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Abstract—Nowadays, so as to improve services and urban
area livability, multiple smart city initiatives are being carried
out throughout the world. SmartSantander is a smart city
project in Santander, Spain, which has relied on wireless sensor
network technologies to deploy heterogeneous sensors within
the city to measure multiple parameters, including outdoor
parking information. In this paper, we study the prediction of
parking lot availability using historical data from more than
300 outdoor parking sensors with SmartSantander. We design
a graph-to-sequence model to capture the periodical fluctuation
and geographical proximity of parking lots. For developing and
evaluating our model, we use a 3-year dataset of parking lot
availability in the city of Santander. Our model achieves a high
accuracy compared with existing sequence-to-sequence models,
which is accurate enough to provide a parking information
service in the city. We apply our model to a smartphone
application to be widely used by citizens and tourists.

Index Terms—Graph neural network, Internet of Things,
Smart city, Spatio-temporal analysis

I. INTRODUCTION

The Internet of Things (IoT) generates a large volume of

real-time data. Smart city projects have emerged to manage

their services more effectively based on IoT technologies. San-

tander, Spain, started its smart city project called SmartSan-

tander1, which envisioned a large-scale deployment of more

than 12,000 IoT sensors such as traffic, environmental, and

parking sensors [18], [19]. The aim of such deployment is to

improve the city livability and support tourism in Santander by

using ICT techniques, for example, route recommendation [21]

and air quality analysis [7], [8], [20].

One of the services provided in Santander is guiding drivers

to available parking lots. Thanks to the outdoor parking

information gathered from the SmartSantander deployment,

drivers are informed about available parking lots through two

means. First, ten parking panels, deployed at the entrance to

†This work was done when Shohei Yamasaki was a student at Osaka
University

1https://www.smartsantander.eu/
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Fig. 1: Parking sensors in Santander. (top) locations of parking

lots with cluster IDs, (bottom-left) a parking sensor with a

car, (bottom-center) the parking sensor, and (bottom-right) a

parking panel to guide drivers.

streets in the city center, show the number of available parking

lots in the city center as well as each of the streets where

they are deployed. Second, several applications provide this

information remotely. Hence, drivers can plan whether to take

their own cars or use public transportation services based on

real-time parking information.

Figure 1 shows the deployment carried out in Santander,

including the location of parking lots equipped with sensors,

parking sensors, and the parking panels deployed in the city.

Such services providing parking lot availability improve the

efficiency and usefulness of the parking system.

Motivation. Despite the benefits provided by this deployment,

SmartSantander is limited to offering real-time information to

the users about available parking lots. A prediction service

based on historical data can benefit the system deployed

in Santander. Such prediction service would allow drivers



to know whether there are available parking lots or not

beforehand, even if the service has been accessed long before

the arrival at the parking lot. Furthermore, SmartSantander

can keep offering parking guiding services by predicting the

number of available parking lots based on historical data, even

if the service stops due to several issues, such as deployment

maintenance or urban works.

There are two requirements to start a service that predicts

parking availability in Santander: (1) predicting the number

of available parking lots for both, the whole city center (i.e.,

all parking lots) and each of the streets; and (2) predicting

their availability at multiple time steps without pre-defined

time steps (e.g., in 15, 30, and 60 minutes, and more). To the

best of our knowledge, there is no former work that predicts

the availability of parking lots per street at several time steps.

Contribution. In this paper, we study the problem on the

prediction of parking lot availability with SmartSantander.

To this end, we design a graph-to-sequence neural network

model that can predict parking lot availability at multiple time

steps by using historical data from parking lots. Our graph-

to-sequence model consists of encoder and decoder. For the

encoder, we develop a graph neural network (GNN) encoder

to capture the characteristics of parking lot availability: (1)

temporal, as parking lot availability trends change periodically,

and (2) spatial, as the availability of each parking lot is also

affected by nearby parking lots. Our decoder is based on a

recurrent neural network (RNN) that uses time information

(e.g. a day) as well as historical parking lot availability data

to learn the impact of holidays and weekdays.

We demonstrate that our model is able to accurately predict

the number of available parking lots in periods of 15, 30, 60,

and 120 minutes. Our model outperforms existing sequence-

to-sequence models. We also develop a smartphone application

with our prediction model to provide accurate predictions to

citizens and tourists.

Reproducability. We open our source code in Github and

parking data under requests2.

II. RELATED WORK

We review the similar existing works. Since there are a large

number of existing works on parking prediction, please refer

a survey paper [14] that summarizes existing works related to

smart parking systems.

Parking prediction. Due to the developments of smart city

projects, nowadays many cities monitor the status of parking

lots, such as Berlin [23], Barcelona [2] and Santander. There

are many works that aim to predict parking lot availability.

Tiedemann et al. [23] developed a system that predicts occu-

pancy for parking spaces in Berlin, Germany, which collects

data from roadside parking sensors. This system predicts occu-

pancy by using machine learning methods combined with data

threads. Caicedo et al. [2] developed a real-time availability

forecast (RAF) algorithm for predicting real-time parking lot

availability, located in Barcelona, Spain. Chen et al. [4] tackle

2https://github.com/yuya-s/SatanderParking

the parking problem by aggregating parking lots in the same

way as we do in our problem, in San Fransisco. They evaluated

multiple models, such as ARIMA, linear regression, support

vector regression, and feed-forward neural networks, and the

neural network algorithm achieved the best performance.

Several neural network-based prediction models have been

proposed nowadays [3], [11], [22], [26]3. For example, Shao et

al. [22], Jomaa et al. [11], Xiao et al. [26] use LSTM, CNN,

and GCN with GLU, respectively. Existing works predict the

availability of parking lots at either a single step (i.e., current

or near future) or pre-defined multiple steps. As our aim is

to predict the availability of parking lots at non-predefined

multiple-time steps simultaneously, existing algorithms are not

applicable to our problem. The sequence-to-sequence models

that we used as our baselines can be considered as the

extension of existing works [11], [22], and we validated that

our method achieves higher accuracy than them.

Some existing methods use not only historical parking data

but also other data sources for predicting parking lot availabil-

ity. For example, data sources include historical data generated

by mobile phones (e.g., [15]), data extracted from vehicles

equipped with GPS receivers (e.g., [16]), and information from

web maps (e.g., [28], [31]). In this regard, our model could be

improved if we include these extra data. However, such data is

difficult to be accessed, and we must deal with privacy related

aspects, as well as consider that not all users use such recent

devices and services. So, they are not suitable in the situations

of SmartSantander.

Deep learning on spatial and temporal data prediction.
There are similar works with parking availability prediction

such as predicting traffic density, pollution data, and the

general availability of resources [10], [17]. These works are

categorized into grid-based and graph-based predictions [10].

The grid-based prediction divides areas into equal-size grids

and predicts the values for each grid (e.g., [30]). However,

equal-size grids are not suitable for our problem because we

aim to predicate the number of available parking lots per street,

which cannot divide equal-size grids.

Our work belongs to the graph-based prediction which

estimates attributes of nodes on graphs (e.g., [12], [24], [25],

[27], [29], [32]). Nodes on graphs often represent sensors

such as temperature and traffic volume sensors, and their

measurements are attributes of the nodes. In our study, nodes

represent parking clusters and their attributes are the parking

lots availability, so the existing methods can be applied to

parking predictions. To the best of our knowledge, there are

no works that applied to parking lots availability yet.

III. PARKING SENSORS WITH SMARTSANTANDER

As aforementioned, we develop our prediction model for

parking sensors deployed in Santander. There are 323 parking

sensors and each sensor corresponds to a single parking lot.

All these sensors are connected to a wireless network.

3These works are not coupled with smart city projects.



Monitored parking lots are located in a special area in

the city center, in which the drivers have to pay parking fee

from 10:00 to 14:00 and 16:00 to 20:00 during weekdays and

Saturday mornings. Parking time is restricted to two hours

per vehicle, except for those citizens who live nearby and

have special permission. Therefore, the status of parking lots

changes frequently in these periods. Parking lots show a high

occupancy for the full day, even overnight.

IV. PREDICTION MODEL

In this section, we first explain the requirements and prob-

lem definition that we solve in this paper. Then, we explain

the preprocessing for the parking data. Finally, we explain

our graph-to-sequence neural network model and its training

method.

A. Requirements and Problem Definition

As we described in Section 1, we have two requirements

to start the prediction services in Santander. First, we need to

predict the number of available parking lots for both, the whole

city center (i.e., the entire parking area) and per street. We

do not need to predict the status of each parking lot because

the parking services in Santander provide street-based parking

availability. Second, we need to predict the number of available

parking lots at multiple time steps instead of a single time step.

These time steps should not be defined in advance, because

people may move from further areas to the city center by their

cars and the distances are unsure.

We here formally define the problem we solve in this paper.

We have the set P of historical parking lot data for each

parking lot. pi ∈ P is a vector whose size is the number

of parking lots and it consists of 0/1 values, where 1 and 0

represent whether each parking lot is available or not at time

step i, respectively. We define that 〈pi, . . . , pj〉 is a sequence

of vectors from time step i to j.

Problem Definition: Given the set of historical parking lots
data P and locations of parking lots, we build a model to
predict the parking lot availability. In this model, given a
sequence of vectors 〈pt−M , . . . , pt−1〉 as input, it outputs the
number of available parking lots per street from time step t
to t′ (t′ is not given in advance).

B. Preprocessing

As preprocessing of parking lots data, we cluster the parking

lots and construct a graph based on the closeness among

parking lots .

Clustering. It is effective because nearby parking lots are

likely to have similar behavior, as we do not have specific

parking lots but specific areas where we can park our cars. We

cluster the parking lots per street, considering that this is how

SmartSantander provides the available parking lots to citizens.

After this process, we obtain 27 different clusters. Figure

1(top) shows these clusters, where different colors represent

each one of them. The number of parking lots differs for each

of the clusters. For instance, clusters 2, 9, and 19 in Figure

1(top) include 5, 20, and 29 parking lots, respectively.

We normalize the values in the vector by dividing them by

the number of parking lots in the cluster in order to reduce

unnecessary effects of the clusters that include large numbers

of parking lots. Finally, we have the set of vectors S that

contains a vector si whose size is 27 and values are from 0

to 1 at time step i. We input 〈st−M , . . . , st−1〉 to models, and

the models output 〈st, . . . , st′〉.
Graph construction. We build a graph whose vertices are

clusters of parking lots and two vertices have an edge if

the parking lots represented by the two vertices are closer

than a given spatial threshold. We assume that parking lots

represented by the two vertices are affected each other if both

vertices have edges. So as to locate each cluster, we use the

centroid of the locations of parking lots that belong to that

cluster. Two vertices have edges if the Euclidean distance

between them is a given threshold.

C. Graph-to-Sequence model

Our graph-to-sequence model consists of a GNN encoder
and an RNN decoder. The GNN encoder maps the input to

a vector of a fixed dimensionality by graph neural networks,

and the RNN decoder receives and decodes it to generate the

sequence of predicted parking lots availability.

GNN encoder model. Our GNN encoder model captures

the temporal perspective by 1D-convolution and the spatial

perspective by graph convolution, which captures local trends

of nearby parking lots instead of global trends.

Figures 2 and 3 show our GNN encoder model and the input

data for this model, respectively. Our GNN encoder model

combines gated graph neural networks (GGNN for short) [13]

with gated convolutional neural network (GCNN for short)

[6]. The GGNN takes graph convolution to capture spatial

perspective and the GCNN takes 1D-convolution to capture

temporal perspective. The propagation model in the GGNN

conducts graph convolution that learns about the effect from

neighbor clusters (i.e., vertices connected by edges). Consecu-

tive GCNNs after the GGNN emphasizes the characteristics by

gradually reducing the size of the vector. Our GNN encoder

has three input parameters, parking ai, hidden state hi, and

set of edges E of the graph. ai is a vector whose values are

the number of available parking lots of cluster i at M steps,

and hi is a vector that is extended from ai and the extended

area has zero values.

In the following, we describe our GNN encoder model

in detail. [; ] and ⊗ denote concatenation and element-wise

multiplication, respectively .

Our GNN encoder model first applies GCNNs to ai and hi,

respectively. The GCNNs have two 1D-convolutional layers;

the top 1D-CNN computes the importance via a sigmoid

function and the bottom one computes values themselves. This

is the same structures as the original GCNNs. a′i and h′i are

outputs of the GCNNs, which are calculated as follows:

a′i = (ai ∗ Γa,f + ba,f )⊗ σ(ai ∗ Γa,g + ba,g) (1)

h′i = (hi ∗ Γh,f + bh,f )⊗ σ(hi ∗ Γh,g + bh,g) (2)
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Fig. 2: GNN encoder model. Our GNN encoder consists of one GGNN and six GCNN layers.
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where σ denotes sigmoid function. Γa,f ,Γa,g and Γh,f ,Γh,g

are 1-dimensional convolution operators for annotations and

hidden states, respectively. ba,f , ba,g and bh,f , bh,g are corre-

spondence biases.

The GGNN aggregates hidden states of neighbors at each

time step (Eq. (4)), and then updates the hidden states like

GRU (Eqs. (5)–(8)) [5]. Then, an output of message passing

is applied to MLP layer (Eq. (9)). The propagation model

aggregates and updates repeatedly by the following equations:

h(0) = h′i (3)

X(j) = E[h(j−1)W1 + b1; . . . ;h(j−1)WM + bM ] (4)

r(j) = σ(X(j)Wr + h(j−1)Ur) (5)

z(j) = σ(X(j)Wz + h(j−1)Uz) (6)

ĥ(j) = tanh(X(j)Wh + (h(j−1) ⊗ r(j)Uh)) (7)

h(j) = (1− z(j))⊗ h(j−1) + z(j) ⊗ ĥ(j) (8)

where j denotes the time of iterations and X, r, z de-

note the message, reset gate, and update gate, respectively.

W1, . . . ,WM ,Wr, Ur,Wz, Uz,Wh, Uh and b1, . . . , bM are

learnable parameters. The parameters W1, . . . , WM , b1, . . . ,

bM are for message passing.

We apply an output model to the I times-propagated hidden

state h(I). An output Og of the GGNN is calculated as follows:

Og = tanh([h(I); a
′
i]WO + bO) (9)

where WO, bO are learnable parameters. We then repeatedly

apply four GCNNs to Og that equations are the same as Eq.

(1).

Our GNN can capture spatial perspective for every parking

lot because we input the data for each single parking lot one

by one along with the graph that represents the closeness of

parking lots. Therefore, our GNN model captures the local

spatial perspective effectively.

RNN Decoder. Our RNN decoder employs a multilayered

Long Short-Term Memory (LSTM) [9] to output the sequence

of predicted parking lots availability without pre-defined time

steps. We use time information dt as input for the decoder

in order to capture the periodical fluctuation. dt includes four

values that represent the time, day, month, and weekday. Due

to the use of time information in the decoder, our model

effectively handles periodical fluctuation, such as weekdays

and weekends.

In our RNN decoder, each function is computed by the same

equations of basic LSTM [9], with the exception that we use

a ReLU function for embedding the inputs, and a sigmoid

function for the output. In more concretely, our decoder model

consists of the follow equations:

ŝt = ReLU(Wsst + bs) (10)

d̂t = ReLU(Wddt + bd) (11)

ft = σ(Wf [ht; ŝt; d̂t] + bf )

lt = σ(Wi[ht; ŝt; d̂t] + bl)

C̃t = tanh(WC [ht, ŝt, d̂t] + bC)

Ct+1 = ft ⊗ Ct + ltC̃t

ot = σ(Wo[ht; ŝt; d̂t] + bo)

ht+1 = ot ⊗ tanhCt+1

st+1 = σ(Ws′Ct+1 + bs′) (12)

These equations are the same for basic LSTM cells except for

Eqs. (10)–(12). Eqs. (10) and (11) are for embedding, and Eq.

(12) is for output. Both ht and Ct are initially set to the output

of encoder.



D. Training

We use the mean absolute error (MAE) as the measure to

quantify errors for our training data. Hence, we minimize the

MAE measure in the objective function over training data. Our

loss function is defined as follows:

Loss =
1

N ′ · |s|
N ′∑
i=1

|s|∑
j=1

abs(s′i,j − si,j) (13)

where, |s| denotes the size of vector s (i.e., 27), and s′i,j and

si,j denote the predicted and measured values of cluster j
at time step i, respectively. N ′ is a predefined parameter for

model training, and we set N ′ to a random value.

V. EXPERIMENT

In this section, we evaluate our graph-to-sequence model to

predict parking lot availability from the Santander dataset.

A. Setting

We provide an overview of our experimental setup, includ-

ing the dataset, competitors and parameters.

Dataset. We use a dataset with three years of parking data

from Santander. The number of parking lots covered in this

dataset is 323, with data from 29th April 2014 to 29th January

2017. We sample the data each 15 minutes. Figure 1 (top)

shows the location of parking lots.

We divide the dataset into a training set from April 29th,

2014, to December 29th, 2016; a validation set from December

29th, 2016, to January 19th, 2017; and a test set from January

19th, 2017, to January 29th, 2017. We here note that test data

is small compared with train and validation data because we

assume that SmartSantander often retrains models to provide

accurate predictions.

Competitors. We evaluate our graph-to-sequence model com-

pared with two sequence-to-sequence models and two tradi-

tional auto-regressive (AR) models.

In sequence-to-sequence models, we use two types of

encoders RNN and CNN with the same decoder of our

model. The RNN encoder consists of LSTM as same as the

decoder. The CNN encoder convolutes a matrix containing

〈st−M , · · · , st−1〉 to a fixed-size vector. We describe the

detailed architectures of RNN and CNN encoders in the

appendix.

In AR models, we use ARIMA and SARIMA [1], two of the

most widely used methods for time series forecasting. ARIMA

model assumes that the future value of a time series is a linear

combination of historical values. SARIMA model takes into

account seasonality as well. We note that there are no existing

neural network models to directly apply our problem setting.

We extend the sequence-to-sequence models CNN and RNN

for parking lots predictions [11], [22].

Parameter. The input size of historical data M is 48. That is,

we use parking data for 12 hours (i.e., 48 · 15 min) as historical

data. We predict the parking data in 15 min to 2 hours. During

our preliminary experiments, we tested different input sizes for

the model: 4, 24, 48, and 96 as M , from which the chosen

input size achieved high accuracy on average. In a graph, two

vertices have edges if the Euclidean distance between them is

95 meters, which is decided based on the length of streets. To

reduce overfitting, we apply dropout with a probability of 0.3

to the encoding.

We explain the architecture parameter of our GNN encoder.

In the 1D-convolutional layers for ai, the number of filters,

filter size, and stride length are 1, 2, and 1, respectively. In

the 1D-convolutional layers for hi, the number of filters, filter

size, and stride length are 2, 10, and 5, respectively. Four

consecutive 1D-CNNs after the GGNN have 4, 115, 60, and

65 as the filter sizes, 2, 5, 5, and null as the stride length, and

5, 10, 20, and 40 as the number of filters, respectively. We use

null as the stride length, as the filter is of the same size as

the matrix size. We also set the number I of propagation in

the GGNN to five. Finally, our GNN encoder outputs a vector

whose size is 40, which is the input for our decoder model.

When we train the model, we set the size of the batch and

epoch as 512 and 50, respectively. Then, in the test phase, we

choose the same parameters that provide the highest accuracy

in average during the validation phase.

B. Experimental results

Comparing our models with baselines. We first compare the

prediction performance for our model and the four baselines.

We evaluate MAE in 15, 30, 60, and 120 minutes time steps.

Table I shows the MAE of the whole city for each time step

and model.

TABLE I: MAE of available parking lots in the entire parking

area. The bold font indicates the best accuracy.

15 min 30 min 60 min 120 min

ARIMA 15.31 14.95 15.415 15.26
SARIMA 11.79 12.04 10.97 11.49

RNN 10.95 11.18 11.16 12.13
CNN 4.166 4.173 5.102 7.466
GNN 2.511 3.301 4.608 7.242

The GNN and CNN encoders achieve the best and second-

best accuracy for all time steps, respectively. The accuracy of

RNN encoder is almost the same accuracy of the SARIMA

model. The GNN and CNN encoders capture the spatial

perspective effectively, while RNN encoder and SARIMA are

able to capture the seasonality effect, but they cannot capture

spatial perspectives well. From these results, we can confirm

that spatial perspectives are effective in parking prediction.

In addition, the parking lot prediction becomes more accurate

when using nearby parking lots than the entire parking area

because the GNN encoder achieves higher accuracy than the

CNN encoder.

In our graph-to-sequence and sequence-to-sequence models,

MAE increases as time steps increase, while in AR models

the MAE value remains constant. This is due to the fact that

graph and sequence-to-sequence models accumulate errors in

the previous steps, thus the error becomes larger as time steps

increase.



TABLE II: MAE of available parking lots per street. The numbers within parentheses at Cluster ID denote the number of

parking lots in clusters. The bold font indicates the best accuracy.

Cluster ID
RNN CNN GNN

15 min 30 min 60 min 120 min 15 min 30 min 60 min 120 min 15 min 30 min 60 min 120 min

0 (10) 0.749 0.734 0.769 0.769 0.468 0.497 0.540 0.606 0.293 0.392 0.502 0.640
1 (15) 0.803 0.816 0.822 0.843 0.552 0.556 0.579 0.647 0.301 0.367 0.472 0.576
2 (5) 0.404 0.392 0.416 0.429 0.088 0.095 0.117 0.155 0.069 0.081 0.110 0.139
3 (13) 0.911 0.899 0.911 0.904 0.669 0.717 0.773 0.844 0.243 0.319 0.444 0.606
4 (6) 0.265 0.291 0.302 0.301 0.126 0.148 0.175 0.231 0.104 0.123 0.171 0.223
5 (6) 1.015 0.978 0.968 0.975 0.513 0.530 0.587 0.632 0.247 0.337 0.448 0.591
6 (14) 0.806 0.786 0.791 0.803 0.579 0.645 0.675 0.806 0.284 0.379 0.495 0.673
7 (15) 0.913 0.936 0.966 1.042 0.510 0.561 0.599 0.738 0.241 0.342 0.465 0.629
8 (6) 0.631 0.703 0.765 0.847 0.415 0.539 0.640 0.769 0.243 0.368 0.524 0.673
9 (20) 1.550 1.585 1.611 1.666 0.589 0.653 0.715 0.817 0.244 0.358 0.521 0.696
10 (12) 0.560 0.543 0.549 0.540 0.279 0.288 0.342 0.449 0.131 0.184 0.244 0.327
11 (6) 0.422 0.405 0.401 0.417 0.240 0.261 0.281 0.321 0.088 0.121 0.168 0.251
12 (10) 0.982 0.974 0.953 0.966 0.722 0.733 0.756 0.808 0.301 0.400 0.539 0.699
13 (5) 0.804 0.846 0.874 0.948 0.178 0.204 0.256 0.371 0.127 0.179 0.265 0.370
14 (18) 1.976 2.214 2.331 2.372 0.669 0.708 0.894 1.115 0.248 0.361 0.554 0.806
15 (10) 0.744 0.838 1.011 1.175 0.245 0.278 0.363 0.457 0.131 0.170 0.252 0.339
16 (10) 0.806 0.886 0.912 1.001 0.314 0.331 0.399 0.490 0.126 0.187 0.275 0.402
17 (11) 0.819 0.821 0.839 0.860 0.502 0.528 0.594 0.711 0.229 0.309 0.399 0.586
18 (16) 1.203 1.197 1.193 1.167 0.701 0.725 0.758 0.821 0.297 0.391 0.505 0.658
19 (29) 1.276 1.317 1.397 1.494 0.940 0.940 1.053 1.221 0.759 0.890 1.038 1.238
20 (7) 0.581 0.623 0.787 0.892 0.157 0.182 0.278 0.389 0.066 0.108 0.212 0.351
21 (12) 0.796 0.824 0.834 0.850 0.524 0.526 0.593 0.680 0.185 0.259 0.367 0.508
22 (10) 0.882 0.929 0.980 1.108 0.835 0.818 0.929 1.088 0.580 0.737 0.944 1.211
23 (10) 1.510 1.444 1.226 1.154 0.395 0.448 0.547 0.650 0.191 0.295 0.429 0.572
24 (18) 1.352 1.165 1.004 1.036 0.572 0.653 0.736 0.907 0.403 0.546 0.694 0.879
25 (17) 3.172 3.200 3.145 3.120 0.859 0.889 1.107 1.504 0.346 0.509 0.816 1.258
26 (12) 0.925 0.956 0.985 1.057 0.567 0.628 0.702 0.833 0.417 0.549 0.707 0.929

We evaluate the prediction performance of GNN, CNN, and

RNN encoders for the number of available parking lots per

cluster. Table II shows the MAEs for each cluster. In the table,

the numbers in brackets denote the number of parking lots in

each of the clusters. Since the MAEs of ARIMA and SARIMA

are larger than those of our models (see Table I), we do not

show these results.

The predicted errors are quite small even for the 120 minutes

time step. Since absolute errors are mostly less than one,

each model often accurately predicts the number of available

parking lots. The GNN and CNN encoders outperform the

RNN encoder model for all clusters at each time step as they

are able to capture the spatial perspective more precisely than

the RNN models. Comparing the GNN encoder with the CNN

encoder, the GNN encoder achieves higher accuracy than the

CNN encoder in most cases.

From these results, we can see that our graph-to-sequence

model accurately predicts the number of available parking lots

in the entire parking area and outperform baselines.

Impact of time steps. Our sequence-to-sequence model can

predict accurately when we predict near time step from the

current (e.g., 15 min). As time steps become further from

the current, the accuracy decreases. Therefore, we evaluate

accuracy on time steps.

Figure 4 shows MAE varying with time steps for our

encoder models. From these results, the accuracy deteriorates

gradually and almost linearly step by step for all models. If we

predict further time steps than 120 minutes, we can estimate

the prediction performance from this tendency. GNN always

achieves the best performance among models.

Error analysis at each time step. We finally analyze the

transitions of the difference between measured and predicted

values in GNN, CNN, and RNN encoders. Figure 5 shows the

difference between measured and predicted values on RNN,
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Fig. 4: Impact of time steps

CNN, and GNN encoders. Dashed lines represent measured

values, while solid lines represent predicted values, and the

same colors represent the same time period. So, if dashed

and solid lines with the same color are vertically close, the

prediction is accurate. We note that each solid line with each

color indicates predicted values for eight steps (i.e., for 2

hours), and two neighbor solid lines with different colors are

not overlapped.

From the results, we can see that the predicted values

generally have a similar trend as measured values. Figure 5(a)

shows that the RNN encoder predictions often underestimate

available parking lots from measured values and have a

large difference between predicted and measured values. In

our use case, underestimated predictions are inadequate for

citizens as they would be guided to streets with occupied

parking lots. Figure 5(b) shows that predicted values in the

CNN encoder are closer to measured values than that in the

RNN encoder. However, the transition sometimes follows an

opposite direction, for example, green and blue lines around

2017-01-26. In the case of the CNN encoder, we can notice

from the figures that it cannot capture temporal perspective at

some points. Finally, Figure 5(c) shows that predicted values



(a) RNN encoder
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Fig. 5: Prediction performance at each time step. Each solid line represents two hours prediction. The solid and dashed lines

with the same colors represent the same time periods.

in the GNN encoder are also close to measured values. The

GNN encoder does not present opposite transitions. However,

it consecutively outputs the same predicted values in several

points. Hence, we can observe that our GNN encoder is

conservative.

VI. SMARTPHONE APPLICATION

We apply our graph-to-sequence model to a smartphone

application in order to provide accurate parking predictions

to citizens and tourists. Figure 6 shows a screenshot of our

smartphone application. The application shows how many

parking lots are currently available and will be available in

15–120 minutes.

We developed our application using the Flutter framework

for deploying it on both iOS and Android platforms. We run

prediction models on a server, and then smartphones access

the server for obtaining and displaying the prediction results.

The server accesses the real-time parking information and the

historical ones within 24 hours through the SmartSantander

APIs. This smartphone application provides an intuitive way

to view the current and future availability of parking lots.

VII. CONCLUSION

Our research focused on predicting parking availability

using the SmartSantander IoT deployment. To achieve this,

we developed a graph-to-sequence neural network model that



Fig. 6: Screenshot of our smartphone application for parking

prediction with SmartSantander

forecasts the number of available parking spots in the entire

city center and on each street across multiple time intervals.

Our model was trained on a three years dataset of real

outdoor parking data from SmartSantander, and we found that

it accurately predicted parking availability with high precision,

making it suitable for a parking prediction service in the city.

As part of our future work, we plan to develop online

learning methods that can capture real-time trends, particularly

in response to significant changes such as those resulting from

road and street renovations. Additionally, we aim to improve

prediction performance by incorporating real-time data from

user feedback through user interfaces. Lastly, we intend to

leverage additional features such as traffic volume and weather

conditions, which are available through SmartSantander, to

further enhance the accuracy of our parking predictions.
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