within the unit cell, and T⃗ is a translation vector of the Bravais lattice.
From now on, and since we shall work in the one-dimensional system, the vector symbols will be omitted.
Also, the electron will be considered spinless, in order to ignore magnetic interactions.

5
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We can consider the unit cell made of only one atom. In such a case, the number of orbitals in the unit
cell amounts to N = 1, and the Hamiltonian [Eq. (11)] and Overlap [Eq. (12)] matrices in k-space are just
complex numbers.

Besides, we shall apply the following approximations to make the problem tractable from an analytical point
of view:

• Localised orbitals: considering that the radial parts of the atomic orbitals decay rapidly in relatively
small distances, the matrix elements of the Hamiltonian in real space, Hνµ(T ) [Eq. (9)], will be ne-
glected for translations vectors of the Bravais lattice whose magnitude is greater than the lattice pa-
rameter. In other words, Hνµ(T ) = 0 if |T | > a. That is, we shall consider on-site (T = 0) and
first-neighbours (T = ±a) interactions. These last hopping terms [Hµν(T = ±a) = γ] will determine
the width of the band. In this work, we shall consider γ < 0.

• The on-site energy of an orbital, Hµµ(T = 0) = α, determines the center of the band. Therefore, the
origin of the potential energies is always ill-defined. We can set α = 0 without loss of generality.

• Lastly, the orbitals are considered to be orthogonal, that is, they overlap only with themselves, such
that Sνµ = 1 ⇐⇒ µ = ν, T = 0, and zero otherwise.

Once the approximations have been set, one can proceed and determine the hamiltonian and overlap matrix
elements for a given value of k within the first Brillouin-zone. According to Eq. (11),

Hµν(k) =
∑
T

eikTHµν(T )

= eik0Hµµ(T = 0) + eikaHµµ(T = a) + e−ikaHµµ(T = −a)
= α+ γ

(
eika + e−ika

)
= α+ 2γ cos(ka). (19)

A similar argument for the Overlap matrix elements in reciprocal space [Eq. (12)]

Sµν(k) =
∑
T

eikTSµν(T )

= eik0Sµµ(T = 0)

= 1. (20)

Therefore, the secular equation [Eq. (18)] is reduced to

α+ 2γ cos(ka)− ε(k) = 0, (21)

and solving for the eigenvalues ε(k),

ε(k) = α+ 2γ cos(ka) (22)

= 2γ cos(ka), (23)

where we have assumed that α = 0. Figure 2 represents the band structure for our simplified model.
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Figure 2: Graphical representation of the electronic energy band for a linear Hydrogen chain with one s-
symmetry orbital per unit cell. We have taken a hopping of γ = −6 eV and the origin of energies exactly at
the orbital on-site energy, α. The red dashed line represents the Fermi level.

Since each hydrogen contributes with one electron to the system, at absolute zero all energy levels up to the
Fermi level, for which k = kF, are occupied, so the band is exactly half-filled, and therefore kF = π/2a. It
can be seen that the electronic band in this simple model displays a cosine shape, with a total width of 4γ.
It has maxima at the edges of the first Brillouin zone (1BZ) (k = π/a ≡ X), and a minimum in its center
(k = 0 ≡ Γ). The minimum is due to the fact that the phases of the electron wave functions are such that
the system is in a maximally bonding state, while the maxima corresponds to a state in which the phases are
alternating, and therefore maximally anti-bonding, as sketched in Fig. 3.

Figure 3: Maximally bonding (up) and antibonding (down) configurations. The green line represents the
amplitude of the wavefunction of the electrons of the solid.

As it can be seen, the Fermi level crosses the electronic band, and there is no gap that separates the valence
and conduction bands. This implies that the electrons can easily move through the different energy levels.
This simplified model is a typical band metal.

Ground-state electronic energy per unit length

The ground-state electronic energy per unit length is crucial in later discussions on the stability of the solid.
To compute the band-structure electronic energy, we sum the eigenvalues of the Hamiltonian over all the
occupied states,

Eelec = 2
∑
n,k

f(ε, T )εn(k), (24)

7
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where the factor of 2 is due to the spin degeneracy, and f(ε, T ) is the occupation function given by the
Fermi-Dirac distribution, which accounts for the Fermi-Dirac statistics at a given temperature T .

Assuming a one-dimensional system, the volume per k point in the reciprocal lattice is ∆k = 2π
L , where L is

the length of the chain. Within the geometry of our one-dimensional model, L is an integer multiple, N , the
number of atoms that compose the chain, of the lattice constant a,

L = Na. (25)

Multiplying and dividing Eq. (24) by the volume per allowed k point,

Eelec = 2
∑
n,k

f(ε, T )εn(k)
∆k

∆k

= 2
∑
n,k

f(ε, T )εn(k)
∆k

2π
L, (26)

dividing by L the two terms of the previous equation,

Eelec

L
=

1

π

∑
n,k

f(ε, T )εn(k)∆k. (27)

Since in this case the electronic energy is a quantity that varies smoothly over distances in the reciprocal
space [19], one can comfortably assume the thermodynamic limit, i.e. L → ∞. Under this condition, the
distance between allowed k points tends to zero (∆k → 0), and the sums over k points can be replaced by
an integral. Thus,

lim
L→∞

Eelec

L
=

1

π

∫
1BZ

f(ε, T )εn(k)dk, (28)

where the integral is taken over the first Brillouin-zone.

For T = 0, which is the case since we are studying the ground-state electronic energy, the Fermi-Dirac
distribution reduces to

f(ε, T = 0) =

{
1 if k ≤ |kF| = π

2a

0 otherwise
(29)

Replacing in Eq. (28) the functional form for the dispersion relation of the eigenvalues as a function of k
[Eq. (23)], and the Fermi-Dirac distribution for T = 0 [Eq. (29)],

lim
L→∞

Eelec

L
=

1

π

∫ π/a

−π/a

f(ε, T = 0) · 2γ cos(ka)dk

=
1

π

∫ π/2a

−π/2a

2γ cos(ka)dk

=
2

π

∫ π/2a

0

2γ cos(ka)dk

=
4γ

πa

∫ π/2a

0

a cos(ka)dk

=
4γ

πa
sin(ka)

∣∣∣∣k=π/2a

k=0

=
4γ

πa
sin
(π
2

)
=

4γ

πa
, (30)

which is the ground-state electronic energy per unit length of the monoatomic hydrogen chain.
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Density of states with one atom per unit cell

In a solid, the density of states (DOS) in the n-th band, gn(ε), can be defined as the number of allowed
wave-vectors in that band with energies within the range (ε, ε+ dε), divided by the volume of the system in
real space, V . The number of allowed wave-vectors is just the volume of the k⃗-space in the 1st Brillouin Zone
with ε ≤ εn(k⃗) ≤ ε+ dε, divided by the volume per allowed k⃗-vector, ∆k⃗ = (2π)3

V .

This volume can be computed as a surface integral in the reciprocal space [See Ref. [19], Chapter 8],

gn(ε)dε = 2

∫
Sn(ε)

dS
(2π)3

V

δk(k⃗), (31)

where Sn(ε) is a portion of the surface with εn(k⃗) = ε, and δk(k⃗) is the perpendicular distance between the
surfaces Sn(ε) and Sn(ε+ dε) at k⃗. The factor of 2 is due to the spin degeneracy.

In order to find an explicit expression for δk(k⃗), note that Sn(ε) is a constant energy surface. Therefore, the
k-gradient of εn(k⃗), ∇εn(k⃗), is a vector normal to the surface with modulus equal to the rate of change of
εn(k⃗) in the normal direction, thus,

ε+ dε = ε+ |∇εn(k⃗)|δk(k⃗) =⇒ δk(k⃗) =
dε

|∇εn(k⃗)|
. (32)

Replacing this in Eq. (31),

gn(ε) = 2

∫
Sn(ε)

V

(2π)3
dS

|∇εn(k⃗)|
. (33)

Let us particularize to the case of the monoatomic chain:

• One-dimensional: k⃗ → k. Besides, the volume per allowed k-point takes the value ∆k = 2π
L .

• One atom per unit cell: there is just one band, therefore, we can omit the band index n.

• Analytic expression for the eigenvalues of the Hamiltonian operator [Eq. (22)],

ε(k) = α+ 2γ cos(ka). (34)

• The gradient can be determined analytically:

∇ε(k) = dε(k)

dk
= −2γa sin(ka). (35)

• The surface in the reciprocal space is restricted to two points, those where the band intersect with the
given energy plane, ε(k) = ε. Thus, we can write

dS = δ [ε− ε(k)] dk

= δ [ε− (α+ 2γ cos(ka))] dk. (36)

where δ denotes the Dirac delta function. The k points that compose the surface, i.e. that verify
δ [ε− ε(k)] ̸= 0, must accomplish the condition

ε = α+ 2γ cos(ka), (37)

thus,

k = ±1

a
arccos

(
ε− α

2γ

)
. (38)

Introducing this considerations in Eq. (33),
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g(ε) = 2

∫
1BZ

L · δ [ε− (α+ 2γ cos(ka))]

2π| − 2γa sin(ka)|
dk

=
1

2πa
∣∣∣γ sin(L

a arccos
(

ε−α
2γ

)
· a
)∣∣∣ + L

2πa
∣∣∣γ sin(− 1

a arccos
(

ε−α
2γ

)
· a
)∣∣∣

=
L

πa
∣∣∣γ sin(arccos( ε−α

2γ

))∣∣∣
=

L

πa

∣∣∣∣γ√1− (ε−α)2

4γ2

∣∣∣∣
=

2L

πa
√
4γ2 − (ε− α)2

=
2N

π
√

4γ2 − (ε− α)2
, (39)

that is, the density of states the one-dimensional monoatomic chain. It has been taken into account that
| sin(x)| = | sin(−x)|, the relation sin(arccos(x)) =

√
1− x2 and the fact that L = Na. The density of states is

defined in the range
−2|γ| ≤ ε− α ≤ 2|γ|, (40)

the band width, where the argument of the square root is positive and the bands are defined. Figure 4 shows
the relation between the density of states and the energy.

Figure 4: Graphical representation of the density of states of the one-dimensional monoatomic Hydrogen
chain with one s-symmetry orbital per unit cell. We have taken a hopping of γ = −6 eV and the origin of
energies exactly at the orbital on-site energy, α. The red dashed line represents the Fermi level.

In Fig. 4 it can be seen that the density of states reaches its highest values at the Γ point and at the zone
edge, k = ± X, where the electronic bands exhibit flatter regions. The DOS is at its minimum at the Fermi
level, k = kF, where the band gradient is the largest. Near the Fermi level, it remains relatively constant,
indicating that most of the states are concentrated around the Γ and ± X points.

2.2.2 No dimerization case: two atoms per unit cell

In this section, we will particularize the tight-binding formalism to the monoatomic chain considering two
atoms per unit cell, each one contributing with one orbital of s-symmetry, ϕs(r− τs − T ), as shown in Fig. 5.
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Figure 5: Sketch of a linear chain with two atoms per unit cell.

The number of orbitals in the unit cell is N = 2, and the Hamiltonian [Eq. (11)] and Overlap [Eq. (12)]
operators in k-space are (2× 2) complex matrices.

We shall follow the same approximations and assumptions considered previously in Sec 2.2.1, particularized
for this configuration:

• Localised orbitals: The matrix elements of the Hamiltonian in real space, Hνµ(T ) [Eq. (9)], will
be neglected for orbitals separated by a distance larger than the interatomic distance. Therefore,
Hµµ(|T | ≥ 2a) = Hνν(|T | ≥ 2a) = 0. That is, we shall consider on-site and first-neighbour inter-
actions. The hopping terms,

Hµν(T = 0) = Hµν(T = −2a) = γ,

Hνµ(T = 0) = Hνµ(T = +2a) = γ, (41)

with γ < 0, will determine the width of the band.

• The on-site energy of the orbitals, Hµµ(T = 0) = Hνν(T = 0) = α, determines the center of the band.
We can set α = 0 without loss of generality.

• The orbitals are considered to be orthogonal, such that Sµν = 1 ⇐⇒ µ = ν, T = 0, and zero otherwise.

For the Hamiltonian, the elements of the matrix can be computed using Eq. (11):

H11(k) =
∑
T

eikTH11(T ) = eik0H11(T = 0) = α,

H12(k) =
∑
T

eikTH12(T ) = eik0H12(T = 0) + e−ik2aH12(T = −2a) = γ
(
1 + e−ik2a

)
,

H21(k) =
∑
T

eikTH21(T ) = eik0H21(T = 0) + eik2aH21(T = 2a) = γ
(
1 + eik2a

)
,

H22(T ) =
∑
T

eikTH22(T ) = eik0H22(T = 0) = α. (42)

For the overlap matrix, we apply Eq. (12),

S11(T ) =
∑
T

eikTS11(T ) = eik0S11(T = 0) = 1,

S12(T ) =
∑
T

eikTS12(T ) = 0,

S21(T ) =
∑
T

eikTS21(T ) = 0,

S22(T ) =
∑
T

eikTS22(T ) = eik0S22(T = 0) = 1. (43)
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Replacing these matrix elements in the secular equation [Eq. (18)],∣∣∣∣∣ α− εn(k) γ
(
1 + e−ik2a

)
γ
(
1 + eik2a

)
α− εn(k)

∣∣∣∣∣ = 0. (44)

Therefore,

0 = (α− εn(k))
2 − γ2

(
1 + eik2a

) (
1 + e−ik2a

)
= α2 + ε2n(k)− 2αεn(k)− γ2

(
2 + eik2a + e−ik2a

)
= ε2n(k)− 2αεn(k) + α2 − 2γ2 (1 + cos(k2a)) . (45)

Solving for εn(k),

εn(k) = α± 2γ cos(ka)

= ±2γ cos(ka), (46)

one obtains the expression for the eigenvalues of the Hamiltonian operator, where we have assumed that
α = 0. Figure 6 represents the band structure in this simplified model.

Figure 6: Graphical representation of the electronic energy band for a linear Hydrogen chain with two
atoms and two s-symmetry orbitals per unit cell. We have taken a hopping of γ = −6 eV and the origin
of energies exactly at the orbital on-site energy, α. The red dashed line represents the Fermi level.

It can be seen that the electronic bands are essentially the same as in the case of one atom per unit cell, Fig. 2,
but reducing the length of the first Brillouin zone by half, thus causing the band to fold at the Fermi level,
resulting in two branches which are not separated by an energy gap. Therefore, there is a degeneracy at the
Fermi level, k = kF.

Ground-state electronic energy per unit length

The ground-state electronic energy per unit length of the system is exactly the same as the one obtained in
Sec. 2.2.1, since the only difference with respect to the previous case is the definition of the unit cell.

Density of states with two atoms per unit cell

The density of states per unit length of the system remains qualitatively the same as the one obtained for the
one atom per unit cell case [Sec. 2.2.1]. The only difference is that the lattice parameter has been doubled,
therefore, the length of the 1st Brillouin Zone has been reduced by half and there are two electronic bands
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instead of one. Consequently, there are two densities of states, one per band, with n = 1 (lower band) and
n = 2 (upper band), which are exactly the same since the bands are symmetric:

gn=1,2(ε) =
N

π
√
4γ2 − (ε− α)2

. (47)

2.2.3 Dimerized case (two atoms per unit cell)

When the linear chain dimerizes, the distance between consecutive Hydrogen atoms changes, alternating
short and long-distance bonds. As a consequence, the hopping parameters characterizing the strong (short-
distance) and weak (long-distance) bonds are different. Within this model, there are two tight-binding sites
per unit cell, having alternating hopping parameters γ − δ and γ + δ, respectively. Since, as we have already
mentioned before, we are taking the hopping parameter γ < 0, and assuming that δ > 0, then the hopping
corresponding to γ− δ will be more negative and therefore reflects an stronger bonding between consecutive
atoms. In the opposite way, γ + δ will be less negative and points to a weaker interatomic bonding. This
configuration is shown in Fig. 7.

Figure 7: Sketch of a dimerized linear chain with different hopping parameters for long and short bonds.

In order to determine the Hamiltonian and Overlap matrices, we shall proceed in the same manner as in
Sec. 2.2.2.

Regarding the Hamiltonian matrix elements [Eq. (11)],

H11(k) =
∑
T

eikTH11(T ) = eik0H11(T = 0) = α,

H12(k) =
∑
T

eikTH12(T ) = eik0H12(T = 0) + e−ik2aH12(T = −2a) = (γ − δ) + e−ik2a(γ + δ),

H21(k) =
∑
T

eikTH21(T ) = eik0H21(T = 0) + eik2aH21(T = 2a) = (γ − δ) + eik2a(γ + δ),

H22(k) =
∑
T

eikTH22(T ) = eik0H22(T = 0) = α. (48)

On the other hand, for the overlap matrix [Eq. (12)],

S11(k) =
∑
T

eikTS11(T ) = S11(T = 0) = 1,

S12(k) =
∑
T

eikTS12(T ) = 0,

S21(k) =
∑
T

eikTS21(T ) = 0,

S22(k) =
∑
T

eikTS22(T ) = S22(T = 0) = 1. (49)

Replacing these matrix elements in the secular equation, Eq. (18) and considering again for the sake of
simplicity that α = 0, ∣∣∣∣∣ −εn(k) (γ − δ) + (γ + δ)e−ik2a

(γ − δ) + (γ + δ)eik2a −εn(k)

∣∣∣∣∣ = 0. (50)
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Solving for εn(k),

ε2n(k) =
[
(γ − δ) + (γ + δ)e−ik2a

] [
(γ − δ) + (γ + δ)eik2a

]
= (γ − δ)2 + (γ − δ)(γ + δ)

(
eik2a + e−ik2a

)
+ (γ + δ)2

= (γ − δ)2 + (γ + δ)2 + 2(γ − δ)(γ + δ) cos(2ka)

= (γ − δ)2 + (γ + δ)2 + 2(γ − δ)(γ + δ)(2 cos2(ka)− 1)

= (γ − δ)2 + (γ + δ)2 − 2(γ − δ)(γ + δ) + 4(γ2 − δ2) cos2(ka)

= ((γ − δ)− (γ + δ))2 + 4(γ2 − δ2) cos2(ka)

= 4δ2 + 4(γ2 − δ2) cos2(ka)

= 4[δ2 + (γ2 − δ2) cos2(ka)]

= 4[δ2 + γ2 cos2(ka)− δ2 cos2(ka)]

= 4[δ2(1− cos2(ka)) + γ2 cos2(ka)]

= 4[γ2 cos2(ka) + δ2 sin2(ka)],

one obtains the expression for the eigenvalues of the Hamiltonian operator,

εn(k) = ±2

√
γ2 cos2(ka) + δ2 sin2(ka), (51)

which can also be expressed as
εn(k) = ±2

√
δ2 + (γ2 − δ2) cos2(ka). (52)

Notice that, if δ = 0, one simply recovers the dispersion relation for the non-dimerized case, but considering
two atoms per unit cell [Eq. (46)]. If α ̸= 0, the bands will remain exactly the same, but shifted vertically by
an amount α,

εn(k) = α± 2

√
γ2 cos2(ka) + δ2 sin2(ka) (53)

= α± 2
√
δ2 + (γ2 − δ2) cos2(ka). (54)

The graphical representation of the electronic bands of the dimerized and non-dimerized chains is shown in
Fig. 8.

Figure 8: Electronic bands for the dimerized chain, according to Eq. (51), with parameters γ = −6 eV and
δ = 1 eV. The electronic bands for the non-dimerized case with two atoms per the unit cell (black dashed
line) have been determined using Eq. (46). The X point is taken as the edge of the first Brillouin zone, con-
sidering two atoms in the unit cell in real space, X = π/2a. The red dashed line represents the Fermi level.
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The dimerization of the system leads to the opening of a gap at the zone edge
(
k = π

2a

)
, whose amplitude

according to Eq. (51) amounts to
Egap = 4|δ|. (55)

The equidistant configuration of the system results in degeneracy at the Fermi level. However, dimerization
lifts this degeneracy, creating a gap at the zone edge that separates the valence and conduction bands.
Electrons with wave-vector k near the Fermi surface have their energy lowered due to this lattice deformation.
This behavior indicates that the dimerized system has a lower electronic energy, since the electrons at the
valence band near kF have lower energies.

The opening of a gap at the zone edge results in a metal-insulator transition. The electronic characteristics
of the dimerized system will be determined by δ. Although our calculations assume T = 0, we can ascertain
the behaviour of the system at finite temperature for different values of δ. If δ is large, the gap amplitude
will be such that very few electrons reach the conduction band due to thermal excitations, resulting in low
electronic conductivity. Conversely, for small values of δ, the dimerized system can be considered an intrinsic
semiconductor.

Variation in electronic energy per unit length of the dimerized chain

As will be shown in Sec. 2.3.2, the dimerization of the system leads to an increase in the elastic energy of the
chain. To determine whether the Peierls transition takes place spontaneously, it is necessary to compute the
variation in the electrostatic energy of the solid per unit length when the system dimerizes and a band gap is
opened, as shown in Fig. 8. This quantity shall be calculated in the thermodynamic limit, where it takes the
form

lim
L→∞

∆Eelec

L
=

1

π

∫ π/2a

−π/2a

[
εdimelec(k)− εnon dim

elec (k)
]
dk, (56)

where εdimelec(k) are the eigenvalues when the system is dimerized [Eq. (51)], and εnon dim
elec (k) are the eigen-

values in the absence of dimerization [Eq. (46)]. Given that we are interested in the energy gain, only the
occupied bands (lower ones in Fig. 8) are taken into account. Since we are considering that γ < 0, we have
to take the solution with the minus sign in Eq. (51), and the plus sign in Eq. (46). Replacing this dispersion
relations in Eq. (56)

lim
L→∞

∆Eelec

L
=

1

π

∫ π/2a

−π/2a

[
−2

√
γ2 cos2(ka) + δ2 sin2(ka)− 2γ cos(ka)

]
dk

=
2

π

∫ π/2a

0

[
−2

√
γ2 cos2(ka) + δ2 sin2(ka)− 2γ cos(ka)

]
dk. (57)

Introducing the following change of variables: θ = ka, and noting that −γ = |γ|,

lim
L→∞

∆Eelec

L
=

2

πa

∫ π/2

0

[
−2|γ|

√
cos2(θ) +

δ2

γ2
sin2(θ) + 2|γ| cos(θ)

]
dθ. (58)

Defining λ ≡ δ2/γ2,

lim
L→∞

∆Eelec

L
= −4|γ|

πa

∫ π/2

0

[√
cos2(θ) + λ sin2(θ)− cos(θ)

]
dθ

= −4|γ|
πa

∫ π/2

0

[√
1− sin2(θ) + λ sin2(θ)− cos(θ)

]
dθ

= −4|γ|
πa

∫ π/2

0

[√
1− (1− λ) sin2(θ)− cos(θ)

]
dθ

= −4|γ|
πa

[∫ π/2

0

√
1− (1− λ) sin2(θ)dθ − 1

]
. (59)
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The integral
∫ π/2

0

√
1− (1− λ) sin2(θ)dθ is a complete elliptic integral of the second kind, E(1 − λ). This

kind of integral only has real solutions for 1−λ < 1 (see Appendix A), which is always true since λ > 0 if the
chain is dimerized. For values λ < 1, it can be expanded as (See Appendix A and [20])

E (1− λ) = 1 + λ

[
0.443− 1

4
ln(λ)

]
+O(λ2), (60)

which is an useful result in order to approach this study with analytical expressions.

Therefore, the electrostatic energy variation per unit length between the dimerized and non-dimerized states
can be approximated as

lim
L→∞

∆Eelec

L
≈ −4|γ|

πa
· λ
[
0.443− 1

4
ln(λ)

]
=

4γ

πa
· λ
[
0.443− 1

4
ln(λ)

]
. (61)

Since λ = δ2/γ2 > 0 and λ < 1, then ln(λ) < 0. Therefore, the correction in the square brackets is positive.
Thus, since γ < 0, the electronic energy variation will always be negative. In other words, the system always
gain electrostatic energy when it dimerizes.

The precision of this approximation [Eq. (61)] exhibits an strong dependency on λ. Figure 9 is a comparison
between the values of the complete elliptic integral determined using MATLAB function ellipticE and the ones
from the approximation above [Eq. (60)], as a function of λ. In Fig. 10 the relative error of the approximation
is given as a function of λ.

Figure 9: Value of the complete elliptic integral of
the second kind as a function of λ, determined using
the ellipticE function from MATLAB (blue line) and
the approximation shown in Eq. (60) (red dashed
line).

Figure 10: Relative error (%) of the approximation
of the complete elliptic integral of the second kind
[Eq. (60)].

Density of states of the dimerized chain

To determine the density of states of the dimerized chain, we shall proceed in the same manner as in the one
atom per unit cell case, but particularizing for the dimerized system:

• Two atoms per unit cell: there are two electronic bands. The band index will take the value n = 1 for
the valence band and n = 2 for the conduction band.

• The eigenvalues of the Hamiltonian operator [Eq. (54)],

ε1(k) = α− 2
√
δ2 + (γ2 − δ2) cos2(ka) (62)

ε2(k) = α+ 2
√
δ2 + (γ2 − δ2) cos2(ka) (63)
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• The k-gradient in energy:

∇ε1(k) = +
2a(γ2 − δ2) sin(ka) cos(ka)√

δ2 + (γ2 − δ2) cos2(ka)
(64)

∇ε2(k) = −2a(γ2 − δ2) sin(ka) cos(ka)√
δ2 + (γ2 − δ2) cos2(ka)

(65)

• The k points that compose the constant energy surface accomplish the condition

ε = α± 2
√
δ2 + (γ2 − δ2) cos2(ka). (66)

Since the bands are symmetric, the resulting k points will be the same for each band,

k = ±1

a
arccos

[( ε−α
2

)2 − δ2

γ2 − δ2

] 1
2

 . (67)

Introducing this considerations in Eq. (33), we can determine the density of states of the dimerized chain for
both bands, which is exactly the same since they are symmetric,

gdimn=1,2(ε) = 2

∫
1BZ

L · δ
[
ε−

(
α± 2

√
δ2 + (γ2 − δ2) cos2(ka)

)]
2π

∣∣∣∣± 2a(γ2−δ2) sin(ka) cos(ka)√
δ2+(γ2−δ2) cos2(ka)

∣∣∣∣ dk

=

L ·

√√√√δ2 + (γ2 − δ2) cos2

(
arccos

([
( ε−α

2 )
2−δ2

γ2−δ2

] 1
2

))

2πa(γ2 − δ2) sin

(
arccos

([
( ε−α

2 )
2−δ2

γ2−δ2

] 1
2

))
cos

(
arccos

([
( ε−α

2 )
2−δ2

γ2−δ2

] 1
2

))

=
L ·
√
δ2 + (γ2 − δ2)

( ε−α
2 )

2−δ2

γ2−δ2

2πa(γ2 − δ2)

√
1− ( ε−α

2 )
2−δ2

γ2−δ2

√
( ε−α

2 )
2−δ2

γ2−δ2

=
L · |ε− α|

4πa(γ2 − δ2)

√
γ2−δ2−( ε−α

2 )
2
+δ2

γ2−δ2

√
( ε−α

2 )
2−δ2

γ2−δ2

=
L · |ε− α|

4πa

√
γ2 −

(
ε−α
2

)2√( ε−α
2

)2 − δ2

=
N · |ε− α|

π

√
4γ2 − (ε− α)

2
√

(ε− α)
2 − 4δ2

. (68)

As it can be seen, by setting δ = 0 one recovers the density of states of the no dimerization case with two
atoms per unit cell [Eq. (47)]. In this case, the density of states is defined in the range

ε− α ∈ [−2|γ|, −2δ] ∪ [2δ, 2|γ|], (69)

where the bands are defined and the arguments of the square roots are both positive. Figure 11 shows the
relation between the density of states of the dimerized system and the energy.
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Figure 11: Graphical representation of the density of states of the dimerized one-dimensional monoatomic
Hydrogen chain with two s-symmetry orbitals per unit cell. We have taken a hopping of γ = −6 eV, and a
correction term of δ = 1 eV. The origin of energies is exactly at the orbital on-site energy, α. The red dashed
line represents the Fermi level.

It can be seen that the density of states is not as simple as in the equidistant configuration [Fig. 4]. The
DOS shows two absolute maxima at Γ, and two local maxima at ± X. The main difference is that, in the
absence of dimerization, the electronic bands at the Fermi level show the largest gradient, and consequently,
the lowest DOS. When the system dimerizes and a gap opens at k = kF, the bands flatten around that region,
and therefore the density of states increases. However, it is lower than the DOS at Γ. In this case, the density
of states is not defined in the region (−2δ, 2δ), due to the gap. Consequently, the DOS is not defined at the
Fermi level. Besides, it remains approximately constant in the regions (−2|γ|, −2δ) and (2δ, 2|γ|), where the
electronic bands show the greatest gradient.

2.3 Elastic energy of a one-dimensional monoatomic chain

2.3.1 Elastic energy per unit cell in the absence of dimerization

We shall consider the most simple model possible, which consists in a set of springs that connect each atom
of the chain with its adjacent ones, all springs being exactly the same, i.e. each spring has the same exact
natural length and elastic constant. Under this circumstances, since the system is in its ground state, meaning
there are not thermal vibrations of the ions nor the electrons, the nuclei will locate minimizing the elastic
potential energy of the system. This results in every spring being in its natural length, which would be the
lattice parameter, a, so that the elastic energy is exactly zero.

2.3.2 Elastic energy per unit cell of the dimerized chain

Let us assume the most simple scenario, where only longitudinal movements of the atoms are allowed. In
other words, the motion of the atoms is directed along the chain axis. The mechanical collective distortions
of the system, which result from the displacement of the atoms departing from their equilibrium positions,
shall be modelled with phonons.

Within this model and the configuration sketched in Fig. 1, the maximum displacement in real space of an
atom within unit cell m due to a phonon at k is

Q(k, T ) = Q0e
ikmT , (70)

where Q0 is the amplitude of the oscillation and T is a translation vector of the Bravais lattice.
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Taking into account that T = a, the dimerization of the undistorted chain can be described by a phonon at
k = π

a , since

Q
(π
a
, T
)
= Q0e

imπ, (71)

where it can be seen that, for each atom, the displacement is antiparallel to that of its adjacents. This
deformation is illustrated in Fig. 12.

Figure 12: Sketch of a dimerized linear chain with each atom departing a distance Q0 from its original equi-
librium position.

Making use of the harmonic approximation, it is possible to obtain the dispersion relation, i.e. the angular
frequency of the motion of the atoms as a function of the wave-vector, ωk, in a monoatomic chain with lattice
parameter a and one atom per unit cell [21],

ωk =

√
4C

M

∣∣∣∣ sin(ka2
)∣∣∣∣ , (72)

where C is the elastic constant between nearest neighbours and M is the mass of the atoms of the chain.

Since the phonon is at k = π/a, the angular frequency of the oscillation is

ωπ/a =

√
4C

M
. (73)

In the dimerized state, the system is composed of two atoms of mass M per unit cell, each in the highest
potential energy configuration of a simple harmonic motion, which is described by the phonon. The angular
frequency in this kind of oscillation is

ωSHM =

√
K

m
, (74)

where K is the force constant that characterizes the motion and m is the mass of the oscillator.

The potential energy of a harmonic oscillator is

USHM =
1

2
Ku2, (75)

where u is the displacement of the mass from the equilibrium point. Taking into account the relation between
K and ωSHM [Eq. (74)], the potential energy [Eq. (75)] can be expressed as

USHM =
1

2
·m · ω2

SHM · u2. (76)

Finally, one can particularize for the dimerized chain by setting m = M , u = Q, ωSHM = ωπ/a, therefore
obtaining the elastic energy per unit cell of the dimerized state,

Edim
elastic = 2 · 1

2
·M · 4C

M
·Q2

= 4CQ2, (77)

where the factor of 2 is to account for both atoms of the unit cell.

19



José B. Herrera 2.4 Stability of the dimerized chain

2.4 Stability of the dimerized chain

To determine whether the system is more stable when it dimerizes, it is necessary to compute the total energy
variation. The elastic energy variation per unit cell is

∆Eelastic = Edim
elastic − Enon dim

elastic , (78)

where Edim
elastic is the elastic energy per unit cell of the dimerized system [Eq. (77)], and Enon dim

elastic is the same
quantity in the absence of dimerization, whose value was deduced in Sec. 2.3.1. Replacing this values in
Eq. (78), the elastic energy variation per unit cell results

∆Eelastic = 4CQ2. (79)

On the other hand, to determine the variation in electronic energy per unit cell, one can simply multiply the
electrostatic energy variation per unit length deduced in Sec. 2.2.3 [Eq. (61)], by a factor of 2a, which is the
length of the unit cell in the dimerized system, obtaining

∆Eelec = 2a · 4γ
πa

· λ
[
0.443− 1

4
ln(λ)

]
=

8γ

π
λ

[
0.443− 1

4
ln(λ)

]
. (80)

Thus, the total energy variation results

∆E = ∆Eelec +∆Eelast

=
8γ

π
λ

[
0.443− 1

4
ln(λ)

]
+ 4CQ2. (81)

In order to approach this variation from an analytical point of view, we shall consider that the electron-lattice
coupling is governed by a linear law, i.e. there is a linear dependency between the hopping term correction,
δ, and the distance that the atoms displace from their equilibrium points, Q. That is,

δ ∝ Q. (82)

When the system dimerizes, the distance between atoms departs from the equilibrium distance, a. In the
dimerized system, there will be a short and a long bond, whose lengths amount to a − 2Q and a + 2Q,
respectively. Thus, for convenience, it is possible to set that the dependency is

δ = η · 2Q, (83)

where η is the electron-lattice coupling constant. Given that by definition δ ≥ 0, η and Q will be both defined
non-negative as well. The electron-lattice coupling constant accounts for the rate of change of the hopping
parameter between two adjacent atoms when one of them shifts along the longitudinal axis of the chain.

Introducing this dependency in the total energy variation [Eq. (81)], and remembering that λ = δ2

γ2 ,

∆E =
8

πγ
δ2
[
0.443− 1

4
ln

(
δ2

γ2

)]
+ 4CQ2

=
32η2

πγ
Q2

[
0.443− 1

4
ln

(
4η2

γ2
Q2

)]
+ 4CQ2. (84)

The total energy variation of the system [Eq. (84)] is a function of the displacement of the atoms, Q, and
depends on three parameters: the electron-lattice coupling constant, η, the hopping parameter, γ, and the
elastic constant of the system, C. This equation contains an approximation of the complete elliptic integral of
the second kind [Eq. (60)], whose relative error increases with λ. According to the electron-lattice coupling
law [Eq. (83)], this parameter increases with δ, that accounts for the amount of dimerization. As the system
dimerizes, λ becomes larger, resulting in a greater energy variation error. Nevertheless, the maximum possible
value is λ = 1, where the relative error reaches approximately 8%. This is acceptable, since it is likely being
outweighed by other approximations considered, such as nearest-neighbor interactions, the exclusion of
anharmonic terms in lattice interactions, and non-overlapping orbitals.
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We shall delve into the characteristics of the total energy variation:

• Note that Q = 0 is not in the domain of the function, since the elliptic integral from Eq. (59) has no
real solutions for λ = 0. Although, Q = 0 corresponds to the no-dimerization case, and it can be seen
that

lim
Q→0

∆E = 0, (85)

since the divergence of the natural logarithm is mitigated by Q2. Consequently, for convenience, we
will consider that Q = 0 is inside the domain of the function, and set ∆E(Q = 0) = 0.

• The total energy variation is symmetric with respect to the origin. As deduced from the effect of the
phonon at k = π

a [Eq. (71)], the dimerization of the system for negative values of Q is fundamentally
identical to that for positive values. The only difference lies in the direction of the atomic displacements:
atoms move oppositely for negative Q compared to positive Q. However, it does not affect the intrinsic
properties of the system.

• The total energy variation is described by a C1 function, meaning that only its first derivative is con-
tinuous across the entire domain. Higher-order derivatives contain terms involving natural logarithms
whose divergences are not mitigated by the polynomial terms in Q. As a result, these higher-order
derivatives are non-defined at Q = 0.

In order to study the stability of the dimerized chain, we need to analyze the critical points of the total energy
variation. For convenience, we will rename α = 32η2

πγ and β2 = 4η2

γ2 and rearrange the terms in Eq. (84),

∆E = αQ2

[
0.443− 1

4
ln
(
β2Q2

)]
+ 4CQ2

= Q2

[
0.443α+ 4C − 1

2
α ln (|βQ|)

]
. (86)

Therefore, the first derivative of the total energy variation:

d (∆E)

dQ
= Q

[
0.886α+ 8C − α ln (|βQ|)

]
− 1

2
αQ

= Q
[
0.386α+ 8C − α ln (|βQ|)

]
= αQ

[
0.386 +

8C

α
− ln (|βQ|)

]
. (87)

In order to find the critical points of the function, we set d(∆E)
dQ = 0,

0 = αQ
[
0.386 +

8C

α
− ln (|βQ|)

]
=⇒

Q0 = 0

Q∗ = ± 1
β

(
e0.386 · e 8C

α

) , (88)

where it can be seen that there are three critical points. To determine whether they are maxima or minima,
we need to compute the second derivative of the total energy variation,

d2 (∆E)

dQ2
= α

[
0.386 +

8C

α
− ln (|βQ|)

]
− α

= α
[
− 0.614− ln (|βQ|)

]
+ 8C

= |α|
[
0.614 + ln (|βQ|)

]
+ 8C, (89)

where it has been taken into account that α < 0, and therefore |α|
α = −1.
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Regarding the critical points at Q = ±Q∗,

d2 (∆E)

dQ2

∣∣∣∣∣
Q=±Q∗

= |α|
[
0.614 + ln

(
e0.386 · e 8C

α

) ]
+ 8C

= |α|
[
0.614 + 0.386 +

8C

α

]
+ 8C

= |α|+ |α|
α

8C + 8C

= |α| − 8C + 8C

= |α|. (90)

Thus, these critical points are always minima, given that the second derivative of the total energy variation
is positive at Q = ±Q∗, regardless of the electronic and elastic parameters of the system.

To determine whether the critical point at Q = 0 is a maximum or a minimum, we cannot simply evaluate
the sign of the second derivative at that point since it is undefined. Therefore, we must qualitatively analyze
the sign of the second derivative as Q approaches 0. Under these circumstances, the natural logarithm takes
negative values with module greater than 0.614 due to its asymptotic behavior at Q = 0. Consequently, the
term |α| [0.614 + ln (|βQ|)], governed by the electronic component of the system, will be negative. On the
other hand, since C > 0, the term 8C, governed by the lattice component, will always be positive. This is
the expected behaviour: given that we are working in the harmonic regime (i.e. no anharmonic terms are
being considered in the lattice component of the system, Sec. 2.3), the equidistant configuration is the one
with minimal stress. Therefore, any deformation leads to an increase in energy from the lattice point of view.
Conversely, as seen in Sec. 2.2.3 [Eq. (61)], any dimerization reduces the electronic energy of the system.

One could expect the sign of the second derivative of the total energy variation to be determined by the
interplay between the electronic and lattice components of the system. Nevertheless, given the asymptotic
behaviour of the electronic contribution when Q approaches 0, this term will always predominate, indepen-
dently of the elastic constant of the system. Thus, d2(∆E)

dQ2

∣∣∣
Q→0

< 0 ∀ γ, η, C. Consequently, the equidistant

configuration of the chain is always a metastable state, since the total variation of energy [Eq. (84)] exhibits
a local maximum at Q = 0, as stated by the Peierls’ theorem.

The system will always transition to the dimerized state, which has a lower total energy. The energy gain of
the system due to dimerization is the minimum of the total energy variation. It can be computed introducing
Q∗ [Eq. (88)] in the total energy variation [Eq. (84)]. Remembering that α = 32η2

πγ and β = 4η2

γ2 ,

∆Emin = αQ2
∗

[
0.443− 1

2
ln (|βQ∗|)

]
+ 4CQ2

∗

= αQ2
∗

[
0.443 +

4C

α
− 1

2
ln (|βQ∗|)

]
=

α

β2
e0.772 e

16C
α

[
0.443 +

4C

α
− 1

2
ln
(
e0.386e

8C
α

)]
=

α

β2
e0.772 e

16C
α

[
0.443 +

4C

α
− 1

2

(
0.386 +

8C

α

)]
=

α

β2
e0.772 e

16C
α

[
0.443 +

4C

α
− 0.193− 4C

α

]
=

α

4β2
e0.772 e

16C
α

= −ξ1|γ|e
−π|γ|C

2η2 , with ξ1 = 1.378, (91)

which is always negative. This is consistent with the previous analysis, since

∆Emin < 0 =⇒ Edim
total

∣∣∣
Q=±Q∗

< Enon dim
total . (92)

Qualitatively, one would expect that, for elastically rigid systems with minimal electronic contribution (C ↑,
|γ| ↑, η ↓), the energy gain tends to decrease. The opposite would occur for electronically dominant and
elastically soft systems (C ↓, |γ| ↓, η ↑).
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Regarding the value of the displacement of each atom,

Q∗ = ± 1

β

(
e0.386e

8C
α

)
= ± ξ2

|γ|
η
e
−π|γ|C

4η2 , with ξ2 = 0.736, (93)

this quantity approaches 0 as C increases, for constant values of γ and η. As the elastic interatomic forces
become stronger, the extent of dimerization diminishes, although some degree of dimerization always occurs,
as deduced. The total energy variation as a function of Q is shown in Fig. 13 for fixed γ and η and different
values of C. Additionally, a zoom of the Q ∼ 0 region is shown on the right side.

Figure 13: Total variation of energy [Eq. (84)] as a function of Q for γ = −6 eV, η = 4 eV/Bohr, C = 2

eV/Bohr2 (blue line), C = 3.5 eV/Bohr2 (red line), C = 6.5 eV/Bohr2 (yellow line) and C = 15 eV/Bohr2

(purple line). A zoom of the Q ∼ 0 region is shown, where the minima of the purple curve can be observed.

Figure 13 illustrates the previously discussed characteristics of the function that describes the total energy
variation of the system. In the left panel, it is evident that for C = 2 eV/Bohr2, C = 3.5 eV/Bohr2, and C = 6.5

eV/Bohr2, the minima are appreciable within the chosen Q scale. Nevertheless, for C = 15 eV/Bohr2, the
function apparently does not exhibit minima and resembles a quartic function with its minimum at Q = 0.
However, by reducing the Q scale and focusing on the Q ∼ 0 region, the minima in the energy variation
become clearly observable, as expected from the previous analysis.

As shown in Fig. 13, for large values of the spring constant C, the distortion that minimizes the energy, Q∗,
is small and the double well is very swallow. From a purely theoretical and ideal perspective, as is the case
in this study, where it has been assumed throughout that the system is at T = 0 (zero temperature), this is
not problematic. However, when translating the system to reality, where T > 0, thermal vibrations may play
a relevant role. In these elastically rigid linear chains, the temperature may be such that thermal vibrations
themselves cause the atoms to depart from their equilibrium points and constantly oscillate between Q =

−Q∗ and Q = +Q∗. Thus, by averaging the system’s dynamics, it is determined that its stable equilibrium
position would be Q = 0 rather than Q = ±Q∗. Hence, it can be said that, although the Peierls’ theorem has
been proven, as expected, it holds true only under ideal conditions, and in reality, there exists a certain limit
associated with the elastic rigidity of the system and its temperature. The Peierls distortion, and therefore,
the metal-insulator transition, is expected to take place under a certain temperature threshold.

From Fig. 14 to Fig. 19, three pairs of heatmaps are presented. Each pair consists of two heatmaps showing
the minimum of the total energy variation, i.e. the energy gain of the system due to dimerization [Eq. (91)],
and the corresponding value of Q∗ [Eq. (88)], respectively. In each pair, one parameter is fixed while the
other two are varied. The marked point corresponds to the set of parameters obtained via first-principles
simulations using SIESTA [how to compare the parameters obtained from first-principles with the ones used
in the simplified tight-binding model will be discussed in Sec. 3].
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Figure 14: Minimum of the total energy variation as a
function of η and C, with γ = −6 eV.

Figure 15: Value of Q∗ as a function of η and C,
with γ = −6 eV.

Figure 16: Minimum of the total energy variation as
a function of η and γ, with C = 6 eV/Bohr2.

Figure 17: Value of Q∗ as a function of η and γ, with
C = 6 eV/Bohr2.

Figure 18: Minimum of the total energy variation as
a function of γ and C, with η = 4 eV/Bohr.

Figure 19: Value of Q∗ as a function of γ and C,
with η = 4 eV/Bohr.

In Figures 14 and 15, it can be observed that the characteristics of dimerization exhibit a strong dependence
on η and C. For η ↑ and C ↓, the dimerization is highly prominent, resulting in a significant energy gain and
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a large displacement of each atom. In the region where η ↓ and C ↑, dimerization is practically negligible,
though not zero, as it has been demonstrated that dimerization always occurs, however slight it may be.

In Figures 16 and 17, the dimerization shows a stronger dependence on η than on γ, considering that the
variation in its characteristics over the γ range is considerably smoother. In the region η ↑, dimerization is
very pronounced, in contrast to the region with η ↓, where dimerization is almost negligible. Besides, it can
be seen that for |γ| ↓, dimerization is more prominent than for |γ| ↑.

Finally, in Figures 18 and 19, it can be seen that the dependency is mainly on the elastic constant C. For
C ↑ and |γ| ↑ the dimerization essentially dissapears, although for |γ| ↑ it rises considerably. For C ↓, the
dimerization is quite substantial, specially for |γ| ↓.

From the different heatmaps, we can deduce that electronically dominant systems are the ones with η ↑, |γ| ↓
and C ↓, and elastically dominant systems have η ↓, |γ| ↑, C ↑. This is consistent with the qualitative analysis
performed previously.

Gap opening due to dimerization

As deduced in Sec. 2.2.3, the dimerization of the system leads to the to the opening of a gap at the zone edge
with amplitude

Egap = 4|δ|. (94)

The gap, under the established conditions, is direct, meaning the maximum of the valence band and the
minimum of the conduction band take place at the same wave-vector, k = X = π/2a. This will not be affected
by the parameters γ, δ, C. However, the amplitude of the gap, which characterizes the conductivity of the
dimerized system, is strongly tied to these magnitudes.

Considering the linear law that governs the electron-lattice coupling [Eq. (83)] and the distance each atom
displace from its original equilibrium point, the amplitude of the gap can be expressed as

Egap = 4|δ|
= 4 · |2ηQ∗|

= 4 · 2η · ξ2
|γ|
η
e
−π|γ|C

4η2

= ξ3|γ|e
−π|γ|C

4η2 , with ξ3 = 5.888, (95)

where it can be observed that the gap amplitude is essentially a decreasing exponential function, similar
to the energy gain [Eq. (91)] and the displacement of each atom from its equilibrium point [Eq. (93)].
Qualitatively, its behaviour is inferred to be the same: for elastically rigid systems with minimal electronic
contribution (C ↑, |γ| ↑, η ↓), the gap amplitude tends to decrease. Conversely, it increases for electronically
dominant and elastically soft systems (C ↓, |γ| ↓, η ↑). Additionally, as Egap > 0 ∀ γ, η, C, taking into
account that the opening of the gap is due to the dimerization, this result is consistent with all the previous
analysis: the system always dimerizes. Figures 20, 21, and 22 present heatmaps showing the gap amplitude
values, following the same pattern as the previous heatmaps.
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Figure 20: Amplitude of the gap as a function of η
and C, with γ = −6 eV.

Figure 21: Amplitude of the gap as a function of η
and γ, with C = 6 eV/Bohr2.

Figure 22: Amplitude of the gap as a function of γ and C, with η = 4 eV/Bohr.

The heatmaps are qualitatively the same as the ones for ∆Emin and Q∗, which is reasonable since the func-
tions that describe the amplitude of the gap [Eq. (95)], ∆Emin [Eq. (91)] and Q∗ [Eq. (93)] are similar. In
Figures 20 to 22 it can be seen that the amplitude of the gap can reach extremely large values within our
analytical model. However, since the typical gap of an insulator ranges from 3 to 7 eV, the regions where the
gap is larger are not verisimilar. In Fig. 20, the gap shows such values in the region η ↑ and C ↓. For η ↓
and C ↑, the gap amplitude approaches 0. In an intermediate region, where η ∼ 1.5 eV/Bohr and C ∼ 4

eV/Bohr2, the gap amounts to around 1 eV, which is the typical gap of an intrinsic semiconductor.

In Figure 21, it can be seen that the dependency of the gap amplitude behaves the same as for ∆Emin and
Q∗. For the region η ∼ 2.5 eV/Bohr, with the given value of C and for every possible γ, the dimerized system
would behave like an intrinsic semiconductor. Conversely, for larger values of η, it would be an insulator.

Finally, in Fig. 22, it can be seen that the system would behave like an intrinsic semiconductor in the region
C ∼ 7 eV/Bohr2 and γ ∼ −9 eV, for the given η. However, for a larger C and lower |γ|, the gap is large
enough to consider it an insulator.

Previously, we discussed that, at sufficiently high temperatures, thermal vibrations could lead to the absence
of the metal-insulator transition. In systems where the gap amplitude is small, thermal excitations of the
electrons can easily promote them to the conduction band. If the temperature is high enough, a large number
of these excitations will take place, and the system will essentially behave like a metal, despite having a non-
zero gap. This scenario is analogous to the one discussed earlier: the Peierls transition is expected to occur
below a certain temperature threshold.
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2.5 The limit of the dimerization

In Sec. 2.2.3, it has been shown that the expression for the energy variation from an electronic perspective
[Eq. (61)] is valid solely within the regime λ < 1. From a purely mathematical viewpoint, this restriction
arises due to the fact that the complete elliptic integral of the second kind in Eq. (59) does not have real
solutions for λ ≥ 1. The physical significance of this threshold can be understood by examining the definition
of this parameter, λ = δ2

γ2 , where δ represents the correction of the hopping term: γ−δ for the short bond and
γ+δ for the long bond, with γ < 0 and δ > 0. Recalling the linear law governing the electron-lattice coupling,
δ = 2ηQ∗, where η is the electron-lattice coupling constant and Q∗ denotes the displacement of each atom in
the stable (dimerized) equilibrium configuration, it can be seen that as the dimerization increases (Q∗ ↑), so
does δ. The limit λ = 1 takes place when |δ| = |γ|. In this scenario, the hopping of the short bonds amounts
to 2γ, while it reduces to 0 for the long bonds. Thus, there is no electronic interaction between dimers.
Consequently, the system essentially consists of a series of Hydrogen molecules that only interact elastically
between themselves. The maximum individual displacement of each atom can be deduced by introducing
the condition |δ| = |γ| in Eq. (83),

Qlim
∗ =

|γ|
2η
. (96)

Besides, note that if δ2 = γ2, the eigenvalues of the Hamiltonian operator for the dimerized case [Eq. (51)]
reduce to

εn(k) = ±2|δ| = ±2|γ|, (97)

and the electronic bands are simply two horizontal lines, whose energy difference is exactly 4|γ| at every
wave-vector k.

It is also possible to calculate the energy gain in the limit λ = 1, by considering this condition and Eq. (96)
in Eq. (81):

∆Elim
min =

8γ

π
λ

[
0.443− 1

4
ln (λ)

]
+ 4C(Qlim

∗ )2

= 1.128γ + 4C
γ2

4η2

= 1.128γ + C
γ2

η2

= γ

(
1.128 + C

|γ|
δ

)
. (98)

The limit for dimerization encountered in this work is inherent to the employed model. If an alternative
model were used, where the modification of the hopping parameter is not linear and, for instance, includes
higher-order terms (such as a power series), it is likely that a different limit would be obtained. Intuitively,
the physical limit to dimerization would be reached when the individual displacement of each atom results
in the dimers being at zero distance from each other, which takes place if

Q∗ =
a

2
. (99)

Beyond this point, any further increase in displacement would cause the Hydrogen pairs to move apart,
effectively reversing the dimerization.
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3 First-principles simulations

3.1 What is SIESTA?

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) [4] is a method and simula-
tion code for atomic systems (molecules, solids, liquids, surfaces, etc.) that, through the numerical resolution
of the quantum-mechanical equations governing the behavior of electrons, allows the determination of atom
dynamics and simulation of the physical and chemical processes occurring at the atomic scale. It is based on
“first-principles” or “ab-initio” methods, particularly on Density Functional Theory (DFT) [22], which does
not require prior experimental information. Therefore, it is a method and code of general application not
restricted to a specific type of material but can be used to study essentially any system, regardless of its
chemical composition or structure.
SIESTA competes with other simulation codes based on DFT. Among them are programs based on plane waves
(such as VASP [23], CASTEP [24], or ABINIT [25] among others) or atomic orbitals (such as Gaussian [26]
and ADF [27]). Like the latter, SIESTA is also based on the use of atomic orbitals. However, the key to the
method’s high efficiency lies in the use of numerical atomic orbitals of finite range, whose shape and range
flexibility allow optimization of the localization-quality pair. This type of basis also allows the use of the
so-called O(N) methodologies, where calculation time and memory requirements scale linearly with N (the
number of atoms) instead of N3 (as is the case with the other mentioned codes). The efficiency of the meth-
ods implemented in SIESTA results in CPU and memory costs much lower than those of other codes. For
example, SIESTA can easily handle systems of a few hundred atoms on computers with a single processor,
while other codes can only access these sizes when running in parallel. Furthermore, SIESTA’s linear scaling
(O(N)) makes it possible to address problems with a much higher number of atoms (up to thousands) com-
pared to other codes, which quickly reach the barrier of O(N3) scaling. These two characteristics (efficiency
and linear scaling with the number of atoms) make SIESTA a unique tool for the atomistic study of complex
systems.

3.1.1 Approximations within the first-principles calculations

Essentially, the simulated system remains the same as in the analytical model developed in Sec. 2.2, in
particular:

• An infinite linear chain composed Hydrogen atoms.

• One orbital of s-symmetry per site (for the sake of simplicity a minimal basis set is used here).

• One electron per atom.

• At zero temperature.

• The electron will be considered spinless.

• The calculations will always be performed within the Born-Oppenheimer approximations: electrons
will be always at their ground state for whatever atomic structure considered (dimerized or not).

However, within our numerical first-principles simulations we go one step-further than in the previous ana-
lytical approach in the sense that

• Non-orthogonal atomic orbitals: there is a non-vanishing overlap with neighbour orbitals. That is,
Sµν(|T | > 0) = Sνµ(|T | > 0) ̸= 0.

28



José B. Herrera 3.2 Hydrogen chain with one atom per unit cell

• At the electronic level, the hopping extends beyond the first-neighbour approximation. Indeed, the
basis set in SIESTA is made of strictly localized numerical atomic orbitals, that exactly vanish beyond a
given cutoff radius. This cutoff determines the range of the interactions.

• At the lattice level, the interatomic force constants are not restricted to first-neighbours, and anhar-
monic terms are taken into account.

3.2 Hydrogen chain with one atom per unit cell

The one-dimensional monoatomic chain with a single atom per unit cell cannot exhibit dimerization due to
the symmetry constraints inherent in this phenomenon. This configuration, given its intrinsic symmetry, will
always have a net force on its atoms equal to zero, but the stress is different from zero, unless the atoms
are separated by the equilibrium lattice constant, that can be considered as the natural length in a model
of springs. To determine this equilibrium lattice parameter, a structural relaxation will be conducted: the
system will be allowed to evolve until the tension on the atoms falls below a specified threshold, set at 0.0001
eV/Å3. The resulting lattice parameter is

a = 2.100 Bohr. (100)

The Bloch orbitals that describe the electronic density of the system are, by definition, delocalized orbitals.
We have performed a Wannierization of the band structure in order to compute the tight binding parameters
expressed in a basis of Wannier functions, which are localized. Within our first-principles simulations we
have non-null hoppings beyond first-neighbours. To compare with the results shown in Sec. 2.2, we shall
report the obtained values for the on-site energy and first-neighbour hopping parameter, which amount to

α = −3.106 eV, γ = −6.229 eV. (101)

On the other hand, the energy per unit cell of the equidistant configuration of the monoatomic Hydrogen
chain is

E
1 atom/uc
total = −14.750 eV, (102)

where the superindex accounts for the number of atoms per unit cell.

Regarding the electronic component of the system, in Fig. 23 the band structure of the system is shown, as
well as the structure determined using the simplified model [Eq. (22)] using the tight-binding parameters
determined computationally [Eq. (101)]. Since the origin of energies is always ill-defined, the Fermi energy
of both electronic bands has been set to EF = 0.
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Figure 23: Graphical representation of the electronic energy band for a linear Hydrogen chain with one
atom per unit cell obtained using SIESTA (blue solid line) and the eigenvalues of the Hamiltonian operator
from the simplified theoretical model [Eq. (22)] determined with the tight binding parameters from SIESTA

[Eq. (101)] (red dashed line). The zero of energy corresponds with the Fermi level.

As illustrated in Fig. 23, there are noticeable differences between the band structure obtained from the
simplified model and the one derived from first-principles calculations. The main difference is that the lower
part of the electronic band obtained from SIESTA (below the Fermi level) is flatter than the one from the
theoretical model. Therefore, a larger number of states lie within that k range within (ε, ε+dε), and the DOS
in that region is higher. Conversely, the part of the band above the Fermi level shows a greater gradient, and
therefore, a lower DOS. This will be clearly visible in Sec. 3.3.1. The asymmetry between the electronic band
above and below the Fermi level is primarily attributed to the non-orthogonality of the orbitals. As observed
in the simplified model, Fig. 2, or particularly in Fig. 6, the electronic bands when the orbitals do not overlap
are symmetrical with respect to the Fermi level (where the folding of the bands takes place).

3.3 Hydrogen chain with two atoms per unit cell

3.3.1 No dimerization case

The one-dimensional monoatomic chain with two atoms per unit cell can indeed exhibit dimerization. Ini-
tially, first-principles calculations will be conducted for the non-dimerized chain, which corresponds to the
basic band model. As the number of atoms per unit cell has been doubled, the lattice parameter is conse-
quently doubled, taking the value

b = 2a = 4.200 Bohr. (103)

The tight binding parameters do not change with respect to the one atom per unit cell case developed in
Sec. 3.2. Regarding the total energy of the system, since there are twice the number of atoms per unit cell,

E
2 atom/uc
total = 2 · E1 atom/uc

total = −29.500 eV. (104)

Left side of Fig. 24 depicts the electronic bands for the non-dimerized case computed with SIESTA, as well
as the ones determined with the simplified theoretical model [Eq. (46)], using the tight-binding parameters
obtained from first-principles [Eq. (101)]. Right side shows the density of states for the non-dimerized case
from first-principles calculations.
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Figure 24: On the left side, the graphical representation of the electronic energy band for a linear Hydro-
gen chain with two atoms per unit cell obtained using SIESTA (blue solid line) and the eigenvalues of the
Hamiltonian operator from the simplified theoretical model [Eq. (46)] determined with the tight binding
parameters from SIESTA [Eq. (101)] (red dashed line). The zero of energy corresponds to the Fermi level.
On the right side, the density of states obtained from first-principles.

In Figure 24, it is more evident that the basis of atomic orbitals is non-orthogonal, as the asymmetry of the
electronic bands determined with SIESTA with respect to the Fermi level is clearly visible. The DOS shows two
asymmetrical maxima, both at Γ. The largest density of states corresponds to the lower band, flatter than the
upper band. The electronic bands from the theoretical model are symmetrical with respect to the Fermi level,
resulting in a symmetric DOS as well [Fig. 4].

3.3.2 Dimerization case

We shall verify whether a monoatomic hydrogen chain at zero temperature spontaneously dimerizes, that is,
whether it is unstable with respect to a distortion in real space caused by a phonon at k = π/a. Essentially,
to verify Peierls’ theorem. For this purpose, the same chain with two atoms per unit cell as in Section 3.3.1
will be arranged, but with the initial positions slightly displaced. In the non-dimerized case, the atoms are
equidistant from each other. Therefore, the first atom of the cell is at R1 = 0, denoting R1 as the position
vector of the ions. The second atom of the cell is at R2 = 1

2b = a. To denote this more conveniently, fractional
coordinates of the lattice parameter b will be used. In this way, the final configuration of the non-dimerized
system is R = {0, 1

2}.

To check if the system spontaneously dimerizes, we will set the initial configuration of the atoms as Ri =

{0.01, 0.49}, and we will conduct an structural relaxation, allowing the system to iteratively evolve to its
most stable state. The final configuration of the system results

Rf = {0.050, 0.450}. (105)

Where it can be observed that the system has not evolved towards Ri = {0, 1
2}, but has instead acquired

a different configuration in which the distance between the atoms in the unit cell is shorter. In the non-
dimerized system, distance between atoms is exactly 1

2b = a. In the dimerized system, the length of the short
bond takes the value

a− 2Q∗ = 0.400b = 1.680 Bohr, (106)

where the notation from the simplified model has been followed, where Q∗ is the individual displacement of
each atom from its position in the equidistant configuration, in this case,

Q∗ = 0.050b = 0.210 Bohr, (107)
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such that 2Q∗ is the distance they move closer to or farther from their adjacent atoms. Therefore, the length
of the long bond amounts to

a+ 2Q∗ = 0.600b = 2.520 Bohr. (108)

As observed, the system has spontaneously evolved into a dimerized state: the atom at (τ1, T = 0) has shifted
in the positive direction of the longitudinal axis, while the atom at (τ2, T = 0) has moved in the negative
direction. Consequently, they have drawn closer to each other, while distancing themselves from the atoms
at (τ2, T = −2a) and (τ1, T = +2a), respectively. This behavior aligns with the predictions of the simplified
theoretical model and Peierls’ theorem. First-principles calculations predict a dimerization.

The energy of the system when it spontaneously dimerizes, under natural conditions and at zero temperature,
takes the value

E
2 atom/uc
total, dim = −29.718 eV. (109)

Thus, the energy gain due to dimerization, using Eq. (109) and (104), takes the value

∆E = E
2 atom/uc
total, dim − E

2 atom/uc
total

= −0.218 eV. (110)

The electronic bands for the dimerized chain are shown on the left side of Fig. 25. On the right side, the
density of states for the dimerized case from first-principles.

Figure 25: On the left side, the graphical representation of the electronic energy bands for an spontaneously
dimerized linear Hydrogen chain with two atoms per unit cell obtained using SIESTA (solid blue line) and
the eigenvalues of the Hamiltonian operator from the analytical model [Eq. (52)] determined with the tight
binding parameters from SIESTA [Eq. (101), (107) and (112)]. The zero of energy corresponds to the Fermi
level. On the right side, the density of states, computed with SIESTA.

Where it can be seen that the electrons with wave-vectors near the Fermi level see their energies lowered,
which produces the opening of a gap at the zone edge, whose amplitude amounts to

Egap = 4.842 eV, (111)

which is large enough to consider the dimerized system an insulator and not an intrinsic semiconductor,
whose typical gap is around 1 eV.

Besides, the density of states shows three local maxima and one absolute maximum. The absolute maximum
corresponds to the valence band at Γ, the flattest region of the electronic bands. There are two other maxima
at the zone edge, where the bands flatten due to the opening of a gap. The DOS at ± X in the valence band
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is higher than the one at the conduction band. The last maximum corresponds to the conduction band at
Γ, and takes the same value as the one at ± X, meaning that the gradient at Γ and ± X of the conduction
band, produced by the opening of the gap, is the same when the chain dimerizes. As expected from the
analytical model, the DOS between the valence and conduction bands is null, since there are no states. The
main difference is the asymmetry between both bands, which was previously discussed in the no-dimerization
case.

The dimerization of the system implies a change in the interatomic distances and, therefore, in the tight-
binding parameters. In the simplified theoretical model, it was assumed that there is a linear relation between
the hopping parameter correction δ and the individual displacement of each atom, Q∗, which is governed
by the electron-lattice coupling constant, η [Eq. (83)]. This coupling is considered, in accordance with the
model approximations, only at first neighbours. Nevertheless, in the simulations conducted with SIESTA, the
coupling is not restricted to first-neighbours. For comparison, the term that governs the interaction between
adjacent atoms is obtained,

η = 3.971 eV/Bohr. (112)

Natural elastic constant of the Hydrogen chain

We need to determine the elastic constant that describes the lattice interactions between first-neighbours,
decoupled from the electronic component of the system. In order to compute C from first-principles using
SIESTA, it is necessary to calculate the phonons of the system, i.e. the dynamic matrix. This procedure is car-
ried out displacing each atom of the Bravais lattice and determining the forces acting on the remaining atoms
due to that deformation. The problem is that, for each displacement, the system reaches self-consistency in
the electronic component calculations. We are working within the Born-Oppenheimer approximation, i.e.
the electrons are always considered to be on their ground-state. As shown, the electrons reach their ground-
state through dimerization. Thus, it is impossible to obtain a decoupled elastic constant from the electronic
component using this method.

To obtain the elastic constant, we will combine the analytical model and SIESTA. Equation (84) quantifies
the energy variation when the system dimerizes as a function of the displacement of each atom, Q, and
the parameters γ, η and C. With SIESTA, we have computed the hopping parameter for first neighbours, γ
[Eq. (101)], the displacement of each atom when the system reaches its ground-state through dimerization,
Q∗ [Eq. (107)], the energy gain, ∆Emin [Eq. (110)] and the first-neighbours coupling constant, η [Eq. (112)].
It is possible to solve for C in Eq. (84) and introduce the results from SIESTA, obtaining

Cnatural =
∆Emin − 32η2

πγ Q2
∗

[
0.443− 1

4 ln
(

4η2

γ2 Q
2
∗

)]
4Q2

∗

= 5.867 eV/Bohr2 (113)

which is the decoupled elastic constant that describes the first-neighbours lattice interactions.

Modulation of the transition with an external potential

In SIESTA, it is possible to add an additional term to the Hamiltonian, and therefore subject the system to an
external potential. In order to explore the nature of the transition and the interplay between the electronic
and elastic components of the monoatomic chain, a harmonic potential will be simulated. Adding a harmonic
potential implies modifying the spring constant that characterizes the elastic interaction between the atoms of
the lattice. This type of potential is specified by its range of action and the force constant. The new harmonic
term will consist of a first-neighbour potential, i.e. with a maximum range of b = 2a, so that the net elastic
constant of the system, at first-neighbours, for comparison with the simplified theoretical model, is given by

C = Cnatural + Cextra, (114)

The dimerization of the monoatomic Hydrogen chain is simulated for different values of Cextra, both positive,
increasing the net elastic constant, and negative, decreasing it. Tables 1 and 2 show the values of the energy
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gain, ∆E, the displacement of each atom, Q∗, and the gap amplitude, Egap, for different values of Cextra,
with Cextra > 0 and Cextra < 0, respectively.

Cextra (eV/Bohr2) ∆E (eV) Q∗ (Bohr) Egap (eV)
+0.5 −0.143 0.189 4.006

+1.0 −0.091 0.159 3.250

+1.5 −0.051 0.116 2.588

+2.0 −0.035 0.093 2.049

+2.5 −0.021 0.074 1.671

+3.0 −0.012 0.057 1.242

+3.5 −0.007 0.042 0.946

+7.0 > −0.001 0.008 0.145

Table 1: Values of the energy gain, ∆E, atom dis-
placements, Q∗ and amplitude of the gap, Egap, for
different values of an additional positive elastic con-
stant due to an external harmonic potential, Cextra,
simulated using SIESTA.

Cextra (eV/Bohr2) ∆E (eV) Q∗ (Bohr) Egap (eV)
−0.5 −0.324 0.247 5.738

−1.0 −0.466 0.284 6.659

−1.5 −0.648 0.319 7.577

−2.0 −0.874 0.336 8.472

−2.5 −1.145 0.366 9.321

−3.0 −1.461 0.392 9.921

−3.5 −1.821 0.420 10.353

−4.0 −2.224 0.443 10.648

Table 2: Values of the energy gain, ∆E, atom dis-
placements, Q∗ and amplitude of the gap, Egap, for
different values of an additional negative elastic con-
stant due to an external harmonic potential, Cextra,
simulated using SIESTA.

Table 1 shows that, as the elastic constant of the system increases due to the external potential, dimerization
becomes less pronounced, with the elastic component increasingly dominating over the electronic one. With
the natural elastic constant of the system, the energy gain from dimerization amounts to −0.218 eV. However,
this gain is nearly halved when the elastic constant is increased by 0.5 eV/Bohr2, which is just 10% higher than
the natural value. The relative variations in the gap amplitude and the displacement of each atom are not as
significant as the changes in the energy gain. For high values of the additional elastic constant, dimerization
becomes almost negligible, with minimal energy gain, atomic displacement, and gap amplitude. When Cextra

is approximately 3 eV/Bohr2, the gap reaches about 1 eV, which is the typical value for an intrinsic semi-
conductor. For lower elastic constants, the gap is sufficiently large to classify the one-dimensional hydrogen
atomic chain as an insulator. Conversely, for higher elastic constants, the gap is small enough for electrons
to easily access the conduction band through thermal excitations, meaning that it behaves, essentially, as a
metal.

For Cextra < 0 [Table 2], where the net elastic constant of the system is lower than the natural one, it can be
observed that dimerization becomes more intense as Cextra becomes more negative. This is reasonable due to
the reduction of the elastic component of the solid with respect to the electronic one. The relative variations
in energy gain are not as drastic as in the case of Cextra > 0, demonstrating a non-linear behavior, as expected
from the analytical model. For highly negative values of the additional elastic constant, or equivalently, for
very low values of the net elastic constant, the system achieves significant energy gains, atomic displacements,
and gap amplitudes. In the case of Cextra = −4 eV/Bohr2, it is observed that Q∗ = 0.443 Bohr, indicating that
the separation between dimers reaches half of its value without dimerization.

The dynamics of the system obtained from SIESTA does qualitatively match the predicted behaviour of the
analytical model. In order to check to what extent the model really adecuates to the simulations, we shall
compare both quantitatively.

3.4 Quantitative comparison of the analytical and computational models

With the first-neighbours parameters obtained from the first-principles simulations,

• The hopping term [Eq. (101)], γ = −6.229 eV,

• The electron-lattice coupling constant [Eq. (112)], η = 3.971 eV/Bohr,

• The elastic constant (decoupled from the electronic component of the system) [Eq. (113)], C = 5.867

eV/Bohr2,
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we shall compare the dimerization characteristics determined with the analytical model developed in Sec. 2.1
and the ones from SIESTA.

The results are shown in Table 3.

SIESTA Analytical model Relative error (%)
∆E (eV) −0.218 −0.225 3.2%

Q∗ (Bohr) 0.210 0.187 10.95%

Egap (eV) 4.842 5.941 22.7%

Table 3: Values of the energy gain, ∆E, atom displacements, Q∗ and amplitude of the gap, Egap, obtained
from first-principles simulations and the theoretical analytical model, for the natural one-dimensional
monoatomic chain, as well as the relative error.

As it can be observed, the analytical model, despite its simplicity, provides a reasonable approximation to the
first-principles calculations. The energy gain shows the smallest relative error, indicating a notably accurate
result. However, the accuracy of the model decreases for Q∗, and especially for the gap amplitude. The
model predicts higher energy gain and a larger gap compared to the results obtained with SIESTA, despite
predicting a smaller individual displacement for each atom. This suggests that the analytical model may
overestimate the effects of dimerization, likely due to the electron-lattice coupling law [Eq. (83)] including
only a single term. Introducing a more complex law with additional negatively contributing terms might re-
duce this overestimation, although it would also significantly increase the complexity of the model. Another
possibility is that the model underestimates the elastic component of the system. In Sec. 2.3, the harmonic
approximation was used. If anharmonic terms had been included in the development of the elastic compo-
nent, the elastic part might have generally been more dominant. However, once again, the complexity of the
model would have increased considerably. Overall, the results are considered acceptable and achieve a good
balance between complexity and plausibility.
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4 Conclusions

The theoretical analytical model developed in this work goes beyond conventional band theory by incorporat-
ing the electron-lattice coupling, enabling the study of the interplay between these two energy components.
This approach has confirmed the Peierls theorem: any one-dimensional chain with equidistant atoms is un-
stable with respect to a lattice deformation that lifts up the degeneracy at the Fermi level. The model includes
three fundamental parameters: the hopping term, γ, the electron-lattice coupling constant, η, and the elastic
constant of the system, C. It has been demonstrated that the one-dimensional monoatomic chain always
undergoes dimerization, regardless of the values of these parameters, and opens a gap at k = kF. The
equidistant configuration is always a metastable state. For elastically rigid systems with minimal electronic
contribution (C ↑, |γ| ↑, η ↓), dimerization is practically negligible, but theoretically and ideally, at zero
temperature, it always occurs. At non-zero temperatures, thermal vibrations can be such that, on average,
the system exhibits an equidistant configuration, thereby setting a physical limit to dimerization related to
the temperature of the system. For non-extreme solids, dimerization can reach values such that the system,
although it should behave as a metal according to conventional band theory, becomes an intrinsic semicon-
ductor (for mild dimerizations) or, generally, an insulator. The study of the dependencies of the dimerization
on the three parameters has also shown that this phenomenon is strongly bounded to η and C, with a lower
sensitivity to γ.

On the other hand, a limit in dimerization was found, occurring when the hopping term correction, δ, equals
the original parameter, γ. However, this limit is considered intrinsic to the developed model and not a real
physical limit. To analyze this, a model of greater complexity and depth would be required, one that considers
dimerizations beyond this limit.

In addition to the analytical model, through first-principles atomistic simulations performed with SIESTA,
it has been confirmed that the equidistant configuration is unstable, with the system reaching equilibrium
when atoms form dimers. Modulating an external potential that modifies the lattice interactions, it has been
observed how dimerization increases for electronically predominant systems and decreases for elastically
rigid systems, consistent with the results from the analytical theoretical model.

Through these simulations, the hopping term, the electron-lattice coupling constant and the elastic constant,
have been obtained. These parameters have been introduced in the analytical model, allowing their compar-
ison. Despite the approximations made in the model, it provides a reasonably faithful representation of the
computational results, thus achieving an acceptable balance between complexity and accuracy.
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Potential directions and extensions of the work

To continue this work, one of the main possibilities would be to study the limit of dimerization in greater
depth. This could be approached in two ways. On one hand, it is possible to modify some of the assumptions
of the model, such as the law governing the electron-lattice coupling or the terms considered in the expansion
of the system’s elastic component. More general coupling laws could be considered, as well as anharmonic
terms in the elastic part. On the other hand, it would be possible to study the relation between the Peierls
dimerization and temperature, determining to what extent, given a certain temperature, dimerization can be
considered as such or, on average, the system oscillates between the equilibrium dimerized configurations
and essentially remains in the equidistant configuration.

Another very interesting aspect would be to explore potential practical applications of the Peierls dimerization
and the fact that it can be modulated by external potentials. Studying an application that could result in a
detector based on this phenomenon would be a very interesting option. Additionally, analyzing a molecule
or solid system that exhibits a Peierls transition could help to learn more about this phenomenon and its
characteristics.

Another possibility would be to explore applications of the Peierls transition in other areas such as supercon-
ductivity, quantum computing, Fermi surface nesting, and other topics of current scientific interest. These
fields could greatly benefit from new perspectives and possibilities.
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A Approximation: complete elliptic integral of the second kind

In this appendix, we shall obtain the approximation of the complete elliptic integral of the second kind, used
in Sec. 2.2.3 [Eq. (60)]. This procedure is based exclusively on the book from Abramowitz, M. and Stegun, I.
A., [28]. We begin by recalling the definition of complete elliptic integral of the second kind (page 590, Eq.
(17.3.3)),

E(z) =

∫ π/2

0

√
1− z sin2(θ)dθ. (115)

The elliptic integral from Eq. (59) is obtained by setting z = 1 − λ. This integral is related to the so-called
hypergeometric functions, F (a, b; c; z) (page 591, Eq. (17.3.10)),

E(z) =
1

2
πF

(
−1

2
,
1

2
; 1; z

)
. (116)

To inquire about the hypergeometric functions and its relation with the elliptic integrals, see Chapter 15 from
[28]. Nevertheless, the mathematical details are considered to be out of the extent of this work. The F
function may be transformed as follows (page 559, Eq. (15.3.11)):

F (a, b; a+ b+m; z) =
Γ(m)Γ(a+ b+m)

Γ(a+m)Γ(b+m)

m−1∑
n=0

(a)n(b)n
n!(1−m)n

(1− z)n−

− Γ(a+ b+m)

Γ(a)Γ(b)
(z − 1)m

∞∑
n=0

(a+m)n(b+m)n
n!(n+m)!

(1− z)n[ln(1− z)−

− ψ(n+ 1)− ψ(n+m+ 1) + ψ(a+ n+m) + ψ(b+ n+m)]

with (|arg(1− z)| < π, |1− z| < 1) . (117)

where ! denotes the factorial, Γ is the Gamma function, (a)n and (b)n are the Pochhamer’s Symbols, and ψ
is the digamma function, which is the derivative of the neperian logarithm of the Gamma function. We shall
set some properties and definitions regarding these:

• Gamma function,

Γ(1) = 1, (118)

Γ

(
1

2

)
=

√
π, (119)

Γ(z + 1) = zΓ(z). (120)

• Pochhamer’s Symbols (page 256, Eq. (6.1.22)),

(z)0 = 1, (121)

(z)n = z(z + 1)(z + 2)...(z + n− 1) =
Γ(z + n)

Γ(z)
. (122)

• Digamma function (page 258, Eqs. (6.3.2), (6.3.3) and (6.3.5)),

ψ(1) = −γ, (123)

ψ

(
1

2

)
= −γ − 2 ln(2), (124)

ψ(z + 1) = ψ(z) +
1

z
. (125)

where γ is the Euler-Mascheroni constant, whose value is not relevant.
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The hypergeometric function needed is the one with set of parameters and variables
(
− 1

2 ,
1
2 ; 1; 1− λ

)
. There-

fore, in Eq. (117), we need to set a = − 1
2 , b = 1

2 , c = 1, m = c− a− b = 1 and z = 1− λ. Consequently, the
first summation in Eq. (117) consists in just the first term, with n = 0. Regarding the second summation, we
neglect terms of order 2 or higher in λ for the approximation. Thus, we shall truncate the series in the first
term, which corresponds to n = 0. Taking this into account in Eq. (117),

F

(
−1

2
,
1

2
; 1; 1− λ

)
≈ Γ(1) · Γ(1)

Γ
(
1
2

)
· Γ
(
3
2

) (− 1
2

)
0

(
1
2

)
0

0! · (0)0
· λ0+

+
Γ(1)

Γ
(
− 1

2

)
· Γ
(
1
2

) · λ ·
(
1
2

)
0

(
3
2

)
0

0! · 1!
· λ0 ·

[
ln(λ)−

− ψ(1)− ψ(2) + ψ

(
1

2

)
+ ψ

(
3

2

)]
=

2

π
− 1

2π
λ
[
lnλ+ γ + γ − 1−

− γ − 2 ln(2)− γ − 2 ln(2) + 2
]

=
2

π
+

1

2π
λ
[
4 ln(2)− 1− ln(λ)

]
. (126)

Replacing Eq. (126) in Eq. (116):

E(1− λ) ≈ 1 +
1

4
λ
[
4 ln(2)− 1− ln(λ)

]
= 1 + λ

[
ln(2)− 1

4
− 1

4
ln(λ)

]
= 1 + λ

[
0.443− 1

4
ln(λ)

]
, (127)

which is the desired approximation. Note that z = 1− λ complies with the conditions imposed in Eq. (117).
Since |1 − z| < 1, |λ| < 1. Taking into account the definition of λ, λ ≡ δ2/γ2, it must be non-negative if the
chain is dimerized, thus, λ < 1. Avoiding negative values of λ is important given that for values −1 < λ < 0

the elliptic integral has only imaginary solutions [29]. This can be seen in Eq. (127), since ln(λ) = ln(|λ|)+iπ
if λ < 0. These solutions do not yield any physical meaning.

39



References

[1] Peierls, S. R. (1971). Bird of Passage: Recollections of a Physicist (Princeton 1985).

[2] Mermin, N. D. (2024). Autobiographical Notes of a Physicist. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2401.04711

[3] International Union of Pure and Applied Chemistry (IUPAC). (2019). Peierls transition. In Compendium
of Chemical Terminology (3.0.1). https://doi.org/10.1351/goldbook.p04468

[4] Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002).
The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter,
14(11), 2745. https://doi.org/10.1088/0953-8984/14/11/302

[5] Fernández-Ruiz, T., Sánchez-Movellán, I., García-Lastra, J. M., Moreno, M., Aramburu, J.
A., & García-Fernández, P. (2024). Many-body model for the cooperative Jahn-Teller ef-
fect in crystals and its associated orbital ordering. Physical Review B, 109(20), 205150.
https://link.aps.org/doi/10.1103/PhysRevB.109.205150

[6] I. B. Bersuker, The Jahn-Teller Effect. Cambridge University Press, 2006.

[7] P. García-Fernández, I. B. Bersuker, J. A. Aramburu, M. T. Barriuso, and M. Moreno. (2005).
Origin of warping in the E ⊗ e Jahn-Teller problem: Quadratic vibronic coupling versus anhar-
monicity and application to NaCl:Rh2+ and triangular molecules. PHYSICAL REVIEW B 71, 184117.
https://doi.org/10.1103/PhysRevB.71.184117

[8] S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Crystals. Academic Press (New
York), 1970.

[9] Varignon, J., Bibes, M. & Zunger, A. Origin of band gaps in 3d perovskite oxides. Nat Commun 10, 1658
(2019). https://doi.org/10.1038/s41467-019-09698-6

[10] Sánchez-Movellán, I., Moreno, M., Aramburu, J. A., & García-Fernández, P. (2023). Strain-Induced Fer-
romagnetic to Antiferromagnetic Crossover in d9-Ion (Cu2+ and Ag2+)-Layered Perovskites. The Journal
of Physical Chemistry C, 127(17), 8332-8341. https://doi.org/10.1021/acs.jpcc.3c01166

[11] Liang, S., Bai, Y., & Beng, B. (2006). Peierls instability and persistent current in mesoscopic
conducting polymer rings. Physical Review. B, Condensed Matter And Materials Physics, 74(11).
https://doi.org/10.1103/physrevb.74.113304

[12] Ahn, J. R., Kang, P. G., Ryang, K. D., & Yeom, H. W. (2005). Coexistence of Two Differ-
ent Peierls Distortions within an Atomic Scale Wire: Si(553)-Au. Physical Review Letters, 95(19).
https://doi.org/10.1103/physrevlett.95.196402

[13] Robert E. Thorne; Charge-Density-Wave Conductors. Physics Today 1 May 1996; 49 (5): 42–47.
https://doi.org/10.1063/1.881498

[14] Zhang, B., Zhang, T., Pan, J., Chow, T. P., Aboalsaud, A. M., Lai, Z., & Sheng, P.
(2021). Peierls-type metal-insulator transition in carbon nanostructures. Carbon, 172, 106-111.
https://doi.org/10.1016/j.carbon.2020.10.037

[15] Xu, W., Leary, E., Sangtarash, S., Jirasek, M., González, M. T., Christensen, K. E., Vicente, L. A., Agraït,
N., Higgins, S. J., Nichols, R. J., Lambert, C. J., & Anderson, H. L. (2021). A Peierls Transition in Long Poly-
methine Molecular Wires: Evolution of Molecular Geometry and Single-Molecule Conductance. Journal
Of The American Chemical Society, 143(48), 20472-20481. https://doi.org/10.1021/jacs.1c10747

https://doi.org/10.48550/arxiv.2401.04711
https://doi.org/10.1351/goldbook.p04468
https://doi.org/10.1088/0953-8984/14/11/302
https://link.aps.org/doi/10.1103/PhysRevB.109.205150
https://doi.org/10.1103/PhysRevB.71.184117
https://doi.org/10.1038/s41467-019-09698-6
https://doi.org/10.1021/acs.jpcc.3c01166
https://doi.org/10.1103/physrevb.74.113304
https://doi.org/10.1103/physrevlett.95.196402
https://doi.org/10.1063/1.881498
https://doi.org/10.1016/j.carbon.2020.10.037
https://doi.org/10.1021/jacs.1c10747


José B. Herrera References

[16] Streltsov, S. V., Mazin, I. I., Heid, R., & Bohnen, K. (2016). Spin-orbit driven Peierls transition
and possible exotic superconductivity in CsW2O6. Physical Review. B./Physical Review. B, 94(24).
https://doi.org/10.1103/physrevb.94.241101

[17] Andronic, S., & Casian, A. (2017). Metal-Insulator Transition of Peierls Type in Quasi-One-
Dimensional Crystals of TTT2I3. Advances In Materials Physics And Chemistry, 07(05), 212-222.
https://doi.org/10.4236/ampc.2017.75017

[18] Zhang, L., Bhattacharya, U., Bachtold, A. et al. Steady-state Peierls transition in nanotube quantum
simulator. npj Quantum Inf 9, 7 (2023). https://doi.org/10.1038/s41534-022-00675-4

[19] Aschroft, N. W., & Mermin, N. D. (1976). Solid State Physics. Saunders College Publishing.

[20] Zheng, Q. (2023, June 6). Peierls transition. Qijing Zheng. http://staff.ustc.edu.cn/∼zqj/posts/Peierls-
Transition/

[21] Kittel, C. (1986). Introduction to Solid State Physics. John Wiley & Sons.

[22] Engel, E. (2011). Density functional theory: An Advanced Course. Springer-Verlag Berlin.

[23] Hafner, J. (2008). Ab-initio simulations of materials using VASP: Density-functional theory and beyond.
Journal of computational chemistry, 29(13), 2044-2078. https://doi.org/10.1002/jcc.21057

[24] Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K., & Payne, M. C. (2005).
First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials, 220(5-6),
567-570. https://doi.org/10.1524/zkri.220.5.567.65075

[25] Gonze, X., Amadon, B., Anglade, P. M., Beuken, J. M., Bottin, F., Boulanger, P., ... & Zwanziger, J.
W. (2009). ABINIT: First-principles approach to material and nanosystem properties. Computer Physics
Communications, 180(12), 2582-2615. https://doi.org/10.1016/j.cpc.2009.07.007

[26] Curtiss, L. A., Redfern, P. C., & Raghavachari, K. (2007). Gaussian-4 theory. The Journal of chemical
physics, 126(8). https://doi.org/10.1063/1.2436888

[27] Te Velde, G. T., Bickelhaupt, F. M., Baerends, E. J., Fonseca Guerra, C., van Gisbergen, S. J., Snijders,
J. G., & Ziegler, T. (2001). Chemistry with ADF. Journal of Computational Chemistry, 22(9), 931-967.
https://doi.org/10.1002/jcc.1056

[28] Abramowitz, M. and Stegun, I.A. (Eds.) (1965) Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover Publications Inc., New York.

[29] Spanier, J., & Oldham, K. B. (1987). An atlas of functions. Taylor & Francis/Hemisphere.

41

https://doi.org/10.1103/physrevb.94.241101
https://doi.org/10.4236/ampc.2017.75017
https://doi.org/10.1038/s41534-022-00675-4
http://staff.ustc.edu.cn/~zqj/posts/Peierls-Transition/#fn:ellipe_expansion_note
http://staff.ustc.edu.cn/~zqj/posts/Peierls-Transition/#fn:ellipe_expansion_note
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1524/zkri.220.5.567.65075
https://doi.org/10.1016/j.cpc.2009.07.007
https://doi.org/10.1063/1.2436888
https://doi.org/10.1002/jcc.1056

	Historical background and motivation
	Theoretical analytical model
	Brief revision of the tight-binding approach
	A basis set of atomic orbitals
	The Hamiltonian matrix elements
	The Overlap matrix elements
	The secular equation

	Tight-binding model for a one-dimensional monoatomic chain
	No dimerization case: one atom per unit cell
	Ground-state electronic energy per unit length
	Density of states of the monoatomic chain

	No dimerization case: two atoms per unit cell
	Ground-state electronic energy per unit length (two atoms per unit cell)
	Density of states with two atoms per unit cell

	Dimerized case (two atoms per unit cell)
	Variation in electronic energy per unit length of the dimerized chain
	Density of states of the dimerized chain


	Elastic energy of a one-dimensional monoatomic chain
	Elastic energy per unit cell in the absence of dimerization
	Elastic energy per unit cell of the dimerized chain

	Stability of the dimerized chain
	Gap opening due to dimerization

	The limit of the dimerization

	First-principles simulations
	What is siesta?
	 Approximations within the first-principles calculations

	Hydrogen chain with one atom per unit cell
	Hydrogen chain with two atoms per unit cell
	No dimerization case
	Dimerization case
	Natural elastic constant of the Hydrogen chain
	Modulation of the transition with an external potential


	Quantitative comparison of the analytical and computational models

	Conclusions
	Potential directions and extensions of the work
	Approximation: complete elliptic integral of the second kind
	References

