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A B S T R A C T

In this paper, we propose an experiment design methodology for model basin tests with a remotely operated
vehicle (ROV) to estimate model parameters. We propose and compare two different optimization problems
based on a parameter sensitivity approach for the modification of the standard inputs used in model basin
tests. A procedure is established for the design of experiments for model basin tests and it is applied to the
data acquired in the Centro de Experiencias Hidrodinámicas del Pardo INTA/CEHIPAR model basin tests.
Through the Monte Carlo study, the statistical properties of the estimated parameters are quantified to verify
the improvement when the designed excitation signal is applied.
There has been a significant increase in the use of autonomous
underwater vehicles in different types of tasks over the past few
decades (Schjlberg and Utne, 2015; Fay et al., 2019). These tasks
involve high-risk operations such as exploration of underwater ar-
eas, performing survey trajectories harvesting data to build bathy-
metric maps, and inspections of underwater structures or elements
(e.g., pipelines or underwater cables) which require complex motion
control methods and localization methods. Recent advances in AUVs’
performance have led to them playing an important role in the cited
operations, relaying ROVs and manned submersibles to second place.
However, intervention applications, where the system manipulates the
environment, are still mainly performed by ROVs due to the complexity
of the task. In open-loop remote operation, the user must perform
accurate maneuvers while dealing with currents, waves, and the effects
of the ROV’s tether. Additionally, for some specific classes of ROVs
(I or II) (Robert L. Wernli, 2014; Capocci et al., 2017), kinematic
constraints due to under-actuation can be an additional hindrance to
teleoperation performance. Therefore, a control scheme applied in a
fully or semi-autonomous ROV is likely the best solution for these
underwater applications.

As far as motion control applications for ROVs are concerned, it is
common practice to obtain non-linear maneuvering models from open
waters or model basin tests when developing a suitable control system.
The accuracy of the model is essential for motion control and naviga-
tion applications, particularly when model-based control methods are
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used. In the literature, there is a wide variety of contributions where
different types of system identification techniques are applied to obtain
the hydrodynamical parameters of the cited models for a particular set
of fixed input signals. These references are not reviewed in this paper,
since we focus our attention on experiment design methods, which also
have a significant impact on the accuracy of the obtained maneuvering
model. In this sense, it is common practice to use random excitation
signals (Barker et al., 2006; Braun et al., 2001; Rojas et al., 2012)
to excite the dynamics of the model to be identified. However, these
signals have the disadvantage, that the trajectory to be described by
the vehicle with the random signal can be outside the restricted area
in which the tests are performed, which is the case of the estimation
of maneuvering model parameters with model basin tests, which is the
aim of the present paper.

In the particular case of parameter estimation of non-linear maneu-
vering models, some references are found (Blanke and Knudsen, 1999,
2006; Herrero et al., 2012), in which it is used a parameter sensitivity
approach for the design of experiments. These authors, propose the
design of experiments based on standard maneuvers for ships and
also an alternative excitation signal to the standard zig-zag maneuver.
The experiment design for parameter estimation based on parameter
sensitivity theory presents features which are highly appropriate for
obtaining maneuvering models: it presents a greater independence of
noise, due to the geometrical interpretation considered in the cited
vailable online 25 May 2024
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theory. These characteristics have certain advantages over other known
criteria for experiment design previously reported in the literature,
specifically the design of optimal experiments; such as the covariance
information matrix of the estimates, covariance information matrix, or
the Fisher information matrix (Goodwin and Payne, 1977; Ljung, 1987;
Söderström and Stoica, 1994). These last approaches have the following
drawbacks: they are based on certain assumptions that are difficult to
implement in practice, are incompatible with physical knowledge, and
apply only to parameter estimates of discrete-time linear models.

More recent works regarding the experiment design of non-linear
systems combine graph methods with particle filters as in Valenzuela
et al. (2014), which extends the input design methods initially proposed
in Gopaluni et al. (2009) and Valenzuela et al. (2013). In the work
of Bombois et al. (2021), a robust optimal identification experiment
design methodology is developed for multisine excitation signals, which
can be very convenient for the present paper taking into consideration
that the standard inputs used in model basin tests present a multisine
form for the sway, heave and yaw degrees of freedom (DOF) (e.g. see
Fig. 2). However, the cited work is developed only for linear time-
invariant (LTI) systems, as in Rojas et al. (2012) where the robustness
of experiment design is treated for LTI systems. The work of Denisov
et al. (2019) also includes robust estimation by means of a procedure of
active identification, which is resistant to the appearance of anomalous
observations and optimal design of input signals for models of non-
stationary linear discrete systems. Dirkx et al. (2023) also tackles the
robust design problem by formulating an infinite-dimensional min–max
optimization problem via the S-lemma in an iterative approximation
scheme for multi-variable systems. In the contribution of McMichael
and Blakley (2022) simplified Algorithms for Adaptive Experiment
Design are established with good results, but it has a drawback in
that it is impractical to use in certain applications, such as that of
the present paper in which the input signals to be designed is limited
in amplitude and frequency, apart from the restrictions due to secu-
rity aspects in the performance of the test. Furthermore, while these
simplified algorithms make sense in on-line estimation, in the off-line
applications of this paper they are not so relevant. In addition, in the
work of Fredrik Ljungberg and Tervo (2023), experiment design for
marine vessels is explored based on a dictionary-based approach, which
is tailored to an instrumental variable (IV) estimator with zero-mean
instruments.

For other types of applications, the experiment design for param-
eter estimation of equivalent-circuit battery models is investigated
both quantitatively and qualitatively, see Beelen et al. (2018). In
Gottu Mukkula and Paulen (2019), a model-based optimal experiment
design (OED) of non-linear systems is studied. This work represents
a methodology for optimizing the geometry of the parametric joint-
confidence regions (CRs) with interesting levels of accuracy for simple
models. In this paper, it is used to consider a case study with a couple
of parameters. For complex models with more parameters the configu-
ration of the CR might be highly complex or even intractable. In like
manner, in the work of Denis-Vidal et al. (2019), an optimal experiment
design approach is proposed for parameter estimation in a bounded-
error context with some similarities to the one of Gottu Mukkula and
Paulen (2019), which is robust to the actual value of the vector of
parameters. Du et al. (2019) propose a new approach for on-line param-
eter estimation in power systems based on optimal experimental design
using multiple measurement snapshots. Regarding air-crafts, in Alabsi
and Fields (2019) an optimization problem that is based on information
matrices is solved for finding the optimal robot configurations for
the identification experiment in the frequency domain. For industrial
robots, Zimmermann et al. (2023) develop an experimental work, in
which experiment design is improved with respect to previous works
by a proposed method in terms of efficiency and parameter accuracy.
In the cited paper, a significantly shorter time is used for conducting
data collection experiments and the average standard deviation of the
2

parameter estimate is reduced.
In this paper, we propose an experiment design methodology for
model basin tests with an ROV to estimate non-linear maneuvering
model parameters. We formulate and compare two different optimiza-
tion problems based on a parameter sensitivity approach for the modifi-
cation of the standard inputs used in model basin tests. It is established
as a procedure for the design of experiments for model basin tests and
it is applied to the data acquired in the Centro de Experiencias Hidrod-
inámicas del Pardo INTA/CEHIPAR model basin. Through a Monte
Carlo study, the statistical properties of the estimated parameters are
quantified to verify the improvement when the designed excitation
signals are applied.

This paper is organized as follows. Section 2 discusses the non-
linear maneuvering models. Sections 3 and 4 develop the model basin
trials carried out in the INTA/CEHIPAR and the experiment design,
respectively.Section 4 discusses a study case and Section 5 presents the
conclusions.

1. Non linear maneuvering model

To describe the ROV motion which is the object of study of this work
(see Appendix), three translational coordinates are needed and another
one for the yaw angle. Two coordinate systems are used to study the
ROV movement: one coordinate is fixed to the vehicle and is used to
define its translational and rotational movements and another one is
located on Earth (NED-frame) to describe its position and orientation.
The NED-frame and the body-fixed frame affixed to the vehicle center
of gravity (CG) (Fossen, 2011; Soylu et al., 2016).

The non-linear maneuvering model can be expressed in the follow-
ing form (Fossen, 2002):

𝐌𝜈̇ + 𝐂(𝜈)𝜈 + 𝐃(𝜈)𝜈 + 𝐠(𝜂) = 𝜏, (1)

𝜂̇ = 𝐉(𝜂)𝜈 (2)

𝑦𝑠 = 𝜈 +𝑤, (3)

here 𝜂 = [𝑥, 𝑦, 𝑧, 𝜓]𝑇 is the position and yaw angle vector, 𝜈 =
𝑢, 𝑣,𝑤, 𝑟]𝑇 are the linear speeds and yaw angular speed, 𝜏 = [𝑋, 𝑌 ,
,𝑁]𝑇 are the forces and moments and 𝜔 is the measurement noise. M

s the rigid body and added mass matrix, 𝐂(𝜈)𝜈 is the Coriolis term,
(𝜂) is the restore matrix and 𝐉(𝜂) is the rotation matrix and 𝐃(𝜈)𝜈
epresents the hydrodynamic damping forces that are a combination
f linear and non linear damping. It must be noted that the thruster
ayout on the ROV object of study of this work (see Appendix), cannot
ctively control the roll and pitch motion of the vehicle. That is why
e consider only four degrees of freedom (DOF), assuming that the
itch and roll motions are small. Since the roll and pitch angles are
mall the kinematic relationship between the speed 𝜈 in the body-fixed
oordinate system and the position 𝜂 in the NED (North East Down)
oordinate system is given by:

(𝜂) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(𝜓) − 𝑠𝑖𝑛(𝜓) 0 0
𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0 0

0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(4)

he rest of the matrices for the 4 DOF model of Eq. (1) are the
ollowing:

The rigid body and added mass matrices, M=𝑀𝑅𝐵 +𝑀𝐴.

𝑅𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚 0 0 0
0 𝑚 0 0
0 0 𝑚 0
0 0 0 𝐼𝑟

⎤

⎥

⎥

⎥

⎥

⎦

(5)

here 𝑚 is the mass of the vehicle, 𝐼𝑧 is the inertia moment in the yaw
egree of freedom.

𝐴 =

⎡

⎢

⎢

⎢

⎢

𝑋𝑢̇ 0 0 0
0 𝑌𝑣̇ 0 0
0 0 𝑍𝑤̇ 0

⎤

⎥

⎥

⎥

⎥

(6)
⎣

0 0 0 𝐼𝑟̇⎦
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In this article, it is considered that the ROV operates at depths below
the area affected by the movement induced by the waves. Therefore,
it is considered that the coefficients of the added mass matrix are
constant: for more details on this aspect and on operating conditions
see Pérez and Fossen (2006), Fossen (2011).

The Coriolis matrix C(𝜈)

𝐂(𝜈) =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 −𝑚𝑣
0 0 0 𝑚𝑢
0 0 0 0
𝑚𝑣 −𝑚𝑢 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(7)

The damping matrices D(𝜈)𝜈 = 𝐷𝑙(𝜈)𝜈 +𝐷𝑛𝑙(𝜈)𝜈

𝐷𝑙(𝜈) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑢 0 0 0
0 𝑌𝑣 0 0
0 0 𝑍𝑤 0
0 0 0 𝑁𝑟

⎤

⎥

⎥

⎥

⎥

⎦

(8)

𝐷𝑛𝑙(𝜈) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑢|𝑢||𝑢| 0 0 0
0 𝑌𝑣|𝑣||𝑣| 0 0
0 0 𝑍𝑤|𝑤||𝑤| 0
0 0 0 𝑁𝑟|𝑟||𝑟|

⎤

⎥

⎥

⎥

⎥

⎦

(9)

where 𝐷𝑙(𝜈) includes the linear damping terms and 𝐷𝑛𝑙(𝜈) the non-
linear ones.

Note that the components of the restoring forces and moments
vector 𝐠(𝜂) are considered 0, see Shen et al. (2017).

2. Model basin tests

This section sums up the tests that were performed at the INTA/
CEHIPAR for the parameter estimation of the mathematical model
defined in Eq. (1). For this purpose, a commercial ROV was used,
see Appendix for more details in the experimental set up and the
ROV. Fig. 1 shows two different assemblies of the vehicle in the calm
water channel of the INTA/CEHIPAR. The vehicle is turned 90 degrees
depending on the degree of freedom that it is going to be tested, see
right and left parts of Fig. 1. The tests consisted of making different
controlled movements of the ROV moving through the fluid by means
of two computer-controlled linear actuators mounted on the towing
carriage, see Table 1 for the conditions and the parameters estimated in
each test. In each actuator, a 6-component dynamo-meter was mounted
and a ball joint allowing rotation in sway. In the different tests, the
transverse and vertical accelerations were measured with 2 accelerome-
ters, one at each end of each actuator. The total forces and the total yaw
moment were calculated off-line in the center of gravity of the vehicle
with the measurements of the cited instrumentation by means of an
inertial table, see Appendix. Furthermore, the total movement of the
ROV in the center of gravity was calculated based on the displacement
of the linear actuators, thus enabling the input signals applied in each
model basin test to be calculated, see Fig. 2. These typical input signals
are modified by the experiment designed procedure proposed in the
next section.

The tests performed were as follows:

• Longitudinal drag and acceleration at 3 speeds: the vehicle is
dragged at different speeds and the vector of parameters 𝜃1 is
estimated. By considering the conditions of this test (𝑣 = 𝑤 =
𝑝 = 𝑟 = 𝜙 = 𝜃 = 𝜓 = 0) the result from Eq. (1) for surge is:

𝑋 = 𝑋𝑢 +𝑋𝑢|𝑢|𝑢|𝑢| + (−𝑚 +𝑋𝑢̇)𝑢̇ (10)

• Dynamic heave at one frequency and three amplitudes (zero
speed and nominal sailing): the vector of parameters 𝜃2. Is esti-
mated by considering the conditions of this test (𝑣 = 𝑝 = 𝑟 = 𝜙 =
𝜃 = 𝜓 = 0). The result from Eq. (1) for heave is::

𝑍 = (−𝑚 +𝑍 )𝑤̇ +𝑍 𝑤|𝑤| +𝑍 𝑤 (11)
3

𝑤̇ 𝑤|𝑤| 𝑤
Fig. 1. ROV assemblies in the INTA/CEHIPAR calm water channel, right upright
position and left ROV turned 90 degrees.

Fig. 2. Standard model basin input data obtained from the INTA/CEHIPAR tests.

• Static Heave at 3 angles (nominal sailing speed) (Fig. 1, right as-
sembly): See procedure and conditions for static tests (Committee,
2014).

• Dynamic Sway at one frequency and three amplitudes (zero speed
and nominal sailing): the vectors of parameters 𝜃3. Is estimated by
considering the conditions of this test (𝑤 = 𝑝 = 𝑟 = 𝜙 = 𝜃 = 𝜓 =
0). The resulting equation for the sway force is:

𝑌 = (−𝑚 + 𝑌𝑣̇)𝑣̇ + 𝑌𝑣𝑣 + 𝑌|𝑣|𝑣|𝑣|𝑣 (12)

• Static Sway at 3 angles (nominal sailing speed): See procedure
and conditions for static tests (Committee, 2014).

• Dynamic Yaw at one frequency and three amplitudes (zero speed
and nominal sailing): the vector of parameters 𝜃4 is estimated.
See pitching motion conditions (𝑣 = 𝑤 = 𝑝 = 𝑞 = 𝜙 = 𝜃 = 0) (Lee
et al., 2011) and the resultant from Eq. (1) for the yaw moment
is:

𝑁 = (−𝐼𝑧𝑧 +𝑁𝑟̇)𝑟̇ + (𝑁𝑟 − 𝑚𝑥𝐺𝑢)𝑟 +𝑁|𝑟|𝑟|𝑟|𝑟 (13)

• Static Yaw at 3 angles (nominal sailing speed): See procedure and
conditions for static tests (Committee, 2014).

For more details on this type of tests see Revestido Herrero et al.
(2018), Phillips et al. (2007).

3. Experiment design

We propose two different optimization problems for model basin
experiment design with the aim of maneuvering models (Eq. (1))
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Table 1
Summary table of the tests carried out at the INTA/CEHIPAR facilities.

Test Estimated parameters 𝛩̂𝑗,𝑖 Speeds Amplitude ROV Assembly
(Kn) CG Motion (mm) Fig. 1

Resistance and longitudinal 𝜃1 = [𝑋𝑢̇ , 𝑋𝑢 , 𝑋𝑢|𝑢|]𝑇 0.5, 1.5, 2.5 Left
acceleration

Dynamic Heave 𝜃2 = [𝑍𝑤̇ , 𝑍𝑤 , 𝑍𝑤|𝑤|]𝑇 0,2 40, 80, 120 Left

Dynamic Sway 𝜃3 = [𝑌𝑣̇ , 𝑌𝑣 , 𝑌𝑣|𝑣|]𝑇 0,2 40, 80, 120 right

Dynamic Yaw 𝜃4 = [𝑁𝑟̇ , 𝑁𝑟 , 𝑁𝑟|𝑟|]𝑇 0,2 50, 100, 150 right
parameter estimation:

𝑚𝑖𝑛
𝜃𝑗,𝑖

{𝑅(𝜃𝑗,𝑖, 𝛩𝑗,𝑖)} ≡
{

𝑙𝑏𝑗,𝑖 ≤ 𝜃𝑗,𝑖 ≤ 𝑢𝑏𝑗,𝑖 (14)

𝑚𝑖𝑛
𝜃𝑗,𝑖

𝑚𝑎𝑥
𝑘

{𝑅𝑗 (𝜃𝑗,𝑖, 𝛩𝑗,𝑖) 𝑅𝑗,𝑖(𝜃𝑗,𝑖, 𝛩𝑗,𝑖)
1

𝑆𝑗𝑚𝑖𝑛(𝜃𝑗,𝑖, 𝛩𝑗,𝑖)
1

𝑆𝑗,𝑖𝑚𝑖𝑛(𝜃𝑗,𝑖, 𝛩𝑗,𝑖)
}

≡
{

𝑙𝑏𝑗,𝑖 ≤ 𝜃𝑗,𝑖 ≤ 𝑢𝑏𝑗,𝑖 (15)

where 𝑅𝑗 (𝜃𝑗,𝑖, 𝛩𝑗,𝑖) is the sensitivity ratio of the 𝑗th DOF, 𝑅𝑗,𝑖(𝜃𝑗,𝑖, 𝛩𝑗,𝑖)
is the sensitivity ratio of the 𝑖th input parameter of the 𝑗th DOF,
𝑆𝑗𝑚𝑖𝑛(𝜃𝑗,𝑖, 𝛩𝑗,𝑖) is the minimum sensitivity of the 𝑗th DOF, 𝑆𝑗,𝑖𝑚𝑖𝑛(𝜃𝑗,𝑖, 𝛩𝑗,𝑖)
is the sensitivity ratio of the 𝑖th input parameter of the 𝑗th DOF, 𝜃𝑗,𝑖 is
the 𝑖th input parameter of the 𝑗th DOF, 𝛩𝑗,𝑖 is the 𝑖th maneuvering
model parameter of Eq. (1) of the 𝑗th DOF, 𝑙𝑏𝑗,𝑖 is the lower bound of
the 𝑖th element of 𝜃𝑗,𝑖 for the 𝑗th DOF and 𝑢𝑏𝑗,𝑖 is the upper bound of
the 𝑖th element of 𝜃𝑗,𝑖 for the 𝑗th DOF. Note that the 𝑗 refers to the DOFs
of the model defined in Eq. (1), being 𝑗 = 1 the surge DOF, 𝑗 = 2 the
sway DOF, 𝑗 = 3 the heave DOF and 𝑗 = 4 the yaw DOF. The sub-index
𝑖 refers to the 𝑖th parameter of the input signal to be optimized and the
sub-index 𝑘 to 𝑘th element of the minimax problem.

Note that Eq. (16) involves a single parameter sensitivity calcula-
ion, making it computationally more efficient compared to Eq. (17),
hich requires multiple sensitivity calculations. Consequently, Eq. (16)

s expected to be computationally cheaper than Eq. (17).
The experiment design proposed in this paper modifies the standard

nput signals conventionally used in model basin tests, see Fig. 2 for the
tandard input signals used in the INTA/CEHIPAR installations. More
pecifically, standard multisine input signals for the sway, heave, and
aw DOFs are designed by optimizing input parameters corresponding
o three different amplitudes of cited multisine input, and for the surge
OF input signal, three parameters relative to the final value of surge

peeds are designed.
The input to be designed for the surge DOFs is:

≡

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜃𝑗=1,𝑖=1⋅𝑤2
𝑛

𝑠2+2𝛿𝑤𝑛𝑠+𝑤2
𝑛
𝑡0 ≤ 𝑡 ≤ 𝑡1

0 𝑡 ≥ 𝑡1
𝜃𝑗=1,𝑖=2⋅𝑤2

𝑛
𝑠2+2𝛿𝑤𝑛𝑠+𝑤2

𝑛
𝑡1 ≤ 𝑡 ≤ 𝑡2

0 𝑡 ≥ 𝑡2
𝜃𝑗=1,𝑖=3⋅𝑤2

𝑛
𝑠2+2𝛿𝑤𝑛𝑠+𝑤2

𝑛
𝑡2 ≤ 𝑡 ≤ 𝑡3

(16)

here 𝛿 is the damping ratio, 𝑤𝑛 is the undamped natural angular
requency, 𝑡0 the initial instant of time, 𝑡3 the final instant of time and
1, 𝑡2 intermediate instants of time, being 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3. Note that it
s chosen the kind of spectrum indicated in Eq. (16) very close to the
pectrum of the input data acquired in the INTA/CEHIPAR installations,
ee Fig. 2 (The reader is referred to graph corresponding to the 𝑢
ariable which presents a second-order system behavior).

The inputs to be designed for the sway, heave, and yaw are respec-
ively:

≡

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜃𝑗=2,𝑖=1 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡0 ≤ 𝑡 ≤ 𝑡1
0 𝑡 ≥ 𝑡1
𝜃𝑗=2,𝑖=2 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡1 ≤ 𝑡 ≤ 𝑡2
0 𝑡 ≥ 𝑡2
𝜃 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡 ≤ 𝑡 ≤ 𝑡

(17)
4

⎩

𝑗=2,𝑖=3 2 3
𝑤 ≡

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜃𝑗=3,𝑖=1 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡0 ≤ 𝑡 ≤ 𝑡1
0 𝑡 ≥ 𝑡1
𝜃𝑗=3,𝑖=2 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡1 ≤ 𝑡 ≤ 𝑡2
0 𝑡 ≥ 𝑡2
𝜃𝑗=3,𝑖=3 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡2 ≤ 𝑡 ≤ 𝑡3

(18)

𝑟 ≡

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜃𝑗=4,𝑖=1 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡0 ≤ 𝑡 ≤ 𝑡1
0 𝑡 ≥ 𝑡1
𝜃𝑗=4,𝑖=2 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡1 ≤ 𝑡 ≤ 𝑡2
0 𝑡 ≥ 𝑡2
𝜃𝑗=4,𝑖=3 ⋅ 𝑠𝑖𝑛(𝑤𝑡) 𝑡2 ≤ 𝑡 ≤ 𝑡3

(19)

where 𝑤 is the frequency of the sinusoidal function, 𝑡0 the initial instant
of time, 𝑡3 the final instant of time and 𝑡1, 𝑡2 intermediate instants of
time, being 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3.

In Eqs. (16) to (19), the periods 𝑡1, 𝑡2, and 𝑡3 were chosen to
match those of the data collected in the INTA/CEHIPAR installations,
as shown in Fig. 2. Specifically, 𝑡1 corresponds to the first change in
amplitude, 𝑡2 to the second change in amplitude, and 𝑡3 to the final
moment in time. This approach ensures that the experiment design
procedure starts with input signals that closely resemble the model
basin ones, allowing for a comparison between the results obtained and
the optimized ones. Note that the inputs of Eqs. (16) to (19), for the
experiment design procedure proposed in this section, are specifically
intended for the dynamic tests indicated in the previous section.

The sensitivity metrics used in the optimization problems defined
above are based on parameter sensitivity theory (Blanke and Knudsen,
1999, 2006; Herrero et al., 2012), and their calculus are applied for the
specific case of the maneuvering model of Eq. (1) as follows.

The sensitivity ratio for each DOF is defined by,

𝑅𝑗 (𝜃𝑗,𝑖, 𝛩𝑗,𝑖) =
𝑆𝑗𝑚𝑎𝑥
𝑆𝑗𝑚𝑖𝑛

=

√

𝜆𝑗𝑚𝑎𝑥
√

𝜆𝑗𝑚𝑖𝑛
, (20)

𝜆𝑗,𝑖 = {𝐻𝑑𝑟(𝛩𝑗,𝑖)}𝑖𝑖 (21)

where 𝑆𝑗𝑚𝑖𝑛 is the minimum sensitivity of the 𝑗th DOF, 𝑆𝑗𝑚𝑎𝑥 is the
maximum sensitivity of the 𝑗th DOF and 𝜆 denotes the eigenvalues of
𝐻𝑑𝑟, which is calculated by doing

𝐻𝑑𝑟(𝛩𝑗,𝑖) = 𝑇 𝑇𝑟 𝐻𝑟(𝛩𝑗,𝑖)𝑇𝑟 (22)

𝑇𝑟 being an orthogonal transformation matrix containing the eigenvec-
tors of 𝐻𝑟 as columns.

The parameter 𝐻𝑟 is obtained by,

𝜃𝑟 = 𝐿−1𝛩𝑗,𝑖, 𝐿 = 𝑑𝑖𝑎𝑔(𝛩̂𝑗,𝑖) (23)

𝐻𝑟(𝛩𝑗,𝑖) = 𝐿𝑇𝐻(𝛩̂𝑗,𝑖)𝐿 (24)

where 𝛩̂𝑗,𝑖 is a local estimate of the parameters indicated in Eq. (1)
around the optimal estimate. As the values of each of the maneuvering
parameters indicated in Eq. (1) can be very different from each other,
it is convenient to use relative sensitivities as it is done in Eq. (23).
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𝐻
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r

The matrix Hessian 𝐻(𝛩̂𝑗,𝑖) of Eq. (24) is defined by

(𝛩̂𝑗,𝑖) =
1
𝑁

𝑁
∑

𝑘=1
𝜓(𝑘, 𝛩̂𝑗,𝑖)𝜓𝑇 (𝑘, 𝛩̂𝑗,𝑖)

𝜓𝑗 (𝛩̂𝑗,𝑖) =
𝑑𝑓 (𝛩𝑗,𝑖)
𝑑𝛩𝑗,𝑖

∣𝛩𝑗,𝑖=𝛩̂𝑗,𝑖

(25)

where 𝜓𝑗 (𝛩̂𝑗,𝑖) is the gradient of the maneuvering model of Eq. (1), and
it is specifically defined for each DOF in the following way:

𝜓𝑗=1(𝛩̂𝑗=1,𝑖) =[𝑢̇ 𝑢 𝑢|𝑢|]

𝜓𝑗=2(𝛩̂𝑗=2,𝑖) =[𝑣̇ 𝑣 𝑣|𝑣|]

𝜓𝑗=3(𝛩̂𝑗=3,𝑖) =[𝑤̇ 𝑤 𝑤|𝑤|]

𝜓𝑗=4(𝛩̂𝑗=4,𝑖) =[𝑟̇ 𝑟 𝑟|𝑟|]

(26)

Additionally, 𝑆𝑗,𝑖 𝑚𝑖𝑛 is determined as follows

𝑆𝑗,𝑖 𝑚𝑖𝑛 =
√

{𝐻−1
𝑟 (𝜃𝑗,𝑖)}−1𝑖𝑖 (27)

We use as a reference estimator in the present paper the least
quares (LS) method, where the aim is to minimize the sum of squared
esiduals, which is usually denoted as 𝑉 (𝛩𝑗,𝑖). The accuracy and preci-

sion of the estimated parameters depend mainly on the model structure
and the input signal. The function 𝑉 (𝛩𝑗,𝑖) provides, on the one hand,
a measure of the measurement errors of the model signals but, on
the other hand, it is also a measure of the errors of its parameters.
There is no guarantee that a small value of 𝑉 (𝛩𝑗,𝑖) will provide small
errors in the parameter estimates, even in the case that the structure
of the model is correct. A necessary but not sufficient condition is
that 𝑉 (𝛩𝑗,𝑖) must be sensitive to all parameters. This corresponds to
the experiment being rich in information, which requires a persistent
excitation signal (Ljung, 1987). The structure of the model must be
identifiable. This means that if for a distribution 𝑓 (𝑌𝑁 |𝛩𝑗,𝑖), there exists
more than one value of 𝑓 that corresponds to a single value of 𝑓 ,
it is not possible to say which of the two values of 𝑓 is the correct
one, even if the number of samples taken were infinite. In this case,
the parameter is said to be unidentifiable (Stuart et al., 1999). The
optimization problems proposed in this section attempt to improve this
circumstance using the sensitivity metrics mentioned above. In sum,
based on the theory stated above, the following steps must be followed
to design experiments for the estimation of a non linear maneuvering
model of an ROV with model basin tests:

1. Obtain initial parameter estimates 𝛩̂𝑗,𝑖 close to the optimal pa-
rameters estimates with the data acquired in the model basin
standard tests, i.e. apply the LS method for the parameter esti-
mation.

2. Choose a preliminary class of physically realizable input signals,
i.e. input signals similar to ones used in the standard model basin
tests, see Eqs. (16), (17), (18) and (19). The input parameters 𝜃𝑗,𝑖
control the spectrum. For the surge, DOF initializes the input
parameters 𝜃𝑗=1,𝑖 by performing an estimation of the second
order systems of Eq. (16) which fit the input data acquired in the
model basin for the surge DOF and for the sway, heave, and yaw
initialize the parameters 𝜃𝑗=1,𝑖, 𝜃𝑗=2,𝑖 and 𝜃𝑗=3,𝑖 by performing an
estimation of the parameters of the sinusoidal Eqs. (17), (18) and
(19) respectively, which fit the input data acquired in the model
basin.

3. Optimize the input signals for the 4 DOF by applying optimiza-
tion problems of Eq. (14) or (15). Establish tolerances and limits
for the input parameters 𝜃𝑗,𝑖 in the cited optimization problems.

4. Check that the obtained input parameters 𝜃𝑗,𝑖, in the convergence
of the optimization problems applied in the previous item, pro-
vide the best sensitivity values. To do so, calculate and draw
some of the characteristic measures of sensitivity as a function
of the input signal parameters 𝜃𝑗,𝑖, in the following way:
5

• 𝑆𝑗,𝑖 𝑚𝑖𝑛 Eq. (27) as big as possible.
Fig. 3. Evolution of the sway sensitivity parameters when 𝑤𝑓 is varied.

• 𝑆𝑗 𝑚𝑖𝑛 in Eq. (20) as big as possible.
• 𝑅𝑗 (𝜃𝑗,𝑖, 𝛩𝑗,𝑖) Eq. (20)) as close to 1 as possible.
• 𝑅𝑗,𝑖(𝜃𝑗,𝑖, 𝛩𝑗,𝑖) = 𝑆𝑗,𝑖 𝑚𝑖𝑛∕𝑆𝑗 𝑚𝑖𝑛 as close to 1 as possible.

if better sensitivity values are found, replace the corresponding
input signal parameter 𝜃𝑗,𝑖 in step 3.

5. Use the signal selected in the previous step on the system and
obtain improved parameter estimates.

6. If necessary, go back to step 2.

Note that the frequency 𝑤 of Eqs. (17), (18) and (19) is fixed and
was selected in a value close to the frequency of the standard model
basin tests. In a preliminary study, it was verified that the variation
of the 𝑤 parameter does not provoke a significant variation in the
sensitivity parameters, see Fig. 3 for the sway DOF. Therefore, we have
fixed the frequency to the same value as the INTA/CEHIPAR acquired
data (𝑤 = 1.047 rad∕s) and varied the amplitudes within limited ranges,
as indicated in the previous comment.

It must also be noted that one of the linear regression assumptions
of the LS method is that the regressors are not linearly correlated,
implying the absence of multicollinearity. The violation of this as-
sumption leads to an inefficient parameter estimation. In the present
application, a clear correlation is observed between the linear and non-
linear damping terms of the maneuvering model. It is noteworthy that
the proposed experiment design methodology does not eliminate the
correlation among the cited damping terms, but it has an impact on
the efficiency of the parameter estimates. Specifically, the proposed
experiment design methodology significantly reduces the variance of
the estimated maneuvering parameters, as shown by the Monte Carlo
study presented in the case study section.

Additionally, it is important to note that LS estimates for regression
models can be sensitive to outliers. Although we have not identified
any outliers in the data collected at the INTA/CEHIPAR model basin
installations, this remains an important aspect to be considered.

A relationship between the variance of the parameter and the sensi-
tivity of the parameters can be established by applying the Cramer–Rao
lower bound:

𝜎𝑟,𝛩𝑖 =
√

2
𝑁
𝑉 (𝛩̂𝑗,𝑖)∕𝑆𝑖 𝑚𝑖𝑛 (28)

This result of Eq. (28) is important because the variance is directly
proportional to the variance of the noise and inversely proportional to
the sensitivity. This means that the higher the sensitivity, the lower
the variance of the estimator and the higher the sensitivity, the lower
the variance of the estimator, and, therefore, the more efficient the
estimator will be.
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4. Case of study

The experiment design procedure proposed in Section 3 has been ap-
plied to the data acquired in the INTA/CEHIPAR installations with the
ROV detailed in Appendix. A set of parameters 𝛩̂𝑗,𝑖 of the maneuvering

odel has been obtained using LS with standard inputs and the data
cquired in the INTA/CEHIPAR installations. We use these estimated
arameters as a reference and generate new data contaminated with
tandard levels of noise of on board instrumentation of ROV when the
ptimization problems indicated above of Eqs. (14) and (15) are ap-
lied. The input signal parameters 𝜃𝑗,𝑖 (Eqs. (17), (18), (19)) have been
nitialized with the same amplitudes as in the INTA/CEHIPAR multisine
nputs for the sway, heave and yaw DOF, see Fig. 2. As far as the
urge DOF is concerned, the parameters of three different second-order
ystems have been estimated through LS, to realistically reproduce
he surge input signal used in the INTA/CEHIPAR installations, thus
nitializing the input parameters 𝜃̂𝑗=1,𝑖 (Eq. (16)). The optimization
roblems indicated above of Eqs. (14) and (15)are implemented in
he Matlab environment with the fmincon and fminimax functions
espectively.

As indicated in the experiment design procedure of the previous
ection, it must be checked that the obtained input parameters 𝜃𝑗,𝑖,
hen the optimization problem converges, provide the best sensitivity
alues. This occurs for the sway DOF, which converges at the 40-th
teration for the optimization problem of Eq. (14) and at the 80th iter-
tion for the optimization problem of Eq. (15), see Figs. 6 to 7 for the
volution of the maneuvering model sensitivity parameters. The same is
rue of the heave DOF, see Figs. 8 and 9 respectively. However, for the
aw and surge DOFs, better sensitivity results are found from previous
terations to the convergence of both optimization problems, Eqs. (14)
nd (15). Specifically, for the yaw DOF the input parameters at the
th and 14th iterations for the optimizations problems of Eqs. (14) and
15) respectively, and for the surge DOF at the 10th iteration for both
ptimization problems. Table 2 compares the sensitivity parameters for
he 𝑖th input parameters iteration previously indicated to the sensitivity
arameters of the input data acquired in INTA/CEHIPAR installations
or both optimization problems. According to step 4 of the experiment
esign procedure established in the previous section, an improvement
an be observed for most of the sensitivity parameter values for the
ifferent DOFs when the standard INTA/CEHIPAR sensitivity parame-
ers are compared to the ones obtained with the proposed optimization
roblems. In addition, if we compare the sensitivity parameters ob-
ained with the optimization problem of Eq. (14) to the ones obtained
ith the optimization problem of Eq. (15), similar values are observed

or most of the sensitivity parameters.
We develop two different Monte Carlo studies of 100 realizations

o verify the improvements of the experiment design compared to
he standard input signals with statistical metrics. To do so, a set of
arameters of the maneuvering model 𝛩̂𝑗,𝑖 has been obtained using
S with standard inputs and the data acquired in the INTA/CEHIPAR
nstallations. We use these estimated parameters as a reference and
enerate new data contaminated with standard levels of noise of on
oard instrumentation of ROVs. The results of this study are summa-
ized in Tables 3 and 4, where the results given by the standard input
re compared to the ones provided with the optimized inputs with a
eference OLS estimator. In Table 3, with the optimization problem
f Eq. (14), a reduction in bias can be observed for almost all the
arameters, except the 𝑁𝑟, 𝑁𝑟|𝑟| parameters. In the same way, there
s a reduction in variance for almost all the parameters, except for the
𝑟, 𝑁𝑟|𝑟|, 𝑁𝑟̇ parameters. Furthermore, Table 4, with the optimization
roblem of Eq. (15), shows with the optimized input a reduction in bias,
ith the only exception of the 𝑌𝑣|𝑣| parameter and a reduction in vari-
nce except for the 𝑁𝑟 parameters. In both optimization problems, it
an be concluded that the optimized inputs provide more accurate and
fficient parameter estimates than with the standard INTA/CEHIPAR
6

nputs using OLS as a reference estimator. Moreover, the results with
Fig. 4. Convergence of the amplitudes for the sway multisin input signal, optimization
problem of Eq. (14).

Fig. 5. Convergence of the amplitudes for the sway multisin input signal, optimization
problem of Eq. (15).

the optimizations problem of Eq. (15) present fewer exceptions in bias
and variance reduction; therefore, it is chosen as the better option.
Fig. 14, shows the experiment design results with the optimizations
problem of Eq. (15). If we compare this figure to the standard inputs
of Fig. 2, apart from the cited parameter estimation results, there is a
significant reduction in the time interval with the proposed experiment
design, which constitutes a considerable reduction of the model basin
tests costs. In addition, Fig. 14 compares the INTA/CEHIPAR acquired
data to the experiment design results for the surge DOF. Since the
optimized input signal for the surge DOF has more possibilities of
abrupt accelerations, it is important to note that the first two changes
in the experiment design results are of similar levels to the acquired
data, while the third change in the experiment design presents an
acceleration peak much higher but not excessive. Nonetheless, it is
possible to adjust the rise time in case of overcoming the carriage
acceleration system for a specific installation since for the surge DOF,
the input signal is established as a second-order system in Eq. (16) (see
Figs. 4, 5, 10–13 and 15).

5. Conclusions

In the present paper, we propose an experiment design method-
ology based on a parameter sensitivity approach for the parameter
estimation of non-linear maneuvering models of ROVs. The experiment
design methodology is applied to the model basin tests performed
in the INTA/CHEIPAR installation where the input signals used are
constrained to the dimensions of the cited installations. Two different
optimization problems in the application of the experiment design
methodology are compared and the one which provides the best re-
sults is selected. The results show considerable improvements in all
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Table 2
Comparative table with sensitivity parameter results for the standard input and the inputs designed with the optimization
problems of Eqs. (14) and (15).

Input Sensitivity Surge Sway Heave Yaw

Standard

𝑆𝑚𝑖𝑛 4.88 0.150285 1.02 2.81
𝑆𝑖 𝑚𝑖𝑛 15.6 4.8 25.8 1.8 1.2 0.34 49.5 3.43 3.59 5.9 12.87 15.63
𝑅𝑖 4.4 1.0 4.4 3.2 1 3.2 3.4 1.0 3.48 1 3.56 3.56
𝑅 27.38 17.7 48.3 7.13

Designed, Eq. (14)

𝑆𝑚𝑖𝑛 1.37 3.25 3.9 3.6
𝑆𝑖 𝑚𝑖𝑛 1.37 111.2 345.6 20.3 18.2 10.8 34.2 17.4 14.8 5.9 12.7 20,2
𝑅𝑖 1 4.4 4.4 1 2.9 2.9 1 2.9 2.9 1 3 3
𝑅 262.6 6.45 8.6 6.5

Designed, Eq. (15)

𝑆𝑚𝑖𝑛 1.38 3.24 2.98 4.19
𝑆𝑖 𝑚𝑖𝑛 1.37 110.27 346.4 20.3 18.2 10.8 42.9 21.7 20.6 8.7 18.8 38.7
𝑅𝑖 1 5 5 1 2.9 2.9 1 5 5 1 4 4
𝑅 263,3 6.45 14 10.2
Fig. 6. Evolution of the sway sensitivity parameters for the optimization problem
of Eq. (14).

Table 3
Monte Carlo study of 100 realizations comparing standard INTA/CEHIPAR inputs
to the ones obtained with the optimization problem of Eq. (14).

Standard input Min input

Bias Std. dev. Bias Std. dev.

𝑋𝑢̇ 0.1994 3.0631 0.0336 1.7568
𝑋𝑢 0.0008 0.0294 0.0007 0.0274
𝑋𝑢|𝑢| 0.0008 0.0223 0.0002 0.0160
𝑌𝑣̇ 0.0171 0.1503 0.0010 0.0860
𝑌𝑣 0.0319 0.5373 0.0278 0.2612
𝑌𝑣|𝑣| 0.5410 5.8766 0.1678 1.3403
𝑍𝑤̇ 0.0170 0.3128 0.0053 0.0082
𝑍𝑤 0.1126 1.0867 0.0418 0.2925
𝑍𝑤|𝑤| 1.9161 20.4460 0.1855 1.4862
𝑁𝑟̇ 0.0043 0.0509 0.0006 0.0883
𝑁𝑟 0.0086 0.1873 0.0184 0.6289
𝑁𝑟|𝑟| 0.0033 0.7102 0.0107 1.6289

the sensitivity parameters, when the standard INTA/CEHIPAR input
sensitivity parameters are compared to the ones obtained with the
proposed experiment design methodology. Moreover, the Monte Carlo
study results exhibit a reduction in bias and variance for almost all
7

the parameters, making it possible to conclude that the optimized
Fig. 7. Evolution of the sway sensitivity parameters for the optimization problem
of Eq. (15).

Fig. 8. Evolution of the heave sensitivity parameters for the optimization problem
of Eq. (14).
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o

o

Fig. 9. Evolution of the heave sensitivity parameters for the optimization problem
of Eq. (15).

Fig. 10. Evolution of the yaw sensitivity parameters for the optimization problem
f Eq. (14).

Fig. 11. Evolution of the yaw sensitivity parameters for the optimization problem
f Eq. (15).
8

Fig. 12. Evolution of the surge sensitivity parameters for the optimization problem
of Eq. (14).

Fig. 13. Evolution of the surge sensitivity parameters for the optimization problem
of Eq. (15).

Fig. 14. Experiment design results for the sway, heave, yaw and surge DOFs.



Ocean Engineering 307 (2024) 118215E.R. Herrero et al.

D

M

Fig. 15. Comparing the INTA/CEHIPAR data to the Experiment design results for surge
OF.

Table 4
Monte Carlo study of 100 realizations comparing standard INTA/CEHIPAR inputs
to the ones obtained with the optimization problem of Eq. (15).

Standard input Min input

Bias Std. dev. Bias Std. dev.

𝑋𝑢̇ 0.5077 3.2830 0.0508 0.8767
𝑋𝑢 0.0041 0.0335 0.0015 0.0338
𝑋𝑢|𝑢| 0.0028 0.0244 0.0007 0.0150
𝑌𝑣̇ 0.0083 0.1594 0.0067 0.0733
𝑌𝑣 0.0304 0.5379 0.0142 0.2481
𝑌𝑣|𝑣| 0.3542 5.7282 0.0487 1.2919
𝑍𝑤̇ 0.0670 0.2890 0.0144 0.0750
𝑍𝑤 0.0353 1.0066 0.0238 0.3652
𝑍𝑤|𝑤| 0.5098 19.0148 0.1347 1.7446
𝑁𝑟̇ 0.0067 0.0554 0.0037 0.0507
𝑁𝑟 0.0202 0.1860 0.0182 0.1877
𝑁𝑟|𝑟| 0.0831 0.7399 0.0594 0.5980

Table 5
ROV main data.

Value Description

𝑚 (kg) 80.750 total mass
𝑥𝐺 (m) 0.490 Distance in the 𝑋 axis from the CG to 𝑂𝑏
𝑧𝐺 (m) 0.400 Distance in the 𝑍 axis from the CG to 𝑂𝑏
𝐼𝑥𝑥 (Kgm2) 0.29 Inertia roll
𝐼𝑦𝑦 (Kgm2) 6.945 Inertia pitch
𝐼𝑟 (Kgm2) 7.073 Inertia yaw

inputs provide more accurate and efficient parameter estimates than
with the standard INTA/CEHIPAR inputs using OLS as a reference
estimator. The optimizations problem of Eq. (15) is selected as the best
option, since the results present less exceptions in bias and variance
reduction. In addition, the experiment design methodology with the
selected optimization problem also provides a significant reduction in
the time interval with respect to the standard INTA/CHEIPAR input
signals, which constitutes a considerable reduction of the model basin
tests costs. In subsequent research, this experiment design procedure
could be applied with another estimator for further improvements.
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Appendix. Experimental set up and ROV main features

The experimental setup used for the model basin tests is depicted
in Fig. 17. The figure shows the positions of the actuators along with
their distances to the center of gravity (CG). The submerged depth for
the trials was chosen to be 1.2 m from the water surface up to the
top face of the ROV. This selection was based on preliminary CFD
calculations, which indicated that the free surface effects of the water
were negligible at the immersion depth of 1 m.

The ROV is shown in Fig. 18, its dimensions are 1 m × 0.6 m,
0.62 m. The moments of inertia, the center of gravity, and the center of
buoyancy of the vehicle are found in Table 5. The center of gravity and
inertia of the ROV were obtained experimentally by forced oscillations.
The values obtained are shown in Table 1. In this vehicle, four thrusters
in x-type are mounted for the surge, sway, and yaw motion, and a
vertical one for depth control. The set of parameters 𝛩̂𝑗,𝑖 of the maneu-
vering model used as a reference to generate new data contaminated
with standard levels of noise of on board instrumentation of the ROV
in Fig. 18 when the optimization problems indicated above (Eqs. (14)
and (15)) are applied can be found in Table 6.
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Fig. 16. MCIU/ AEI /10.13039/501100011033 and the European Union - Next GenerationEU/PRTR.
Fig. 17. ROV assemblies set up in the INTA/CEHIPAR calm water channel, right upright position and left ROV turned 90 degrees.
Fig. 18. ROV and inertial table for the inertias obtention.

References

Alabsi, M., Fields, T., 2019. Quadrotor aircraft intelligent system identification ex-
periment design. Proc Inst. Mech. Eng. G(J. Aerosp. Eng.) 233 (13), 4911–4925.
http://dx.doi.org/10.1177/0954410019833209.

Barker, H., Rivera, D., Tan, A., Godfrey, K., 2006. Perturbation signal design. In:
IFAC Symposium Modelling, Identification and Signal Processing (SYSID 2006)
Identification and System Parameter Estimation. p. 6.

Beelen, H., Bergveld, H., Donkers, M., 2018. On experiment design for pa-
rameter estimation of equivalent-circuit battery models. In: 2018 IEEE Con-
ference on Control Technology and Applications. CCTA, pp. 1526–1531.
http://dx.doi.org/10.1109/CCTA.2018.8511529, battery management;lithium-ion
batteries;equivalent-circuit battery models;battery management;model-based state
estimation techniques;E-bike;parameter estimation;experiment design;ECM parame-
ters;state estimate;accurate model parameters;Li;.

Blanke, M., Knudsen, M., 1999. Optimized experiment design for marine systems
identification. In: Proceedings of the 14th World Congress. International Federation
of Automatic Control, vol. 17, Kidlington, UK, pp. 575–580.
10
Blanke, M., Knudsen, M., 2006. Efficient parameterization for grey-box model identifica-
tion of complex physical systems. In: IFAC Symposium Modelling, Identification and
Signal Processing (SYSID 2006) Identification and System Parameter Estimation.
Amsterdam, Netherlands, p. 6.

Bombois, X., Morelli, F., Hjalmarsson, H., Bako, L., Colin, K., 2021. Robust opti-
mal identification experiment design for multisine excitation. Automatica 125,
109431. http://dx.doi.org/10.1016/j.automatica.2020.109431, URL: https://www.
sciencedirect.com/science/article/pii/S0005109820306336.

Braun, M., Rivera, D., Stenman, A., 2001. A model-on-demand identification
methodology for non-linear process systems. Internat. J. Control 74 (18),
1708–1717.

Capocci, R., Dooly, G., Omerdic, E., Coleman, J., Newe, T., Toal, D., 2017. Dictionary-
based experiment design for estimation of marine models. J. Mar. Sci. Eng. 5 (1),
http://dx.doi.org/10.3390/jmse5010013, 13 (32 pp.).

Committee, M., 2014. Final Report and Recommendations to the 27 th ITTC. Technical
Report, 27th ITTC Copenhagen.

Denis-Vidal, L., Jauberthie, C., Kieffer, M., 2019. Optimal experiment design for
bounded-error estimation of nonlinear models. In: 2019 IEEE 58th Conference on
Decision and Control. CDC, pp. 4147–4154. http://dx.doi.org/10.1109/CDC40024.
2019.9030003.

Denisov, V., Chubich, V., Filippova, E., 2019. The optimal estimation of parameters
of models of controlled stochastic systems based on the experiment design. 1333,
http://dx.doi.org/10.1088/1742-6596/1333/3/032020, 032020 (7 pp.),

Dirkx, N., Tiels, K., Oomen, T., 2023. Iterative robust experiment design for MIMO
system identification via the S-lemma. In: 2023 IEEE Conference on Control
Technology and Applications. CCTA, pp. 998–1003. http://dx.doi.org/10.1109/
CCTA54093.2023.10252362.

Du, X., Engelmann, A., Jiang, Y., Faulwasser, T., Houska, B., 2019. Optimal experiment
design for AC power systems admittance estimation. p. 6, arXiv.

Fay, D., Stanton, N., Roberts, A., 2019. Exploring ecological interface design for future
ROV capabilities in maritime command and control. In: Advances in Human Aspects
of Transportation. Proceedings of the AHFE 2018 International Conference on
Human Factors in Transportation. Advances in Intelligent Systems and Computing.
AISC 786, pp. 264–273. http://dx.doi.org/10.1007/978-3-319-93885-1_24.

Fossen, T., 2002. Marine Control Systems: Guidance, Navigation and Control of Ships,
Rigs and Underwater Vehicles. Marine Cybernetics.

Fossen, T.I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley and Sons, Ltd, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/
9781119994138.fmatter, URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119994138.fmatter.

Fredrik Ljungberg, M.E., Tervo, K., 2023. Dictionary-based experiment design for
estimation of marine models. Control Eng. Pract. 135, 105528. http://dx.doi.org/
10.1016/j.conengprac.2023.105528, URL: https://www.sciencedirect.com/science/
article/pii/S0967066123000977.

http://dx.doi.org/10.1177/0954410019833209
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb2
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb2
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb2
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb2
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb2
http://dx.doi.org/10.1109/CCTA.2018.8511529
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb4
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb4
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb4
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb4
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb4
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb5
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb5
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb5
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb5
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb5
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb5
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb5
http://dx.doi.org/10.1016/j.automatica.2020.109431
https://www.sciencedirect.com/science/article/pii/S0005109820306336
https://www.sciencedirect.com/science/article/pii/S0005109820306336
https://www.sciencedirect.com/science/article/pii/S0005109820306336
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb7
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb7
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb7
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb7
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb7
http://dx.doi.org/10.3390/jmse5010013
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb9
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb9
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb9
http://dx.doi.org/10.1109/CDC40024.2019.9030003
http://dx.doi.org/10.1109/CDC40024.2019.9030003
http://dx.doi.org/10.1109/CDC40024.2019.9030003
http://dx.doi.org/10.1088/1742-6596/1333/3/032020
http://dx.doi.org/10.1109/CCTA54093.2023.10252362
http://dx.doi.org/10.1109/CCTA54093.2023.10252362
http://dx.doi.org/10.1109/CCTA54093.2023.10252362
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb13
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb13
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb13
http://dx.doi.org/10.1007/978-3-319-93885-1_24
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb15
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb15
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb15
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.fmatter
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.fmatter
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.fmatter
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.fmatter
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.fmatter
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.fmatter
http://dx.doi.org/10.1016/j.conengprac.2023.105528
http://dx.doi.org/10.1016/j.conengprac.2023.105528
http://dx.doi.org/10.1016/j.conengprac.2023.105528
https://www.sciencedirect.com/science/article/pii/S0967066123000977
https://www.sciencedirect.com/science/article/pii/S0967066123000977
https://www.sciencedirect.com/science/article/pii/S0967066123000977


Ocean Engineering 307 (2024) 118215E.R. Herrero et al.
Goodwin, G., Payne, R., 1977. In: Mathematics and Science Engineering (Ed.), Dynamic
System Identification: Experiment Design and Data Analysis.

Gopaluni, R.B., Schön, T.B., Wills, A.G., 2009. Particle filter approach to nonlinear
system identification under missing observations with a real application. IFAC Proc.
Vol. 42, 810–815.

Gottu Mukkula, A., Paulen, R., 2019. Optimal experiment design in nonlinear parameter
estimation with exact confidence regions. J. Process Control 83, 187–195. http:
//dx.doi.org/10.1016/j.jprocont.2019.01.004.

Herrero, E.R., Gonzalez, F.J.V., García, E.L., Perez, E.M., 2012. Diseño de Exper-
imentos para la Estimación de Parámetros de Modelos de Maniobra Lineales
de Buques. Revista Iberoamericana de Automética e Informética Industrial RIAI
9 (2), 123–134. http://dx.doi.org/10.1016/j.riai.2012.02.006, URL: https://www.
sciencedirect.com/science/article/pii/S1697791212000076.

Lee, S.-K., Joung, T.-H., Cheo, S.-J., Jang, T.-S., Lee, J.-H., 2011. Evaluation of the
added mass for a spheroid-type unmanned underwater vehicle by vertical planar
motion mechanism test. Int. J. Nav. Archit. Ocean Eng. 3 (3), 174–180. http://dx.
doi.org/10.2478/IJNAOE-2013-0060, URL: http://www.sciencedirect.com/science/
article/pii/S2092678216302205.

Ljung, L., 1987. System Identification: Theory for the User. Prentice-Hall.
McMichael, R.D., Blakley, S.M., 2022. Simplified algorithms for adaptive experi-

ment design in parameter estimation. Phys. Rev. A 18, 054001. http://dx.doi.
org/10.1103/PhysRevApplied.18.054001, URL: https://link.aps.org/doi/10.1103/
PhysRevApplied.18.054001.

Pérez, T., Fossen, T., 2006. Time-domain models of marine surface vessels based
on seakeeping computations. In: Proc. 7th IFAC Conference on Manoeuvring and
Control of Marine Craft MCMC. Lisbon, Portugal.

Phillips, A., Furlong, M., Turnock, S., 2007. Virtual planar motion mechanism tests
of the autonomous underwater vehicle autosub. In: STG-Conference / Lectureday
‘‘CFD in Ship Design’’. Institute M-8 of Hamburg University of Technology, URL:
http://eprints.soton.ac.uk/48939/.

Revestido Herrero, E., Velasco, F.J., Riola Rodríguez, J.M., 2018. Improving parameter
estimation efficiency of a non linear manoeuvring model of an underwater vehicle
based on model basin data. Appl. Ocean Res. 76, 125–138. http://dx.doi.org/10.
1016/j.apor.2018.04.012, URL: https://www.sciencedirect.com/science/article/pii/
S0141118717304406.
11
Robert L. Wernli, R.D.C., 2014. The ROV Manual (Second Edition), second ed. In:
A User Guide for Remotely Operated Vehicles, Butterworth-Heinemann, pp. i–
iii. http://dx.doi.org/10.1016/B978-0-08-098288-5.00024-5, URL: https://www.
sciencedirect.com/science/article/pii/B9780080982885000245.

Rojas, C.R., Aguero, J.-C., Welsh, J.S., Goodwin, G.C., Feuer, A., 2012. Robustness in
experiment design. IEEE Trans. Autom. Control 57 (4), 860–874. http://dx.doi.org/
10.1109/TAC.2011.2166294.

Schjlberg, I., Utne, I.B., 2015. Towards autonomy in ROV operations. IFAC-
PapersOnLine 48 (2), 183–188. http://dx.doi.org/10.1016/j.ifacol.2015.06.030,
URL: https://www.sciencedirect.com/science/article/pii/S2405896315002694, 4th
IFAC Workshop onNavigation, Guidance and Controlof Underwater VehiclesNGCUV
2015.

Shen, C., Buckham, B., Shi, Y., 2017. Modified c/GMRES algorithm for fast nonlinear
model predictive tracking control of AUVs. IEEE Trans. Control Syst. Technol. 25
(5), 1896–1904. http://dx.doi.org/10.1109/TCST.2016.2628803.

Söderström, T., Stoica, P., 1994. System Identification. Prentice-Hall.
Soylu, S., Proctor, A.A., Podhorodeski, R.P., Bradley, C., Buckham, B.J., 2016. Precise

trajectory control for an inspection class ROV. Ocean Eng. 111, 508–523. http:
//dx.doi.org/10.1016/j.oceaneng.2015.08.061.

Stuart, A., Ord, K., Arnold, S., 1999. Classical inference and the linear model, sixth ed.
In: Kendal’s Advanced Theory of Statistics, vol. 2A, Arnold.

Valenzuela, P.E., Dahlin, J., Rojas, C.R., Schön, T.B., 2014. A graph/particle-based
method for experiment design in nonlinear systems. IFAC Proc. Vol. 47 (3),
1404–1409. http://dx.doi.org/10.3182/20140824-6-ZA-1003.00361, URL: https://
www.sciencedirect.com/science/article/pii/S1474667016418094, 19th IFAC World
Congress.

Valenzuela, P.E., Rojas, C.R., Hjalmarsson, H., 2013. Optimal input design for non-linear
dynamic systems: A graph theory approach. arXiv:1310.4706.

Zimmermann, S., Enqvist, M., Gunnarsson, S., Moberg, S., Norrlof, M., 2023. Experimen-
tal evaluation of a method for improving experiment design in robot identification.
In: 2023 IEEE International Conference on Robotics and Automation. ICRA, pp.
11432–11438. http://dx.doi.org/10.1109/ICRA48891.2023.10161092.

http://refhub.elsevier.com/S0029-8018(24)01553-1/sb18
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb18
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb18
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb19
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb19
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb19
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb19
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb19
http://dx.doi.org/10.1016/j.jprocont.2019.01.004
http://dx.doi.org/10.1016/j.jprocont.2019.01.004
http://dx.doi.org/10.1016/j.jprocont.2019.01.004
http://dx.doi.org/10.1016/j.riai.2012.02.006
https://www.sciencedirect.com/science/article/pii/S1697791212000076
https://www.sciencedirect.com/science/article/pii/S1697791212000076
https://www.sciencedirect.com/science/article/pii/S1697791212000076
http://dx.doi.org/10.2478/IJNAOE-2013-0060
http://dx.doi.org/10.2478/IJNAOE-2013-0060
http://dx.doi.org/10.2478/IJNAOE-2013-0060
http://www.sciencedirect.com/science/article/pii/S2092678216302205
http://www.sciencedirect.com/science/article/pii/S2092678216302205
http://www.sciencedirect.com/science/article/pii/S2092678216302205
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb23
http://dx.doi.org/10.1103/PhysRevApplied.18.054001
http://dx.doi.org/10.1103/PhysRevApplied.18.054001
http://dx.doi.org/10.1103/PhysRevApplied.18.054001
https://link.aps.org/doi/10.1103/PhysRevApplied.18.054001
https://link.aps.org/doi/10.1103/PhysRevApplied.18.054001
https://link.aps.org/doi/10.1103/PhysRevApplied.18.054001
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb25
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb25
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb25
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb25
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb25
http://eprints.soton.ac.uk/48939/
http://dx.doi.org/10.1016/j.apor.2018.04.012
http://dx.doi.org/10.1016/j.apor.2018.04.012
http://dx.doi.org/10.1016/j.apor.2018.04.012
https://www.sciencedirect.com/science/article/pii/S0141118717304406
https://www.sciencedirect.com/science/article/pii/S0141118717304406
https://www.sciencedirect.com/science/article/pii/S0141118717304406
http://dx.doi.org/10.1016/B978-0-08-098288-5.00024-5
https://www.sciencedirect.com/science/article/pii/B9780080982885000245
https://www.sciencedirect.com/science/article/pii/B9780080982885000245
https://www.sciencedirect.com/science/article/pii/B9780080982885000245
http://dx.doi.org/10.1109/TAC.2011.2166294
http://dx.doi.org/10.1109/TAC.2011.2166294
http://dx.doi.org/10.1109/TAC.2011.2166294
http://dx.doi.org/10.1016/j.ifacol.2015.06.030
https://www.sciencedirect.com/science/article/pii/S2405896315002694
http://dx.doi.org/10.1109/TCST.2016.2628803
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb32
http://dx.doi.org/10.1016/j.oceaneng.2015.08.061
http://dx.doi.org/10.1016/j.oceaneng.2015.08.061
http://dx.doi.org/10.1016/j.oceaneng.2015.08.061
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb34
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb34
http://refhub.elsevier.com/S0029-8018(24)01553-1/sb34
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00361
https://www.sciencedirect.com/science/article/pii/S1474667016418094
https://www.sciencedirect.com/science/article/pii/S1474667016418094
https://www.sciencedirect.com/science/article/pii/S1474667016418094
http://arxiv.org/abs/1310.4706
http://dx.doi.org/10.1109/ICRA48891.2023.10161092

	Experiment design for model basin tests with a remotely operated vehicle
	Non Linear Maneuvering Model
	Model Basin tests
	Experiment Design
	Case of Study
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Experimental Set Up and ROV main features
	References


