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Abstract— In near-field power transfer, the distance between
the transmitter and receiver resonators can be extended with
the aid of an intermediate resonator, which may also be used
to circumvent an obstacle such as a wall or desktop. Most
previous works analyze the coupled system when driven by
an independent source, which will typically require a power
amplifier. Instead, an oscillator will be considered here, which will
eliminate the need for the signal generator and driver. However,
the two resonator couplings will have an impact on the oscillator
behavior and its stability properties. We will initially address
a cubic-nonlinearity oscillator and demonstrate that the coupled
multiresonance network may lead to undesired oscillation modes.
In the second stage, we will consider a transistor-based oscillator,
which will be analyzed through a semianalytical formulation
capable of providing all the coexisting periodic solutions. The
undesired modes will be suppressed with the aid of a trap
resonator. To maximize the power transfer, we will first obtain the
optimum oscillator load admittance by means of a new procedure.
Then, the admittance will be implemented using a relationship
between the coupling factors. The methods will be applied to a
Class-E oscillator, which has been experimentally characterized.

Index Terms— Bifurcation, oscillator, resonator coupling, sta-
bility, wireless power transfer.

I. INTRODUCTION

NEAR-FIELD wireless power transfer through the induc-
tive coupling of two resonators can be applied to recharge

electrical vehicles, sensor networks, and biomedical implants,
among others [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].
However, the transferred power decreases for a larger distance
between the resonators or when they get misaligned [12], [13],
which is due to the reduction of the coupling factor. Previous
works [14], [15], [16], [17], [18], [19], [20], [21], [22] have
demonstrated the convenience of using an intermediate (or
relay) resonator for applications demanding a larger distance
or when an obstacle such as a wall or desktop [14], [18] must
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be circumvented. Different arrangements [14], [16], [21] have
been proposed, enabling power transfer at distances that are
several times larger than the resonator size. Most previous
research [14], [15], [16], [17], [18], [19], [20], [21], [22]
focuses on analysis and optimization of a passive system of
three coupled resonators driven by an independent source.
However, practical applications will often require, together
with an independent source, a high-power amplification stage.
Alternatively, a high-power oscillator [23], [24], [25], [26],
[27], [28] can be used, which eliminates the need for the
signal generator and driver [25]. This should enable a higher
efficiency when considering the total consumption, as shown
in [23]. Although oscillator circuits have been used in systems
containing a relay element [15], [22], to the best of our
knowledge no in-depth investigation of oscillator behavior in
these coupled conditions has been carried out. Due to the
presence of the additional resonator, one may expect a more
complex response than the one obtained when the oscillator
is coupled to a single resonator, which has been studied in
recent works in both free-running [23], [24], [25], [26], [27],
[28] and injection-locked [29], [30] operation.

In this work, we will address a system composed of an oscil-
lator coupled to an intermediate (ideally lossless) resonator,
acting as a relay, and a power-receiver resonator. In these
conditions, the oscillator active core will see a multiresonance
load network, which may lead to undesired operation modes.
For an in-depth understanding of the system behavior, we will
initially carry out an analytical study of a cubic-nonlinearity
oscillator coupled to the two external resonators. As shown in
[19] and [20], for a sufficient distance between the transmitter
and receiver inductors, their coupling effects can be neglected,
so the behavior will depend on two coupling factors: between
the transmitter inductor (in the oscillator) and the intermediate
inductor (k1), and between the intermediate inductor and the
receiver one (k2). We will derive the steady-state oscillation
condition and obtain all the possible coexisting oscillation
modes and their stability properties. Then, we will obtain
the analytical relationship between the factors k1 and k2
that provides the load conductance required for maximum
transferred power. This will facilitate an optimum selection of
the distances between the inductors, as well as other relevant
design parameters, such as the load resistance.

In the second stage, we will consider a transistor-based
oscillator coupled to the intermediate and receiver resonators.
Due to the potential complexity of the solutions, the system
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Fig. 1. Cubic-nonlinearity oscillator considered in the analytical study. It is
coupled to an intermediate resonator, in turn coupled to a receiver resonator.
(a) Oscillator schematic. The analytical calculations are validated with HB.
The most complex oscillation curves are obtained through the optimization
of a voltage AG. Element values: i(ν) = aν + bν3 (a = −0.01 A/V and
b = 0.01 A/V3), C1 = C2 = 424 pF, L1 = L2 = 0.325 µH, RL = 50 �,
C3 = 70.6 pF, and L3 = 1.95 µH. The three resonators (Res1–Res3) are tuned
at 13.56 MHz. (b) Calculation of the input admittance Yin.

will be analyzed through a semianalytical formulation [27],
[28], capable of providing all the coexisting periodic solutions.
This formulation relies on a nonlinear admittance function
extracted from harmonic-balance (HB) simulations, which
describes the oscillator active core. All the undesired oscil-
lation modes will be suppressed with the aid of a trap
resonator. The output power will be maximized through a two-
step method. In the first step, we will make use of a new
oscillator output-power contour plot to obtain the optimum
load admittance. In the second step, this admittance will be
implemented using the relationship between k1 and k2 derived
in the analytical study. The analysis and design methods will
be applied to a Class-E oscillator that has been manufactured,
and experimentally characterized.

We would like to emphasize that the novelty of this work is
not the system or its implementation, but the in-depth inves-
tigation of its complex behavior. This involves the analysis of
its stability properties and oscillation modes, the stabilization
procedures, and the derivation of the coupling conditions that
maximize the output power.

This article is organized as follows. Section II presents an
analytical study of the oscillatory system with three coupled
resonators, which will include the calculation of the steady-
state solutions, the stability properties, and the analytical
relationship between k2 and k1 for maximum transferred
power. Section III describes the analysis of the practical
Class-E power oscillator and the new two-step procedure for
the maximization of the power transfer. Finally, Section IV
presents the experimental characterization.

II. ANALYTICAL STUDY OF THE OSCILLATORY SYSTEM
WITH THREE COUPLED COILS

For the analytical study, we will consider an oscillator cir-
cuit [Fig. 1(a)] based on the cubic nonlinearity i(v) = av+bv3,

where the coefficient a < 0 is the small-signal conductance
and the coefficient b > 0 will enable the saturation of the
oscillation amplitude. Given that the analysis is carried out at
the fundamental frequency, we will make use of the describing
function [31]. This is the response of the nonlinear element
to a sinusoidal input, calculated as the ratio between the
fundamental component of the output and the input amplitude
Here, it is calculated as the ratio between the first harmonic
of the current i(t) and the amplitude of the input voltage
V . This describing function is YN (V ) = a + βV 2, where
β = 3b/4. Note that for V < (−a/β)1/2, the function
YN (V ) will provide negative conductance because a < 0.
The nonlinear element is loaded with a parallel resonator,
composed of the inductor L1 and the capacitor C1 [Fig. 1(a)].
The inductor L1 is coupled to the inductor L2 of an inter-
mediate resonator (acting as a relay), which is also coupled
to the inductor L3 of the receiver resonator, with a series
configuration. To obtain manageable expressions, we will
disregard the coupling between the transmitter and receiver
resonators, which, as shown in [19] and [20], can be assumed
negligible for a sufficient distance (larger than the radius of
the coils). First, we will perform a stability analysis of the
dc solution. Then, we will obtain the steady-state solutions
(which may correspond to different oscillation modes) and
analyze their stability properties. Finally, we will derive the
conditions for maximum power transfer.

A. Oscillation Startup

For the oscillation startup, the dc solution must be unstable,
and give rise, under any small perturbation, to an oscillatory
transient, which will initially grow in an exponential manner
[32], [33], [34]. To analyze the stability of the dc solution
we will derive its characteristic equation [33]. This is the
homogeneous equation obtained when the solution of the
perturbed system is expressed as an exponential of complex
frequency s [33]. As the perturbation is small, we will linearize
i(v) = av + bv3 about the dc solution. In the case of the
circuit in Fig. 1(a), this solution is v = 0 and the linearization
gives the (small signal) negative conductance YN (V = 0) = a.
We will also evaluate the load admittance (Yin), seen from the
terminals of L1, at the perturbation frequency s. In the absence
of coupling, the resulting characteristic equation is

YT (V = 0, s) = a + C1s −
1

L1s
= 0 (1)

where YT (V = 0, s) is the total admittance at the node
nv in small-signal conditions. For simplicity, the inductor
L1 is considered lossless. The roots of (1), also known as
solution eigenvalues or poles [34], [35], determine the transient
response. Solving for s one obtains

s = −
a

2C1
±

√
a2

4C2
1

−
1

L1C1
. (2)

For the oscillation startup, we must have a pair of
complex-conjugate poles on the right-hand side (RHS) of the
complex plane. As deduced from (2), this will require a <
0 and (aL1)

2
− 4L1C1 < 0, which will give rise to the
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exponential growth of the oscillation amplitude at ω = I m(s).
The element values in the caption of Fig. 1 have been chosen
to fulfill these conditions. Now, we will address the system
in coupled operation. This will require a general calculation
of the input admittance Yin, seen from the coupled inductor
L1. To obtain Yin, we will connect an independent excitation
voltage source Vin between the terminals of L1, as shown in
Fig. 1(b), where, for the sake of completeness, the resistive
losses of the three inductors (Rpi , where i = 1, 2, 3) have
been considered. The resulting equation system is(

L1s + Rp1
)
I1 + M1s I2 + 0 × s I3 = Vin

M1s I1 +

(
1

C2s
+ L2s + Rp2

)
I2 + M2s I3 = 0

M2s I2 +

(
RL + Rp3 +

1
C3s

+ L3s
)

I3 = 0 (3)

where M1 = k1(L1L2)
1/2 and M2 = k2(L2L3)

1/2 are the
mutual inductances between the transmitter and the interme-
diate inductor, and between the intermediate inductor and
the receiver one. The input admittance is Yin = I1/Vin.
System (3), which includes Rpi , will be used to evaluate
the effect of the inductor losses. However, in the analytical
derivations, we will neglect these losses, as done in [36] and
[37], which will provide manageable expressions and better
insight. Considering the continuity of the equations, we can
expect a small output-power reduction, which will not affect
the main conclusions of the analytical study, as will be verified.

Under Rpi = 0, Yin can be expressed as the following ratio
of polynomials:

Yin(s) =

(1 − k2
2)s

4
+ ω3 Q−1

3 s3

+(ω2
3 + ω2

2)s
2
+ ω2

2ω3 Q−1
3 s + ω2

2ω
2
3

L1s
[

(1 − k2
1 − k2

2)s
4
+ ω3 Q−1

3 (1 − k2
1)s

3

+(ω2
3(1 − k2

1) + ω2
2)s

2
+ ω2

2ω3 Q−1
3 s + ω2

2ω
2
3

]
(4)

where we have defined the following parameters:

Q−1
3 = ω3C3 RL

ω2
2 = 1/(L2C2)

ω2
3 = 1/(L3C3). (5)

They correspond to the quality factor of the third (receiver)
resonator and the resonance frequencies of the second (inter-
mediate) and third resonators. Note that the input admittance
Yin in (4) does not depend on the individual values L2 and
C2 of the intermediate resonator but only on its resonance fre-
quency ω2. In coupled conditions, we will have the following
characteristic equation:

YT (V = 0, s) = a + Cs + Yin(s) = 0 (6)

which after replacement of Yin(s) in (4) leads to

(a + Cs)L1s
[ (

1 − k2
1 − k2

2

)
s4

+ ω3 Q−1
3

(
1 − k2

1

)
s3

+
(
ω2

3(1 − k2
1) + ω2

2

)
s2

+ ω2
2ω3 Q−1

3 s + ω2
2ω

2
3

]
+

(
1 − k2

2

)
s4

+ ω3 Q−1
3 s3

+
(
ω2

3 + ω2
2

)
s2

+ ω2
2ω3 Q−1

3 s + ω2
2ω

2
3 = 0. (7)

Fig. 2. Stability analysis of the dc solution of the cubic-nonlinearity oscillator
in Fig. 1(a) versus k1 for k2 = 0.2. Variation of the real part of the roots of
(7), providing the system poles.

The eigenvalues or poles of the dc solution (v = 0) are given
by the roots of (7). Though some works consider the detuning
of the intermediate resonator for optimization purposes [18],
[19], the three resonators are typically tuned to the same
frequency [14], [17]. The analysis here will be particularized to
this case, so the intermediate and receiver resonators will have
identical resonance frequencies ω2 = ω3. This common res-
onance frequency will agree with the free-running frequency
of the oscillator in standalone (uncoupled) operation, that is,
ω2 = ω3 = ω0, which in this case is ω0 = 1/(L1C1)

1/2. The
extension to other cases is possible but beyond the scope of
this initial work. To illustrate the analysis, we will consider
the element values in the caption of Fig. 1, which provide
f0 = ω0/(2π) = 13.56 MHz and Q3 = 3.32. Fig. 2 presents
the variation of the real part of the roots of (6) versus k1,
for k2 = 0.2. The dc solution is unstable for all the k1
values, with at least one pair of complex-conjugate poles in the
RHS, which implies the fulfillment of the oscillation startup
conditions. For k < kH1 = 0.22, there is only one pair of
complex-conjugate poles (σ1 ± jω1) on the RHS. For k1 = 0,
this pair of poles agrees with the one in (2), corresponding
to the standalone free-running oscillation. The pair of poles
σ1 ± jω1 remains on the RHS for all k1 values (Fig. 2) and
is associated with oscillation mode MD1. However, at H1,
a second pair of complex-conjugate poles (σ2 ± jω2) crosses
to the RHS, which corresponds to a direct Hopf bifurcation
[34], [38], [39]. A direct (inverse) Hopf bifurcation occurs
when a pair of complex-conjugate poles crosses the imaginary
axis to the RHS [left-hand side (LHS)] of the complex plane.
This involves the onset (extinction) of an oscillation at the
frequency of the crossing poles. As will be shown, σ2 ± jω2 is
associated with a second oscillation mode (MD2), which arises
at H1. This second pair of complex-conjugate poles crosses
back to the LHS at kH2 = 0.928 (inverse Hopf bifurcation),
where MD2 is extinguished.

In a less rigorous manner, the oscillation startup conditions
can be evaluated by making s = jω and tracing the real
and imaginary parts of the total admittance function YT (V =

0, ω) = a + Yin(ω) versus ω. The impact of k1 and k2 on
the stability properties is shown in Fig. 3(a). In uncoupled
operation, the imaginary part of the total admittance YT,i

crosses the horizontal axis (ω = 0) only once, at ω0/(2π) =

13.56 MHz, with positive slope ∂YT,i (ω)/∂ω > 0. Together
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Fig. 3. Admittance analysis of the oscillation startup conditions. (a) Variation
of the real and imaginary parts of YT (V = 0, ω, k1, k2) versus ω for very
small values of k1 and k2, equal to 0.05. The results are compared with those
obtained in uncoupled conditions. (b) Contours YT,r (V = 0, ω, k1) = 0 and
YT,i (ω, k1) = 0 in the plane defined by ω and k1 when k2 = 0.02.

with the negative value of the real part YT,r (V = 0, ω0) < 0,
this is indicative [40] of a pair of complex-conjugate poles on
the RHS and, thus, of the fulfillment of the oscillation startup
conditions. Note that the analysis based on YT (V = 0, ω) may
fail in more complex circuits due to the possible cancellations
of RHS zeroes and RHS poles [41], [42]. Thus, in uncoupled
conditions, the oscillation startup conditions are fulfilled at
a single frequency (13.56 MHz). However, as soon as the
oscillator becomes coupled, the imaginary part passes through
a maximum and then a minimum, and there are two frequency
values (different from the uncoupled oscillation frequency) at
which the oscillation startup conditions are fulfilled.

For a more detailed analysis of the sensitivity to the
coupling factors, in Fig. 3(b), we have traced the contours
YT,r (V = 0, ω, k1) = 0 (dashed line) and YT,i (ω, k1) = 0
(solid line) in the plane defined by ω and k1 when k2 = 0.02.
The real part YT,r (V = 0, ω, k1) is negative everywhere in
this plane except in the shadowed region, where YT,i (ω, k1)

crosses ω = 0 with negative slope ∂YT,i (ω, k1)/∂ω < 0. In the
two sections of the locus YT,i (ω, k1) = 0 indicated as MD1
and MD2, we have ∂YT,i (ω, k1)/∂ω > 0. Thus, for every k1,
the oscillation startup conditions are fulfilled at two distinct
frequencies, in consistency with the two detected oscillation
modes (MD1 and MD2).

B. Steady-State Oscillation Conditions

For the calculation of the steady-state oscillation modes,
we will represent the nonlinear element with its describing
function: YN (V ) = a + βV 2. Applying Kirchhoff’s laws at
node nv , we obtain

YT (V, ω) = a + βV 2
+ jCω + Yin(k1, k2, ω) = 0 (8)

where YT (V, ω) is the nonlinear total admittance function.
It must be equal to zero to obtain V ̸= 0. To calculate V and
ω, the complex equation (8) is split into real and imaginary

parts

YT,r (V, ω) = a + βV 2
+ Yin,r (k1, k2, ω) = 0 (a)

YT,i (ω) = Cω + Yin,i (k1, k2, ω) = 0 (b) (9)

where the zero value of the real part of the total admittance is
enabled by the negative coefficient a. Each solution of (9) is
obtained by first solving YT,i (ω) = 0 for ω and then replacing
its value in YT,r (V, ω) = 0, which is solved for V .

In the presence of parasitic losses (Rpi ̸= 0), the output
power is obtained by solving the following system for I3 and
making Pout = 1/2R3|I3|

2:(
L1 jω + Rp1

)
I1 + M1 jωI2 = V

M1 jωI1 +

(
1

C2 jω
+ L2 jω + Rp2

)
I2 + M2 jωI3 = 0

M2 jωI2 +

(
RL + Rp3 +

1
C3 jω

+ L3 jω
)

I3 = 0 (10)

where V and ω are the values resulting from (9). As in
Section II-A, to get analytical insight, we will initially neglect
the parasitic losses, so the transferred power can be expressed
in terms of Yin,r . We will first solve YT,r (V, ω) = 0 for V 2,
which provides

V 2
=

−Yin,r − a
β

. (11)

Then, the output power is

Pout =
1
2

Yin,r

(
−Yin,r − a

)
β

= −
1
2

Y 2
in,r + aYin,r

β
. (12)

As in the dc stability analysis, we will assume that k2 =

0.2 and obtain the oscillator response versus k1. Note that
lower k2 values will be considered later in this section. Fig. 4
presents the solution curves in terms of Pout and ω versus k1.
There are two distinct curves, each corresponding to one of
the two different oscillation modes (MD1 and MD2), already
detected in the dc stability analysis. The mode MD1 (which
departs from k1 = 0) exists for any k1. Its frequency departs
from f1 = 13.56 MHz at k1 = 0 [Fig. 4(b)] and undergoes a
slight decrease versus k1. The maximum transferred power is
Pout,max = 1.67 mW [Fig. 4(a)]. On the other hand, the mode
MD2 arises from the direct Hopf bifurcation H1 [34], [35],
[39] occurring at kH1 = 0.221 (already detected in Fig. 2).
The mode MD2 departs from the frequency f2 = 15.27 MHz
[Fig. 4(b)] and reaches f2 = 60.13 MHz at the inverse Hopf
bifurcation H2, where this mode vanishes. Thus, it exhibits
a significant frequency variation. For MD2, there are two
k1 values enabling maximum transferred power Pout,max =

1.67 mW. As shown in Section II-C, MD1 is fully stable,
and MD2 stabilizes from a certain k1.

The results of the analytical formulation have been validated
with HB at the fundamental frequency. A default HB oscillator
analysis (red squares) only provides mode MD1. It is unable
to detect the existence of MD2. To obtain mode MD2, we have
made use of the auxiliary-generator (AG) technique [34],
[38]. The AG is a voltage source [Fig. 1(a)] operating at
the oscillation frequency ω with the amplitude V, in series
with an ideal bandpass filter at ω. The AG must fulfill a
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Fig. 4. Analysis of the cubic-nonlinearity oscillator in Fig. 1 under k2 = 0.2.
The quality factor of the receiver resonator is Q3 = 3.32. The results of the
analytical formulation are compared with HB at the fundamental frequency.
Default HB is indicated with red square markers and AG optimization is
indicated with triangles. The solution curves when considering the loss resistor
Rp2 = 0.2 � are also superimposed. (a) Power transferred to the load resistor
RL versus k1. (b) Oscillation frequency versus k1.

nonperturbation condition [34], [38], given by the zero value
of the ratio between its current and voltage, which is achieved
through an optimization procedure. For the analysis of the
circuit in Fig. 1(a), we have introduced the AG in parallel
with the nonlinear element. To obtain the top section of the
MD2 curve (triangles), we have swept k1 and optimized the
AG amplitude and frequency ω. To obtain the two high-slope
sections, we have swept the AG amplitude and optimized k1
and ω. In the two cases (default HB and AG-based HB), the
results are overlapped with those obtained with the analytical
formulation.

We have compared the above results with those obtained in
the presence of parasitic losses, using (10) to calculate the
output power. The results when assuming the loss resistor
Rp2 = 0.2 �, in the order of the values considered in [43]
and [44], are represented in Fig. 4. The loss resistor mainly
affects the second maximum of the undesired mode MD2,
at a relatively high k1. The oscillation frequency is nearly
overlapped.

C. Stability Analysis of the Periodic Modes

To be physically observable, the periodic oscillation must
be stable. This means that under any small perturbation,
the system will return exponentially in time to this solution
[34], [38]. To fulfill this condition, all the poles resulting
from the system linearization about the periodic oscillation
must be in the LHS of the complex plane, except those
associated with the oscillation autonomy, given by ± jmω0,
where ω0 is the oscillation frequency and m is an integer.

Fig. 5. Stability analysis through pole-zero identification of the two periodic
modes of the cubic-nonlinearity oscillator in Fig. 1(a). MD1 (blue) and MD2
(red). Variation of the real part of the dominant poles versus k1 for k2 = 0.2.

In uncoupled operation (k1 = 0), the periodic solution of
the cubic-nonlinearity oscillator is stable, as demonstrated
in many previous works [32], [33], [34], [35]. Thus, it will
remain at least up to a certain k1. On the other hand, mode
MD2 arises at the Hopf bifurcation H1 [34], [38], [39] from
an unstable dc solution, as shown in Fig. 2. As a result,
MD2 will be unstable in the neighborhood of H1, to comply
with the bifurcation relationships [39]. This is confirmed by
the rigorous stability analysis of the two oscillation modes
presented in the following.

The stability of the two periodic modes will be analyzed
through pole-zero identification [41], [42], which relies on the
fact that all the transfer functions that can be defined in a linear
system share the same denominator. The circuit in Fig. 1 will
be linearized about each periodic solution by connecting a
small-signal current source at the perturbation frequency �

to node nv . The transfer function to be identified is obtained
through the conversion-matrix approach [41], [42] as the ratio
between the node voltage at � and the current of the small-
signal source. This transfer function is fit with a quotient of
polynomials. In Fig. 5, the real part of the poles associated
with the two modes is traced versus k1. Note that for each of
the two modes, there is always a pair of complex-conjugate
poles on the imaginary axis (zero real part), associated with the
oscillation autonomy. For MD1 (real part in blue), we obtain
two other pairs of complex-conjugate poles (σ1,a ± jω1,a and
σ1,b ± jω1,b) at incommensurate frequencies with negative
real parts for all the k1 values. Thus, this mode is always stable.
On the other hand, MD2 (real part in red) is initially unstable
with a pair of complex-conjugate poles, σ2 ± jω2, about the
frequency of MD1 having a positive real part. However, this
pair of poles crosses the imaginary axis to the LHS at the
inverse secondary Hopf bifurcation Hs1 [35], [39], where MD2
becomes stable. “Secondary” indicates that the bifurcation
takes place from a periodic regime instead of a dc one. The
mode MD2 becomes unstable again at the direct secondary
Hopf bifurcation Hs2, where the pair σ2 ± jω2 crosses again
to the RHS. In view of the results in Fig. 5, MD2 is stable for a
large range of k1 values. If k1 is gradually increased from zero,
we will observe MD1. Due to the continuous stability of MD1,
observing MD2 will require a relatively large perturbation.
Note that in the presence of nonlinearities of higher order
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Fig. 6. Loci of constant Yin,r (going from 0.25 to 15 mS) at the frequency
f0 = 13.56 MHz (agreeing with the resonance frequency of the two res-
onators), traced in the plane defined by k1 and k2.

[45], [46], [47], together with the coexistent periodic modes,
there can be stable quasi-periodic solutions.

D. Dependence of the Input Conductance Yinr on k1 and k2

As already stated, in the absence of parasitic losses, the
transferred power is fully determined by Yin,r [see (12)]. Thus,
it will be of interest to analyze the dependence of Yin,r on k1
and k2. To get some insight into this dependence, we will
initially evaluate Yin,r at the desired oscillation frequency ωo,
under the condition ω2 = ω3 = ω0. This leads to the expression

Yin,r =
Q−1

3 k2
1k2

2

L1ω0
(
k4

2 + Q−2
3 k4

1

)
=

1

L1ω0
(
Q3k−2

1 k2
2 + Q−1

3 k2
1k−2

2

) . (13)

To obtain the locus of coupling factors k1 and k2 that provides
each Yin,r , we will solve (13) for k2

2 in terms of k2
1

k2
2 =

1 ±

√
1 − 4Y 2

in,r L2
1ω

2
0

2Yin,r L1ω0
Q−1

3 k2
1 . (14)

For Yin,r < (2L1ω0)
−1, the locus is composed of two

straight lines with different slopes, corresponding to the two
different signs before the square root. The slopes depend on the
nondimensional quantity Yin,r L1ω0 and the quality factor of the
receiver resonator Q3. Fig. 6 presents the loci corresponding
to values of Yin,r going from 0.25 to 15 mS. The results of (14)
have been validated with a commercial simulator, performing
a double sweep in k1 and k2 and calculating the contours of
constant Yin,r . Note the high sensitivity for small values of k1
and k2. Note that if the drive frequency ω0 is different from
ω2 = ω3, the loci of constant Yin,r are no longer straight lines.
From a different viewpoint, by inspecting the results in Fig. 6,
one can deduce that under a constant drive frequency ω0 =

ω2 = ω3 and any linear relationship between k2 and k1, the
coupled network will exhibit a constant Yin,r .

E. Maximum Transferred Power

Neglecting losses in the coupling network, the maximum
transferrer power Pout,max is obtained from an extremum cal-

Fig. 7. Contours of constant steady-state oscillation frequency ω, obtained
from the roots of YT,i (ω, k1, k2) fulfilling YT,r (ω, k1, k2) = 0, traced in the
plane defined by k1 and k2.

culation, by making

∂ Pout

∂Yin,r
= −

1
2

2Yin,r + a
β

= 0 (15)

which provides Yin,r = −a/2. Replacing this value in (12),
we obtain

Pout,max = a2/6b. (16)

In the oscillator, Yin,r must be evaluated at the frequency that
fulfills YT,i (ω, k1, k2) = 0. This equation is too complex to
derive an analytical expression for ω(k1, k2). Instead, we will
trace the set of constant oscillation-frequency contours in the
plane defined by k1 and k2. A double sweep is performed in
k1 and k2 and, at each sweep step, we calculate the roots of
YT,i (ω, k1, k2) fulfilling YT,r (V, ω, k1, k2) = 0. The results are
shown in Fig. 7. As can be seen, from certain k2, no matter
the k1 value, the oscillation frequency is close to the common
resonance frequency ω ∼= ω2 = ω3 ( f = 13.56 MHz). When
this happens, the loci of constant oscillation frequency are
given by straight lines (see, for instance, the ones comprised
between 13.4 and 13.56 MHz). On the other hand, the larger
frequency values correspond to MD2, in consistency with the
resonance analysis of Fig. 3(b).

For k2 above a certain value (k2 ∼= 0.1, in the case of
the circuit analyzed here), when following any straight line
k2(k1), the oscillation frequency will be close to ω2 = ω3
( f = 13.56 MHz), as shown in Fig. 7. Assuming that ω =

ω0, the relationship k2(k1) providing Pout,max will be obtained
by replacing Yin,r = −a/2 in (14). This leads to the expression

k2
2 =

−1 ±

√
1 − a2L2

1ω
2
0

aL1ω0
Q−1

3 k2
1 . (17)

For 1−a2L2
1ω

2
0 > 0, the locus of transferred-power maxima

is given by two straight lines. The slope of k2 versus k1
increases with Q−1

3 = (RL/(L3ω0)), and, thus, with RL .
Therefore, when increasing RL for the same k1, we will need
a higher k2 to reach the maximum output power. Note that k1
and k2, respectively, depend on the distances d1 and d2 between
the first and the second inductor, and between the second and
the third one. By increasing Q3, we will have Pout,max at a
larger d2 and a smaller d1. This result is consistent with the
findings in [19], where instead of a full oscillatory system,
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Fig. 8. Analysis of the cubic-nonlinearity oscillator in Fig. 1(a) under k2 =

0.1. There are two oscillation modes: MD1 and MD2. Default HB results are
indicated with red square markers. (a) Power transferred to the load resistor
versus k1. (b) Oscillation frequency versus k1.

three coupled resonators driven by an independent source
were considered. As has been verified, for very small k1, the
maximum is just a mathematical solution without physical
existence, corresponding to the unstable mode MD2. This can
be seen in the solution curves, obtained for k2 = 0.1, presented
in Fig. 8. In practice, for very small k2 and k1, it will be very
difficult to ensure that Yin,r = −a/2 due to the high sensitivity
to the loci in Fig. 6.

The condition (17) has been verified by imposing the
relationship k2(k1) in both our in-house software [using (9)]
and commercial HB. We have swept k1 and obtained k2 from
(17) at each sweep step. The results in terms of output power
and frequency are shown in Fig. 9. We also obtain two modes.
In agreement with Fig. 8, the mode MD2 is the one that
provides a high output power under small k1 and k2, and in
these conditions, it is unstable. In turn, mode MD1 reaches a
power value close to the maximum (Fig. 9) when its frequency
reaches a value close to ω0. As deduced from Fig. 7, a linear
relationship between k1 and k2 facilitates a constant oscillation
frequency. Moreover, because we are moving along a straight
line k2(k1), we have a constant value of Yin,r , in agreement
with Fig. 6. Due to the specific relationship (17), (where
Yin,r = −a/2), the output power will be close to Pout,max.
It would be exactly Pout,max if the oscillation frequency fully
agreed with ω0. As stated, the results have been validated with
commercial HB, which is only able to detect MD1. The curves
obtained with (9) and commercial HB are overlapping. The
output power is very close to Pout,max, which demonstrates the
validity of expression (17).

Fig. 9. Validation of condition (17) in both in-house software and commercial
HB. The coupling factor k1 is swept and, at each sweep step, k2 is obtained
from (17). (a) Output power. (b) Oscillation frequency.

We have also carried out a general evaluation of the
transferred power versus k1 and k2. With this aim, we have
performed a double sweep in k1 and k2. For each point of the
sweep, we make use of (9) and (12) to obtain the output power.
This provides the surface Pout(k1, k2) shown in Fig. 10, where
a color gradient has been used to indicate the different output-
power levels. There are two distinct regions, as expected from
the existence of the two distinct modes MD1 and MD2. The
contour plot corresponding to Pout = 1.667 mW (slightly
smaller than Pout,max) has been represented in a dotted line
and the two straight lines in (17) have also been traced. The
straight line with positive sign provides the maximum output
power. Note that it lies within the contour Pout = 1.667 mW.
In contrast, the straight line with negative sign does not provide
the maximum output power. This is because, through this line,
the oscillation frequency is quite different from ω = ω0.

III. TRANSISTOR-BASED OSCILLATOR

In this section, we will analyze the behavior of a practical
Class-E oscillator [Fig. 11(a)]. This oscillator is coupled to an
intermediate resonator that is, in turn, coupled to a receiver one
in a series configuration. The Class-E oscillator is based on
a commercial MOSFET with reference IRLML0040TRPbF.
For the oscillator design, we have followed the procedure
described in [27]. We have initially obtained a Class-E ampli-
fier at f0 = 13.56 MHz (with no series feedback) by selecting
the values of the output-network elements (CD , C1, and L1)

that fulfill the zero-voltage switching (ZVS) condition. Note
that the capacitor Cg is a dc block and the inductor Ldc
is a dc feed. In coupled conditions, we have calculated the
drain efficiency as the ratio between the power delivered to
RL and the drain power consumption: η = Pout/Pdc, where
Pdc = Vdc Idc. Note that the transistor load impedance depends
on the factors k1 and k2 and, thus, on the distances between
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8 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Fig. 10. General variation of the oscillation output power versus k1 and
k2, obtained from (9) and (12). A color gradient has been used to indicate
the different output-power levels. The contour plot corresponding to Pout =

1.667 mW (slightly smaller than Pout,max) has been represented in the dotted
line. The straight lines given by (17) have also been traced.

Fig. 11. Class-E power oscillator coupled to an intermediate resonator that
is, in turn, coupled to a receiver one, in a series configuration. (a) Schematic.
The component values are: Rg = 10 �, Cg = 1 µF, C3 = 7 nF, CD =

43.29 pF, C1 = 58.55 pF (original), C1 = 120 pF (reoptimized), C3 = 53 pF,
C2 = 48.54 pF, Lg = L S = 100 nH, Ldc = 15 µH, L1 = L3 = 2.6 µH,
L2 = 2.84 µH, R1 = 1.5 k�, and RL = 50 �. (b) Connection of an AG to
obtain the nonlinear admittance function Y (V, ω) that describes the oscillator’s
active core. (c) Schematic including a trap resonator to suppress the undesired
oscillation modes.

the coils. As a result, the variation of k1 and k2 will have an
impact on the voltage and current waveforms and, therefore,
on the ZVS conditions. This problem is general to all power
transfer systems based on Class-E amplifiers or oscillators.
For the input power Pin = 14.35 dBm, when performing a

double sweep in k1 and k2, the maximum efficiency is obtained
for k1 = 0.25 and k2 = 0.1 and it corresponds to η ∼= 84%.
Following the method in [27], the amplifier is transformed into
a free-running oscillator at f0 = 13.56 MHz by introducing
the series-feedback capacitor CS , in parallel with the dc feed
Ls , and suitably choosing the gate termination elements.

A. Oscillation Modes

The previous analytical section has demonstrated the poten-
tial complexity of the circuit solutions, which may involve the
coexistence of distinct periodic oscillation modes. An exhaus-
tive calculation of these modes will be essential to accurately
predict the system behavior. For this exhaustive calculation,
we will make use of an extension of the semianalytical
formulation presented in [27] and [28]. In this formulation, the
oscillator active core is described with a nonlinear admittance
function, Y (V, ω), extracted from HB simulations with the aid
of a voltage AG, operating at the fundamental frequency ω,
with the amplitude V [Fig. 11(b)]. The function Y (V, ω) is
obtained through a double sweep in ω and V , calculating the
ratio between the AG current IAG (entering the circuit) and
the delivered voltage V , that is, Y (V, ω) = IAG/V . Although
Y (V, ω) is extracted at the fundamental frequency, in the
HB simulation carried out for its extraction, we consider as
many harmonic terms (NH = 7) as required for an accurate
representation of the device’s intrinsic variables. In contrast,
inductive coupling is considered at the fundamental frequency
only. We disregard the inductive coupling at the harmonic
terms, which is enabled by the low-pass filtering effects of the
oscillator output. At each point of the double sweep, we also
extract the dc current Idc [see Fig. 11(a)], which will be used
to calculate the drain efficiency as η = Pout/Pdc. With the
above considerations, the steady-state solutions of the coupled
oscillator are obtained from the following equation:

YT (V, ω) = Y (V, ω) −
1

j L1ω
+ Yin(k1, k2, ω) = 0. (18)

Note that the function Y (V, ω) is extracted with the inductor
L1 connected to the oscillator output [Fig. 9(b)]. This is
why the admittance of this inductor is subtracted in (18).
To fulfill (18) Y (V, ω) must exhibit a negative conductance
in a certain frequency band of about ω0, as ensured by the
original oscillator design. For the passive linear admittance
Yin(k1, k2, ω), we can use the analytical expression in (4)
or a more realistic description, which would be calculated
separately and introduced in (18).

Equation (18) is solved through a contour-intersection pro-
cedure. We obtain the zero-value contour of the real part
YT,r (V, ω) = 0 and the zero-value contour of the imaginary
part YT,i (V, ω) = 0. Then, all the coexisting periodic solutions
are given by the intersections of the two contours.

When applying (18) for k2 = 0.25 versus k1 one obtains
the results in Fig. 12, which shows the variation of the output
power [Fig. 12(a)] and the oscillation frequency [Fig. 12(b)].
As deduced from the figure, there are three distinct oscillation
modes.

As in Section II, in the transistor-based oscillator (Fig. 12),
the mode MD1 evolves from the free-running oscillation
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Fig. 12. Periodic solutions of the Class-E oscillator in Fig. 11(a) for k2 =

0.25, calculated through (18) and traced versus k1. They have been validated
with full HB (NH = 7 harmonic terms), considering the coupling at all the
harmonic terms. The HB results of the mode MD3 are obtained through AG
optimization. (a) Output power. (b) Oscillation frequency.

obtained in uncoupled conditions (k1 = 0) and is extinguished
at the inverse Hopf bifurcation H1, occurring for k1 = 0.27. Its
frequency departs from f1 = 13.56 MHz at k1 = 0 and remains
about this value until it vanishes at H1. At H2 (occurring
at k1 = 0.29), a second mode MD2 arises in a subcritical
Hopf bifurcation [35], [39]. This means that the solution curve
corresponding to MD2 goes backward and exhibits the turning
point T1. The upper and lower sections of the curve (before and
after T1) are nearly overlapping [Fig. 12(c)]. Thus, two modes
MD1 and MD2 coexist in the k1 interval 0.25–0.27. Mode
MD2 is not extinguished versus k1; its frequency is smaller
than that of MD1 and decreases with k1 up to 10 MHz. At the
direct Hopf bifurcation H3,1, occurring at k1 = 0.3, a third
mode (MD3) arises at the frequency f3 = 17.13 MHz. This
mode has much higher power (and low efficiency for most
k1 values) because of the circuit operation at quite a different
frequency. It is extinguished at the inverse Hopf bifurcation
H3,2, occurring at k1 = 0.73. Mode MD3 exhibits the turning
points T2 and T3. Modes MD2 and MD3 coexist in a large k1
interval.

The predictions of (18) have been verified with full HB
using NH = 7 harmonic terms (thus considering the cou-
pling effects at all the harmonic terms) and the results are
superimposed in Fig. 12 with excellent agreement. Default HB
provides relatively large sections of the curves corresponding

to MD1 and MD2. However, it fails to provide any solutions
in some k1 intervals. On the other hand, mode MD3 has
been obtained through AG optimization [34], [38]. Note that
in the case of MD3, there is a slight discrepancy with the
AG-based HB results because, in (18), we neglect the coupling
at higher harmonic terms. One should emphasize that (18),
solved through the contour-intersection method, simultane-
ously provides all the solutions coexisting for each k1.

In the practical transistor-based design, the undesired oscil-
lation modes must be suppressed. This will be done with the
aid of a trap resonator connected to the output of the active
core, as shown in Fig. 11(c). The effect of the trap resonator
can be analyzed by including its admittance in the system
equation at the fundamental frequency

Y (V, ω) −
1

j L1ω
+ Ytrap(ω) + Yin(k1, k2, ω) = 0

Ytrap(ω) = jCtrapω +
1

j L trapω
. (19)

In the above equation, the nonlinear admittance function
Y (V, ω) is the same one used in (18). Equation (19) enables
a flexible and computationally efficient selection of the trap
element values. However, when introducing the trap, a reop-
timization of the oscillator’s active core might be convenient.
This reoptimization leads to the new value C1 = 120 pF with
the trap-resonator elements: L trap = 20 nH and Ctrap = 6.84 nF.
For better accuracy, we have recalculated Y (V , ω) with L trap
and Ctrap absorbed by the active core. Thus, under variations
in the coupled-resonator parameters, the oscillator will be
analyzed with (18). The solution curves obtained for k2 =

0.1 and k2 = 0.25 are shown in Fig. 13. They are validated with
full HB with NH = 7 (considering the coupling effects at all
the harmonic terms) with excellent agreement. As can be seen,
the undesired modes MD2 and MD3 are fully suppressed, and
MD1 exists for all k1 values. In Fig. 13(c), the output power is
compared with the one obtained when including the parasitic
resistances of the three inductors. The value Rpi = 0.56 �,
obtained through an experimental characterization of the coils,
has been considered. As expected, the loss resistances give rise
to a small reduction in output power [Fig. 13(c)]. On the other
hand, the oscillation frequency is nearly overlapping.

Besides the suppression of the undesired modes, a benefit of
the trap is the reduction in the oscillation-frequency variations.
To verify this, we have performed a double sweep in k1 and
k2 and calculated for each pair of values (k1, k2) the steady-
state solution(s), in terms of V and ω, using (18). Then,
we have obtained the constant oscillation-frequency contours,
as shown in Fig. 14. Due to the trap, the steady-state oscillation
frequency remains close to ω0 for most of the plane k1 and
k2. Only the contour corresponding to the precise value of
the uncoupled free-running frequency reaches the point (0,
0). Note that the calculation of constant oscillation-frequency
loci would be virtually impossible in full HB due to the huge
computational cost. Here, this calculation is enabled by the
semianalytical formulation (18).
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Fig. 13. Application of (18) to the Class-E oscillator in the presence of
the trap resonator for the coupling factors k2 = 0.1 and k2 = 0.25. The
solutions are traced versus k1. They have been validated with full HB (NH =

7 harmonic terms), considering the coupling at all the harmonic terms. The
impact of the inductor losses is also analyzed. The loss resistances are Rpi =

0.56 �, where i = 1–3. (a) Output power. (b) Oscillation frequency with and
without losses. (c) Effect of the inductor losses on the output power.

Fig. 14. Constant steady-state oscillation-frequency contours of the circuit
in Fig. 11(a) in the presence of the trap resonator.

B. Oscillator-Core Capabilities for Power Delivery

In Section II, it was possible to analytically derive the
oscillator’s maximum output power due to the availability
of an explicit function YN (V ). In (20) (corresponding to the
practical oscillator), we do not have analytical expressions for
the real and imaginary parts of Y (V, ω), which both depend on
the excitation amplitude V and frequency ω. In this situation,
to obtain the maximum output power, we will make use of a
new numerical procedure, valid under negligible parasitic loss.

Fig. 15. Contours of “available” oscillator power obtained from (20), using
the nonlinear function Y (V, ω), extracted from HB. (a) Available power in the
plane defined by V and ω. (b) Contours of constant Yin,r = −Re[Y (V, ω)]

traced in the same plane.

We will first analyze the capabilities for power delivery of the
oscillator core, making use of the nonlinear function Y (V, ω),
which will include the trap. Neglecting, as stated, the parasitic
loss, for each pair (V , ω), the “available” oscillator power is

Pout,av = −
1
2

Re[Y (V, ω)]V 2. (20)

To obtain a steady-state oscillation with a given value of
Pout,av, we should introduce a passive linear load Yin that
fulfills

Y (V, ω) + Yin(ω, k1, k2) = 0. (21)

We will first trace contours of constant Pout,av in the plane
defined by ω and V , using the already extracted function
Y (V, ω), as well as the corresponding AG amplitude V . These
contours are shown in Fig. 15(a). For the specific frequency
f0 = 13.55 MHz, the maximum output power, corresponding
to Pout,max = 0.7 W, is obtained for V = 28.76 V. We also
trace the contours of constant Yin,r = −Re[Y (V, ω)], as shown
in Fig. 15(b). From these contours, to obtain Pout,max at
13.55 MHz, the circuit must be loaded with Yin,r (ω, k1, k2) =

Yin,r,max = 1.7 mS. As deduced from the constant-frequency
loci in Fig. 14, in the presence of the trap, (21) will always
provide an oscillation frequency close to the desired one ω0,
as shown in Fig. 15. Thus, to obtain the k1 and k2 relationship
for maximum power transfer, we will replace Yin,r,max in
expression (14), which provides

k2
2 =

1 ±

√
1 − 4Y 2

in,r,maxL2
1ω

2
0

2Yin,r,maxL1ω0
Q−1

3 k2
1 . (22)

For a rigorous validation, we have introduced (14) in
commercial HB. We have considered the straight line with a
positive sign, although, as shown later, the one with a negative
sign also provides valid solutions with high output power. This
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Fig. 16. Test of the validity of the relationship k2(k1) in (22) to obtain
the maximum output power. HB analysis of the complete circuit, coupled
to the two external resonators, with NH = 7 harmonic terms. Results when
considering parasitic resistors are also shown. (a) Variation of the transferred
power. (b) Efficiency. (c) Oscillation frequency.

is due to the small variation of ω in the presence of the trap.
The complete circuit, coupled to the two resonators, is sim-
ulated through an oscillator analysis with NH = 7 harmonic
terms. We have swept k1 and obtained k2 through (22) for each
sweep step. The resulting variations of the transferred power,
efficiency, and oscillation frequency are shown in Fig. 16. For
too small k1 and k2, it is not possible to obtain the maximum
power due to the high sensitivity of Yin,r , in agreement with
Fig. 14. We have also tested the impact of the parasitics
by repeating the HB simulation when including the parasitic
resistances of the three inductors. As shown in Fig. 16, the
response is very similar.

We will also carry out a general analysis of the variation
of the output power versus k1 and k2. With this aim, we will
perform a double sweep in k1 and k2 and, for each point of
the sweep, we will solve system (18) [with the trap included
in Y (V, ω)] in terms of V and ω. Then, we will calculate the
transferred power through

Pout =
1
2

Yin,r (ω, k1, k2)V 2. (23)

The above procedure provides the surface Pout(k1, k2) pre-
sented in Fig. 17(a), where a color gradient has been used
to indicate the different output-power levels. Note that such
a global analysis (in a practical transistor-based oscillator)
is only possible due to the computational efficiency of the
semianalytical formulation (18). We have superimposed the

Fig. 17. General variation of the transferred power and efficiency versus
k1 and k2, for C1 = 120 pF and the trap resonator. (a) Surface Pout(k1, k2),
calculated through (19) and (23), represented with a color gradient. We have
superimposed the straight lines in (22), which provide the loci of power
transfer maxima. (b) Efficiency surface. The two straight lines giving the
maximum efficiency are superimposed.

straight lines (22) over the output-power surface. As can be
seen, they define the relationship between k1 and k2 that
provides the maximum output power. In this case, the two
straight lines [corresponding to the positive and negative signs
in (22)] give maxima in two different regions of the plane.
This is due to the presence of the trap, which maintains the
oscillation frequency nearly constant in the whole plane k1 and
k2 (see Fig. 14). The efficiency surface is shown in Fig. 17(b).
The locus of maximum values also corresponds to two straight
lines.

The analysis method based on the combination of Y (V, ω)

and Yin(ω) can be directly extended to systems with more than
two external resonators. However, one can expect even more
complex behavior, due to the generation of additional oscilla-
tion modes associated with the additional resonances. As in the
case of two external resonators, the additional modes can be
suppressed with the aid of a trap. The optimum load admit-
tance would be obtained through the same oscillator-power
plot, proposed in this work. However, the relationship between
the coupling factors required to achieve this admittance will
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Fig. 18. Test bench for the experimental characterization of the Class-E
oscillator coupled to an intermediate resonator and a receiver one. The output
voltage at the receiver resonator is measured with a high-impedance probe
connected to a Digital Sampling Oscilloscope DSO6034A.

depend on the number of external resonators and their specific
configuration.

IV. EXPERIMENTAL RESULTS

The oscillator coupled to the two resonators has been
experimentally characterized with the setup shown in Fig. 18.
The output voltage at the receiver resonator is measured with
a high-impedance probe connected to a Digital Sampling
Oscilloscope DSO6034A, considering the effect of its parasitic
capacitance. The Class-E oscillator and the intermediate and
receiver resonators are implemented on the FR-4 substrate
(h = 1.6 mm). The coils are built with AWG18 copper
wound on machined acrylic sheets. The three coils have
approximately the same inductance value, L = 2.68 µH.
The external diameter is Dout = 12.53 cm and the internal
one is Din = 7.1 cm. The number of turns is n = 4, and
the spacing between turns is s = 0.85 cm. The intermediate
and external coils are clamped to the jaws of a vise, which
permits a more controlled variation of their separation by
turning the handle. The distance d1 between the transmitter and
intermediate coils corresponding to each k1 and the distance
d2 between the intermediate and receiver coils corresponding
to each k2 have been estimated from the measurements of the
scattering parameters [48], [49].

Fig. 19(a) presents the experimental surface of output power
in terms of d1 and d2. In agreement with the simulations,
it exhibits two local maxima, although the output power in
one of them is larger than in the other. Undesired behaviors
(indicated in the figure) are obtained for some distance values,
which may correspond to an oscillation extinction or to the
observation of a quasi-periodic solution. An example can be
seen in Fig. 20, which shows the voltage waveform at the
resistor of the receiver resonator. To stabilize the oscillatory
system, we have introduced the trap resonator (in parallel with
the coupled inductor L1) considered in Section III-A. The trap
suppresses all the undesired behaviors, at the expense of a
reduction of output power [Fig. 19(b)].

Fig. 19. Experimental surface of output power. (a) Without the trap resonator.
Regions with undesired behavior are indicated. (b) With the trap resonator.

Fig. 20. Experimental quasi-periodic waveform obtained for d1 = 3.5 cm
and d2 = 5 cm.

Fig. 21 presents the simulated and measured results versus
the distance d2, for d1 = 3 cm, in the presence of the
trap. The solution curves with and without inductor losses
are compared. They are both validated with default HB.
The measurements of output power and oscillation frequency
are represented with squares. For comparison, measurements
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Fig. 21. Operation with the trap. Simulations and measurements versus the
distance d2, for d1 = 3 cm. Solution curves with and without inductor losses
are compared. They are both validated with default HB. Measurements with
and without (d = d2) the intermediate resonator are also shown. The ones
with the intermediate resonator are represented with squares. The ones without
the intermediate resonator, taken from [27], are represented with triangles.
(a) Output power. (b) Oscillation frequency.

Fig. 22. Operation without the trap. Simulations and measurements versus
d2, for d1 = 6 cm. The solution curves with and without inductor losses are
compared. They are both validated with default HB. Measurements with and
without (d = d2) the intermediate resonator are also shown. (a) Output power.
(b) DC-to-RF efficiency.

without the intermediate resonator, are also shown, taken from
[27] and represented with triangles. Without the intermediate
resonator, the oscillation is extinguished at d = 1 cm, and
for all the distances d = d2, the transferred power is lower.
Note that with the intermediate resonator, the total distance
is also larger since it is given by d1 + d2. The maximum
power transfer is obtained at d2 = 3 cm. The frequency
variations in Fig. 21(b) are small for all the d2 values and

TABLE I
COMPARISON OF EFFICIENCY AND DISTANCE

the maximum dc-to-RF efficiency is 68%. From the results of
retro-simulations, we attribute the efficiency reduction to par-
asitics in the general-purpose capacitor of the trap resonator.

Without the trap, it is possible to reach a high efficiency at
large distance between the oscillator and the receiver resonator.
However, certain intervals of d1 and d2 must be avoided since
they lead to an undesired behavior, as shown in Fig. 19(a).
Fig. 22 shows the variation of the output power and efficiency
for d2 = 6 cm when increasing d1 up to 12 cm. In these
conditions, there are no instabilities and the maximum dc-to-
RF power transfer efficiency, obtained at d1 = 6 cm and d2 =

6 cm, is 80.2%. The discrepancies between simulations and
measurements at large distances are attributed to errors in the
estimation of the small coupling factors. In Table I, we present
a comparison of our experimental results with those obtained
in previous works.

V. CONCLUSION

An in-depth analysis of an oscillator coupled to an interme-
diate resonator, which is, in turn, coupled to a receiver one, has
been presented. Due to the presence of several resonances in
the coupled network, the system may exhibit several oscillation
modes. The undesired modes can be suppressed with the aid
of a trap resonator. To maximize the power transfer, we first
obtain the optimum load conductance by means of a newly
proposed oscillator-power contour plot. Then, the conductance
is implemented using a relationship between the coupling
factors, derived in this work. The loci of maximum output
power consist of two straight lines (k2 versus k1), whose slope
decreases with the quality factor of the receiver resonator. The
methods have been successfully applied to a system based
on a Class-E oscillator, which has been manufactured and
experimentally characterized.
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