
Journal of Industrial Information Integration 41 (2024) 100657

A
2

Contents lists available at ScienceDirect

Journal of Industrial Information Integration

journal homepage: www.elsevier.com/locate/jii

Full length article

Domain-specific languages for the automated generation of datasets for
industry 4.0 applications
Brian Sal, Diego García-Saiz, Alfonso de la Vega ∗, Pablo Sánchez
Software Engineering and Real-Time Group, Dpto. Ingeniería Informática y Electrónica, Universidad de Cantabria, Facultad de Ciencias, Avda. Los Castros
48, 39005 Santander, Cantabria, Spain

A R T I C L E I N F O

Keywords:
Data selection
Industry 4.0
Fishbone diagrams
Ishikawa diagrams
Domain specific languages

A B S T R A C T

Data collected in Industry 4.0 applications must be converted into tabular datasets before they can be processed
by analysis algorithms, as in any data analysis system. To perform this transformation, data scientists have to
write complex and long scripts, which can be a cumbersome process. To overcome this limitation, a language
called Lavoisier was recently created to facilitate the creation of datasets. This language provides high-level
primitives to select data from an object-oriented data model describing data available in a context. However,
industrial engineers might not be used to deal with this kind of model. So, this work introduces a new set of
languages that adapt Lavoisier to work with fishbone diagrams, which might be more suitable in industrial
settings. These new languages keep the benefits of Lavoisier, reducing dataset creation complexity by 40% and
up to 80%, and outperforming Lavoisier in some cases.
1. Introduction

Industry 4.0 [1–3] has emerged in recent years as a disruptive set of
technologies that, when properly combined, can clearly improve both
manufacturing processes and manufactured products. These technolo-
gies are clearly having a positive impact on the manufacturing industry
and even transforming it, leading to Industry 4.0 being identified as the
4th Industrial Revolution.

Industry 4.0 relies on technologies like Internet of Things (IoT) [4–
13], CyberPhysical Systems [14–16], Cloud Computing [17–19], Big
Data [13,20–24], Data Analysis [21,25] or Augmented Reality [26–29],
among others. There are different kinds of Industry 4.0 applications,
which includes, for example, Digital Twins [30–32], Augmented Reality
Maintenance [33,34] or Smart Manufacturing [35–37]. This article fo-
cuses on those Industry 4.0 applications that aim to take advantage
of the large amounts of data collected by the different interconnected
elements that comprise modern assembly lines [38]. For instance,
robots in an automated assembly line have sensors that can measure
the pressure in their pneumatic systems, among other issues. This in-
formation can be collected and complemented with data extracted from
other systems, such as a MES (Manufacturing Execution System) [39] to
know, for example, which worker was operating the assembly line at a
particular time.

This vast amount of data can then be analyzed to improve both
the manufacturing processes and their output products. For example,

∗ Corresponding author.
E-mail addresses: brian.sal@unican.es (B. Sal), diego.garcia@unican.es (D. García-Saiz), alfonso.delavega@unican.es (A. de la Vega), sanchezbp@unican.es

(P. Sánchez).

predictive models might be constructed to forecast when a piece of
a production line should be replaced before it fails, which would
contribute to reduce maintenance standstills [40–42]. Similarly, data
mining techniques might help to find the causes that lead to prod-
ucts with defects, so that we can focus on avoiding them to achieve
Zero-Defect Manufacturing (ZDM) [43–46].

Therefore, this kind of Industry 4.0 applications uses data science
algorithms to process and analyze data. Despite the recent advances in
this field, these algorithms often require their input data to be in a very
specific format, known as a dataset. A dataset is a table-based format
in which all data associated to each element under analysis must be
placed in a single row of that table. Nevertheless, data is not commonly
available in this format, as it is usually stored in relational databases,
XML or JSON files, among other alternatives. In these representations,
data are not tabular, but linked and often hierarchical. For instance,
data about a manufactured product may be linked to data of its com-
ponents. Similarly, data of each component might be connected to data
of its subcomponents, and so on. Therefore, we would need to flatten
this hierarchical data to arrange them as columns of a specific row of
a table before using them as input to a data analysis algorithm.

To perform a flattening task, data scientists typically write intricate
and lengthy scripts in languages like SQL [47], R [48], or Pandas [49].
To perform the necessary transformations, these scripts typically chain
vailable online 25 June 2024
452-414X/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jii.2024.100657
Received 16 March 2023; Received in revised form 14 June 2024; Accepted 19 Jun
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

e 2024

https://www.elsevier.com/locate/jii
https://www.elsevier.com/locate/jii
mailto:brian.sal@unican.es
mailto:diego.garcia@unican.es
mailto:alfonso.delavega@unican.es
mailto:sanchezbp@unican.es
https://doi.org/10.1016/j.jii.2024.100657
https://doi.org/10.1016/j.jii.2024.100657
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jii.2024.100657&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

s
d
d
t
S
c

d
d
h
T
a
r
s
a
c

d
u
L
g
r
t
r
t
d

w
a
w
a
c
s
w
d
t
c
d

e
5
d
l
l
s
s
o
w
p
w
a
b
d

e
a
o
t
e
a
l

o

t
G

n
c

s
t
p
a
c
E
(
t
l
i
t

c
a
(
o
t
3
p
c
b
s
(
t
c
a
t

i

several low-level operations, such as joins [50] and pivots [51]. So, data
cientists need to work at a low abstraction level, which makes the
ataset creation process labor-intensive and prone to errors. Moreover,
omain experts, like industrial engineers, can hardly create or modify
hese scripts, so data scientists need to be hired to execute this task.
ince data scientists are expensive and scarce, development time and
osts of Industry 4.0 applications increase.

To alleviate these problems, a language called Lavoisier was recently
eveloped [52]. This language provides high-level primitives to create
atasets that focus on what data must be selected and skip details of
ow these data must be rearranged to make them fit in a dataset.
hese primitives are processed by the Lavoisier interpreter, which
utomatically converts them into chains of low-level operations that
etrieve and transform the selected data. Using Lavoisier, complexity of
cripts for dataset creation can be reduced by 40% and 60% on average,
s compared to Pandas and SQL, respectively, and achieving 80% of
omplexity reductions in some scenarios.

Lavoisier relies on object-oriented domain models [53] to represent
omain data. Nevertheless, this type of model is rarely found in man-
facturing settings, which might be an obstacle to the adoption of
avoisier in Industry 4.0 contexts. On the other hand, industrial en-
ineers are used to deal with fishbone diagrams [54], which allow
epresenting cause–effect relationships, typically used for quality con-
rol in industrial settings, and that might be used to specify influence
elationships between domain data. Therefore, in an Industry 4.0 con-
ext, it could be more desirable that Lavoisier could work with fishbone
iagrams instead of with object-oriented domain models.

This work presents a model-driven process that adapts Lavoisier to
ork with fishbone diagrams. To build this process, we first created
new kind of fishbone model, named data-oriented fishbone model,
here causes can be connected to domain data. For this purpose, we
ugmented fishbone models with Lavoisier statements, so that each
ause can be connected to a subset of domain data that characterizes
uch a cause. Next, we designed a new language called Papin to select
hich causes of a fishbone diagram should be used to build a concrete
ataset. Finally, the Papin interpreter processes this selection and au-
omatically generates the required dataset. Thus, industrial engineers
an use Papin to create datasets directly from (data-oriented) fishbone
iagrams instead of from object-oriented domain models.

Expressiveness of data-oriented fishbone models and Papin has been
valuated by applying these languages to five external case studies [55–
8]. No major issues were found. In addition, it was expected that
ata-oriented fishbone models and Papin were able to achieve simi-
ar rates of accidental complexity reduction than Lavoisier, as these
anguages are built on it. To confirm this hypothesis, we created a
et of dataset creation scenarios that covered all kind of inputs these
cripts might need to deal with. Then, we created scripts for each one
f these scenarios using our approach, Lavoisier, SQL and Pandas and
e compared these scripts using several metrics. As a result of this com-
arison, we concluded that the complexity reduction rates of Lavoisier
ere not seriously affected in the newly designed languages. Moreover,
s compared to Lavoisier, these new languages might provide extra
enefits when a same fishbone diagram was used to generate different
atasets.

This work extends a previous contribution presented at a confer-
nce.1 Over this contribution, this article includes, as main difference,
more exhaustive evaluation of the expressiveness and effectiveness of
ur approach (Section 5) as well as a more detailed description of how
he presented languages were implemented (Section 4). Moreover, we
xtended the related work section to include propositionalization [59]
nd Multi-Relational Data Mining (MRDM) [60] as well as modeling
anguages in Industry 4.0 and ETL processes. Finally, we added some

1 The conference name and any citation to this previous work have been
mitted to try to ensure a double anonymized review.
2

t

background information, such as Section 2.3, to make this work acces-
sible to a wider audience; and we revised the remaining sections to
clarify some issues and provide some extra examples, taking advantage
of not having space limits for this paper.

After this introduction, this work is structured as follows: Section 2
details the motivation behind this work, using a running example.
Sections 3 and 4 describe our solution and how it was implemented,
respectively. Section 5 explains how expressiveness and effectiveness
were evaluated, discussing the obtained results. Finally, Section 6
comments on related work and Section 7 summarizes our achievements
and outlines future work.

2. Background and motivation

2.1. Software language engineering via metamodelling

In this work, we have designed and implemented several Domain-
Specific-Languages (DSLs) following a metamodel-based approach [61].
These languages aim to provide end users with a better experience over
General Purpose Languages (GPLs) for achieving concrete tasks. First,
DSLs offer a concise syntax, which is constrained to the task or tasks for
which they were specified. Therefore, users do not have to worry about
the presence of mandatory language constructs that are not needed for
the task at hand (something that might happen with some GPLs such
as Java), which helps reduce accidental complexity. Second, specifying
DSLs for concrete contexts allows using custom syntaxes that contain
terms coming from the application domain. For instance, a DSL in the
context of a university subject might include terms such as student,
deliverable, or test; or a DSL for clinicians might refer to treatments,
patients, medications and so on. As a result, domain experts might find
he syntax of DSLs more familiar and easier to understand than that of
PLs.

For specifying our DSLs, we have applied metamodelling tech-
iques [61–63]. The main elements of a DSL with these characteristics
an be found in Fig. 1. We describe them in the following.

The central component of a metamodel-based DSL is its abstract
yntax (top left of Fig. 1) or metamodel. The abstract syntax specifies
hose concepts that are relevant for the language, as well as their
roperties and relationships between them. This syntax is defined with
metamodel, which is usually specified by means of a special type of

lass diagram such as the one of Fig. 4. For our implementation, we use
core, i.e., the notation provided by the Eclipse Modeling Framework
EMF) for specifying metamodels [64]. In the metamodelling perspec-
ive, any model must conform to the abstract syntax metamodel (Fig. 1,
abel 1). This means that the program must adhere to the rules defined
n the abstract syntax (e.g. which concepts can or must appear, how
hey can inter-relate, among others).

The abstract syntax is an internal representation of the DSL con-
epts, and end users do not interact with it directly. Instead, this
bstract syntax is rendered through one of more concrete syntaxes
Fig. 1, label 2), which can be either textual or graphical. In the case
f textual concrete syntaxes, a grammar is defined to allow end users
o read and write programs for that DSL in textual form (Fig. 1, label
). Additionally, any concrete syntax has to be accompanied by a
arser that converts programs written in that concrete syntax to models
onforming to the abstract syntax (Fig. 1, label 4). The separation
etween abstract and concrete syntaxes allows for several concrete
yntaxes for the same language to coexist. For instance, we could have
1) more than one textual or graphical syntax; (2) a graphical and a
extual syntax; (3) hybrid (graphical and textual) syntaxes; or (4) any
ombination of the above. Moreover, new syntaxes could be added to
language at a later stage, such as adding a graphical syntax to a DSL

hat initially only had a textual one.
Finally, programs written with a DSL are given a meaning by spec-

fying the semantics of the language. There are different approaches
o specify semantics, and here we comment on two: translational and

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
Fig. 1. Components of a textual domain-specific language with operational semantics.
Fig. 2. Elements of a drive half-shaft.
operational. A DSL has translational semantics when its programs are con-
verted to programs conforming to another language that has semantics,
e.g., converting DSL expressions to Java or C expressions by means of
code generation templates. In the case of operational semantics, which is
the approach we follow for our languages, programs written with a DSL
are processed by an interpreter (Fig. 1, label 5), which executes them
step by step to obtain some kind of result (e.g., in our case, datasets).

The following sections present the running example and detail the
challenges that we are trying to tackle in this work. Concrete examples
of the language components introduced here are given in Section 4.

2.2. Running example: Falling band

As running example throughout this paper, we will use the produc-
tion of drive half-shafts in a supplier company for the automotive sector.
This example is taken from the literature [56] and based on a real case
study. Fig. 2 provides a rough sketch of the components of a drive half-
shaft. A drive half-shaft is a piece of the car transmission system that
joins the engine with a wheel. It is composed of a rotating bar of metal,
the shaft, which has two articulated ends that allow the wheel to move
freely as required by the steering and suspension systems while at the
same time receiving the engine force.

The articulated ends are protected by a flexible piece of rubber
known as the housing. Housings are fixed to the shaft by means of two
metal bands. To produce these drive half-shafts, an operator inserts a
3

shaft in an assembly machine, mounts each housing on the shaft and
tights the bands around the housings using a pneumatic pliers. Once
finished, these pieces are sent to car manufacturers, who check compli-
ance with their requirements. During these checks, car manufacturers
detected that, sometimes, bands on the side of the wheel unfastened,
originating different problems. The company wanted to analyze data
gathered during the drive half-shafts production process in order to find
the causes of this problem. To carry out such an analysis, the company
may use data mining techniques, for which it would need to execute a
data mining process, which is described in the next section.

2.3. Data mining processes

We will take the KDD (Knowledge Discovery in Databases) pro-
cess [65] as basis to explain the different stages that are part of a data
mining process. Some of these stages have been subdivided in smaller
parts to highlight some issues that are particularly relevant for our
work.

The final goal of all data mining processes is to answer one or
more business questions (Fig. 3, step 1). For instance, in our running
example, industrial engineers in the supplier company want to know
what causes a band to fall. So, the very first step of a data mining
process is to elicit the business questions to be answered.

After defining the business questions, data scientists must select
those data sources that might have some influence on these questions

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
Fig. 3. Detailed data mining process.

and that, therefore, will be used to try to answer them (Fig. 3, step
2). In an Industry 4.0 context, data can come from very heterogeneous
sources, such as production machine sensors, quality assurance reports,
technical specifications of components used in the manufacturing pro-
cess, or management data hosted in Manufacturing Execution Systems
(MES), among other options. These sources must be selected with the
help of domain experts, who know what data might be helpful to find
answers to the business questions.

Data provided by these sources is initially unstructured and de-
scribed in different notations despite having relationships among them.
For instance, data of manufactured products might be initially retrieved
from the MES relational database, which might be visualized using
Entity-Relationship (ER) models [66]. These data might refer to raw
materials used during the manufacturing process. Data about these raw
materials might be available in technical data sheets, stored as pdf
files. Additionally, some properties of these raw materials might have
been checked during quality control processes. Results of these quality
inspections might be registered in spreadsheets. In cases like this, it is
worth constructing a domain model that unifies these data bundles and
helps to visualize them as a whole in a common format [67] (Fig. 3,
step 3).

Subsequently, data scientists need to select the data mining tech-
niques that may be more appropriate for finding an answer to each
business question (Fig. 3, step 4). For example, in our running example,
association rules [68] might be employed to find patterns in data that are
most likely to lead to a falling band. For each one of these data mining
techniques, a vast amount of concrete algorithms exists. Obviously,
each algorithm provides advantages, as compared to the others, in
a specific context. Consequently, data scientists must select the most
appropriate algorithm for each case. For instance, in our case study,
we could use the Apriori algorithm [69] to discover the most frequent
patterns in terms of confidence - number of times the pattern lead to a
phenomenon as compared to the number of times the pattern does not
lead to that phenomenon, and support - number of times the pattern
is found in the dataset as compared to the number of items in the
dataset. However, we may use other algorithms to get patterns with
low support and high confidence [70]. This is, patterns that appear few
times but that, when they appear, they lead to a falling band with a
high probability.

To execute the selected data mining algorithms, data scientists
need to provide them with input data. As already commented in the
introduction, most data mining algorithms only accept as input data
4

formatted as a dataset. Since data in the selected data sources is not
initially in this format, data scientists need to transform them into
datasets (Fig. 3, step 5). This work tackles this concrete problem, which
will be detailed in the next section.

Moreover, depending on the selected algorithm, input data might
need to satisfy some additional constraints. For example, data might
need to be normalized into the range [0, 1] before being provided as
input to some algorithms based on distances. Thus, in these cases, data
scientists must carry out some extra data transformations to fulfill these
extra requirements (Fig. 3, step 6).

Finally, data scientists run the data mining algorithms using the
extracted and reshaped data as input (Fig. 3, step 7). Before passing
the results of these executions to the domain experts, data scientist
must analyze their quality and reliability. Then, those results that are
considered as sound and reliable are presented in a way that can be
easily visualized and understood by domain experts, so that they can
interpret them correctly and use them to make better or more informed
decisions (Fig. 3, Step 8). For instance, in our running example, the
results of the analysis might report that most of drive-half shafts with
falling bands contain bands from a specific provider and housings from
another concrete provider, but on the other hand, these bands and
housings, when mixed with pieces of other providers, do not lead to
falling bands. Therefore, the problem would not be with these pieces
themselves, but with their combination in the same half-shaft.

As previously commented, this work focuses on a specific stage of
data mining processes, which is the dataset creation process (Fig. 3,
Step 5). This stage is described in detail in the next section.

2.4. The dataset generation problem

As we have already said in previous sections, most data analysis
algorithms can just process data provided in a concrete tabular format,
known in the data science community as a dataset. In this format, all
data belonging to a single entity to be analyzed must be place in a same
table row, which we have named as the one entity, one row constraint.

Nevertheless, domain data is typically available as a graph of linked
and nested elements. As an example, Fig. 4 shows a fragment of an
object-oriented data model for our running example2 and Listing 1
provides an example of data, in JSON format, for a concrete half-shaft,
conforming to that model. The data model is in Ecore notation [64],
which, roughly speaking, can be considered as a subset of UML 2.0
class diagrams.

[{ ‘ id ’ : ‘5209 ’ , ‘ manufacturedTime ’:‘2021−02−12 11:27:13 ’ ,
‘ wheelBand ’ : { ‘ model ’ : ‘ SNR390 ’ ,

‘ parameters ’ : { ‘ batchId ’ : ‘2020/2436832 ’ ,
‘ maxThickness ’ : 1 . 6 7 , ‘ minThickness ’ : 1 . 6 4 ,
‘ avgThickness ’ : 1 . 6 6 , ‘ provider ’ : { ‘ name ’ : ‘ ACME’ ’ } } } ,

. . . ,
‘ assemblySession ’ : { ‘ s t a r t ’:‘2021−02−12 11:14:58 ’ ,

‘ stop ’:‘2021−02−12 11:17:23 ’ ,
‘ parameters ’ : { ‘ temperature ’ : 2 0 . 4 , ‘ humidity ’ : 5 3 . 8 ,

‘ p l i e r sT igh ten ing s ’ : [
{ ‘ number ’ : 1 , ‘ pressure ’ : 7 . 9 } ,
{ ‘ number ’ : 2 , ‘ pressure ’ : 7 . 9 } ,
{ ‘ number ’ : 3 , ‘ pressure ’ : 7 . 8 } ,
{ ‘ number ’ : 4 , ‘ pressure ’ : 7 . 9 }] } } } ,

{ . . . }]

Listing 1: Data for a drive half-shaft instance.

According to Fig. 4, each DriveHalfShaft has associated a Compli-
anceReport, created by the company customers, that indicates whether
the piece fulfills the customer requirements. Each DriveHalfShaft is
comprised of two bands, among other elements. Each band belongs
to a batch. Band batches are acquired from different providers and,
for each batch, some parameters are measured to verify its quality.
On the other hand, each DriveHalfShaft is mounted in a session of an
assembling machine. This machine has several sensors that monitor
different parameters such as temperature, humidity, or the pressure in
the pneumatic pliers system before tightening each band.

2 The complete domain model for this case study is available in Appendix A.

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

1
1
1
1
1
1

Fig. 4. A fragment of the domain model for the production of drive half-shafts.
Fig. 5. A tabular dataset for drive half-shaft analysis.
1
1

1 select a.id, m.temperature, m.humidity,

2 (select p.pressure from PliersData p

3 where p.idMonitoredParameters = m.id

4 and p.number = 1),

5 (select p.pressure from PliersData p

6 where p.idMonitoredParameters = m.id

7 and p.number = 2),

8 (select p.pressure from PliersData p

9 where p.idMonitoredParameters = m.id

0 and p.number = 3),

1 (select p.pressure from PliersData p

2 where p.idMonitoredParameters = m.id

3 and p.number = 4)

4 from AssemblySession a join MonitoredParameters m

5 on a.idMonitoredParameters = m.id

Listing 2: SQL script to rearrange Assembly information as tabular
data.

As it can be seen in Listing 1, these data are linked and nested. For
example, the drive half-shaft with id 5209 (Listing 1, line 1) is linked to
some wheelBand data (Listing 1, lines 2–6), as well as some assembly ses-
sion data, among others. Moreover, each assembly session data contains
four nested measures of the pressure of the pneumatic pliers system.
Therefore, to create a dataset, we would have to transform these linked
and nested information into sequence of values that can be place in cells
of a table row, such as depicted in Fig. 5.

To create datasets, data scientists write complex and long scripts
in which raw data is transformed using different chains of low-level
operations, such as filters, joins, pivots or aggregations, to satisfy the one
entity, one row constraint.

These scripts are written using data manipulation languages or
libraries, like SQL [47] or Pandas [49]. Listing 2 shows an example
of an SQL script for combining data from the AssemblySession, Moni-
toredParameters and PliersData classes to create a tabular representation
like depicted in Fig. 5. This script needs to place each measure of the
pressure in the pliers pneumatic system in a separated column, which
is achieved by using a nested query for each specific tightening (Listing
2, lines 2–13).

As the reader can easily notice, this script is quite complex as
compared to the example size and it has obvious scalability problems
5

1 dataset driveHalfShaft_AssemblyParameters {

2 mainclass DriveHalfShaft [id] {

3 include report {

4 include assemblySession {

5 include parameters {

6 include pliersTightenings by number

7 }

8 }

9 }

0 }

1 }

Listing 3: An example of Lavoisier specification.

if the number of tightenings grows. This problem is not specific to
the SQL language and similar situations occur when using other alter-
natives, such as R [48] or Pandas [49]. As a result, dataset creation
becomes a labor-intensive and error-prone process. To overcome this
problem, a language called Lavoisier [52,71] was recently developed.
This language is described in the next section.

2.5. Lavoisier

Lavoisier [52,71] is a declarative language for dataset creation that
provides a set of high-level primitives whose goal is to specify what data
must be included in a dataset without having to detail how selected
data must be transformed to be arranged as a dataset. We illustrate
how Lavoisier works using the example of Listing 3. In this example,
the dataset will contain just data from the compliance reports and the
assembly session for each drive half-shaft.

In Lavoisier, we must first specify the name of the dataset that will
be generated, which, in our example, is driveHalfShaft_AssemblyParame-
ters (Listing 3, line 1). Then, we must specify, using the mainclass
keyword, what are the main entities that will be analyzed. It is worth
remembering that, according to the one entity, one row constraint, all
the information about each instance of these entities must be placed in
a single row of the output dataset. In our case, the DriveHalfShaft class
will represent these main entities (Listing 3, line 2).

When a class is selected to be included in a dataset, Lavoisier adds
all attributes of that class to the output dataset, whereas references to

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
other classes are excluded by default. This behavior can be modified
according to our needs and a concrete subset of attributes can be
selected by listing them between square brackets after the class name.
For example, Listing 3, line 2 specifies that just the id of each half-shaft
has to be included in the output dataset.

Regarding references, we can add them using the include keyword.
This primitive works differently depending on the reference multiplic-
ity. For single-bounded references, i.e., references with upper bound
lower than or equal to one, we just need to specify the name of the
reference to be added. For example, Listing 3, line 3 incorporates
the compliance report of each half-shaft, retrieved through the report
reference, to the output dataset.

For each included reference, the default Lavoisier behavior is ex-
ecuted again. This is, attributes are included and references are ex-
cluded. As before, we can specify a list of concrete attributes of a
reference to be included between square brackets as well as new include
statements that add references of the reference to the output dataset.
For instance, Listing 3, line 5 adds the parameters of the assemblySession
reference to the resulting dataset. This recursive inclusion can continue
as deep as we need.

To process reference inclusions, the Lavoisier interpreter relies on a
set of transformation patterns [71,72] that automatically reduce a set of
interconnected classes into a single class from which a tabular dataset
can be directly generated. In the case of single-bounded references, the
Lavoisier interpreter simply adds the attributes of the referenced class
to the class holding the reference. For example, in Listing 3, line 3, the
attributes of the ComplianceReport class are added to the DriveHalfShaft
class, which would be equivalent to performing a left outer join between
these classes. To handle nested references, the Lavoisier interpreter
processes the deepest reference first and repeats the process until
reaching the main class.

The case of multibounded references, i.e., references with upper
bound greater than or equal to one, is more challenging since each
instance of the referencing class is related to several instances of the
referenced class. So, to satisfy the one entity, one row constraint, we
need to find a mechanism to spread data of each one of these instances
into a single row. For instance, in the case of the pliersTightenings
reference, of the MonitoredParameters class, we would need to specify
how data of each pliers tightening is exactly spread over concrete
columns of the output dataset. To achieve this goal, the strategy that
Lavoisier follows is to create a specific set of columns for each kind of
instance that might appear in a multibounded reference. This way, each
instance is able to find a well-defined set of columns where to place its
data.

This strategy requires that Lavoisier can distinguish between differ-
ent kinds of instances of the target class. Therefore, we must use one
or more attributes of class as identifiers for each type of instance. In
Lavoisier, these identifier attributes are specified after a by keyword,
which is added to include statements involving multibounded refer-
ences. For example, Listing 3, line 6 specifies that the pliersTightenings
reference must be added to the output dataset using the tightening
number as identifier for each PliersData instance (see Listing 1, lines
11–14).

With this information, the Lavoisier interpreter proceeds as fol-
lows: first, it computes all existing distinct tuples for the identifier
attributes of the target reference. These values are {1, 2, 3, 4} for
our running example, and they represent all existing types of in-
stances in the multibounded reference. Then, the set of non-identifier
attributes of the referenced class is calculated. In our case, this set
is {pressure}. This set represents the information to be specified for
each type of instance. Next, to place the information of each instance
type, for each identifier value and element in the set of non-identifier
attributes, a column is added to the output dataset. Each one of
these columns will have as name the name of the corresponding non-
identifier attribute prefixed with its respective identifier value. In our
6

example, these generated columns are {1_pressure, 2_pressure, 3_pres-
sure, 4_pressure}. This structure is illustrated in Fig. 5. For the sake
of clarity, we would like to mention that, if the referenced class
had contained an additional non-identifier attribute, such as tighten-
ingTime, the resulting set of columns would have been the follow-
ing: {1_pressure, 1_tighteningTime, 2_pressure, 2_tighteningTime, 3_pressure,
3_tighteningTime, 4_pressure, 4_tighteningTime}.

Formally speaking, the processing of a multibounded reference
would be equivalent to joining both classes first and then pivoting
the result using the identifier attributes as pivoting elements. The
processing of multibounded references contains a lot of picky details
that we are omitting here for the sake of simplicity. We refer the
interested reader to the original Lavoisier article [52].

Multibounded references can also be processed using aggregation
functions. These functions calculate values that summarize the set of
the instances of the multibounded references. Thus, we could use these
values as representatives of the multibounded reference instead of
including its elements individually in the output dataset. For instance,
in the case of the pliersTightenings, we might use the average pressure in
the pliers pneumatic system instead of the values of the pressure for
each individual tightening.

By using Lavoisier, the total number of operations required to
generate a dataset decreases by ∼40%, and script size reduces by ∼60%
as compared to other languages used for this purpose, such as SQL
or Pandas. Therefore, as an initial hypothesis, we considered Lavoisier
might be helpful for data selection in Industry 4.0. However, we soon
realized that most of the industrial engineers in the companies in our
region were not familiar with object-oriented data models in particular,
and with data models in general.

Therefore, we analyzed what kind of models were commonly used
in these companies and whether these models could be used as a
replacement for object-oriented data models in our approach. Among
several alternatives, such as diagrams for describing assembly lines,
we found a type of model, called fishbone diagrams, that offered three
interesting elements for our goals: (1) it was known by a reasonable
number of engineers; (2) it has a very easy to understand notation;
and (3) it could be used to represent cause–effect relationships between
domain data. Therefore, we decided to use these fishbone diagrams to
replace the object-oriented data models of our original solution when
working in Industry 4.0 contexts. Next section describes how these
fishbone diagrams work.

2.6. Fishbone diagrams

Fishbone diagrams [54], also known as Cause-effect, Ishikawa or
Fishikawa diagrams, aim to identify causes that might lead to a certain
effect. They were formally proposed by Kaoru Ishikawa and they are
acknowledged nowadays as one of the seven basic tools for quality
control and process improvement in manufacturing settings [73].

Fig. 6 shows a fishbone diagram taken from the literature [56], for
our running example. As it can be observed, these diagrams are called
fishbone diagrams because of its shape, which resembles a fish skeleton.
They are elaborated as follows. First, the effect to be analyzed is placed
on the right, commonly inside a rectangle or a circle, representing the
fish head. In our case, falling bands on the wheel side would be the
problem, or effect, to be studied. Then, a horizontal line from right
to left, representing the fish main bone, is added. This line is used to
connect causes with the effect.

Then, we start to identify causes that might lead to the effect.
For each identified cause, we would try to find subcauses that might
lead to that cause, repeating recursively the process until reaching a
decomposition level that can be considered as adequate. To help to start
the process, a set of predefined main causes, known as categories, are
used in each domain. These categories are attached as ribs to the main
fishbone. In the case of the manufacturing domain, these predefined

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

c

t
(
t
p

a
t
i
w
5

2

f
f
e
u
t
f
t
m
d
t
a

3

3

f

Fig. 6. A fishbone diagram for the drive half-shaft running example.
Source: Taken from [56].
l
c
t
e
A
d
D

m
s
i
a

ategories, known as the 5 Ms model [73], are Material, Man, Machine,
Method and Management, as illustrated in Fig. 6.

Material specifies causes related to the source materials used during
the manufacturing process. For instance, a wheeling band might fall
because an unsuitable band has been used (Fig. 6, cause 1.1). A band
might be unsuitable either because a wrong model is used or because its
parameters are not adequate. For example, the band might be thicker
than required. Man collects causes related to people participating in
he process, such as the operator selecting a wrong assembly program
Fig. 6, cause 2.1). Machine analyzes elements of the machines and
ools used in the process, such as, for instance, the pressure in the
liers pneumatic system (Fig. 6, cause 3.2). Finally, Method refers to

the procedure used to manufacture an item, such as machine configura-
tions; whereas Management considers general aspects of the process, as
dequate working conditions or workers’ motivation. It should be noted
hat more categories might be added if it is considered helpful. Indeed,
n some manufacturing companies, these categories are complemented
ith an extra E that represents the Environment, which is known as the
M + 1E model.

.7. Problem statement

As commented, whereas object-oriented data models are rarely
ound in manufacturing settings, fishbone diagrams are frequently used
or quality control in these contexts. These diagrams establish cause–
ffect relationships between domain elements, but they can also be
sed to identify influence relationships between domain data, helping
o decide what concrete data might be useful to include in a dataset
or analyzing a specific phenomenon. Therefore, it would be desirable
hat Lavoisier worked with fishbone diagrams instead of object-oriented
odels in industrial contexts. Nevertheless, fishbone diagrams were not
esigned to represent data. So, in a first step, we would need to adapt
hem for this purpose. The following section describes how we have
ddressed these challenges.

. Dataset generation from fishbone diagrams

.1. Solution overview

Fig. 7 shows the general scheme of our solution. The inputs are a
ishbone diagram (Fig. 7, label 1) and an object-oriented model (Fig. 7,
7

l

label 2), which describes data available in a domain. This fishbone
diagram is a classical one created for quality control purposes, such as
the one depicted in Fig. 6. Because of this, we will call it Quality Control
Fishbone diagram (QCF). This fishbone diagram is created by industrial
engineers, does not need to conform to any syntax, and it can be created
using any tool, including sketching tools or whiteboards.

The object-oriented domain model is created by data scientists to
fulfill two objectives: (1) to provide a well-formed description of data
available in a concrete domain; and (2) to supply an access layer to
retrieve domain data. This model must conform to the Ecore meta-
model [64], so that it can be accessed and navigated using model
management tools. Those relationships between data that cannot be
modeled using this language, such as functional dependencies be-
tween attributes of different classes, can be specified using OCL (Object
Constraint Language) [74–76].

We encourage industrial engineers to review domain models and
data scientists to check fishbone diagrams, as it is indicated by the
go and back arrows between these elements. By inspecting domain
models, industrial engineers might discover new causes that could be
added to the fishbone diagrams. On the other hand, data scientists
could find elements in fishbone diagrams that might be included in the
domain data model. However, we recommend that industrial engineers
not be exposed to domain models until they are comfortable with this
approach, to avoid overwhelming them with too many new elements.

Using these models as inputs, a new kind of fishbone diagram,
which we have called Data-Oriented Fishbone diagram (DOF) (Fig. 7,
abel 3), is created by data scientists. A DOF reshapes a quality-
ontrol fishbone diagram and links causes with data that characterize
hese causes. The connections between causes and domain data are
stablished using special code blocks that we have called data feeders.
data feeder specifies, using Lavoisier-like primitives, what data of a

omain model must be used to represent a certain cause. Therefore, a
OF specifies influence relationships between domain data.

Finally, industrial engineers specify what concrete causes of a DOF
ust be included in a dataset using a new language called Papin. Papin

pecifications (Fig. 7, label 4) are automatically processed by the Papin
nterpreter, which, using the information in the data feeders, retrieves
nd transforms domain data to automatically create a dataset (Fig. 7,

abel 5).

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

3

w
d

T
d
u
B
B

a
w
c
p
s
r
d

f
f
f

a
f
b
d
a
f
e

T
k
m
o
m
w

w
s
b
f

b
m

Fig. 7. Overview of our solution.
1
1
1
1

1
1
1
1

1
1
2
2

a
b

m
w
b
o
d
U
a
s
t

c
c
a
t
f
t
a

.2. Data-oriented fishbone models

A data-oriented fishbone model links causes in a fishbone diagram
ith data in an object-oriented domain model. For this purpose, we
esigned a special kind of code blocks called data feeders. A data

feeder is comprised of two elements: a path and a Lavoisier expression.
he path, starting always from a main class, traverses the domain
ata model to reach a class, an attribute or a collection that can be
sed to characterize a concrete cause. For instance, the data in the
andBatchParameters class might be employed to analyze the cause
and Inadequate Parameters (Fig. 6, cause 1.1.1).

As in Lavoisier, when a class is referenced by one of these paths,
ll its attributes are considered to be included in the output dataset,
hereas all the references are excluded by default. This behavior

an be modified by attaching a Lavoisier expression to the end of the
ath. This expression would specify, using an attribute list between
quare brackets and include statements, what concrete attributes and
eferences of the selected class should be incorporated to the output
ataset.

In the following, we describe how to construct a data-oriented
ishbone diagram using Listing 4 as an example. This listing shows a
ragment of a data-oriented fishbone diagram for the quality-oriented
ishbone diagram depicted in Fig. 6.

A DOF must always start with the declaration of an effect. To
ssociate domain data to the effect, we must take into account that,
or analyzing a phenomenon, data analysis algorithms often require to
e fed with data of entities that manifest that effect and entities that
o not. For instance, to find patterns that lead to falling bands, these
lgorithms might need to compare drive half-shafts with and without
alling bands. Therefore, in a DOF, the effect is associated to the domain
ntity whose instances might exhibit it.

Listing 4, lines 1–2 shows an example of an effect declaration.
his declaration contains a name for the effect, FallingBand, the is
eyword and a data feeder referencing a class from the domain data
odel. In our case, falling bands are analyzed by inspecting instances

f DriveHalfShafts. The class referenced by the effect is considered the
ain class for the output dataset. This means that this is the class for
hich the one entity, one row constraint must be satisfied.

In our example, since we need to know for each drive half-shaft
hether its bands fall or not, we must include together with each half-

haft its compliance report, which is who contains the data about falling
ands. This addition is performed using an include statement borrowed
rom the Lavoisier language (Listing 4, line 2).

After the effect declaration, to construct a DOF, we specify category
locks (Listing 4, lines 3–13, 14–17 and 19–21). These blocks simply
imic the category structure of the quality-oriented fishbone diagram
8

1 e f f ec t Fal l ingBand i s DriveHal fShaf t [id]
2 include repor t [fal l ingWheelBand]
3 category Mater ia l
4 cause Bands rea l izes ‘ Unsui table band ’ contains {
5 cause WheelBand contains {
6 cause WB_Model rea l izes ‘Wrong band model ’ i s
7 wheelBand . model
8 cause WB_Parameters rea l izes ‘ Inadequate

parameters ’ i s
9 wheelBand . parameters { include provider }
0 } −− WheelBand
1 cause EngineBand contains { . . . }
2 } −− Bands
3 cause Shaf t rea l izes ‘ Unsui table shaf t ’ contains

{ . . . }
4 category Machine
5 cause Pneumat icP l ie r sPressure rea l izes
6 ‘ Pressure in the pneumatic system too low ’ i s
7 assemblySess ion . parameters . p l i e r s F a s t e n i n g s by

number
8 . . .
9 category Management
0 cause WorkingConditions
1 rea l izes ‘ Unsui table Work Condit ions ’ notMapped

Listing 4: A data-oriented fishbone model for our running example.

ssociated to the data-oriented fishbone model. Next, for each category
lock, we attach causes to it.

A DOF always tries to replicate the same structure of a QCF, but it
ight need to modify this structure sometimes. For instance, in Fig. 6,
e find a cause named Unsuitable Band (cause 1.1), but there are two
ands tightened to a shaft, one on the engine side and the other one
n the wheel side. Therefore, when creating the DOF, we need to
ecompose this cause into two subcauses: Unsuitable Engine Band and
nsuitable Wheel Band. To keep traceability between causes of a DOF
nd its corresponding QCF, causes in a DOF have an optional realizes
tatement, which serves to specify which cause of a QCF is associated
o each cause in a DOF (see, for example, Listing 4, line 6).

In a DOF, three kinds of causes can be created: (1) compound
auses; (2) data-linked causes; and, (3) not mapped causes. Compound
auses represent causes containing one or more subcauses. Data for
nalyzing a compound causes is obtained by merging data associated
o its subcauses. Data-linked causes are atomic causes that contain data
eeders that specify what domain data must be retrieved to analyze
hem. Finally, notMapped causes represent atomic causes that are not
ssociated to domain data. These causes serve to specify causes for

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

n
B
W
1
c
a

a
t
f
i
o
i
a
a

s
W
a
w
u
t
4
a
m
s
d
t
s

c
m
d
d
t
a
t

3

m
L
t
l
w
b
t
c
I
5

a
e
a
a
s
n
c
a

v

h
w

m
t
c
t
c
T
p
e
f

4

o
d
r

m

e

which domain data is not available yet, but that we want to keep in a
DOF to preserve traceability between that DOF and its associated QCF.
We provide examples of each one of these causes below.

Listing 4, lines 4–12 show an example of a compound cause, whose
ame is Bands and that realizes the quality-oriented cause Unsuitable
and (see Fig. 6, cause 1.1). This cause is comprised of two subcauses:
heelBand (Listing 4, lines 5–10) and EngineBand (Listing 4, line

1), which are compound causes too. As previously commented, these
auses are not in the quality-oriented fishbone model and they are
dded here to adapt the DOF to the domain model.

Concerning data-linked causes, Listing 4, lines 6–7 provide an ex-
mple of one, which is named WB_Model. In these causes, following
he name and the optional realizes statement, we must specify a data
eeder after the is keyword. The data feeder, as previously commented,
s composed of a path that traverses the domain data model plus an
ptional Lavoisier expression. This path is implicitly assumed to start
n the main class and it can reference as target element: (1) a single
ttribute; (2) a reference to a class; or, (3) a collection of references to
class.

In Listing 4, lines 6–7, the pointed element is an attribute, more
pecifically the model attribute of the Band class. This means the
B_Model cause will be characterized by the value associated to that

ttribute. Listing 4, lines 8–9 show an example of data feeder path
here the target element is a class. Moreover, in this case, we make
se of a Lavoisier expression to specify that the provider reference of the
arget class must also be used to characterize this cause. Finally, Listing
, lines 15–17 illustrate a case where the path of a data feeder points to
collection. Collections are handled as multibounded references, which
eans we need to provide identifiers for the instances in this collection

o that data of each individual instance can be spread over a set of well-
efined columns. In our concrete case, each measure of the pressure in
he pliers pneumatic system is identified by its tightening number, as
pecified after the by keyword.

Finally, Listing 4, lines 19–21 contain an example of a not mapped
ause. Obviously, working conditions, such as dusty or noisy environ-
ents, might be a cause for falling bands. However, we do not have
ata about these issues, so we cannot characterize these causes with
omain data, so they must be managed as a not mapped cause. To keep
hese causes is useful to maintain traceability between fishbone models
nd to record hints about what new data might be gathered to improve
his data analysis process.

.3. Papin: Dataset specification by cause selection

After building a DOF, we use Papin to specify the causes of that
odel that should be included in a dataset for analyzing the DOF effect.

isting 5 provides an example of Papin specification. A Papin specifica-
ion always starts defining a name for the output dataset (Listing 5,
ine 1), which is FallingBand_MaterialsAndPressures in our case. Then,
e must provide the name of the DOF from which the causes will
e selected (Listing 5, line 2). In our example, this fishbone model is
he one depicted in Listing 4, which is identified as FallingBand. Then,
ategories to be included in the output dataset must be explicitly listed.
n our case, two categories, Material and Machine, are selected (Listing
, lines 3 and 4).

By default, all the causes included in a category or compound cause
re added to the output dataset when these elements are selected. For
xample, in Listing 5, line 3, all causes inside the Material category
re implicitly added to the target dataset. If we wanted to select just
subset of causes of a compound element, we must list the concrete

ubcauses to be selected inside an inclusion block after the element
ame. Listing 5, lines 4–6 show an example of inclusion block. In this
ase, just the PneumaticPliersPressure cause of the Machine category is
dded to the output dataset.

Specifications are processed by the Papin interpreter, which pro-
9

ides the semantics for the language. These semantics are summarized
1 dataset FallingBand_MaterialsAndPressures

2 using FallingBand {

3 include Material

4 include Machine {

5 include PneumaticPliersPressure

6 }

7 }

Listing 5: An example of Papin specification.

Table 1
Procedure for interpreting of Papin specifications.

1. For each category or cause selected by a Papin specification, we traverse it to
extract its data-linked causes.
2. Each data-linked cause is evaluated using the Lavoisier interpreter, which returns
a dataset for each one of them.
3. All these datasets are merged using the identifier of the main class as matching
attribute between dataset rows.
4. The resulting dataset is written to a CSV file.

in Table 1, and work as follows: First of all, we traverse each category
or cause selected in a Papin specification to obtain their leaves causes,
which can be either data-linked causes or not mapped causes. Not
mapped causes are simply ignored. For each data-linked cause, we
evaluate its data feeder to retrieve the domain data associated to the
cause. The data feeder is evaluated by the Lavoisier interpreter. As a
result of these evaluations, for each data-linked cause, we get a tabular
structure with one column per each attribute that characterizes that
cause, plus one column for the identifier of the instances being ana-
lyzed.3 For example, the WB_Model cause, contained in the WheelBand
cause (Listing 4, lines 6–7), when selected, generates a tabular structure
with id and wb_model as columns, where id is the identifier for a drive
alf-shaft and wb_model is the number of the model of the band in the
heel side.

Since these tabular structures are computed using the same transfor-
ation patterns executed by the Lavoisier interpreter, all of them satisfy

he one entity, one row constraint. Each one of these tabular structures
an be considered a projection of the output dataset that contains just
he data for analyzing a concrete cause. Therefore, to generate the
omplete dataset, we would just need to combine these projections.
his task can be easily executed by performing joins between these
rojections. The resulting table is then combined by a new join with the
ffect data, and the CSV file for the output dataset is finally generated
rom this resulting tabular structure.

. Implementation

Here we comment on some relevant aspects of the implementation
f the languages we designed to adapt Lavoisier to work with fishbone
iagrams. This implementation is publicly available in an external
epository.4

Fig. 8 provides a scheme of the different elements that comprise our
odel-driven infrastructure. This infrastructure is comprised of:

1. three domain-specific languages for which we have provided
their corresponding editors and parsers;

2. an object-oriented domain model, specified using Ecore [64];
3. domain data, which is retrieved through the domain model and,

therefore, must conform to it;
4. the Papin interpreter, which generates a CSV file containing the

required output dataset;

3 If entities being analyzed are identified by several values, a column per
ach one of these values would be added to this tabular structure.

4 https://anonymous.4open.science/r/fishbones-872E.

https://anonymous.4open.science/r/fishbones-872E

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

m
c
m
h
a

D
o
T
a
w
e
e
e
r
s
s
a
l
i

f
e

Fig. 8. Elements of our model-driven environment.
f
r

f

5. the Lavoisier interpreter, which is invoked by the Papin inter-
preter to process the Lavoisier expressions of the data feeders.

As it can be noticed, in addition to Data-Oriented Fishbone Mod-
els and Papin, we have also developed an editor for Quality-Control
Fishbone models, so that these models can be stored inside our mod-
eling infrastructure. The three languages were implemented following
a metamodelling approach [61,62]. This approach starts with the def-
inition of a metamodel that is, roughly speaking, a class diagram
describing the abstract syntax of the language. The metamodels for
our three languages were specified using Ecore [64], which can be
considered the de-facto metamodeling standard.

Fig. 9 shows the metamodel for data-oriented fishbone models. This
metamodel has been built atop the abstract syntax of Lavoisier, as
expressions of the latter must appear in DOF specifications. A DOF

odel contains an Effect, which has associated a DataFeeder and is
omprised of one or more Categories. Each Category contains one or
ore Causes. Each Cause can be a NotMappedCause, a CompoundCause,
osting several subcauses, or a Data-Linked Cause, which would have
ssociated a Data Feeder.

The entry point of Lavoisier expressions into the DOF language is the
ataFeeder element that, as described before, is used to relate elements
f the domain model with effects or causes of the Fishbone Diagram.
herefore, the DOF elements that contain a data feeder are the Effects
nd the Data-Linked Causes. A data feeder has a domainElementSelector,
hich traverses the domain model from the class associated to the
ffect until reaching an attribute, a collection or a class. This target
lement is then processed using the AttributeFilter and IncludeReference
lements, which are imported from the Lavoisier metamodel. Other less
elevant Lavoisier syntax elements are used as part of a data feeder,
uch as the boolean expressions that can be specified to filter out
ome domain model instances. The interested reader can check the full
bstract syntax of Lavoisier in its original article (see Figure 9 of de
a Vega et al. [52]). The complete DOF metamodel is also available
n the source code repository.5 Similar metamodels were designed for

5 https://gitlab.com/brian8sal/automated-generation-of-datasets-from-
ishbone-diagrams/-/blob/master/es.unican.dof/model/generated/DOF.
core?ref_type=heads.
10

e

QCFs and Papin. These metamodels are not shown here for the sake of
brevity but they can also be found in the source code repository.67

After the creation of the metamodels for our languages, we defined
a concrete syntax for each one of them. According to the metamodeling
approach, this concrete syntax could be textual, graphical or even
graphical-textual. In our case, we designed a textual syntax for all these
languages because we considered that: (1) typing text is quicker than
dragging and dropping graphical elements; (2) for DOF and Papin,
textual specifications seem to be more natural than graphical ones; and,
(3) textual models can be more easily versioned using configuration
management tools than graphical ones. For these reasons, we opted for
textual syntaxes even for quality-control fishbone models. Nevertheless,
we must empirically check whether all the previous hypotheses are true
as part of our future work.

The textual syntax for each one of our languages was defined using
Xtext [77,78]. Xtext is a tool which allows language engineers to
associate a grammar to a metamodel. As an example, Listing 6 shows
the Xtext grammar of the DOF language, defined over the metamodel
of Fig. 9. To illustrate briefly how Xtext works, we describe now
the production rule for categories of the DOF language (Listing 6,
lines 6–7). When executed (line 6), this rule creates an instance of
the Category metaclass, contained in the DOF metamodel. A category
definition begins with the category keyword, followed by an identifier
that must fulfill a specific name convention, as indicated by the ID
keyword. This string is assigned to the attribute name of the Category
metaclass. Moreover, a Category must always contain a Cause (line 7),
which must be specified according to the production rule for causes,
not included in this example. This cause is added to the collection
of causes of the Category metaclass. Finally, a Category might contain
an unbounded number of causes, as specified at the end of line 7.

6 https://gitlab.com/brian8sal/automated-generation-of-datasets-from-
ishbone-diagrams/-/blob/master/es.unican.qcf/model/generated/QCF.ecore?
ef_type=heads.

7 https://gitlab.com/brian8sal/automated-generation-of-datasets-from-
ishbone-diagrams/-/blob/master/es.unican.papin/model/generated/Papin.

core?ref_type=heads.

https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.dof/model/generated/DOF.ecore?ref_type=heads
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.dof/model/generated/DOF.ecore?ref_type=heads
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.dof/model/generated/DOF.ecore?ref_type=heads
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.qcf/model/generated/QCF.ecore?ref_type=heads
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.qcf/model/generated/QCF.ecore?ref_type=heads
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.qcf/model/generated/QCF.ecore?ref_type=heads
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.papin/model/generated/Papin.ecore?ref_type=heads
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.papin/model/generated/Papin.ecore?ref_type=heads
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.papin/model/generated/Papin.ecore?ref_type=heads

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

1
1
1
1

1
1
1
1
1
1
2
2
2
2
2
2

Fig. 9. Metamodel describing the abstract syntax of the DOF language.
1 DOF: ’dof’ name=QualifiedName e f f e c t=E f f e c t ;
2
3 E f f e c t : ’effect’ name=ID ’is’ dataFeeder=DataFeeder
4 ca t ego r i e s+=Category (ca t ego r i e s+=Category) ∗ ;
5
6 Category : ’category’ name=ID
7 causes+=Cause (causes+=Cause) ∗ ;
8
9 Cause : CompoundCause | DataLinkedCause |

NotMappedCause ;
0
1 CompoundCause : ’cause’ name=QualifiedName
2 (’realizes’ r e a l i z e s =[qcf : : Cause | EStr ing]) ?
3 ’contains’ ’{’ subCauses+=Cause (subCauses+=Cause)

∗ ’}’ ;
4
5 DataLinkedCause : ’cause’ name=QualifiedName
6 (’realizes’ r e a l i z e s =[qcf : : Cause | EStr ing]) ?
7 ’is’ dataFeeder=DataFeeder ;
8
9 NotMappedCause : ’cause’ name=QualifiedName
0 (’realizes’ r e a l i z e s =[qcf : : Cause | EStr ing]) ?
1 ’notMapped’ ;
2
3 DataFeeder : name=QualifiedNameWithWildcard
4 a t t r i b u t e F i l t e r=A t t r i b u t e F i l t e r ?
5 (’include’ inc ludedReferences+=IncludedReference)

∗ ;

Listing 6: Concrete textual syntax of the DOF language specified as
an Xtext grammar.

As with the metamodel, the DataFeeder production rule is the entry
point for the concrete syntax of the Lavoisier language. A full grammar
including the integrated Lavoisier syntax is again available in the
external repository.8 The grammars for QCF and Papin can also be
found in this external repository.910

The main advantage of using Xtext is that it is able to automatically
generate an editor and a parser from a grammar specification. The
generated editor provides some helpful features by default, like syntax

8 https://gitlab.com/brian8sal/automated-generation-of-datasets-from-
fishbone-diagrams/-/blob/master/es.unican.dof/src/es/unican/DOF.xtext.

9 https://gitlab.com/brian8sal/automated-generation-of-datasets-from-
fishbone-diagrams/-/blob/master/es.unican.qcf/src/es/unican/QCF.xtext.

10 https://gitlab.com/brian8sal/automated-generation-of-datasets-from-
fishbone-diagrams/-/blob/master/es.unican.papin/src/es/unican/Papin.xtext.
11
highlighting, and can be easily extended to incorporate other common
editor features, such as auto-completion or live-validations.

The data feeders of a DOF specification are interpreted on demand,
this is, they are evaluated only and when their associated causes
are selected as part of a Papin query. These queries are processed
by the Papin interpreter, which with the help of the Lavoisier in-
terpreter provides operational semantics to the language. The papin
interpreter manages each selected cause as follows. If the cause is
a data-linked cause, the Papin interpreter translates the data feeder
expression to a Lavoisier expression. To do it, it replaces dots in
the path to select a target element by include statements that do not
select any attribute of the intermediate classes. Moreover, if the target
element is an attribute, this is added to the attribute filter of the
preceding class. Using this Lavoisier statement as input, the Papin
interpreter invokes the Lavoisier interpreter, which retrieves domain
data to generate a dataset corresponding to that statement. This dataset
is provided as a ColumnSet [52], a data structure created for the
Lavoisier implementation that is similar to a Pandas DataFrame.

If the cause to be processed is a compound cause, the Papin inter-
preter retrieves its subcauses and processes them individually. If the
subcause is a not mapped cause, it is simply ignored. If the subcause is
a data-linked cause, the process described in the previous paragraph is
used. Finally, if the subcause is also a compound cause, the process is
applied recursively.

5. Evaluation

This work has been developed to adapt Lavoisier to the Industry
4.0 context by allowing it to work with models that are more widely
used in this environment, such as fishbone models. For this purpose,
our solution provides two different elements: Data-Oriented Fishbone
Models and Papin. These languages have two main objectives: (1) to
increase the abstraction level at which work is performed when creating
datasets; and, (2) to avoid people from the industry having to deal with
model formats they are not familiar with to create a dataset.

We empirically validate here whether these objectives have been
fulfilled by analyzing three different elements: (1) language expressive-
ness, this is, if the created languages can be effectively used in different
Industry 4.0 problems; (2) whether industrial engineers can effectively
deal with Papin specifications; and (3) how much accidental complexity
can be saved by using DOFs and Papin for generating datasets.

In the following, we describe first the evaluation of the expres-
siveness of our languages. Then, we describe a small experiment we
conducted to check whether industrial engineers were able to un-
derstand and create Papin specifications and we analyze its results.
Next, we detail the procedure we have followed to evaluate how much
accidental complexity can be removed thanks to DOFs and Papin, and
we discuss the results gathered after executing this procedure. Finally,

we comment and analyze potential threats to the validity of our results.

https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.dof/src/es/unican/DOF.xtext
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.dof/src/es/unican/DOF.xtext
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.qcf/src/es/unican/QCF.xtext
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.qcf/src/es/unican/QCF.xtext
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.papin/src/es/unican/Papin.xtext
https://gitlab.com/brian8sal/automated-generation-of-datasets-from-fishbone-diagrams/-/blob/master/es.unican.papin/src/es/unican/Papin.xtext

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

C
R

5

t
e

Table 2
Case study size and complexity.

Case study Fishbone diagram Domain model

#Ct #Ca Nest #Cl #Att #1-Rfs #*-Rfs #Inh Path

Nipples 6 24 1 16 51 10 7 0 2
Half shafts 5 33 2 17 41 21 3 0 5
Firewalls 4 16 0 9 30 2 2 1 1
Turbines 5 33 1 10 37 7 7 0 3
Alternator 4 22 0 8 29 2 2 1 1

#x: Number of x; Ct: Categories; Ca: Causes; Nest: Deepest Nesting for Causes;
l: Classes; Att: Attributes; 1-Rfs: Single-bounded references; *-Rfs: Multibounded
eferences; Inh: Inheritance Hierarchies; Path: Longest path between classes.

.1. Expressiveness

To evaluate the expressiveness of DOFs and Papin, we used these
languages to generate datasets for five external case studies. Four of
these case studies were taken from the literature [55–58] and the
remaining case study is from an industrial partner.

The first case study [57] is about finding causes in the production
process of hydraulic nipples that might lead to defects in the final
products. The second case study [56] is an extended version of the
running example used throughout this work (see Section 2.2). The third
case study [55] analyzes the production process of car firewalls, the
piece that isolates the passenger compartment from the engine, to try
to find causes for the appearance of rust in some of these firewalls. The
fourth case study [58] aims to discover what was at the origin of the
porosities found on the outlet nozzle of some manufactured turbines.
Finally, the fifth case study, provided by an industrial partner of the
automotive sector, analyzes data related to the tightening torque of an
alternator pulley to reduce the number of these alternators that were
rejected due to malfunctioning.

For the case studies taken from the literature, the articles describ-
ing them provided a quality-oriented fishbone diagram and a textual
description of some of the data available in each domain. From these
descriptions, we inferred the corresponding domain models, that were
complemented with data from technical sheets of both the manufac-
tured products and the materials used to manufacture them. For the
industrial case study, the industrial partner has already specified a
quality-oriented fishbone diagram and generated some datasets, pro-
vided as Excel sheets, from which we derived the corresponding domain
model.

Using these quality-oriented fishbone diagrams and the domain
models as input, we created the corresponding data-oriented fishbone
diagrams and produced several datasets using Papin. Table 2 provides
some numbers about the size and complexity of each case study, so that
the reader can get a quick glimpse of them. Moreover, these models are
available in the supplementary material of this article.11

We were able to specify a DOF and several Papin specifications
for each one of these case studies without major problems. Therefore,
we can conclude expressiveness of data-oriented fishbone models is
adequate. Nevertheless, several small issues, most of them not related to
language expressiveness, were detected during this evaluation process.
We detail them below.

First, we detected that the same piece of data might be attached to
two or more causes in some cases. For example, in the case of the car
firewalls [55], the machine used to manufacture these firewalls has a
liquid that is in contact with both the pieces of the firewall and the
machine itself. Therefore, the pH level of this liquid might affect both
these pieces, which would be in the Material category, and the machine,
which would be, as obvious, in the Machine category. Consequently, if
we select these two categories when generating a dataset, the pH level

11 https://doi.org/10.6084/m9.figshare.24581361.v1.
12
of this liquid would be included twice in such a dataset, which might
lead to some problems with some data mining algorithms. To avoid this,
we added an extra step to the Papin interpreter to detect and remove
duplicate columns.

Second, we realized that, in all these case studies, we copied first
the corresponding QCF in the DOF editor and then we started to modify
it adding data feeders and realizes statements. It would be interesting if
his process could be automated and an initial skeleton of a DOF, with
ven the realizes statements automatically filled up, could be generated

from a QCF. We will try to address this issue as part of our future work.
Third, we found the need, in some cases, of adding custom columns

to the output dataset containing the result of a calculation on domain
data. For example, instead of adding information about each training
course of a worker individually, it might be better to add a single
column containing all the hours of training this worker has received, for
which we would need to sum the hours of all his training courses. To do
it, we need both a mechanism to define custom columns and primitives
and aggregation functions to perform calculations on domain data. As
our languages rely on Lavoisier and this language has support for this
calculated values, it was easier to incorporate this kind of column to our
languages. However, the current catalogue of operators and aggregated
functions provided by Lavoisier is somewhat limited, so it would be
advisable to extend it. For instance, it would be interesting to have
operators to perform calculations with dates. We will address this issue
as part of our future work.

Finally, we found several causes in the fishbone diagrams of these
case studies for which it might be really hard to find data in a domain
model, such as, for instance, worker motivation or machine positioning
in production plants. Curiously, most of these causes are included in
the Management category. DOFs provide a not mapped statement for
these cases. However, a DOF full of not mapped statements would be
useless. So, fishbone diagrams should be designed having into account
that causes should be measurable or characterized somehow. This is
aligned with the original thoughts of Kaoru Ishikawa, the creator of
these diagrams, who stated that causes in a fishbone diagram are only
useful if we can intervene on them and analyze the influence of such
interventions on the effect.

5.2. Experiments with industrial engineers

In order to conduct a sound and conclusive analysis of whether our
languages can be used effectively by industrial engineers, we should
have conducted some empirical experiments in which some carefully
selected industrial engineers performed some dataset generation tasks
using our languages in a controlled environment under our supervision.
According to the literature [79,80], these empirical experiments are
one of the most effective ways to evaluate the benefits of using a
DSL [79,80]. Unfortunately, however, these types of experiments are
very rare in both the DSL and Industry 4.0 communities [81,82]. The
main problem with these experiments, and probably the reason why
they are not very common in the community, is that their design,
organization, and execution require a huge effort in terms of both time
and resources, which usually exceeds the limits of a regular research
project. Moreover, in the case of Industry 4.0, the participants are
industrial engineers, who often have complex schedules, very little time
to participate in these experiments, and serious problems to leave their
workplaces during their working hours. Furthermore, at the time of
writing this work, the Covid-19 health crisis made it more difficult to
organize empirical experiments that require bringing together people
with different profiles and from different organizations in the same
room.

For these reasons, we opted for a more simple procedure based on
distributing an online questionnaire to a set of industrial engineers, who
had to solve some exercises related to Papin. We focused exclusively on
Papin since this is the language that industrial engineers would use.
In this regard, it should be remembered that data-oriented fishbone
models are created mainly by data scientists. This questionnaire was

divided into six sections:

https://doi.org/10.6084/m9.figshare.24581361.v1

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

i
q
f

a
t
r
a
E
t
t
w
m

p
f
d
n
k
o
t
t
a
a

1

t

Table 3
Questions 5.1 and 5.2 of the questionnaire.

Q5.1 Given the Ishikawa diagram and the Papin specification attached to
this question, would the cause 1.3.2 Wrong Housing Model be included in the
output dataset? Briefly reason your answer.

1 dataset Question5 .1
2 using Fal l ingBand {
3 include Mater ia l {
4 include Unsui tab leShaf t
5 }
6 include Machine
7 }

Q5.2 Given the Ishikawa diagram and the Papin specification attached to
this question, would the cause 1.2.3 The powder coating not within the norm be
included in the output dataset? Briefly reason your answer.

1 dataset Question5 .2
2 using Fal l ingBand {
3 include Mater ia l {
4 include Unsui tab leShaf t
5 }
6 include Machine
7 }

Note: The Ishikawa diagram mentioned in all these questions is the diagram
of Fig. 6.

1. General information about the questionnaire, data protection
issues and asking for agreement to participate in the experiment.

2. Demographic data, e.g. academic degrees, job positions, experi-
ence.

3. Respondents’ background on data modeling and fishbone dia-
grams.

4. A training section with a brief video tutorial about Papin, plus
two control questions to check if the respondent understood the
tutorial.

5. Three questions to verify if respondents were able to understand
Papin specifications.

6. Two small exercises where the respondents had to write a Papin
specification.

The questions and exercises of sections 5 and 6 are contained
n Tables 3, 4 and 5. The Ishikawa diagram mentioned in all these
uestions is the diagram of Fig. 6. The complete questionnaire can be
ound in Appendix B.

Questions of section 5 aim to verify whether industrial engineers
re able to interpret correctly Papin specifications, and to reason about
hem to reach a conclusion. In these questions, we requested a brief
ationale together with each answer to verify that the answers were
ctually consequence of a correct deduction and not simply a lucky bid.
xercises of section 6 try to check whether industrial engineers are able
o create Papin specifications by themselves. The first exercise asks for
he writing of a very simple specification and it can be considered as a
arn-up exercise whereas, for the second one, respondents must write a
ore complex specification that requires a deeper knowledge of Papin.

Before disseminating the questionnaire, we carried out a pilot ex-
eriment with a naval engineer who is close to us. Based on his
eedback, we adjusted the questionnaire and circulated it between
ifferent groups of industrial engineers. These groups included engi-
eers from the industries surrounding our university, engineers we
new from other Spanish regions, and members of the departments
f mechanical and chemical engineering of our university. The ques-
ionnaire was opened during three weeks and it took around 30 min
o be completed. We gathered 16 answers during these three weeks
fter an intensive activity to publicize the questionnaire. From these 16
nswers, one was discarded because the respondent failed the control
13
Table 4
Questions 5.3 and 5.4 of the questionnaire.

Q5.3 Given the Ishikawa diagram and the Papin specification attached to this
question, indicate the numbers of all the causes that would be selected by
that specification. Briefly reason your answer.

1 dataset Question5 .3
2 using Fal l ingBand {
3 include Man
4 include Machine
5 }

Q5.4 Given the Ishikawa diagram and the Papin specification attached to this
question, indicate the numbers of all the causes that would be selected by
that specification. Briefly reason your answer.

1 dataset Question5 .4
2 using Fal l ingBand {
3 include Man
4 include Mater ia l {
5 include Unsui tab leShaf t {
6 include InadequateParameters
7 include WrongShaftModel
8 }
9 }
0 }

Note: The Ishikawa diagram mentioned in all these questions is the diagram
of Fig. 6.

Table 5
Questions 6.1 and 6.2 of the questionnaire.

Q6.1 Given the Ishikawa diagram attached to this question, write a Papin
specification to analyze the Method and Management dimensions. You can use
he following Papin specification as an example of the language syntax.

1 dataset Fal l ingBand_Mater ia l sAndPressures
2 using Fal l ingBand {
3 include Mater ia l
4 include Machine {
5 include Pneumat icP l ie r sPressure
6 }
7 }

Q6.2 Given the Ishikawa diagram attached to this question, write a Papin
specification to analyze only the causes 2.2 Calibration not carried and 3.1
Failure of pnematic pliers. You can use the following Papin specification as an
example of the language syntax:

1 dataset Fal l ingBand_Mater ia l sAndPressures
2 using Fal l ingBand {
3 include Mater ia l
4 include Machine {
5 include Pneumat icP l ie r sPressure
6 }
7 }

Note: The Ishikawa diagram mentioned in all these questions is the diagram
of Fig. 6.

questions about Papin, which indicated that something went wrong
during the training section and the respondent had not the required
skills to complete the questionnaire. Another answer was discarded
because the respondent did not fill sections 5 and 6 arguing he did not
have time.

The respondents included industrial engineers (10), telecomunica-
tions engineers (1), chemical engineers (1), chemists (1), and naval
engineers (1). In addition, 7 of them had more than 20 years of
engineering experience, 2 between 10 and 20 years, 1 between 2 and
5 years, and 4 less than 2 years. The current job positions included
project managers, maintenance manager of a set of logistics centers,

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

C
o
h
n

c
r
s
i

q
q
q
p
c
p
c
c
f
o
a
d
t
c
p
a
a
c

a
p
P
n
t
d

5

5

i
d
t
o

Fig. 10. Answers to the questions and exercises of the questionnaire.
p
a
b
t
d
e
w
c
f
e

C
s
d
m
f
V
g
P
i
t
c

t
b
o
s
o
t
f

M
e
s
t
i
i
n
c
s
t
a
t

h

hief Technical Officer of a ship building company, head of technical
ffice, some professors and one Ph.D. student. Only two respondents
ad some previous experience with data modeling notations. These
otations were UML [83] and Entity-Relationship (ER) [66] models.

After gathering the answers, we marked them as correct, partially
orrect and wrong. Correct answers have both a right answer and a right
ationale. Partially correct answers have a right rationale, but there is a
mall incorrect detail in the answer. For instance, in question 5.3, there
s a missing cause. Fig. 10 shows the results after the marking process.

As it can be seen, most engineers were able to answer to these
uestions and exercises correctly. With the exception of Q5.3, all
uestions have more than 80% of correct answers, and 3 out of 6
uestions were answered correctly by all participants, which is quite
ositive. Concerning Q5.3, the respondents had to list five causes,
orresponding to the Man and Machine categories. Two respondents
rovided a partially correct answer. While they forgot to include the
ause 3.3 from the Machine category, the other four causes were
orrectly included. This issue may be related to the layout of the
ishbone diagram or to the rush to finish. Regarding the wrong answers
f Q5.3, one respondent forgot completely a category and the other one
nswered that no cause was selected. The first wrong answer may be
ue to the rush to finish, whereas the second one may be related to
he fact that we are actually selecting categories in this case and not
auses. Nevertheless, we marked both answers as wrong. Other minor
roblems appeared in other questions. For example, in question 6.1,
respondent provided a list of selected causes as answer, instead of
Papin specification, which indicates he did not read the question

arefully.
So, considering the number of correct answers and the lack of wrong

nswers in half of the questions, we may conclude that there is some
reliminar evidence indicating that industrial engineers are able to use
apin effectively. However, to state this conclusion firmly, we would
eed to conduct more complex and better monitored experiments, since
here are some obvious threats to the validity of our conclusion that are
etailed in Section 5.4.

.3. Accidental complexity reduction

.3.1. Evaluation procedure
Here we show our efforts to measure how much accidental complex-

ty can be saved by using Data-Oriented Fishbone Models and Papin for
ata selection and preparation. For this, we applied the same procedure
hat was executed to evaluate Lavoisier [52]. This procedure was based
n defining a set of dataset extraction scenarios that represented all
14
otential situations a data scientist might face during the creation of
dataset. In our case, these scenarios will be based on the falling

ands case study, which have also been used as running example
hroughout this paper. Then, we write scripts for each scenario using
ifferent technologies and our languages, we gather a set of metrics for
ach script and we compare the results. So, to execute the procedure,
e need three elements: (1) the technologies to be included in the

omparison; (2) the set of metric to be calculated; and, (3) the scenarios
or which scripts would be written in each language. We comment on
ach one of these elements below.

andidate technologies. As it was mentioned in previous sections, and
tated by de la Vega et al. [52], the technologies typically used for
ataset creation can be classified in two different groups: (1) data-
anagement dedicated languages; and, (2) data-management libraries

or general-purpose programming languages. So, we replicated de la
ega et al.’s [52] decisions and we chose one representative from each
roup, selecting the SQL language [47] for the first group, and Python
andas [49] for the second one, as de la Vega et al. did [52]. We also
ncluded Lavoisier as a third language for the comparison as we wanted
o evaluate the advantages and disadvantages of our new approach as
ompared to this cutting-edge language.

As the reader can easily notice, neither SQL or Pandas are able
o work with object-oriented models. Therefore, for these cases, we
uilt a relational model that were equivalent to the domain model
f the falling bands case study and we wrote the SQL and Pandas
cripts using it. To carry out this transformation, we follow the classical
bject-relational mapping patterns [84,85]. The SQL scripts for creating
he relational model resulting from this transformation process can be
ound in the supplementary material of this article.

etrics. We used the same set of metrics that was used for the Lavoisier
valuation [52] and we adopted the same decisions as them. So, we use
cript size as an indirect and rough measure of accidental complexity:
he more accidental complexity a script has, the more boilerplate code
t may contain and the larger its size will be. We measured script size
n characters, to focus in the amount of code a data scientist would
eed to write, and we ignored tabs, spaces and line breaks for this
ount, to avoid the results were affected by differences in the coding
tyle. We also excluded from this metric the code required to transform
he tabular structures resulting of the SQL and Pandas operations into

CSV file, to focus just in the accidental complexity of the data
ransformations that are required to create a dataset.

To measure script size of DOFs plus Papin, we needed to decide
ow DOF specifications were exactly computed in this case. With these

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

S

S

technologies, we always need to write a Papin specification to generate
a dataset, but DOFs may be reused, so they do not need to be written
in all cases. Therefore, we considered three different options. The first
one was to include the whole DOF, with all its causes, in the script
size, independently on whether a cause was useful for generating a
concrete dataset or not. This option would correspond to the case where
a complete DOF is initially created before generating any dataset and,
once the DOF is written, a Papin specification is then created. We will
refer to this option as Full DOF. The second option was to consider just
the causes of a DOF that are selected from a Papin specification. This
option matches the situation where the DOFs is completed on demand,
writing just those causes that are required by each Papin specification.
We will refer to this option as Data Feeders. The third option was to
completely exclude the DOF from the script size. This option would
happen when a DOF is already available in a domain and we simply
need to write a new Papin specification to create a dataset. We will
refer to this option as Just Papin. As we wanted to get better insights
into strengths and weaknesses for our approach, we took measures for
the three options.

As previously mentioned, script size is a rough estimator for the
presence of accidental complexity in the scripts for dataset generation.
However, script size might be affected by different factors in addition
to accidental complexity. A lower script size might be a consequence
of less verbose syntax, which, on the other hand, might be harder to
understand in some cases. This argument can be illustrated with the use
of the conditional ternary operator (i.e. condition? trueBlock : falseBlock)
versus regular if statements (i.e. if (condition) trueBlock else falseBlock).
The former is less verbose, more compact and quicker to write, but it
does not seem to reduce the accidental complexity of an if statement.
Both cases can be said to be the same old song and dance, just with a
different tune.

Therefore, script size was complemented with an additional set of
metrics to gain a better understanding of how accidental complexity
works in each case. These metrics are summarized in Table 6 and are
taken from the Lavoisier evaluation [52]. NumOps and NumDiffOps aims
to assess the capabilities of the operators of a language. If a language 𝐴
has to use less operations than a language 𝐵 to achieve the same goal,
i.e. 𝐴 has a lower NumOps than 𝐵, the operators of language 𝐴 might
be considered more powerful than the ones of 𝐵, since they do more
work per operation.

This observation is complemented with the NumDiffOps metrics. A
higher NumOps together with a greater NumDiffOps in a language would
mean that such a language needs to use more operators to complete
the same tasks, so these operators probably work at a lower level of
abstraction and we need to concatenate several of them to execute a
task that in other languages could be made just with a single one. A
higher NumOps and similar NumDiffOps in a language might imply that
the language has to repeat some operations several times to complete
a task, which is a typical symptom of repetitive boilerplate code.

NumPar and AvgParOp are used to analyze the complexity of in-
voking an operator in a language. In general, the fewer parameters
an operator needs, the less accidental complexity it may contain. For
example, when joining two tables, the columns of each table on which
this join is performed can be inferred in most cases. If the operators
of a language 𝐴 have capabilities like this, this will result in a fewer
number of parameters.

Finally, NumKw analyzes accidental complexity in a similar way to
NumOps and NumPar. A lower number of keywords in the scripts of
a language 𝐴 may be a consequence of these keywords being more
powerful, as fewer of them are required to fulfill the same objectives.
Complementary, NumDiffKw aims to measure how many elements we
15

would need to understand and remember to use a language proficiently.
Table 6
Script complexity metrics, taken from de la Vega et al. [52].

Name Description

NumOps Number of operations
NumDiffOps Number of distinct operations
NumPar Number of parameters
AvgParOp Average number of parameters per operation
NumKw Number of keywords
NumDiffKw Number of distinct keywords

Scenarios. For the scenarios, we also followed the procedure of
Lavoisier [52] and first identified all possible atomic scenarios a data
scientist might need to deal with during dataset creation. This atomic
scenarios, as its name says, cannot be decomposed into simpler ones.
We considered that there is an atomic scenario for each pair of type of
cause and kind of domain element that might be selected. For example,
the selection of a data-linked cause that points to a class would be an
atomic scenario, and the selection of a data-linked cause that references
a collection would be another scenario. Once these atomic scenarios
were identified, we built a concrete scenario, based on our the drive
half-shaft case study, for each one of them. The complete domain model
and DOF for this case study can be found in Appendix A.

The rationale behind this technique is that more complex scenarios
can always be decomposed into a set of atomic ones. Therefore, if
our languages are able to reduce accidental complexity of the atomic
scenarios, they will also be able to reduce accidental complexity of the
more complex ones.

Table 7 shows the atomic scenarios we identified. For each scenario,
we provide: (1) a character that identifies it; (2) the kind of DOF cause
being selected; (3) the type of domain elements referenced by the DOF
causes; (4) the concrete cause being selected; and, (5) the specific
domain element included in the output dataset. To reduce the set of
cause and domain element combinations, we considered categories and
compound causes as equivalent, since categories are a just special cases
of compound causes. Moreover, notMapped causes were left out as they
cannot be used to select data.

All datasets generated in these scenarios contain as base information
the identifier of each drive half-shaft and a boolean value indicating
whether its wheel band falls or not. In addition, each scenario adds the
following data:

Scenario a Wheel band model.

Scenario b Assembly program number.

Scenario c A column for the pressure of each one of the four pliers
tightenings.

cenario d All wheel band batch parameters, and the provider.

Scenario e Coordinate values for the position of the wheel and engine
bands.

Scenario f Wheel and engine bands model, all band batch parameters
and the providers.

cenario g Shaft model, all shaft batch parameters, the provider and
thickness of the powder coating in the middle and both extremes
of the shaft.

As can be seen, some combinations of cause type and model element
kind are missing. This is due to the fact we could not found concrete
examples for these combinations in any of the five case studies we used
to evaluate our work. Concretely, we lack scenarios in which:

1. a data-linked cause references a class and includes a multi-

bounded reference of this class;

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

s
F
a
f
o
i

4

s
w
i
r

5

p
o
s
L
m
s

R
f
c
w
m
g
f

t
i
t
d
t

c
i
w
o
w
s

Table 7
Evaluation scenarios.
Id Cause kind Domain element Selected cause Selected elements

a Data-linked Single attribute WB_Model Wheel band model.
b Data-linked 1-ref (class) Program Program.
c Data-linked *-ref (collection) PliersPressure Pneumatic pliers pressure.
d Data-linked Class, 1-refs WB_Parameters Wheel band parameters & provider.
e Compound Class BandsPosition Bands coordinates.
f Compound Class, 1-refs Bands Band models, parameters & provider.
g Compound Class, 1 & *-refs Shaft Shaft model, parameters, provider & coating inspections.
c
c
D
l
i
t
e
t

c
d
o
F

r
r
o

S
T

i
f
i
p
L
w
a
1

m
t
r
s
o
d
t
f
t
c

i
c
t

2. a data-linked cause references a class and includes both a single
bounded reference and a multibounded reference,

3. a compound cause references just a single attribute;
4. a compound cause references just a collection;
5. a compound cause references a class including just a multi-

bounded reference.

We do not include these scenarios because either they are covered
omehow by other scenarios or they can be rarely found in practice.
or instance, compound cases selecting just a single attribute o just
collection - lacking scenarios listed as (3) and (4), are very rarely

ound, since compound cases are most likely to select several elements
f different kinds at the same time. On the other hand, scenario (1)
n the previous list would be equivalent to scenario c in Table 7, as

the same effort is practically required to navigate to a class and select
a multibounded reference of that class than to navigate to a class
containing a multibounded reference and select both the class and the
reference together.

This way, lacking scenario 1 might be considered equivalent to
scenarios c, 2 to g, 3 to a, 4 to c, and, finally, 5 to c. Moreover, scenarios

and 5 are very rare cases that can be hardly found in practice.
Once all the elements for our evaluation were defined, we wrote

cripts for each designed scenario using the chosen technologies and
e compared them using the set of metrics. These scripts can be found

n the supplementary material to this article. Next section discusses the
esults of this comparison.

.3.2. Evaluation results
Here we analyze the results obtained after executing the evaluation

rocedure. First, we will explain why we will discard the Full DOF
ption for the global analysis of the results. Next, we will compare the
cript size of our approach first with SQL and Pandas, and then with
avoisier. Finally, we will analyze the collected accidental complexity
etrics to try to get better insight into the conclusions drawn from the

cript size.

easons for discarding the Full DOF option. Fig. 11 shows the script size
or scenario a. As it can be easily noticed, the worst case corresponds
learly to the Full DOF option. This was expected as the DOF, as a
hole, contains data feeders for selecting a wide range of domain
odel elements, independently of whether they are required or not to

enerate a dataset. For example, in the case of scenario a, just one data
eeder is used, but all of them count for the script size.

To complement this observation, Fig. 12 shows the script size of
he Full DOF option for all scenarios. As can be seen, the script size
s practically constant for each scenario. In all these cases, the DOF is
he same and the Papin specification is what changes. However, the
ifferences in the Papin specifications are quite small as compared to
he DOF size and the final result remains essentially the same.

Therefore, a first conclusion is that creating DOF specifications is
ostly. This is due in part to the verbosity of DOF specifications, which
nclude a lot of text dedicated to traceability issues. To measure the
eight of the traceability information in a DOF, Fig. 13 shows the size
f the DOF for our case study with realizes statements for all causes and
ithout any realize statement. It is observed that removing the realize

tatements reduces script size by 33%.
16
So, it can be concluded that adding traceability information is
learly costly, but, on the other hand, it can help to improve DOF
omprehension, as the mapping between a QCF and its corresponding
OF is preserved. This information can also be helpful for DOF evo-

ution, since the impact of changes in the QCF may be more easily
dentified. Therefore, it seems that traceability information creates a
rade-off between the cost of creating DOF and the understanding and
volution of the DOF. Since this information is optional, it is up to each
eam to decide whether to provide it or not.

A solution for reducing the cost of DOF specifications might be to
reate the data feeders incrementally, as they are required for building
atasets. This way, we ensure that all data feeders are used to generate
ne dataset at least. This situation corresponds precisely to the Data
eeders option.

Considering all these arguments, the Full DOF is discarded for the
est of this section, as it is clearly worse than the others, and is also
emoved from all figures, to make the visual comparison of the other
ptions easier.

cript size comparison. Fig. 14 shows the script size for all scenarios.
he following issues can be observed:

1. Our approach performs better than SQL and Pandas, except for
the scenarios a and b in the Data Feeders option.

2. The Data Feeders option is always worse than the Lavoisier alter-
native.

3. The Just Papin option is clearly better than the Lavoisier option
for all scenarios, except a.

4. The size of the Just Papin option does not seem to depend on the
complexity of the scenarios.

To understand these findings, we must consider that data feeders
n DOFs are basically Lavoisier statements embedded in a structure
or representing causes which, in addition, might contain traceability
nformation. This scaffolding introduces a noticeable overhead com-
ared to Lavoisier. So, the Data Feeder option can be considered like
avoisier plus something else. This extra element makes this option
orse than SQL and Pandas for very trivial scenarios, such as a and b,
nd, obviously, worse than Lavoisier for all cases. This explains findings
and 2, respectively.

Concerning finding 3, it should be noticed that each Papin clause
ight potentially invoke several data feeders, which would correspond

o several Lavoisier statements. Therefore, these clauses can help to
educe script size as compared to Lavoisier specifications. However, as
tated in finding 4, this potential is not related with the complexity
f the scenarios. This is because the size of a Papin specification
epends on two main elements: (1) how many fine-grained causes need
o be selected; and, (2) how deeply these causes are nested in the
ishbone diagram. For instance, in Papin, selecting two subsubcauses
hat belong to different categories is more complex than selecting a
ategory containing dozens of causes.

This explains, for example, why the script size of the scenario g
s smaller than that of the scenario a, even thought g is much more
omplex than a. In scenario g, we only have to select a compound cause
hat is nested at level 1, whereas in scenario a, we have to navigate to

a data-linked cause that is nested at level 2. This also explains why,

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

S
o
g
w

Fig. 11. Scripts size for scenario a.
Fig. 12. Script sizes, for all scenarios, of the option that includes the whole DOF.
in scenario a, Lavoisier performs better than the Just Papin option.
cenario a is a very small scenario, rarely found in practice, where
nly one attribute is added to the output dataset. This dataset can be
enerated with a very simple Lavoisier specification, whereas in Papin
e need to navigate until a level 2 cause.

In general terms, the Data Feeders option reduces script size by
16% and 70% as compared to SQL and Pandas, respectively, achiev-
ing reductions up to 54% and 82%. The Just Papin option achieves
reductions by 72% and 87% on average, and up to 90% and 93%, as
compared to SQL and Pandas, respectively. Therefore, it can be stated
than our approach keeps the benefits of Lavoisier concerning accidental
complexity reduction when compared with SQL or Pandas.

Compared with Lavoisier, the Data Feeders option is on average
by 50% higher than the Lavoisier alternative, with variations ranging
from 35% to 65%. So, it can be concluded that this option offers no
advantage over Lavoisier in terms of accidental complexity reduction.
On the other hand, the Just Papin option performs better than Lavoisier,
reducing script size by 50% on average and up to 65% in some cases.
17
So, the Data Feeders option performs worse than Lavoisier, but the Just
Papin option performs better. This means that if we want to generate
a dataset in a domain where there is no DOF yet, whether it would
be worthwhile to create one depends on how much we expect to use
it. Creating a DOF for generating just one dataset would be more
costly than using Lavoisier directly, as can be concluded from our data.
However, as we use this DOF as the basis for more and more Papin
specifications, i.e. to generate more datasets in the same domain, our
approach will start to pay off and provide benefits. It should be noted
that the latter case is very common in data analysis, where an initial
dataset is typically fine-tuned several times to obtain better results.

Finally, we would like to point out that we have obtained script size
reduction rates for Lavoisier similar to those of de la Vega et al. [52],
which could be taken as an indicator of the soundness of these analyses.

Accidental complexity metrics. Tables 8, 9 and 10 show the results of
the accidental complexity metrics. As before, the Full DOF option is
discarded.

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

D
c
t

Fig. 13. DOF size including and excluding traceability information.
Fig. 14. Script sizes for all scenarios.
Table 8
Measures for the complexity metrics NumOps and NumDiffOps.

Sc. NumOps NumDiffOps

SQL Pan Lv DOF Pap SQL Pan Lv DOF Pap

a 3 4 3 7 5 2 2 2 4 2
b 5 4 3 5 3 2 2 2 4 2
c 12 7 5 5 3 3 3 2 4 2
d 5 6 5 7 5 2 2 2 4 2
e 7 8 6 6 3 2 2 2 4 2
f 8 9 8 11 3 2 2 2 4 2
g 12 9 6 9 3 3 3 2 4 2

Regarding the number of the operations (NumOps in Table 8), the
ata Feeder option has the higher number of operations in most of
ases, with the exception of scenarios c, e and g. On the other hand,
he Just Papin option generates the lowest number of operations, but
18

i

Table 9
Measures for the complexity metrics NumPar and AvgPars.

Sc. NumPar AvgParOp

SQL Pan Lv DF Pap SQL Pan Lv DF Pap

a 7 11 5 12 5 2.3 2.7 1.7 1.7 1
b 11 16 4 10 3 2.2 4.0 1.3 2.0 1
c 24 22 8 11 3 2.0 3.1 1.6 2.2 1
d 15 21 7 12 5 3.0 3.5 1.4 1.7 1
e 20 31 7 11 5 2.9 3.9 1.2 1.8 1
f 16 28 10 12 5 2.0 3.1 1.2 1.1 1
g 40 34 9 15 3 3.6 3.8 2.5 1.7 1

scenario a, and, as with the script size, this number does not seem to
depend on the scenario complexity.

The increase in the number of operations for the Data Feeder option
s due to the scaffolding for expressing causes, with the exceptions

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

d
w
i
o
t
n
t
i

o
e
t
t

(
a
n
o
d
s
P
c

s
o
a
L
o

D
m
t
c
L
S
i
r
a
t
f
d
m

s
w
t
t
t

p
a
i

F
t
H
c
F

Table 10
Measures for the complexity metrics NumKw and NumDiffKw.

Sc. NumKw NumDiffKws

SQL Pan Lv DF Pap SQL Pan Lv DF Pap

a 6 12 4 9 6 4 7 3 6 3
b 10 17 4 7 4 4 7 3 6 3
c 24 25 7 8 4 6 11 4 7 3
d 10 22 6 10 6 4 7 3 6 3
e 20 31 7 11 4 5 7 3 7 3
f 21 29 9 16 4 5 11 3 7 3
g 22 36 8 18 4 5 11 4 8 3

are scenarios c, e and g. In the case of c and g, the reason is that
these scenarios deal with collections. In SQL and Pandas, collections are
processed by concatenating a join operator with a pivot, as described
in Section 2.5. On the other hand, this concatenation is abstracted
into a single operator both in Lavoisier and in our approach, which
helps to reduce the number of operations. Moreover, SQL does not
provide direct support for pivot operations, so they need to be indirectly
performed by means of other strategies, like concatenating nesting
queries (see Listing 2 for an example). This is why the number of
operations is so high for the scenarios c and g in the SQL case.

Concerning the Just Papin option, the number of operations again
epends mainly on how many fine-grained causes nested at deep levels
e need to select, rather than on the number of elements to include

n the dataset. This can be easily observed in scenarios a and d, where
nly one cause nested at level 2 is selected. Therefore, we can state
hat the benefits of the Papin option can be related to a reduction on the
umber of operations, as compared to the other alternatives. Moreover,
his reduction depends mainly on the deep of the causes to be selected
nstead of other elements.

On the other hand, the Data Feeder option inherits some benefits
f Lavoisier regarding the management of collections, but this is not
nough to explain the script size reductions of this option as compared
o SQL and Pandas, since the number of operations is similar for the
hree alternatives in most of the cases.

The analysis of the metric about the number of different operations
NumDiffOps in Table 8) shows that the advantages of Lavoisier and our
pproach do not seem to be generally related to the need to use lower
umber of different operations in each script. The number of different
perations is similar for all the options, but the one for Data Feeder,
ue to the additional operations for managing causes. There is only a
light increase in this metric for the scenarios c and g in the SQL and
andas options. This increase is due to the need to use pivots to process
ollections.

Regarding the number of parameters (Table 9), we can observe
everal issues. First, the Data Feeders option requires a lower number
f parameters than SQL and Pandas, excepting for the trivial scenario
. Second, the Data Feeders option requires more parameters than
avoisier; and, third, the Just Papin option performs better than the
ther alternatives.

The first finding seems to indicate that the lower script size of the
ata Feeders option, as compared to SQL and Pandas, seems to be
ainly related to a reduction in the number of parameters of each data

ransformation operation. For example, to include the ComplianceReport
lass (see Fig. 4) in a dataset, we would have to write something like
EFT JOIN ComplianceReport cr ON dhs.idComplicanceReport = cr.id in
QL, and merge(reports, left_on = ‘‘idComplianceReport’’, right_on = ‘‘id’’)
n Pandas. In addition, both in Pandas and in SQL, we may need to
ename some attributes of ComplianceReport to avoid name collisions
fter the join; and then filter the results to remove the identifiers of
he joined table (e.g., ComplianceReport.id) as well as foreign keys used
or the join (e.g., DriveHalfShaft.idComplianceReport) from the output
ataset. All this information is provided as parameters to the join and
erge operators in SQL and Pandas. On the other hand, to perform the
19
ame operation in both Lavoisier and our approach, we only need to
rite include ComplianceReport, and the language itself is able to infer

he parameters required for joining the classes, as well as to perform
he attribute renaming and filtering automatically. This helps to reduce
he number of parameters in Lavoisier and the Data Feeder option.

Concerning the second observation, the increase in the number of
arameters for the Data Feeders option is due to the scaffolding for
ssociating causes with data elements. The third finding, the reduction
n the number of parameters for the Just Papin option, complements the

observation of the number of operations. It shows that the Just Papin
option is simpler not only because it requires fewer operations, but also
because those operations also need fewer parameters.

Finally, concerning the number of keywords metrics (Table 9), we
can observe that the previous phenomena repeat themselves: the Data
eeder option requires fewer keywords than SQL and Pandas, but more
han Lavoisier; and the Papin option is the one with the lowest numbers.
owever, in terms of the number of different keywords, SQL has values
lose to Lavoisier and the Just Papin option, and lower than the Data
eeder one. This means that SQL is a concise language where a few

keywords are used over and over again.
The increase in the number of keywords in SQL and Pandas is

connected to the additional parameters that we need to provide when
using these technologies. For instance, to perform a join in Pandas, we
need to use the left_on and right_on keywords to specify the columns
over which the join will be performed. The increase in the number of
keywords of Data Feeder option as compared to Lavoisier and the Just
Papin option is due to the scaffolding for dealing with causes. Finally,
the Just Papin option outperforms the others because Papin is a very
simple language with only three keywords. Therefore, we expect it to
be easily adopted by industrial engineers, although we need to verify
this empirically as part of our future work.

In summary, as a result of this evaluation process, we can conclude
that our approach preserves the benefits of Lavoisier and performs
better than SQL and Pandas in both the Data Feeder and Just Papin
options. This is due to a better management of collections and to
the capability of automatically inferring certain parameters. On the
other hand, the Full DOF option is worse because we have to write
Lavoisier statements that may never be used. Compared to Lavoisier,
our approach is worse when we must build a new DOF or a new data
feeder (the Data Feeder option), and it is better when we can reuse
these elements (the Just Papin option). Moreover, Papin is particularly
good at generating dataset composed of coarse-grained causes, such
as categories, and performs worse when these datasets contain fine-
grained causes nested at deep levels. So, we can state that our approach
retains the advantages of Lavoisier in terms of accidental complexity
reduction and it outperforms Lavoisier in some contexts.

5.4. Threats to validity

Here we analyze different threats to the validity of our conclusions.
We do it separately by each one of the elements evaluated in this
section.

5.4.1. Expressiveness
We did not find major expressiveness problems for the five case

studies we used in the evaluation, but it may be that other case studies
exhibit some issues. This is a classic problem in software language
engineering, where the expressiveness of a language is very difficult
to assess in a universal way. Indeed, research on software languages
can be seen, roughly speaking, as the process of finding expressiveness
problems in languages and then providing solutions to these problems.
For example, aspect-orientation [86] can be seen as a solution to
adequately express crosscutting concerns in object-oriented languages.

However, while this threat cannot be completely eliminated, we
have tried to mitigate it by using external and heterogeneous case
studies that correspond to real industrial problems, so that these case

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
studies: (1) cover a wide range of possible situations; (2) are not biased
by us; and (3) represent real industrial problems and not toy examples
artificially fabricated in research labs. On this last point, we would like
to point out that although the four case studies are drawn from the
literature, they correspond to problems faced by different real compa-
nies. On the other hand, it could be perfectly argued that the fishbone
diagrams were provided by the case studies, but the domain models
were created by us, and, consequently, these domain models might be
biased. As it was commented in Section 2.7, domain models are rarely
used in industrial settings, so finding case studies corresponding to real
industrial problems that provided a fishbone diagram and a domain
model at the same time is an unfeasible task in practice. Therefore, we
decided to create the domain models for each case study using only the
description of the data reported as available in the corresponding case
study. In addition, to reduce potential bias, we asked several experts
and practitioners to review the domain model we created. None of them
reported any problems with these models.

5.4.2. Experiments with industrial engineers
Regarding the experiments to test whether industrial engineers were

able to use Papin, we used a single case study for these experiments.
Therefore, in order to be scientifically rigorous, we could not generalize
the conclusions of these experiments to other case studies, as we have
no evidence that industrial engineers can use Papin with other case
studies. Nevertheless, this case study is taken from a real case study,
it is not a trivial one, and it has the degree of complexity expected in
real scenarios. So, there are no peculiarities that might make us think
that engineers could have problems using Papin in other case studies.
However, to be rigorous, we should repeat these experiments with other
case studies, and we will address this as part of our future work.

Second, we had no control over how respondents answered the
questions. Therefore, these respondents could have cheated on the
questionnaire. However, the respondents did not receive any reward
for answering the test correctly, and they were informed about the
importance of being honest and reliable in their answers, so there is
no reason to believe that they cheated. On the other hand, respondents
may have answered the questions under poor personal conditions or
in an inappropriate environment. For example, we know that some
respondents filled out the questionnaire late at night, just before going
to bed. Therefore, they may have been exhausted after a long day at
work and not in the best conditions to learn something new and then
do some exercises. Other respondents completed the questionnaire on
a cell phone while commuting to work. Thus, they had to read the
diagrams on a small screen and elaborate the answers in a noisy and
uncomfortable environment. Therefore, some respondents may have
answered some questions incorrectly due to these conditions. However,
this means that our results could be even better than they are if we had
been able to control for these external elements.

Similarly, we could not interact with the respondents while they
were completing the questionnaire. Thus, we could not resolve any
questions they might have about Papin or clarify any doubts they might
have about the exercises in the questionnaire. As before, this may have
caused some respondents to incorrectly solve some exercises that they
might have done correctly if they had been able to interact with us. So,
again, our results could be even better than they are.

A more serious threat is that we used the same case study for the
training session and the exercises. As a result, some respondents may
have correctly solved some exercises by simply imitating a similar one
we used in the training session to illustrate a concept. In this case, the
answer would be correct, but the respondent may not understand how
Papin actually works. We decided to use the same case study for the
training and the exercises to reduce the time needed to complete the
questionnaire and thus encourage participation. It was a real challenge
to find industrial engineers willing to spend 30 min to complete the
questionnaire. If we had extended this time to include a different case
20

study for solving the exercises, we are quite sure that the number
of people who completed the questionnaire would have decreased
significantly. To try to mitigate this threat, we carefully designed the
exercises so that they could not be solved by simply copying, pasting,
and adjusting an existing example.

5.4.3. Accidental complexity reduction
It could be alleged that the results of accidental complexity reduc-

tion are a consequence of the scenarios we designed for the comparison,
but that other sets of scenarios might have yielded different results. As
described in Section 5.3.1, these scenarios were systematically designed
to capture all situations a data scientist encounter when building a
dataset. It is also important to note that we used the simplest version
of each scenario, rather than opting for more complex versions that
would have provided much better results for our approach, given the
conclusions we reached. For example, we did not use any scenario that
required processing dozens of collections, which are cases where our
approach and Lavoisier could have obtained excellent results.

In addition, it may be thought that the evaluation results are in-
fluenced by the use of the drive half-shaft case study and that other
case studies may yield different values and conclusions. In this regard,
we would like to clarify that the complexity of data selection scripts
depends on the syntactic structure of the elements to be selected, rather
than on what exactly these elements represent. Thus, we used the case
study about falling bands to make the data extraction scenarios easier
to understand, but we can say that it has no influence on the collected
results.

It could be said that the evaluation results are biased by the strate-
gies used to write the SQL or Pandas scripts and that, if other strategies
had been adopted, the results might have been different. In this respect,
we would like to point out that these scripts were reviewed by a data
scientist with sufficient expertise in these languages, and that, when
several strategies were available, we always chose the most compact
one, i.e., the one with less accidental complexity.

Finally, the comparison of the four selected languages may not
be seen as fair because they work against different conceptual data
models: SQL and Pandas work at the table level, while Lavoisier and our
approach use object-oriented models. Consequently, both Lavoisier and
our approach take advantage of working with a data model where some
concepts, such as many-to-many relationships, are easier to express.
However, this is not a consequence of an badly designed evaluation
procedure, but of an explicit decision. First Lavoisier, and then our
approach, decided to face the challenges of working with a more
abstract kind of conceptual data model in order to take advantage
of its benefits. Therefore, the results should be seen as an expected
consequence of a conscious design decision, rather than a side effect
of poorly designed evaluation process.

6. Related work

This section is structured as follows: firstly, we comment on work
that deals with fishbone diagrams and data models. Secondly, we
discuss on the different modeling languages that are currently used
in manufacturing settings and their relationship with the languages
selected for our solution. Next, we analyze works on dataset generation
from nested and linked data, and modeling languages for datasets.
Finally, we comment on the relationship between dataset generation
processes and ETL processes.

6.1. Fishbone diagrams and data models

To the best of our knowledge, this is the first work that enriches
fishbone diagrams with data so that datasets can be automatically
generated from them. Nevertheless, there exists in the literature other
work that connects fishbone diagrams with data models.

For example, Xu and Dang [87] developed an approach to generate

fishbone diagrams from databases of problem reports. These reports

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

w
M
d
d

q
d
a
t
a
b

i
b
a
m
t
i
o
d
s
d

s
a
c
a
t
t

identify the causes that generate each problem. These reports are
automatically analyzed using natural language processing and machine
learning techniques to generate as output sets of causes that could lead
to each reported problem. Using this information, fishbone diagrams
are automatically constructed. So, this approach works in the opposite
direction of ours. It starts with a set of well-known cause–effect rela-
tionships, expressed in natural language, and builds a fishbone model.
In our case, we build a fishbone model to specify causes that could
hypothetically lead to an effect. From this fishbone model, we build
datasets and use data analysis techniques to try to confirm or reject
these hypotheses in order to find the concrete set of causes that actually
lead to the effect.

Shigemitsu and Shinkawa [88] propose the use of fishbone diagrams
as part of the requirements engineering process for developing systems
where the problem to be solved is known, but the causes of that
problem are unknown, and therefore the solutions to be implemented
for those causes are also unknown. Fishbone diagrams are used to
decompose the problem into multiple subproblems. Then, each atomic
subproblem is associated with a software function and, following some
guidelines, a UML class diagram is generated. However, these diagrams
contain only functions and no data, so they are not useful for specifying
data available in a domain.

In Yurin et al. [89], a model-driven process for the automated
development of rule-based knowledge bases from fishbone diagrams is
presented. In this process, rules of a knowledge base are first modeled
as cause–effect relationships of a fishbone model. By using fishbone
diagrams, domain experts can get a system-wide view of these rules.
As in Xu and Dang [87], the cause–effect relationships are well known
from the beginning, since they are expert knowledge. In contrast, in
our approach, we build datasets to try to find cause–effect relationships
that, once discovered, can be used as expert knowledge. On the other
hand, similar to Yurin et al. [89], we use fishbone diagrams to provide
a global view of the influences between data, so that decisions about
what data to include in a dataset can be made more easily.

The inclusion of quantitative information in fishbone diagrams is
addressed in Gwiazda [90]. That is, these authors study how to in-
clude numerical values in causes using weighted Ishikawa diagrams. The

eights of the categories are first determined using a form of Saaty
atrix. Then, the weights of the causes and sub-causes are calculated by

istributing the category weight among them. However, these authors
o not associate fishbone models with domain data.

Yun et al. [91] explore the use fishbone diagrams to control the
uality of data mining processes. In this case, ribs and bones of fishbone
iagrams represent steps of a data mining process. Issues that may
ffect the quality of the results are identified as causes and attached to
he appropriate step. These fishbone diagrams help to visualize a data
nalysis process, but they do not link causes and data and they cannot
e used to generate datasets.

Azzoni et al. [92] have released a tool for transforming CSV files
nto Ecore models so that the relationships between these elements can
e more easily visualized. This tool takes as input a bundle of CSV files
nd a domain model specified in Ecore, and provides a mechanism for
apping CSV columns to domain model elements. Using this mapping,

he tool is able to generate the code needed to load the CSV data
nto an instance of the Ecore domain model. This work goes in the
pposite direction to ours, from existing datasets to object-oriented
omain models. Also, this domain model has to be created manually,
ince this tool is not designed to create it, only to populate it with CSV
ata.

Finally, DescribeML [93,94] is a domain-specific language to de-
cribe the contents of a dataset. In this case, the dataset already exists
nd this tool aims to provide a common language to describe its
ontents, so that the documentation of datasets becomes more uniform
nd they can be more easily inspected and compared. In addition,
he language provides some features to alert data scientists to issues
21

hat may lead to problems with machine learning algorithms, such as
Table 11
Summary of related work.

Work Inputs Outputs Automation degree

[87] Problem reports Fishbone model Fully automated
[88] Fishbone model UML class diagram Manual
[89] Fishbone model Knowledge base Fully automated
[90] Fishbone model Weighted fishbone model Manual
[91] Fishbone model KDD process problems Manual
[92] CSV files Ecore model instance Fully automated
[93] Dataset Dataset documentation Manual
Papin Fishbone model Dataset Fully automated

datasets with a gender imbalance. This language is used on datasets
that have already been created, while we are interested in generating
these datasets automatically.

Table 11 summarizes the contents of this section and compares
each previous work with our solution. For each approach we have
previously described, Table 11 shows the inputs it accepts, the outputs
that it generates and its degree of automation. As it can be easily seen,
there is no work, excepting ours, that automatically transforms fishbone
diagrams into datasets.

6.2. Models in Industry 4.0

Our solution uses two kind of models: (1) object-oriented models,
conforming to the Ecore [64] notation, to specify data available in
a domain; and (2) fishbone diagrams, as a basis for data selection.
However, there is a wide range of alternative models that are also used
in Industry 4.0 and that could also have been used for our solution. We
comment on these in the following.

Wortmman et al. [82] conducted a comprehensive analysis of the
modeling languages used in Industry 4.0 in the form of a systematic
mapping study. In this analysis, they identified the following categories
of modeling languages in Industry 4.0:

1. UML (Unified Modeling Language) [83,95] and its variants (e.g.
UML4IOT [96]);

2. SysML (System Modeling Language) [97–99] and its variants
(e.g., SysML4Modelica [100]);

3. Ontology specification languages, such as OWL (Web Ontol-
ogy Language) [101,102] or SWRL (Semantic Web Rule Lan-
guage) [103];

4. Specific languages for Industry 4.0, such as AutomationML [104,
105].

5. Ad hoc DSLs (e.g. [106–108]),
6. Other notations, such as EXPRESS [109,110] for product data

modeling, process modeling languages [111,112], or value net-
works [113].

These languages are used for different purposes, ranging from speci-
fying manufacturing processes [114] to describing exchange formats for
CAD (Computer-Assisted Design) applications [115,116]. In our case, we
are interested in two types of languages: (1) those ones that can be used
to specify conceptual data models; and (2) languages that are familiar
to industrial engineers, not directly focused for data representation but
that can be somehow associated with data, and thus used as a basis
for data selection. We selected Ecore for the first type, and fishbone
diagrams for the second one. In the following, we comment on the
alternatives to each one of our selections, and justify the reasons for
our concrete choice.

6.2.1. Languages for data modeling
Alternatives for conceptual data modeling include languages such

as UML, ER (Entity-Relationship) [66], OWL, and EXPRESS, as well as
less popular alternatives. UML [83] is a software modeling standard
widely used in the software engineering community and maintained

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
by the Object Management Group (OMG). It covers a wide range of
modeling perspectives, including object-oriented structure and behav-
ior modeling, process specification, or IT infrastructure modeling. UML
has been widely used for conceptual data modeling [117] as a modern
alternative to ER. In our work, we use Ecore, which can be considered
as a subset of UML 2.x class diagrams. We chose Ecore simply because
it integrates seamlessly with the other tools we selected for building
our DSLs, and because its notation can be understood by most software
engineers, since it is inspired by UML class diagrams. In fact, many
software engineers may do not notice the subtle differences between
UML 2.x class diagrams and Ecore.

ER [66] could also be perfectly used to represent data available in a
domain, but this notation, oppositely to Ecore, lacks mature tools that
can be easily integrated into model-driven environments. OWL [101] is
also used for conceptual data modeling in the form of ontologies. OWL
is mainly used when we are interested in specifying semantic relation-
ships between data, which is helpful when we need to integrate data
from different domains [118], perform inference between data [119] or
execute queries at a more semantic level [120]. In our case, ontologies
might help in the construction of the object-oriented conceptual data
model that represents all the data available in a domain, since this
model integrates data coming from different sources in a unified view.
In addition, ontologies could also be used to enable more flexible
queries in Lavoisier, so that Lavoisier statements do not have to adhere
strictly to the syntax of the conceptual data model. We will explore this
issue as part of our future work.

EXPRESS [109,110] is a standard for modeling product data in
manufacturing environments. EXPRESS is one of the parts of the STEP
(Standard for the Exchange of Product model data) standard, which
covers the full lifecycle of product data. EXPRESS, as UML, ER and
OWL, provides elements to specify entities, attributes and relation-
ships between entities, so it can be considered very similar to these
languages. Following this reasoning, some publications have designed
transformation processes of EXPRESS models into UML [121,122], and
of EXPRESS models into OWL [123,124]. Since EXPRESS was designed
for manufacturing environments and is similar to other conceptual data
modeling languages, it could be argued that the goal of this work could
be achieved by simply adapting Lavoisier to work with EXPRESS. The
reasons for using fishbone models instead of EXPRESS in this work are
twofold.

First, although EXPRESS has been around for a long time, is stan-
dardized, and has a large community using and supporting it, there are
still some niches where it is not very popular. For example, as part
of the questionnaire we used to validate our work (see Section 5.1),
we asked industrial engineers in our region if they knew the EXPRESS
language. The responses showed that none of them knew EXPRESS,
while a noticeable number of them were working or had worked
with fishbone models. Of course, we surveyed a small sample, and
this problem may be specific to our region, but it can be taken as
preliminary evidence that EXPRESS is not known in some places.

Second, to the best of our knowledge, there is no tool that supports
the integration of EXPRESS models into model-driven environments,
while Ecore can be considered the de facto standard in this context.

Third, we would like to highlight that, as pointed out in our eval-
uation section, when multiple datasets are constructed from the same
conceptual data model, the use of fishbone models provides advantages
even for those people who are able to use Lavoisier directly against data
models.

Despite the above, as part of our future work, we will study the ex-
isting interest and required effort to adapt our work to other conceptual
data modeling languages, such as OWL or EXPRESS, so that everyone
can choose the option that best suits their needs. As mentioned be-
fore, these languages are more or less similar to Ecore, and different
transformations have been defined between them. Therefore, adapting
Lavoisier to these new data modeling languages can be done in two
22

steps. First, we would need to change the Lavoisier syntax to be able to
select data from these alternative data modeling languages. Then, we
could either define new interpreters for these new Lavoisier flavors or,
alternatively, transform the corresponding conceptual data models into
Ecore and, using the traces of these model transformations, transform
the new Lavoisier queries into Ecore-based queries and interpret them.

6.2.2. Well-known modeling languages in industry
There is a considerable variety of modeling languages, not related

to data modeling, which are often used in industrial environments.
For example, SysML [97,98] is widely used in automotive engineer-
ing [125], avionics [126] or robotics [127], among others. For the
sake of brevity, we will not comment on all these languages here and
refer the interested reader to the systematic mapping study of Wolny
et al. [99].

Thus, we could have selected one of these languages and applied on
it the same strategy we used for fishbone model. For example, we could
have designed a technique for associating SysML blocks with domain
data and then created a language for selecting the blocks that we want
to include in a dataset. However, we chose fishbone diagrams for two
reasons. First, in our experience, they are familiar to a reasonable
number of engineers. Second, they are easy to learn and understand.
As evidence for this statement, we would like to point out that as part
of the video we used to train engineers in Papin during the evaluation
of our work, we dedicated 2 min to explaining how fishbone models
work to those people who could not know them. Some of the engineers
who participated in this experiment had no experience with fishbone
diagrams, and yet they were able to correctly solve the exercises we
proposed. This could be taken as an indicator that a 2-min tutorial may
be enough to understand how fishbone diagrams work.

We will study the interest of supporting other languages, such as
SysML [97,98] or process modeling languages [107,111,112] as part
of our future work.

6.3. Dataset generation

The problem of generating datasets from hierarchical and nested
data has been studied by the propositionalization [59,128–130] com-
munity. Their goal is to convert complex graphs of data into tabular
structures that can be used as input to data analysis algorithms. When
using these approaches, we typically start by selecting an element to
analyze, e.g., DriveHalfShaft. Then, the propositionalization algorithm
randomly creates columns in the output dataset that summarize the
relationships between the main element and other elements. To this
purpose, these algorithms use functions like max, min or average.

This random process can help to discover values that might have
been initially discarded for being considered as not relevant. However,
data scientists lose control over exactly what features are included in a
dataset because they are selected at random. In addition, elements of
collections cannot be analyzed individually because their information
is always included using aggregation functions. Therefore, problems
related to specific problems in one of these individual instances, such
as falling bands due to a too low pressure during the third pliers tight-
ening, may remain hidden in the data. Furthermore, these algorithms
have a poor scalability and performance because they need to deal with
a huge search space of candidate features.

Finally, there are researchers who have tried to modify data mining
algorithms so that they can process nested and hierarchical data. This
idea is usually known as Multi-Relational Data Mining (MRDM) [60].
Although there are some success stories of Multi-Relational Data Mining
(MRDM) in some fields, such as time-sequence analysis [131,132],
medicine [133] or finance [134], these techniques are still young and,
although promising, not as powerful as the classical ones, those that
work exclusively with tabular data satisfying the one entity, one row

constraint.

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

O
t
t
w
t
c
t
f

6.4. Datasets and ETL processes

Dataset creation could be considered a particular case of an ETL
(Extract, Transform, Load) process [135]. In these processes, data are
first extracted from one or more sources, which may be in different
formats, then they are transformed as required, and finally loaded into
a specific structure that, in our case, would be a tabular structure
satisfying the one entity, one row constraint. However, this concept has
been mainly applied to Data Warehouses [136] construction and, to the
best of our knowledge, there are no ETL process specifically defined for
dataset generation.

Nevertheless, there are some works that, like us, aim to specify ETL
processes at a higher level of abstraction. Trujillo and Luján Mora [137]
define a UML Profile for some of the most common ETL operations, like
the integration and transformation of data which come from different
sources. Similarly, in Vassiliadis and Alkis [135], a model is presented
to specify those operations that are typically included in ETL processes
for DataWarehouses, so that a concrete ETL process can be specified
as an instance of this model. Therefore, this work defines a metamodel
for ETL processes. These approach inspired the development of further
research work, which is analyzed and compared by Munoz et al. [138]
in a systematic literature review.

Model-driven approaches have been also used to develop ETL pro-
cesses, such as in Zineb et al. [139], where the authors introduce a
platform-independent model to design ETL processes and describe how
it can be transformed into a specific platform.

Some authors have studied how to optimize these ETL processes for
specific domains. For example, Wang and Liu [140] created a metadata-
based ETL model for managing ETL processes in a mobile sales service
company context. Similarly, Przysucha et al. [141] designed and imple-
mented an ETL process for the medical context to retrieve data and load
in the Standardized Common Data Model defined by the Observational
Medical Outcomes Partnership.12 Related to the industrial context,
in Suleykin and Panfilov [142] a metamodel is proposed to define
and implement ETL processes that supported their optimization when
working with big amounts of data.

Finally, Hira and Deshpande [143] define a methodology to extract
data from tabular structures contained in multiple and heterogeneous
sources, like spreadsheets or websites, and load it in multidimensional
datawarehouse models. This is the opposite direction of our work, as
we go from linked and nested data to tabular structures.

7. Summary and future work

This article has described a set of languages to automate the gener-
ation of datasets for data analysis systems in industrial contexts, such
as Industry 4.0 applications. This process adapts Lavoisier [52], a lan-
guage for the automated generation of datasets, to work with fishbone
models rather than object-oriented data models. Object-oriented data
models are rarely found, but industrial engineers are used to deal with
fishbone models, so we considered these models were more suitable
than object-oriented models in manufacturing settings.

To adapt Lavoisier to fishbone models, we designed two new lan-
guages. First, we created a variant of fishbone models named Data-
riented Fishbone models, which can be used to represent influence rela-

ionships between domain data. In these models, causes are connected
o domain data through special code blocks called data feeders. In this
ay, domain data is used to characterize causes in a fishbone model

hat now specifies influence relationships between domain data. The
ode of the data feeders is based on Lavoisier, which has been designed
o be used by people without expertise in data science [71]. There-
ore, the data feeders could even be written by industrial engineers

12 https://www.ohdsi.org/data-standardization/.
23
themselves. Nevertheless, this hypothesis has yet to be empirically
verified.

Second, we designed a second language, called Papin, to select
causes to be included in a dataset. This is a very concise language that
just references causes and prevents industrial engineers from having to
deal with object-oriented data models. The Papin interpreter processes
these specifications, invoking the Lavoisier interpreter to execute the
data feeders, and automatically generates the required dataset.

Third, we evaluated the expressiveness of these languages by apply-
ing them to five case studies, four of them coming from the literature
and the remaining one from an industrial partner. No major issues were
reported. In addition, we evaluated whether our approach preserves the
advantages of Lavoisier in terms of accidental complexity reduction.
It was concluded that our approach outperforms SQL and Pandas in
terms of accidental complexity reduction. Compared to Lavoisier, our
approach introduces an initial overhead associated with the need to
create a DOF. On the other hand, Papin is a very simple language and
is able to select a large number of features with very few keywords.
Thus, the initial effort associated to the creation of the DOF may not
pay off when we generate a small number of datasets from a domain
model, but as this number increases, our approach begins to provide
benefits.

In summary, it can be stated that our approach helps to reduce
the accidental complexity required to create a dataset, which would
help to decrease development times, and thus the costs of Industry 4.0
applications. Furthermore, it could help to alleviate the dependency on
data scientists, whose fees are often expensive and whose availability
may be scarce. Data scientists would still be needed to build object-
oriented domain models, but they might not be required to build DOFs
and Papin specifications.

As future work, we plan to perform more complex controlled ex-
periments that will allow us to test better whether industrial engineers
are actually able to use our languages. We will also investigate if
alternative concrete syntaxes might be more suitable than the current
textual one. For instance, a graphical concrete syntax could be created
using a language workbench such as Sirius, using as abstract syntaxes
the existing metamodels of the proposed languages. Alternatively, the
current textual syntax can be complemented with graphical views
(i.e. no editing capabilities) generated automatically using a tool like
Picto [144]. Additionally, we will develop facilities to generate the
skeleton of a DOF from its corresponding QCF model, to help to
reduce the effort associated with building DOFs. We will investigate
how to warn users of some problems that may appear when creat-
ing a dataset, such as incorporating two columns with a functional
dependency between them. We will also try to adapt Lavoisier to
data modeling languages beyond Ecore, such as EXPRESS [109,110]
or OWL [101,102]. We will explore whether other modeling languages
very popular in industrial contexts, such as SysML [97,98] can be used
instead of fishbone diagrams, as a basis for data selection. Finally,
we will add support to our languages for specifying aggregated values
in data feeders, so that columns representing the average value of a
collection, for example, can be included in a dataset.

CRediT authorship contribution statement

Brian Sal: Writing – original draft, Visualization, Validation, Soft-
ware, Investigation, Conceptualization. Diego García-Saiz: Writing –
review & editing, Validation, Resources. Alfonso de la Vega: Writing
– review & editing, Visualization, Validation. Pablo Sánchez: Writing
– original draft, Visualization, Validation, Supervision, Methodology,
Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

https://www.ohdsi.org/data-standardization/

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

y

w

n

i
r

Data availability

A link to the source code implementation is present in the
manuscript.

Acknowledgments

We would like to thank Pablo Víquez and José Luis Lebrero for par-
ticipating in the pilot study of the empirical experiment with industrial
engineers and providing valuable feedback. We would also like to thank
Manuel de la Rosa and Gregorio Galán, as well as all the anonymous
people who donated some of their time to fill out the questionnaires.
Their help was key to a proper evaluation of our approach.

Icons of library book, assembly line, industry worker with cap protection
and a laptop, industrial robot, server in Fig. 3, as well as the gear wheels
icon in Fig. 8 were created by SVG Repo. The person male, the database
icon, and the factory building icon were created by Theforgesmith,
Solar Icons, and Neuicons of SVG Repo.

Funding

This work was partially supported by the Spanish Government and
FEDER funds (AEI/FEDER, UE) under grant TIN2017-86520-C3-3-R
(PRECON-I4), and by MCIN/ AEI /10.13039/501100011033/ FEDER
‘‘Una manera de hacer Europa’’ under grant PID2021-124502OB-C42
(PRESECREL).

Appendix A. Drive-half shaft case study

A.1. Domain model

See Fig. 15.

A.2. Data-oriented fishbone model

dof Fal l ingBand
e f f e c t Fal l ingBand i s

Dr iveHal fShaf t [id] include repor t [fal l ingWheelBand]
category Mater ia l

cause Bands r e a l i z e s " Unsui table band " conta ins {
cause WheelBand conta ins {

cause WB_Parameters r e a l i z e s " Inadequate parameter " i s
wheelBand . parameters { include provider }

cause WB_Model r e a l i z e s "Wrong band model " i s
wheelBand . model

}
cause EngineBand conta ins {

cause EB_Parameters r e a l i z e s " Inadequate parameter " i s
engineBand . parameters { include provider }

cause EB_Model r e a l i z e s " Inadequate parameter " i s
engineBand . model

}
}
cause Shaf t r e a l i z e s " Unsui table sha f t " conta ins {

cause S_Parameters r e a l i z e s " Inadequate parameters " i s
sha f t . parameters { include provider }

cause SModel r e a l i z e s "Wrong sha f t model " i s
sha f t . model

cause SPowderCoating r e a l i z e
" The powder coat ing not within the norm" i s
sha f t . parameters . powderCoatingInspect ions by zone

}
cause Housing r e a l i z e s " Unsui table housing " conta ins {

cause WheelHousing conta ins {
cause WH_Parameters r e a l i z e s " Inadequate parameters " i s

wheelHousing . parameters { include provider }
cause WH_Model r e a l i z e s "Wrong housing model " i s

wheelHousing . model
}

}
cause EngineHousing conta ins {

cause WH_Parameters r e a l i z e s " Inadequate parameters " i s
engineHousing . parameters { include provider }

cause WH_Model r e a l i z e s "Wrong housing model " i s
engineHousing . model

}
category Man

cause Program
r e a l i z e s " Choosing the wrong program while changing the re fe rence " i s
assemblySess ion . program

cause Ca l i b ra t i on r e a l i z e s " Ca l i b ra t i on not ca r r i ed " i s
calculate daysWithoutCal ibrat ion as today −

assemblySess ion . machine . l a s t C a l i b r a t i o n
category Machine

cause P l i e r s P r e s s u r e r e a l i z e s
24

h

" Pressure in the pneumatic system too low " i s
assemblySess ion . parameters . p l i e r sT i gh t en ing s [pressure] by number

cause Pneumat icPl iers r e a l i z e s " Fa i l u r e of pneumatic p l i e r s " i s
assemblySess ion . ReportedErrors . p l i e r s E r r o r

cause Housing r e a l i z e s " Error of the housing applying s t a t i o n "
assemblySess ion . ReportedErrors . housingError

category Method
cause BandPosit ion r e a l i z e s

" I n co r r e c t po s i t i on of the band on the housing " conta ins {
cause WheelBandPosition i s

assemblySess ion . program . parameters . wheelBandPos
cause EngineBandPosit ion i s

assemblySess ion . program . parameters . engineBandPos
}
cause HousePosit ion r e a l i z e s

" I n co r r e c t po s i t i on of the housing on the sha f t " conta ins {
cause WheelBandPosition i s

assemblySess ion . program . parameters . wheelHousingPos
cause EngineBandPosit ion i s

assemblySess ion . program . parameters . engineHousingPos
}
cause ReFit r e a l i z e s " I n c o r r e c t l y performed re−f i t " notMapped
cause ParamFastening r e a l i z e s

" I n co r r e c t parameters of the f a s t en ing of the band " i s
assemblySess ion . program . parameters [t ighteningForce , t ighteningTime]

category Management
cause WorkingConditions r e a l i z e s " Unsui table work condi t ions " notMapped
cause UnitPlacement

r e a l i z e s " Improper uni t placement in the plant " notMapped

Appendix B. Experiments questionnaire

This section contains the full questionnaire that was answered by
the industrial engineers who participated in the empirical experiment
around Papin (see Section 5.2). The original questionnaire was in
Spanish, which was the respondent’s mother tongue. So, here we pro-
vide an English translation of that questionnaire. The original Spanish
questionnaire can be found in the supplementary material of this work.
All questions that make reference to a fishbone diagram are using the
one present in Fig. 6.

B.1. General information and participation agreement

The first section of the questionnaire gave participants an intro-
duction to the experiments context. This section also described the
confidentiality and data protection regulations in place for the results
of the questionnaire and, lastly, asked for consent to the candidates
willing to participate in the study.

B.2. Demographic information

Q2.1 Indicate your academic qualifications.
Q2.2 Indicate your years of experience in an engineering field. (0–2,

2–5, 5–10, 10–20, more than 20).
Q2.3 Indicate your current job position.
Q2.4 Indicate other past job positions of relevance.

B.3. Data modeling knowledge

Q3.1 Did you know of the existence of fishbone diagrams? (Yes or
No)

Q3.1.1 (If answer to Q3.1 is yes.) In a scale from 0 to 10, indicate
our ability to read and understand a fishbone diagram.
Q3.1.2 (If answer to Q3.1 is yes.) Using the same scale, indicate

hether fishbone diagrams are used in your current job environment.
Q3.2 Do you know of the existence of the EXPRESS Modeling

otation? (Yes or No)
Q3.2.1 (If answer to Q3.2 is yes.) Using a scale from 0 to 10,

ndicate whether EXPRESS models are used in your current job envi-
onment.
Q3.3 Do you know of any other data modeling notations?
Q3.3.1 (If answer to Q3.3 is yes.) Indicate those known notations.
Q3.3.2 (If answer to Q3.3 is yes.) Indicate which notations you
ave used in a job environment, now or in the past.

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
Fig. 15. Domain model of the Drive-Half Shaft case study.
1

B.4. Training session on Papin

Here we inserted a video explaining some general aspects of our
approach and how Papin works. This video can be found at Omitted for
double blind review. After the video, we make two questions to check
that participants understood its contents.

Q4.1 For the generation of datasets, the Papin language allows
selecting (a: Classes of an object-oriented diagram; b: fishbones or
causes of an Ishikawa diagram; c: table columns).

Q4.2 In an Ishikawa diagram, the Papin language allows selecting
(a: Categories and causes of any level and sublevel; b: Only categories,
such as Man or Machine; c: Categories and causes, but only of the first
level).

B.5. Understanding Papin specifications

Q5.1 Given the Ishikawa diagram and the Papin specification at-
tached to this question, would the cause 1.3.2 Wrong Housing Model be
included in the output dataset? Briefly reason your answer.

1 dataset Question5 .1
2 using Fal l ingBand {
3 include Mater ia l {
4 include Unsui tab leShaf t
5 }
6 include Machine
7 }

Q5.2 Given the Ishikawa diagram and the Papin specification at-
tached to this question, would the cause 1.2.3 The powder coating not
within the norm be included in the output dataset? Briefly reason your
answer.

1 dataset Question5 .2
2 using Fal l ingBand {
3 include Mater ia l {
25
4 include Unsui tab leShaf t
5 }
6 include Machine
7 }

Q5.3 Given the Ishikawa diagram and the Papin specification at-
tached to this question, indicate the numbers of all the causes that
would be selected by that specification. Briefly reason your answer.

1 dataset Question5 .3
2 using Fal l ingBand {
3 include Man
4 include Machine
5 }

Q5.4 Given the Ishikawa diagram and the Papin specification at-
tached to this question, indicate the numbers of all the causes that
would be selected by that specification. Briefly reason your answer.

1 dataset Question5 .4
2 using Fal l ingBand {
3 include Man
4 include Mater ia l {
5 include Unsui tab leShaf t {
6 include InadequateParameters
7 include WrongShaftModel
8 }
9 }
0 }

B.6. Writing Papin specifications

Q6.1 Given the Ishikawa diagram attached to this question, write a
Papin specification to analyze the Method and Management dimensions.
You can use the following Papin specification as an example of the
language syntax.

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
1 dataset Fal l ingBand_Mater ia l sAndPressures
2 using Fal l ingBand {
3 include Mater ia l
4 include Machine {
5 include Pneumat icP l ie r sPressure
6 }
7 }

Q6.2 Given the Ishikawa diagram attached to this question, write a
Papin specification to analyze only the causes 2.2 Calibration not carried
and 3.1 Failure of pnematic pliers. You can use the following Papin
specification as an example of the language syntax:

1 dataset Fal l ingBand_Mater ia l sAndPressures
2 using Fal l ingBand {
3 include Mater ia l
4 include Machine {
5 include Pneumat icP l ie r sPressure
6 }
7 }

References

[1] Y. Lu, Industry 4.0: A survey on technologies, applications and open research
issues, J. Ind. Inf. Integr. 6 (2017) 1–10, http://dx.doi.org/10.1016/j.jii.2017.
04.005.

[2] Y. Liao, F. Deschamps, E. de Freitas Rocha Loures, L.F.P. Ramos, Past, present
and future of industry 4.0 - a systematic literature review and research agenda
proposal, Int. J. Prod. Res. 55 (2017) 3609–3629, http://dx.doi.org/10.1080/
00207543.2017.1308576.

[3] N. Karnik, U. Bora, K. Bhadri, P. Kadambi, P. Dhatrak, A comprehensive study
on current and future trends towards the characteristics and enablers of Industry
4.0, J. Ind. Inf. Integr. 27 (2022) 100294, http://dx.doi.org/10.1016/j.jii.2021.
100294.

[4] K. Ashton, That ‘internet of things’ thing, RFID J. (2009).
[5] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput. Netw.

54 (2010) 2787–2805, http://dx.doi.org/10.1016/J.COMNET.2010.05.010.
[6] F. Mattern, C. Floerkemeier, From the internet of computers to the internet

of things, in: K. Sachs, I. Petrov, P.E. Guerrero (Eds.), From Active Data
Management to Event-Based Systems and more, in: Lecture Notes in Computer
Science (LNCS), Vol. 6462, 2010, pp. 242–259, http://dx.doi.org/10.1007/978-
3-642-17226-7_15.

[7] D. Miorandi, S. Sicari, F.D. Pellegrini, I. Chlamtac, Internet of things: Vision,
applications and research challenges, Ad Hoc Netw. 10 (2012) 1497–1516,
http://dx.doi.org/10.1016/J.ADHOC.2012.02.016.

[8] L.D. Xu, W. He, S. Li, Internet of things in industries: A survey, IEEE Trans. Ind.
Inform. 10 (2014) 2233–2243, http://dx.doi.org/10.1109/TII.2014.2300753.

[9] S. Li, L.D. Xu, S. Zhao, 5G Internet of Things: A survey, J. Ind. Inf. Integr. 10
(2018) 1–9, http://dx.doi.org/10.1016/j.jii.2018.01.005.

[10] J. Cheng, W. Chen, F. Tao, C.-L. Lin, Industrial IoT in 5G environment towards
smart manufacturing, J. Ind. Inf. Integr. 10 (2018) 10–19, http://dx.doi.org/
10.1016/j.jii.2018.04.001.

[11] H. Boyes, B. Hallaq, J. Cunningham, T. Watson, The industrial internet of
things (iiot): An analysis framework, Comput. Ind. 101 (2018) 1–12, http:
//dx.doi.org/10.1016/J.COMPIND.2018.04.015.

[12] J.H. Nord, A. Koohang, J. Paliszkiewicz, The internet of things: Review and
theoretical framework, Expert Syst. Appl. 133 (2019) 97–108, http://dx.doi.
org/10.1016/J.ESWA.2019.05.014.

[13] G. Aceto, V. Persico, A. Pescapé, Industry 4.0 and Health: Internet of things,
big data, and cloud computing for healthcare 4.0, J. Ind. Inf. Integr. 18 (2020)
100129, http://dx.doi.org/10.1016/j.jii.2020.100129.

[14] A.W. Colombo, S. Karnouskos, O. Kaynak, Y. Shi, S. Yin, Industrial cyberphys-
ical systems: A backbone of the fourth industrial revolution, IEEE Ind. Electr.
11 (1) (2017) 6–16, http://dx.doi.org/10.1109/MIE.2017.2648857.

[15] H. Chen, Applications of cyber-physical system: A literature review, J.
Ind. Integr. Manage. 02 (03) (2017) 1750012, http://dx.doi.org/10.1142/
S2424862217500129.

[16] A. Napoleone, M. Macchi, A. Pozzetti, A review on the characteristics of cyber–
physical systems for the future smart factories, J. Manuf. Syst. 54 (2020)
305–335, http://dx.doi.org/10.1016/j.jmsy.2020.01.007.

[17] Y. Wei, M.B. Blake, Service-oriented computing and cloud computing: Chal-
lenges and opportunities, IEEE Internet Comput. 14 (6) (2010) 72–75, http:
//dx.doi.org/10.1109/MIC.2010.147.

[18] T. Erl, R. Puttini, Z. Mahmood, Cloud Computing: Concepts, Technology, &
Architecture, Prentice Hall, 2013.

[19] L. Arockiam, S. Monikandan, G. Parthasarathy, Cloud Computing: A Survey, Int.
J. Comput. Commun. Technol. 8 (2017) 21–28, http://dx.doi.org/10.47893/
26

IJCCT.2017.1393.
[20] S.-C. Huang, S. McIntosh, S. Sobolevsky, P.C.K. Hung, Big data analytics and
business intelligence in industry, Inf. Syst. Front. 19 (6) (2017) 1229–1232,
http://dx.doi.org/10.1007/s10796-017-9804-9.

[21] Y. Cheng, K. Chen, H. Sun, Y. Zhang, F. Tao, Data and knowledge mining
with big data towards smart production, J. Ind. Inf. Integr. 9 (2018) 1–13,
http://dx.doi.org/10.1016/j.jii.2017.08.001.

[22] E. Hämäläinen, T. Inkinen, Industrial applications of big data in disruptive
innovations supporting environmental reporting, J. Ind. Inf. Integr. 16 (2019)
100105, http://dx.doi.org/10.1016/j.jii.2019.100105.

[23] L.D. Xu, L. Duan, Big data for cyber physical systems in industry 4.0: a survey,
Enterp. Inf. Syst. 13 (2) (2019) 148–169, http://dx.doi.org/10.1080/17517575.
2018.1442934.

[24] M. Javaid, A. Haleem, R.P. Singh, R. Suman, Significant applications of big
data in industry 4.0, J. Ind. Integr. Manage. 06 (04) (2021) 429–447, http:
//dx.doi.org/10.1142/S2424862221500135.

[25] P.M. Seeger, Z. Yahouni, G. Alpan, Literature review on using data mining
in production planning and scheduling within the context of cyber physical
systems, J. Ind. Inf. Integr. 28 (2022) 100371, http://dx.doi.org/10.1016/j.jii.
2022.100371.

[26] F. De Pace, F. Manuri, A. Sanna, Augmented reality in industry 4.0, Am. J.
Comput. Sci. Inf. Technol. 06 (01) (2018) http://dx.doi.org/10.21767/2349-
3917.100017.

[27] R. Palmarini, J.A. Erkoyuncu, R. Roy, H. Torabmostaedi, A systematic review of
augmented reality applications in maintenance, Robot. Comput.-Integr. Manuf.
49 (2018) 215–228, http://dx.doi.org/10.1016/j.rcim.2017.06.002.

[28] T. Masood, J. Egger, Augmented reality in support of Industry 4.0—
Implementation challenges and success factors, Robot. Comput.-Integr. Manuf.
58 (2019) 181–195, http://dx.doi.org/10.1016/j.rcim.2019.02.003.

[29] O. Danielsson, M. Holm, A. Syberfeldt, Augmented reality smart glasses in
industrial assembly: Current status and future challenges, J. Ind. Inf. Integr.
20 (2020) 100175, http://dx.doi.org/10.1016/j.jii.2020.100175.

[30] S.S. Kamble, A. Gunasekaran, H. Parekh, V. Mani, A. Belhadi, R. Sharma,
Digital twin for sustainable manufacturing supply chains: Current trends, future
perspectives, and an implementation framework, Technol. Forecast. Soc. Change
176 (2022) 121448, http://dx.doi.org/10.1016/j.techfore.2021.121448.

[31] A. Sharma, E. Kosasih, J. Zhang, A. Brintrup, A. Calinescu, Digital Twins: State
of the art theory and practice, challenges, and open research questions, J. Ind.
Inf. Integr. 30 (2022) 100383, http://dx.doi.org/10.1016/j.jii.2022.100383.

[32] L. Li, B. Lei, C. Mao, Digital twin in smart manufacturing, J. Ind. Inf. Integr.
26 (2022) 100289, http://dx.doi.org/10.1016/j.jii.2021.100289.

[33] I. Fernández del Amo, J.A. Erkoyuncu, R. Roy, R. Palmarini, D. Onoufriou, A
systematic review of augmented reality content-related techniques for knowl-
edge transfer in maintenance applications, Comput. Ind. 103 (2018) 47–71,
http://dx.doi.org/10.1016/j.compind.2018.08.007.

[34] A. Ceruti, P. Marzocca, A. Liverani, C. Bil, Maintenance in aeronautics in an
industry 4.0 context: The role of augmented reality and additive manufacturing,
J. Comput. Des. Eng. 6 (4) (2019) 516–526, http://dx.doi.org/10.1016/j.jcde.
2019.02.001.

[35] M. Ghobakhloo, N.T. Ching, Adoption of digital technologies of smart manu-
facturing in SMEs, J. Ind. Inf. Integr. 16 (2019) 100107, http://dx.doi.org/10.
1016/j.jii.2019.100107.

[36] S. Sahoo, C.-Y. Lo, Smart manufacturing powered by recent technological
advancements: A review, J. Manuf. Syst. 64 (2022) 236–250, http://dx.doi.
org/10.1016/j.jmsy.2022.06.008.

[37] M.P. Uysal, A.E. Mergen, Smart manufacturing in intelligent digital mesh:
Integration of enterprise architecture and software product line engineering,
J. Ind. Inf. Integr. 22 (2021) 100202, http://dx.doi.org/10.1016/j.jii.2021.
100202.

[38] B.R. Haverkort, A. Zimmermann, Smart Industry: How ICT will change the
game!, IEEE Internet Comput. 21 (1) (2017) 8–10.

[39] J. Kletti, Manufacturing Execution Systems, MES, Springer, 2007.
[40] F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani, M. Petracca,

Industrial Internet of Things monitoring solution for advanced predictive
maintenance applications, J. Ind. Inf. Integr. 7 (2017) 4–12, http://dx.doi.org/
10.1016/j.jii.2017.02.003.

[41] S.M. Lee, D. Lee, Y.S. Kim, The quality management ecosystem for predictive
maintenance in the Industry 4.0 era, Int. J. Qual. Innov. 5 (1) (2019).

[42] M. Compare, P. Baraldi, E. Zio, Challenges to IoT-enabled predictive main-
tenance for Industry 4.0, IEEE Internet Things J. 7 (5) (2020) 4585–4597,
http://dx.doi.org/10.1109/JIOT.2019.2957029.

[43] G. May, D. Kiritsis, Zero defect manufacturing strategies and platform for
smart factories of industry 4.0, in: L. Monostori, V. Majstorovic, S.J.D. Hu, D.
Djurdjanovic (Eds.), Proc. of the 4th International Conference on the Industry
4.0 Model for Advanced Manufacturing, AMP, in: Lecture Notes in Mechanical
Engineering, 2019, pp. 142–152, http://dx.doi.org/10.1007/978-3-030-18180-
2_11.

http://dx.doi.org/10.1016/j.jii.2017.04.005
http://dx.doi.org/10.1016/j.jii.2017.04.005
http://dx.doi.org/10.1016/j.jii.2017.04.005
http://dx.doi.org/10.1080/00207543.2017.1308576
http://dx.doi.org/10.1080/00207543.2017.1308576
http://dx.doi.org/10.1080/00207543.2017.1308576
http://dx.doi.org/10.1016/j.jii.2021.100294
http://dx.doi.org/10.1016/j.jii.2021.100294
http://dx.doi.org/10.1016/j.jii.2021.100294
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb4
http://dx.doi.org/10.1016/J.COMNET.2010.05.010
http://dx.doi.org/10.1007/978-3-642-17226-7_15
http://dx.doi.org/10.1007/978-3-642-17226-7_15
http://dx.doi.org/10.1007/978-3-642-17226-7_15
http://dx.doi.org/10.1016/J.ADHOC.2012.02.016
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1016/j.jii.2018.01.005
http://dx.doi.org/10.1016/j.jii.2018.04.001
http://dx.doi.org/10.1016/j.jii.2018.04.001
http://dx.doi.org/10.1016/j.jii.2018.04.001
http://dx.doi.org/10.1016/J.COMPIND.2018.04.015
http://dx.doi.org/10.1016/J.COMPIND.2018.04.015
http://dx.doi.org/10.1016/J.COMPIND.2018.04.015
http://dx.doi.org/10.1016/J.ESWA.2019.05.014
http://dx.doi.org/10.1016/J.ESWA.2019.05.014
http://dx.doi.org/10.1016/J.ESWA.2019.05.014
http://dx.doi.org/10.1016/j.jii.2020.100129
http://dx.doi.org/10.1109/MIE.2017.2648857
http://dx.doi.org/10.1142/S2424862217500129
http://dx.doi.org/10.1142/S2424862217500129
http://dx.doi.org/10.1142/S2424862217500129
http://dx.doi.org/10.1016/j.jmsy.2020.01.007
http://dx.doi.org/10.1109/MIC.2010.147
http://dx.doi.org/10.1109/MIC.2010.147
http://dx.doi.org/10.1109/MIC.2010.147
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb18
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb18
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb18
http://dx.doi.org/10.47893/IJCCT.2017.1393
http://dx.doi.org/10.47893/IJCCT.2017.1393
http://dx.doi.org/10.47893/IJCCT.2017.1393
http://dx.doi.org/10.1007/s10796-017-9804-9
http://dx.doi.org/10.1016/j.jii.2017.08.001
http://dx.doi.org/10.1016/j.jii.2019.100105
http://dx.doi.org/10.1080/17517575.2018.1442934
http://dx.doi.org/10.1080/17517575.2018.1442934
http://dx.doi.org/10.1080/17517575.2018.1442934
http://dx.doi.org/10.1142/S2424862221500135
http://dx.doi.org/10.1142/S2424862221500135
http://dx.doi.org/10.1142/S2424862221500135
http://dx.doi.org/10.1016/j.jii.2022.100371
http://dx.doi.org/10.1016/j.jii.2022.100371
http://dx.doi.org/10.1016/j.jii.2022.100371
http://dx.doi.org/10.21767/2349-3917.100017
http://dx.doi.org/10.21767/2349-3917.100017
http://dx.doi.org/10.21767/2349-3917.100017
http://dx.doi.org/10.1016/j.rcim.2017.06.002
http://dx.doi.org/10.1016/j.rcim.2019.02.003
http://dx.doi.org/10.1016/j.jii.2020.100175
http://dx.doi.org/10.1016/j.techfore.2021.121448
http://dx.doi.org/10.1016/j.jii.2022.100383
http://dx.doi.org/10.1016/j.jii.2021.100289
http://dx.doi.org/10.1016/j.compind.2018.08.007
http://dx.doi.org/10.1016/j.jcde.2019.02.001
http://dx.doi.org/10.1016/j.jcde.2019.02.001
http://dx.doi.org/10.1016/j.jcde.2019.02.001
http://dx.doi.org/10.1016/j.jii.2019.100107
http://dx.doi.org/10.1016/j.jii.2019.100107
http://dx.doi.org/10.1016/j.jii.2019.100107
http://dx.doi.org/10.1016/j.jmsy.2022.06.008
http://dx.doi.org/10.1016/j.jmsy.2022.06.008
http://dx.doi.org/10.1016/j.jmsy.2022.06.008
http://dx.doi.org/10.1016/j.jii.2021.100202
http://dx.doi.org/10.1016/j.jii.2021.100202
http://dx.doi.org/10.1016/j.jii.2021.100202
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb38
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb38
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb38
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb39
http://dx.doi.org/10.1016/j.jii.2017.02.003
http://dx.doi.org/10.1016/j.jii.2017.02.003
http://dx.doi.org/10.1016/j.jii.2017.02.003
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb41
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb41
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb41
http://dx.doi.org/10.1109/JIOT.2019.2957029
http://dx.doi.org/10.1007/978-3-030-18180-2_11
http://dx.doi.org/10.1007/978-3-030-18180-2_11
http://dx.doi.org/10.1007/978-3-030-18180-2_11

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
[44] C. Caccamo, R. Eleftheriadis, M.C. Magnanini, D. Powell, O. Myklebust, A
hybrid architecture for the deployment of a data quality management (dqm)
system for zero-defect manufacturing in industry 4.0, in: A. Dolgui, A. Bernard,
D. Lemoine, G. von Cieminski, D. Romero (Eds.), Proc. of the Advances
in Information and Communication Technology, APMS, in: IFIP Advances in
Information and Communication Technology, Vol. 632, 2021, pp. 71–77, http:
//dx.doi.org/10.1007/978-3-030-85906-0_8.

[45] A.A. Nazarenko, J. Sarraipa, L.M. Camarinha-Matos, C. Grunewald, M. Dor-
chain, R. Jardim-Goncalves, Analysis of relevant standards for industrial systems
to support zero defects manufacturing process, J. Ind. Inf. Integr. 23 (2021)
100214, http://dx.doi.org/10.1016/j.jii.2021.100214.

[46] F. Psarommatis, D. Kiritsis, A hybrid decision support system for automating
decision making in the event of defects in the era of zero defect manufacturing,
J. Ind. Inf. Integr. 26 (2022) 100263, http://dx.doi.org/10.1016/j.jii.2021.
100263.

[47] L. Beighley, Head First {SQL}, 0’Reilly, 2007.
[48] R Core Team, R: A Language and Environment for Statistical Computing,

R Foundation for Statistical Computing, Vienna (Austria), 2020, URL https:
//www.R-project.org/.

[49] W. McKinney, Data structures for statistical computing in python, in: Proceed-
ings of the 9th Python in Science Conference (SciPy), Austin (Texas, USA),
2010, pp. 56–61, http://dx.doi.org/10.25080/Majora-92bf1922-00a.

[50] E.F. Codd, A relational model of data for large shared data banks, Commun.
ACM 13 (1970) 377–387, http://dx.doi.org/10.1145/362384.362685.

[51] C.M. Wyss, E.L. Robertson, A formal characterization of pivot/unpivot, in:
Proc. of the 14th International Conference on Information and Knowledge
Management, CIKM, 2005, pp. 602–608, http://dx.doi.org/10.1145/1099554.
1099709.

[52] A. de la Vega, D. García-Saiz, M. Zorrilla, P. Sánchez, Lavoisier: A dsl for
increasing the level of abstraction of data selection and formatting in data
mining, J. Comput. Lang. 60 (2020) 100987, http://dx.doi.org/10.1016/j.cola.
2020.100987.

[53] E. Evans, Domain-Driven Design, Addison Wesley, 2003.
[54] K. Ishikawa, Guide to Quality Control, Asian Productivity Organization, 1976.
[55] N. Dave, R. Kannan, T. Suresh, S.K. Chaudhury, Analysis and prevention of rust

issue in automobile industry, Int. J. Eng. Res. Technol. 4 (10) (2018) 1–10.
[56] S.T. Dziuba, M.A. Jarossová, N. Gołȩbiecka, Applying the Ishikawa diagram in

the process of improving the production of drive half-shafts, in: S. Borkowski,
M. Ingaldi (Eds.), Toyotarity. Evaluation and Processes/Products Improvement,
Aeternitas, 2013, pp. 20–23, Ch. 2.

[57] A. Piekara, S. Dziuba, B. Kopeć, The use of Ishikawa diagram as means of
improving the quality of hydraulic nipple, in: S. Borkowski, J. Selejdak (Eds.),
Toyotarity. Quality and Machines Operating Conditions, Aeternitas, 2012, pp.
162–175, Ch. 15.

[58] D. Siwiec, A. Pacana, The use of quality management techniques to analyse
the cluster of porosities on the turbine outlet nozzle, Prod. Eng. Arch. 24 (24)
(2020) 33–36.

[59] A.J. Knobbe, M. de Haas, A. Siebes, Propositionalisation and aggregates, in:
L.D. Raedt, A. Siebes (Eds.), Proc. of the 5th European Conference on Principles
and Practice of Knowledge Discovery in Databases, PKDD, in: Lecture Notes in
Computer Science, Vol. 2168, 2001, pp. 277–288, http://dx.doi.org/10.1007/3-
540-44794-6_23.

[60] S. Džeroski, Relational Data Mining, Springer, 2009, pp. 887–911, http://dx.
doi.org/10.1007/978-0-387-09823-4_46, Ch. 46.

[61] R.F. Paige, D.S. Kolovos, F.A. Polack, A tutorial on metamodelling for grammar
researchers, Sci. Comput. Program. 96 (P4) (2014) 396–416, http://dx.doi.org/
10.1016/j.scico.2014.05.007.

[62] A. Kleppe, Software Language Engineering: Creating Domain-Specific Languages
using Metamodels, Addison-Wesley, 2008.

[63] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in
Practice, Morgan & Claypool Publishers, 2012, http://dx.doi.org/10.2200/
S00441ED1V01Y201208SWE001.

[64] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Modeling
Framework, second ed., Addison-Wesley Professional, 2008.

[65] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From data mining to knowledge
discovery in databases, AI Mag. 17 (1996) 37, http://dx.doi.org/10.1609/
AIMAG.V17I3.1230.

[66] P.P. Chen, The entity-relationship model - toward a unified view of data,
ACM Trans. Database Syst. 1 (1976) 9–36, http://dx.doi.org/10.1145/320434.
320440.

[67] T. Hartmann, A. Moawad, F. Fouquet, Y.L. Traon, The next evolution of MDE:
a seamless integration of machine learning into domain modeling, Softw. Syst.
Model. 18 (2) (2019) 1285–1304, http://dx.doi.org/10.1007/s10270-017-0600-
2.

[68] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical Machine
Learning Tools and Techniques, fourth ed., Morgan Kaufmann, 2016.

[69] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large
databases, in: J.B. Bocca, M. Jarke, C. Zaniolo (Eds.), Proceedings of the 20th
International Conference on Very Large Databases, Morgan Kaufmann, 1994,
pp. 487–499, URL http://www.vldb.org/conf/1994/P487.PDF.
27
[70] Y.S. Koh, N. Rountree, Rare Association Rule Mining: An Overview, IGI Global,
2010, pp. 1–14, http://dx.doi.org/10.4018/978-1-60566-754-6.ch001, Ch. 1.

[71] A. de la Vega, Domain-Specific Languages for Data Mining Democratisation
(Ph.D. thesis), Universidad de Cantabria, 2019, URL http://hdl.handle.net/
10902/16728.

[72] A. de la Vega, D. García-Saiz, M. Zorrilla, P. Sánchez, On the automated
transformation of domain models into tabular datasets, in: Proc. of the ER
Forum, in: CEUR Workshop Proceedings, Vol. 1979, 2017, pp. 100–113.

[73] N.R. Tague, The Quality Toolbox, second ed., Rittenhouse, 2005.
[74] Object constraint language (OCL) v2.2, 2010.
[75] A. Kleppe, The Object Constraint Language, Addison-Wesley, 2003.
[76] R. Baena, R. Aragón, M. Enciso, C. Rossi, P. Cordero, Ángel Mora, Quality

improvement in data models with SLFD-based OCL constraints, in: Proceed-
ings of the 8th International Joint Conference on Software Technologies
(ICSOFT), Reykjavík (Iceland), 2013, pp. 563–569, http://dx.doi.org/10.5220/
0004593405630569.

[77] M. Eysholdt, H. Behrens, Xtext: Implement your language faster than
the quick and dirty way, in: Companion to the 25th Annual Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(SPLASH/OOPSLA), 2010, pp. 307–309, http://dx.doi.org/10.1145/1869542.
1869625.

[78] L. Bettini, Implementing Domain Specific Languages with Xtext and Xtend,
Packt Publishing, 2016.

[79] T. Kosar, S. Gaberc, J.C. Carver, M. Mernik, Program comprehension of domain-
specific and general-purpose languages: replication of a family of experiments
using integrated development environments, Empir. Softw. Eng. 23 (5) (2018)
2734–2763, http://dx.doi.org/10.1007/s10664-017-9593-2.

[80] A. Barisic, V. Amaral, M. Goulão, Usability driven DSL development with USE-
ME, Comput. Lang. Syst. Struct. 51 (2018) 118–157, http://dx.doi.org/10.1016/
j.cl.2017.06.005.

[81] T. Kosar, S. Bohra, M. Mernik, Domain-specific languages: A systematic mapping
study, Inf. Softw. Technol. 71 (2016) 77–91, http://dx.doi.org/10.1016/j.infsof.
2015.11.001.

[82] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling languages in
Industry 4.0: an extended systematic mapping study, Softw. Syst. Model. 19 (1)
(2020) 67–94, http://dx.doi.org/10.1007/s10270-019-00757-6.

[83] Object Management Group, Unified modeling language (OMG UML), 2017, URL
https://www.omg.org/spec/UML/2.5.1/PDF.

[84] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley
Professional, 2002.

[85] C. Bauer, G. King, G. Gregory, Java Persistence with Hibernate, Manning, 2015.
[86] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,

J. Irwin, Aspect-oriented programming, in: M. Akşit, S. Matsuoka (Eds.),
Proceedings of the 11th European Conference on Object-Oriented Programming,
ECOOP, Vol. 1241, 1997, pp. 220–242, http://doi.acm.org/10.1145/503209.
503260.

[87] Z. Xu, Y. Dang, Automated digital cause-and-effect diagrams to assist causal
analysis in problem-solving: a data-driven approach, Int. J. Prod. Res. 58 (17)
(2020) 5359–5379.

[88] M. Shigemitsu, Y. Shinkawa, Extracting class structure based on fishbone
diagrams, in: Proc. of the 10th Int. Conference on Enterprise Information
Systems, ICEIS, Vol. 2, 2008, pp. 460–465.

[89] A. Yurin, A. Berman, N. Dorodnykh, O. Nikolaychuk, N. Pavlov, Fishbone
diagrams for the development of knowledge bases, in: Proc. of the 41st Interna-
tional Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2018, pp. 967–972.

[90] A. Gwiazda, Quality tools in a process of technical project management, J.
Achiev. Mater. Manuf. Eng. 18 (1–2) (2006) 439–442.

[91] Z. Yun, L. Weihua, C. Yang, The study of multidimensional-data flow of fishbone
applied for data mining, in: Proc. of the 7th Int. Conference on Software
Engineering Research, Management and Applications, SERA, 2009, pp. 86–91.

[92] I. Al-Azzoni, N. Petrovic, A. Alqahtani, A utility to transform CSV data into EMF,
in: Proceedings of the 8th International Conference on Software Defined Systems
(SDS), Gandía (Spain), 2021, pp. 1–6, http://dx.doi.org/10.1109/SDS54264.
2021.9732143.

[93] J. Giner-Miguelez, A. Gómez, J. Cabot, A domain-specific language for de-
scribing machine learning datasets, J. Comput. Lang. 76 (2023) 101209, http:
//dx.doi.org/10.1016/j.cola.2023.101209.

[94] J. Giner-Miguelez, A. Gómez, J. Cabot, DescribeML: A dataset description
tool for machine learning, Sci. Comput. Program. 231 (2024) 103030, http:
//dx.doi.org/10.1016/j.scico.2023.103030.

[95] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User
Guide, second ed., Addison-Wesley, 2005.

[96] K. Thramboulidis, F. Christoulakis, UML4IoT—A UML-based approach to exploit
IoT in cyber–physical manufacturing systems, Comput. Ind. 82 (2016) 259–272,
http://dx.doi.org/10.1016/j.compind.2016.05.010.

[97] O.M.G. (OMG), OMG systems modeling language (OMG SysML) (formal/19-11-
01), 2019, URL https://www.omg.org/spec/SysML/1.6/.

[98] J. Holt, S. Perry, SysML for Systems Engineering: A Model-Based Approach,
third ed., The Institution of Engineering and Technology (IET), 2018.

http://dx.doi.org/10.1007/978-3-030-85906-0_8
http://dx.doi.org/10.1007/978-3-030-85906-0_8
http://dx.doi.org/10.1007/978-3-030-85906-0_8
http://dx.doi.org/10.1016/j.jii.2021.100214
http://dx.doi.org/10.1016/j.jii.2021.100263
http://dx.doi.org/10.1016/j.jii.2021.100263
http://dx.doi.org/10.1016/j.jii.2021.100263
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb47
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/1099554.1099709
http://dx.doi.org/10.1145/1099554.1099709
http://dx.doi.org/10.1145/1099554.1099709
http://dx.doi.org/10.1016/j.cola.2020.100987
http://dx.doi.org/10.1016/j.cola.2020.100987
http://dx.doi.org/10.1016/j.cola.2020.100987
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb53
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb54
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb55
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb55
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb55
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb56
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb56
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb56
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb56
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb56
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb56
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb56
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb57
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb57
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb57
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb57
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb57
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb57
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb57
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb58
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb58
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb58
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb58
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb58
http://dx.doi.org/10.1007/3-540-44794-6_23
http://dx.doi.org/10.1007/3-540-44794-6_23
http://dx.doi.org/10.1007/3-540-44794-6_23
http://dx.doi.org/10.1007/978-0-387-09823-4_46
http://dx.doi.org/10.1007/978-0-387-09823-4_46
http://dx.doi.org/10.1007/978-0-387-09823-4_46
http://dx.doi.org/10.1016/j.scico.2014.05.007
http://dx.doi.org/10.1016/j.scico.2014.05.007
http://dx.doi.org/10.1016/j.scico.2014.05.007
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb62
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb62
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb62
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb64
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb64
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb64
http://dx.doi.org/10.1609/AIMAG.V17I3.1230
http://dx.doi.org/10.1609/AIMAG.V17I3.1230
http://dx.doi.org/10.1609/AIMAG.V17I3.1230
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1007/s10270-017-0600-2
http://dx.doi.org/10.1007/s10270-017-0600-2
http://dx.doi.org/10.1007/s10270-017-0600-2
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb68
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb68
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb68
http://www.vldb.org/conf/1994/P487.PDF
http://dx.doi.org/10.4018/978-1-60566-754-6.ch001
http://hdl.handle.net/10902/16728
http://hdl.handle.net/10902/16728
http://hdl.handle.net/10902/16728
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb72
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb72
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb72
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb72
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb72
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb73
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb74
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb75
http://dx.doi.org/10.5220/0004593405630569
http://dx.doi.org/10.5220/0004593405630569
http://dx.doi.org/10.5220/0004593405630569
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1145/1869542.1869625
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb78
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb78
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb78
http://dx.doi.org/10.1007/s10664-017-9593-2
http://dx.doi.org/10.1016/j.cl.2017.06.005
http://dx.doi.org/10.1016/j.cl.2017.06.005
http://dx.doi.org/10.1016/j.cl.2017.06.005
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1007/s10270-019-00757-6
https://www.omg.org/spec/UML/2.5.1/PDF
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb84
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb84
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb84
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb85
http://doi.acm.org/10.1145/503209.503260
http://doi.acm.org/10.1145/503209.503260
http://doi.acm.org/10.1145/503209.503260
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb87
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb87
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb87
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb87
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb87
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb88
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb88
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb88
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb88
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb88
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb89
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb89
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb89
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb89
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb89
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb89
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb89
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb90
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb90
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb90
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb91
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb91
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb91
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb91
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb91
http://dx.doi.org/10.1109/SDS54264.2021.9732143
http://dx.doi.org/10.1109/SDS54264.2021.9732143
http://dx.doi.org/10.1109/SDS54264.2021.9732143
http://dx.doi.org/10.1016/j.cola.2023.101209
http://dx.doi.org/10.1016/j.cola.2023.101209
http://dx.doi.org/10.1016/j.cola.2023.101209
http://dx.doi.org/10.1016/j.scico.2023.103030
http://dx.doi.org/10.1016/j.scico.2023.103030
http://dx.doi.org/10.1016/j.scico.2023.103030
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb95
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb95
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb95
http://dx.doi.org/10.1016/j.compind.2016.05.010
https://www.omg.org/spec/SysML/1.6/
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb98
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb98
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb98

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
[99] S. Wolny, A. Mazak, C. Carpella, V. Geist, M. Wimmer, Thirteen years of
SysML: a systematic mapping study, Softw. Syst. Model. 19 (1) (2020) 111–169,
http://dx.doi.org/10.1007/s10270-019-00735-y.

[100] O. Berndt, U. Freiherr Von Lukas, A. Kuijper, Functional modelling and
simulation of overall system ship – virtual methods for engineering and
commissioning in shipbuilding, in: Proc. of the 29th Conference on Modeling
and Simulation, ECMS, Albena (Varna, Bulgaria), 2015, pp. 347–353, http:
//dx.doi.org/10.7148/2015-0347.

[101] W.O.W. Group, OWL 2 web ontology language document overview, 2012, URL
https://www.w3.org/TR/owl2-overview/.

[102] M. Uschold, Demystifying OWL for the Enterprise, No. 17 in Synthesis Lectures
on the Semantic Web: Theory and Technology, Morgan & Claypool Publishers,
2018.

[103] I. Horrocks, P. f. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean,
SWRL: A semantic web rule language combining OWL and ruleml, 2004, URL
https://www.w3.org/submissions/SWRL/.

[104] R. Drath (Ed.), AutomationML: A Practical Guide, De Gruyter Oldenbourg, 2021.
[105] N. Schmidt, A. Lüder, Automationml in a nutshell, 2015, URL https:

//www.automationml.org/wp-content/uploads/2021/06/AutomationML-in-a-
Nutshell_151104.pdf.

[106] M. Schneider, T. Mittag, J. Gausemeier, Modeling language for value networks,
in: Proceedings of the 25th Conference of the International Association for
Management of Technology, IAMOT, Orlando (Florida, USA), 2016, pp. 94–110.

[107] M. Lütjen, D. Rippel, GRAMOSA framework for graphical modelling and
simulation-based analysis of complex production processes, Int. J. Adv. Manuf.
Technol. 81 (1–4) (2015) 171–181, http://dx.doi.org/10.1007/s00170-015-
7037-y.

[108] D. Chen, D.V. Panfilenko, M.R. Khabbazi, D. Sonntag, A model-based approach
to qualified process automation for anomaly detection and treatment, in:
Proceedings of the 21st International Conference on Emerging Technologies
and Factory Automation (ETFA), Berlin, Germany, 2016, pp. 1–8, http://dx.
doi.org/10.1109/ETFA.2016.7733731.

[109] Industrial automation systems and integration. Product data representation
and exchange. Part 11: Description methods: The EXPRESS language reference
manual, 2004, URL https://www.iso.org/standard/38047.html.

[110] D.A. Schenck, P.R. Wilson, Information Modeling: The EXPRESS Way, Oxford
University Press, 1994.

[111] J. Mosser, R. Pellerin, M. Bourgault, C. Danjou, N. Perrier, GRMI4.0: a guide
for representing and modeling Industry 4.0 business processes, Bus. Process
Manage. J. 28 (4) (2022) 1047–1070, http://dx.doi.org/10.1108/BPMJ-12-
2021-0758.

[112] I. Compagnucci, F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi, A systematic
literature review on IoT-aware business process modeling views, requirements
and notations, Softw. Syst. Model. 22 (3) (2023) 969–1004, http://dx.doi.org/
10.1007/s10270-022-01049-2.

[113] B. Roelens, G. Poels, Towards a strategy-oriented value modeling language:
Identifying strategic elements of the VDML meta-model, in: W. Ng, V.C.
Storey, J.C. Trujillo (Eds.), Proceedings of the 32nd International Conference
on Conceptual Modeling, in: Lecture Notes in Computer Science (LNCS), Vol.
8217, Hong-Kong (China), 2013, pp. 454–462, http://dx.doi.org/10.1007/978-
3-642-41924-9_38.

[114] M. Schleipen, R. Drath, Three-view-concept for modeling process or manufactur-
ing plants with automationml, in: Proceedings of the Conference on Emerging
Technologies & Factory Automation, EFTA, Palma de Mallorca (Spain), 2009,
pp. 1–4, http://dx.doi.org/10.1109/ETFA.2009.5347260.

[115] G.P. Gujarathi, Y. Ma, Parametric CAD/CAE integration using a common data
model, J. Manuf. Syst. 30 (3) (2011) 118–132, http://dx.doi.org/10.1016/j.
jmsy.2011.01.002.

[116] A. Perzylo, N. Somani, M. Rickert, A. Knoll, An ontology for CAD data and
geometric constraints as a link between product models and semantic robot
task descriptions, in: Proceedings of the International Conference on Intelligent
Robots and Systems (IROS), Hamburg (Germany), 2015, pp. 4197–4203, http:
//dx.doi.org/10.1109/IROS.2015.7353971.

[117] A. Olivé, Conceptual Modeling of Information Systems, Springer, 2007.
[118] O. Givehchi, K. Landsdorf, P. Simoens, A.W. Colombo, Interoperability for

industrial cyber–physical systems: An approach for legacy systems, IEEE Trans.
Ind. Inform. 13 (6) (2017) 3370–3378, http://dx.doi.org/10.1109/TII.2017.
2740434.

[119] B.L. Sadigh, H.O. Unver, S. Nikghadam, E. Dogdu, A.M. Ozbayoglu, S.E. Kilic,
An ontology-based multi-agent virtual enterprise system (OMAVE): part 1:
domain modeling and rule management, Int. J. Comput. Integr. Manuf. 30 (2–3)
(2017) 320–343, http://dx.doi.org/10.1080/0951192X.2016.1145811.

[120] A. Patel, N.C. Debnath (Eds.), Semantic Technologies for Intelligent Industry
4.0 Applications, River Publishers, 2023.
28
[121] F. Arnold, G. Podehl, Best of both worlds – a mapping from EXPRESS-g to
UML, in: J. Bézivin, P.-A. Muller (Eds.), Proceedings of the 1st International
Workshop on the Unified Modeling Language (UML), in: Lecture Notes in
Computer Science (LNCS), Vol. 1618, Mulhouse (France), 1998, pp. 49–63,
http://dx.doi.org/10.1007/978-3-540-48480-6_5.

[122] J. Lubell, R.S. Peak, V. Srinivasan, S.C. Waterbury, STEP, XML, and UML: Com-
plementary technologies, in: Proceedings of the 24th International Conference
on Computers and Information in Engineering, Salt Lake City (Utah, USA),
2004, pp. 915–923, http://dx.doi.org/10.1115/DETC2004-57743.

[123] P. Pauwels, W. Terkaj, EXPRESS to OWL for construction industry: Towards
a recommendable and usable ifcOWL ontology, Autom. Constr. 63 (2016)
100–133, http://dx.doi.org/10.1016/j.autcon.2015.12.003.

[124] J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of transforming EXPRESS
schemas into ontologies, Artif. Intell. Eng. Des. Anal. Manuf. 23 (1) (2009)
89–101, http://dx.doi.org/10.1017/S0890060409000122.

[125] F.G.C. Ribeiro, A. Reuberg, C.E. Pereira, M.S. Soares, An approach for archi-
tectural design of automotive systems using MARTE and sysml, in: Proc. of the
14th International Conference on Automation Science and Engineering (CASE),
Munich (Germany), 2018, pp. 1574–1580, http://dx.doi.org/10.1109/COASE.
2018.8560415.

[126] S. Zhu, J. Tang, J.-M. Gauthier, R. Faudou, A formal approach using SysML
for capturing functional requirements in avionics domain, Chin. J. Aeronaut.
32 (12) (2019) 2717–2726, http://dx.doi.org/10.1016/j.cja.2019.03.037.

[127] M. Morelli, Automated generation of robotics applications from simulink and
SysML models, in: Proceedings of the 30th Annual Symposium on Applied
Computing (SAC), Salamanca (Spain), 2015, pp. 1948–1954, http://dx.doi.org/
10.1145/2695664.2695882.

[128] M. Boullé, C. Charnay, N. Lachiche, A scalable robust and automatic proposi-
tionalization approach for bayesian classification of large mixed numerical and
categorical data, Mach. Learn. 108 (2) (2019) 229–266, http://dx.doi.org/10.
1007/s10994-018-5746-9.

[129] J.M. Kanter, K. Veeramachaneni, Deep feature synthesis: Towards automating
data science endeavors, in: Proceedings of the 2nd International Conference on
Data Science and Advanced Analytics, DSAA, Paris (France), 2015, pp. 1–10,
http://dx.doi.org/10.1109/DSAA.2015.7344858.

[130] M. Samorani, Automatically generate a flat mining table with dataconda, in:
Proceedings of the International Conference on Data Mining Workshop, ICDMW,
Atlantic City (New Jersey, USA), 2015, pp. 1644–1647, http://dx.doi.org/10.
1109/ICDMW.2015.100.

[131] C. Nica, A. Braud, F.L. Ber, Exploring heterogeneous sequential data on
river networks with relational concept analysis, in: Proceedings of the 23rd
International Conference on Conceptual Structures ICCS, in: Lecture Notes in
Computer Science, Vol. 10872, Edinburgh (Scotland, United Kingdom), 2018,
pp. 152–166, http://dx.doi.org/10.1007/978-3-319-91379-7_12.

[132] C. Abreu Ferreira, J. Gama, V. Santos Costa, Contrasting logical sequences
in multi-relational learning, Prog. Artif. Intell. 8 (4) (2019) 487–503, http:
//dx.doi.org/10.1007/s13748-019-00188-w.

[133] E. Cilia, N. Landwehr, A. Passerini, Relational feature mining with hierarchical
multitask kfoil, Fund. Inform. 113 (2) (2011) 151–177, http://dx.doi.org/10.
3233/FI-2011-604.

[134] G. Manjunath, M.N. Murty, D. Sitaram, Combining heterogeneous classifiers for
relational databases, Pattern Recognit. 46 (1) (2013) 317–324, http://dx.doi.
org/10.1016/j.patcog.2012.06.015.

[135] P. Vassiliadis, A. Simitsis, Extraction, transformation, and loading, in: L. Liu,
M.T. Özsu (Eds.), Encyclopedia of Database Systems, Springer, 2009, pp.
1095–1101, http://dx.doi.org/10.1007/978-0-387-39940-9_158.

[136] R. Kimball, M. Ross, The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, John Wiley & Sons, 2011.

[137] J. Trujillo, S. Luján-Mora, A UML based approach for modeling ETL processes
in data warehouses, in: I.-Y. Song, S. W. Liddle, T.-W. Ling, P. Scheuermann
(Eds.), Proc. of 22nd International Conference on Conceptual Modeling, ER, in:
Lecture Notes in Computer Science (LNCS), Vol. 2813, Chicago (Illinois, USA),
2003, pp. 307–320, http://dx.doi.org/10.1007/978-3-540-39648-2_25.

[138] L. Munoz, J.-N. Mazon, J. Trujillo, Etl process modeling conceptual for data
warehouses: A systematic mapping study, IEEE Lat. Am. Trans. 9 (3) (2011)
358–363, http://dx.doi.org/10.1109/TLA.2011.5893784.

[139] Z. El Akkaoui, E. Zimànyi, J.-N. Mazón, J. Trujillo, A model-driven framework
for ETL process development, in: Proceedings of the ACM 14th Interna-
tional Workshop on Data Warehousing and OLAP, Glasgow (Scotland, United
Kingdom), 2011, pp. 45–52, http://dx.doi.org/10.1145/2064676.2064685.

[140] J. Wang, B. Liu, Design of etl tool for structured data based on data warehouse,
in: Proceedings of the 4th International Conference on Computer Science and
Application Engineering, CSAE, Sanya, China, 2020, pp. 1–5, http://dx.doi.org/
10.1145/3424978.3425101.

http://dx.doi.org/10.1007/s10270-019-00735-y
http://dx.doi.org/10.7148/2015-0347
http://dx.doi.org/10.7148/2015-0347
http://dx.doi.org/10.7148/2015-0347
https://www.w3.org/TR/owl2-overview/
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb102
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb102
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb102
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb102
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb102
https://www.w3.org/submissions/SWRL/
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb104
https://www.automationml.org/wp-content/uploads/2021/06/AutomationML-in-a-Nutshell_151104.pdf
https://www.automationml.org/wp-content/uploads/2021/06/AutomationML-in-a-Nutshell_151104.pdf
https://www.automationml.org/wp-content/uploads/2021/06/AutomationML-in-a-Nutshell_151104.pdf
https://www.automationml.org/wp-content/uploads/2021/06/AutomationML-in-a-Nutshell_151104.pdf
https://www.automationml.org/wp-content/uploads/2021/06/AutomationML-in-a-Nutshell_151104.pdf
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb106
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb106
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb106
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb106
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb106
http://dx.doi.org/10.1007/s00170-015-7037-y
http://dx.doi.org/10.1007/s00170-015-7037-y
http://dx.doi.org/10.1007/s00170-015-7037-y
http://dx.doi.org/10.1109/ETFA.2016.7733731
http://dx.doi.org/10.1109/ETFA.2016.7733731
http://dx.doi.org/10.1109/ETFA.2016.7733731
https://www.iso.org/standard/38047.html
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb110
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb110
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb110
http://dx.doi.org/10.1108/BPMJ-12-2021-0758
http://dx.doi.org/10.1108/BPMJ-12-2021-0758
http://dx.doi.org/10.1108/BPMJ-12-2021-0758
http://dx.doi.org/10.1007/s10270-022-01049-2
http://dx.doi.org/10.1007/s10270-022-01049-2
http://dx.doi.org/10.1007/s10270-022-01049-2
http://dx.doi.org/10.1007/978-3-642-41924-9_38
http://dx.doi.org/10.1007/978-3-642-41924-9_38
http://dx.doi.org/10.1007/978-3-642-41924-9_38
http://dx.doi.org/10.1109/ETFA.2009.5347260
http://dx.doi.org/10.1016/j.jmsy.2011.01.002
http://dx.doi.org/10.1016/j.jmsy.2011.01.002
http://dx.doi.org/10.1016/j.jmsy.2011.01.002
http://dx.doi.org/10.1109/IROS.2015.7353971
http://dx.doi.org/10.1109/IROS.2015.7353971
http://dx.doi.org/10.1109/IROS.2015.7353971
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb117
http://dx.doi.org/10.1109/TII.2017.2740434
http://dx.doi.org/10.1109/TII.2017.2740434
http://dx.doi.org/10.1109/TII.2017.2740434
http://dx.doi.org/10.1080/0951192X.2016.1145811
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb120
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb120
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb120
http://dx.doi.org/10.1007/978-3-540-48480-6_5
http://dx.doi.org/10.1115/DETC2004-57743
http://dx.doi.org/10.1016/j.autcon.2015.12.003
http://dx.doi.org/10.1017/S0890060409000122
http://dx.doi.org/10.1109/COASE.2018.8560415
http://dx.doi.org/10.1109/COASE.2018.8560415
http://dx.doi.org/10.1109/COASE.2018.8560415
http://dx.doi.org/10.1016/j.cja.2019.03.037
http://dx.doi.org/10.1145/2695664.2695882
http://dx.doi.org/10.1145/2695664.2695882
http://dx.doi.org/10.1145/2695664.2695882
http://dx.doi.org/10.1007/s10994-018-5746-9
http://dx.doi.org/10.1007/s10994-018-5746-9
http://dx.doi.org/10.1007/s10994-018-5746-9
http://dx.doi.org/10.1109/DSAA.2015.7344858
http://dx.doi.org/10.1109/ICDMW.2015.100
http://dx.doi.org/10.1109/ICDMW.2015.100
http://dx.doi.org/10.1109/ICDMW.2015.100
http://dx.doi.org/10.1007/978-3-319-91379-7_12
http://dx.doi.org/10.1007/s13748-019-00188-w
http://dx.doi.org/10.1007/s13748-019-00188-w
http://dx.doi.org/10.1007/s13748-019-00188-w
http://dx.doi.org/10.3233/FI-2011-604
http://dx.doi.org/10.3233/FI-2011-604
http://dx.doi.org/10.3233/FI-2011-604
http://dx.doi.org/10.1016/j.patcog.2012.06.015
http://dx.doi.org/10.1016/j.patcog.2012.06.015
http://dx.doi.org/10.1016/j.patcog.2012.06.015
http://dx.doi.org/10.1007/978-0-387-39940-9_158
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb136
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb136
http://refhub.elsevier.com/S2452-414X(24)00101-8/sb136
http://dx.doi.org/10.1007/978-3-540-39648-2_25
http://dx.doi.org/10.1109/TLA.2011.5893784
http://dx.doi.org/10.1145/2064676.2064685
http://dx.doi.org/10.1145/3424978.3425101
http://dx.doi.org/10.1145/3424978.3425101
http://dx.doi.org/10.1145/3424978.3425101

Journal of Industrial Information Integration 41 (2024) 100657B. Sal et al.
[141] M. Przysucha, J. Hüsers, D. Liberman, O. Kersten, A. Schlüter, S. Fraas,
D. Busch, M. Moelleken, C. Erfurt-Berge, J. Dissemond, U. Hübner, Design
and implementation of an etl-process to transfer wound-related data into a
standardized common data model, Stud. Health Technol. Inform. 307 (2023)
258–266, http://dx.doi.org/10.3233/SHTI230723.

[142] A. Suleykin, P. Panfilov, Metadata-driven industrial-grade etl system, in: 2020
IEEE International Conference on Big Data (Big Data), 2020, pp. 2433–2442,
http://dx.doi.org/10.1109/BigData50022.2020.9378367.
29
[143] S. Hira, P.S. Deshpande, Automated heuristic based context dependent etl pro-
cess to generate multi-dimensional model for tabular data, Concurr. Comput.:
Pract. Exper. 35 (2) (2023) e7459, http://dx.doi.org/10.1002/cpe.7459.

[144] D. Kolovos, A. de la Vega, J. Cooper, Efficient generation of graphical model
views via lazy model-to-text transformation, in: Proceedings of the 23rd
International Conference on Model Driven Engineering Languages and Systems
(MoDELS), 2020, pp. 12–23, http://dx.doi.org/10.1145/3365438.3410943.

http://dx.doi.org/10.3233/SHTI230723
http://dx.doi.org/10.1109/BigData50022.2020.9378367
http://dx.doi.org/10.1002/cpe.7459
http://dx.doi.org/10.1145/3365438.3410943

	Domain-specific languages for the automated generation of datasets for industry 4.0 applications
	Introduction
	Background and Motivation
	Software Language Engineering via Metamodelling
	Running Example: Falling Band
	Data Mining Processes
	The dataset generation problem
	Lavoisier
	Fishbone Diagrams
	Problem Statement

	Dataset Generation from Fishbone Diagrams
	Solution Overview
	Data-oriented Fishbone Models
	Papin: Dataset Specification by Cause Selection

	Implementation
	Evaluation
	Expressiveness
	Experiments with industrial engineers
	Accidental Complexity Reduction
	Evaluation Procedure
	Evaluation Results

	Threats to Validity
	Expressiveness
	Experiments with industrial engineers
	Accidental Complexity Reduction

	Related Work
	Fishbone diagrams and data models
	Models in Industry 4.0
	Languages for data modeling
	Well-known Modeling Languages in Industry

	Dataset generation
	Datasets and ETL processes

	Summary and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Drive-Half Shaft Case Study
	Domain Model
	Data-Oriented Fishbone Model

	Appendix B. Experiments Questionnaire
	General Information and Participation Agreement
	Demographic Information
	Data Modeling Knowledge
	Training Session on Papin
	Understanding Papin Specifications
	Writing Papin Specifications

	References

