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A B S T R A C T   

We synthesize evidence suggesting a chain of global cause-effect relationships, linking population and economic 
development with cumulative effects on changes in landscape dynamics, including denudation and sediment 
transport/deposition. Temporal trends in global patterns of geomorphic processes or process combinations such 
as denudation, sedimentation, or frequency of geomorphic disasters, appear to reflect growing human pressure. 
Erosion rates, intensified by anthropogenic factors, are currently one to two orders of magnitude greater than 
prior to the 20th century, and are growing further. Per capita human transfer of Earth materials has increased 
tenfold. A considerable increase in the frequency of disasters related to geomorphic processes has also taken 
place in just over half a century, outpacing changes in other natural disasters. It is especially significant that the 
ratio between the frequency of geomorphic (implying water/land interaction, obviously influenced by climate 
change) disasters and frequency of purely climate-related disasters has increased more than ten-fold since the 
early 20th century. The changes described in geomorphic processes (global geomorphic change) appear to 
respond mainly to land surface modification, which reflects a “Great Geomorphic Acceleration” after the mid- 
twentieth century. However, these stressors, characteristic of the “Anthropocene”, likely interact with climate 
change, increasing concerns about future implications for Earth surface dynamics and underscoring the need to 
not only reduce GHG emissions, but also improve land use practices, which modify the conditions of the terrain.   

1. Introduction 

Concern about the extent and consequences of human-driven envi-
ronmental changes and their significance for proposing a new geologic 
epoch characterized by the human influence on natural systems 
(“Anthropocene”, Crutzen, 2002; Lewis and Maslin, 2015; Syvitski et al., 
2020), goes back to the 19th and 20th centuries (Marsh, 1864; Stoppani, 
1871-73; Vernadsky, 1929; Ter-Stepanian, 1988). Here we use the term 
“Anthropocene” in the informal sense, as a recent period during which 
many aspects of the Earth System have been dominated by human ac-
tivities (Swindles et al., 2023). We do not opine on whether that period 
is best viewed as a new geological epoch/series or event (Head et al., 
2022 vs. Gibbard et al., 2022) or even on its eventual formal recognition 
but, in terms of timeframe, we understand it as beginning in the mid- 
20th century, consistent with what was proposed by Zalasiewicz et al. 
(2015). 

One of the main drivers of the observed environmental modifications 
is human-driven climate change (IPCC, 2021; Chapter 3), but it is not the 

only one to be considered when analysing Earth surface processes or 
process combinations, such as denudation. Drivers such as urbanization 
and other activities implying land use changes also play an important 
role, globally (Seto et al., 2010; Brondizio et al., 2016; Lambin et al., 
2021). The important human contribution to denudation was clearly 
illustrated by Brown (1956), who referred to “technological denuda-
tion”, and the need to pay attention to the “geomorphic dimension of 
global change” was suggested by Cendrero and Douglas (1996). The 
significance of human activities for Earth surface processes in general, 
has been discussed by several authors (among others, Slaymaker et al., 
2009; Goudie, 2020; Syvitski et al., 2022; Cendrero et al., 2022). 

An important intensification of geomorphic processes (due in most 
cases to the action of water on land surface) appears to be one of the 
characteristics of the Anthropocene (Syvitski et al., 2005; Cendrero 
et al., 2011; Cendrero et al., 2022; Bruschi et al., 2011, 2013; Brown 
et al., 2017; Goudie, 2020; Owens, 2020; Syvitski et al., 2022). Effects on 
geomorphic processes can of course reflect changes in the “water factor” 
(rainfall regime, storm frequency or intensity, etc.) or in the “land 
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surface factor” (land cover, landforms, surface materials, etc.), as well as 
processes such as weathering, erosion, evapotranspiration, etc. In terms 
of direct drivers, the atmospheric water cycle is mainly affected by 
climate change (although land cover changes do play a role; Zhou et al., 
2023), whereas the primary direct driver of land surface transformation 
is land-use change (climate can have an indirect impact, e.g., through 
vegetation, cryosphere, or surface waters). 

Extraction and use of natural resources in general (UNEP, 2016; 
Krausmann et al., 2018) or mineral resources in particular (Cooper et al., 
2018), land transformation (Kennedy et al., 2019; Lambin et al., 2021) 
or urban expansion (Liu et al., 2021), have greatly increased in recent 
times and represent a major change in human pressure on the envi-
ronment. Particularly noteworthy is the case of sand, gravel, crushed 
stone and aggregates (the second most exploited natural resource in the 
world after water), the extraction of which has tripled in the last two 
decades to reach an estimated 40–50 billion metric tons per year (UNEP, 
2022), reflecting increasing urban expansion and infrastructure devel-
opment. One expression of the effects of those activities on surface 
processes is the “human geomorphic footprint” (Rivas et al., 2006), 
expressed as area directly transformed and volume of soil, sediment and 
rock deliberately displaced by human activities. According to the latter 
authors, the volume of geologic materials thus displaced globally is one 
order of magnitude greater than “natural” erosion (itself greatly condi-
tioned by human land transformation). Recently presented results 
(Syvitski et al., 2022) indicate that anthropogenic sediment production 
increased by 467 % between 1950 and 2010. 

The possibility that such actions in large part represent an important 
non-climate component of human influence on geomorphic processes, of 
a global character, has been previously highlighted (East and Sankey, 
2020; Rivas et al., 2006; Brown et al., 2017; Russell et al., 2017; Chen 
et al., 2022; Cendrero et al., 2022; Syvitski et al., 2022). The indicated 
human-induced effects on global geomorphic systems show a sharp 
augmentation around the mid-20th century, coinciding with the “Great 
Acceleration”, manifested in many other physical, chemical, and bio-
logical components of the Earth System (Steffen et al., 2015; Forte et al., 
2016; Syvitski et al., 2020; Cendrero et al., 2020, 2022; Zalasiewicz 
et al., 2021). They also coincide with the phase transition proposed on 
the basis of the “Anthropocene Equation” (Gaffney and Steffen, 2017; 
Bertolani and Francisco, 2018). 

It is now worth examining the extent to which some of the 
geomorphic changes we are witnessing are dependent on global climate 
change or on land surface transformation, both of which are human- 
driven, directly or indirectly. Our aim is not to discuss the unquestion-
able importance of climate change, but rather to highlight the extensive 
effects of land use/land cover changes on Earth’s surface processes 
worldwide, which we believe may be currently underestimated. For 
example, it could be that rainfall events of a given magnitude or in-
tensity, which did not cause floods, landslides, or significant erosional 
activity in the past, have that effect now due to a higher geomorpho-
logical sensitivity, as a consequence of land use/land cover changes 
(Douglas, 1967; Hooke et al., 2012; Russell et al., 2017; Johnston et al., 
2021). The increasing rates of direct and indirect human-caused denu-
dation and sediment deposition or increasing frequency of landslide and 
flood related disasters, at the global scale, do not show any clear rela-
tionship with changes in the mean annual precipitation regime 
(Remondo et al., 2005; Bonachea et al., 2010; Cendrero et al., 2020, 
2022; Owens, 2020; Syvitski et al., 2022). Of course, the intensity of 
precipitation may be more determining (Blanco and Lal, 2010; Wisch-
meier and Smith, 1978; Zachar, 1982). Given the available data, we 
cannot rule out such a possibility. IPCC’s Sixth Assessment Report (Arias 
et al., 2021a,b) indicates that frequency and intensity of heavy precip-
itation evens has increased over many land areas. At the same time, the 
magnitude of the reported precipitation changes varies geographically 
and, both empirical analyses and modeling imply that in areas where 
warming relative to the reference period (1850–1900) did not exceed 
2 ◦C, the magnitude of these changes have likely been on the order of 

~10 %. It seems rather unlikely that such changes alone could account 
for an order of magnitude (or more) increases in sediment yield. For 
example, many studies have modeled the increases in soil erosion 
associated with the projected increases of rainfall erosivity (a function of 
precipitation intensity) or runoff. The results typically suggest that the 
percent increase in the modeled soil loss/sediment yield would be 
within the same order of magnitude as the percent increase in rainfall 
erosivity (Borrelli et al., 2020; Panagos et al., 2021). Similarly, the ratio 
of soil erosion rate increase to runoff increase was estimated to be <2 
(Nearing et al., 2004). Moreover, in some climate types, precipitation 
mostly comes in the form of snow. For many such areas, IPCC (Arias 
et al., 2021a,b) indicates decreased snowpack storage. Under such cir-
cumstances, in absence of compensating inputs of rainfall (e.g., Ham-
mond and Kampf, 2020) or glacial influence, water yield (or perhaps 
even peak flows) could in some cases decline accordingly (Kraaijenbrink 
et al., 2021). Thus, if sediment export trends were to mirror the varied 
hydrological trends, we would expect to see a highly heterogenous 
response. Yet, many of the cited studies demonstrated that the anthro-
pogenically elevated sediment mobilization seems to be a remarkably 
widespread phenomenon (of course, when the effect of sediment trap-
ping in dams is accounted for). 

Therefore, without completely ruling out the indirect effects of this 
and other manifestations of climate change, and aware of the fact that 
other drivers could play a role, it appears that land surface changes in 
general are at least equally important as a driver of the trends observed. 
More research is needed to assess whether the elevated geomorphic 
activity reflects lower erosional thresholds due to anthropogenic con-
ditioning vs. other, climate-related factors such as more extreme events, 
for which long-term statistics are not readily available (IPCC, 2021, 
Chapter 11). 

Recognizing the difficulties of disentangling the climate and land 
transformation components of geomorphic change, our aim is to bring 
the reader’s attention to the importance of human drivers for a fuller 
understanding of these physical processes. To this end, building on a 
former contribution (Cendrero et al., 2022) and on the basis of new data, 
we will discuss some possible links between population growth, eco-
nomic and technological development, resource extraction/consump-
tion, land transformation and the intensification of geomorphic 
processes (and associated hazards/disasters), at the global level. We 
examine data going back to the beginning of the 20th century, when 
possible, in order to analyse changes in denudation or frequency of 
extreme geomorphic events (and potential drivers), that might have 
occurred in the (proposed) Holocene-Anthropocene transition (Steffen 
et al., 2015). 

2. Geomorphic change drivers and effects 

A reflection of the set of relationships between drivers and effects 
proposed by Cendrero et al. (2006) could be the spatial distribution of 
some parameters formerly presented by Cendrero et al. (2022; fig. 10). 
They showed that global distributions of Gross Domestic Product (GDP) 
density (Gallup et al., 1999), an indicator of the intensity of human 
activities in a given territory, and physical effects such as the global 
human modification index (Kennedy et al., 2019) or subsidence due to 
groundwater withdrawal (Herrera-García et al., 2021) are strikingly 
similar. It is interesting to point out that – despite what one could expect 
– the spatial patterns of the indicated effects seem to show stronger 
similarities to the distribution of intense human activity than to climate 
or even relief, traditionally taken as the key (natural) predictor of 
sediment yield (Summerfield and Hulton, 1994; Syvitski and Milliman, 
2007; Slaymaker et al., 2009). 

2.1. Sediment generation and deposition 

A parallelism between the evolution of sedimentation rates (a 
consequence of erosion rates) and GDP, during the last two centuries, 
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has been described in several study areas and across large regions 
(Bonachea et al., 2010; Bruschi et al., 2013; Cendrero et al., 2020). The 
results presented indicate that there has been a general increase of 
sedimentation rates since the end of the 19th century, in all sorts of 
sedimentary environments (lakes, reservoirs, fluvial channels, flood-
plains, wetlands on fluvial valleys, deltas, coastal wetlands, bays and 
estuaries, coastal platforms) and geographical areas, consistently. This is 
particularly significant considering that the number of dams has 
increased significantly in most major river systems (Vörösmarty et al., 
2003; Nilsson et al., 2005; Grill et al., 2019), causing a reduction of 
sediment yield in many northern hemisphere rivers since the 1980s 
(Dethier et al., 2022) and at a global level (Syvitski et al., 2005, 2022). In 
this sense, according to Syvitski et al. (2005), the sediment transported 
by rivers caused by anthropic erosion on a global scale increased by 
about 2.3 billion metric tons per year, but the flow of sediment reaching 
the world’s coasts has been reduced by approximately 1.4 billion metric 
tons per year, due to retention produced by reservoirs. 

As discussed in a former contribution (Cendrero et al., 2022), total 
GDP is an expression of human potential to carry out all sorts of activ-
ities, including those that imply land transformation and greenhouse gas 
emissions. Increasing GDP implies increasing resource consumption 
(UNEP, 2016) and activities such as construction, mining, quarrying, 
agriculture or forestry, which cause intense direct denudation. Excava-
tion and accumulation of Earth materials indirectly increase denudation 
on unprotected surfaces thus formed and, consequently, related sedi-
ment yield (Hooke, 1999; Forte et al., 2016; Tarolli and Sofia, 2016; 
Russell et al., 2017; Owens, 2020). Moreover, unprotected surfaces and 
those occupied by different types of impervious cover (buildings, roads, 
greenhouses, etc.) lead to increased runoff, erosion capacity of surface 
waters, and flood hazard. In particular, the growth rate of artificial 
impervious surfaces (km2/year) during the last three decades has been 

very considerable, over 100 % in most parts of the world (except Africa 
and parts of Central and South America) and up to >3000 % in parts of 
Asia and North America (Gong et al., 2020). This, naturally, is mainly 
due to the expansion of urban land cover (Hooke et al., 2012). Farming 
and forestry also increase runoff and erosion (Walling et al., 1996; 
Lambin and Geist, 2015; McEachran et al., 2021). Response of 
geomorphic processes to those transformations has been highlighted by 
different authors (Syvitski et al., 2005, 2020; Bonachea et al., 2010; 
Tarolli and Sofia, 2016; Owens, 2020; Chen et al., 2022). A relationship 
between climate change and denudation, sediment fluxes or slope 
instability processes has also been described in several geographical 
areas (e.g., Gariano and Guzzetti, 2016; Beylich et al., 2017; Ho et al., 
2017; Navas et al., 2018; Tsyplenkov et al., 2021). 

Fig. 1 includes some indicators of the intensity of human activities 
(drivers) and of Earth systems responses. It shows the evolution, since 
1990 of global population, GDP, energy consumption, CO2 emissions, 
extraction of geological materials (technological denudation, which 
represents a direct modification of land surface), sedimentation rates 
and frequency of geomorphic disasters. Magnitudes are expressed as a 
standardised growth factor with respect to the initial date and are 
therefore comparable. All parameters increase, especially excavated 
materials and disasters related to geomorphic processes, but the latter 
show a clear change in trend (“umbrella handle”) during the present 
century. All data represented in Fig. 1 have a temporal bias, since their 
collection and accuracy have improved over time, but he graph repre-
sents the period for which data are more reliable. 

The figure clearly shows that our collective capability to carry out 
activities affecting the environment (GDP) has grown much more than 
population. Some direct geomorphic effects (extraction of geological 
materials, as consequence of construction activities, for their use as re-
sources, or as mining overburden and waste) have grown even more. 
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Fig. 1. Evolution of global population (World Bank, 2021a), GDP (current US$, World Bank, 2021b), global energy consumption (Our World in Data, 2023), net CO2 
emissions (Our World in Data, 2023), amount of geological materials excavated (technological denudation) by human activities (Cooper et al., 2018), sedimentation 
rates (unweighted average, Cendrero et al., 2020) and geomorphological (floods and landslides) disasters frequency (EM-DAT, access 2022) in the period 1990–2022, 
for which global data are more reliable. All ordinate values are represented as a standardised increase factor with respect to the initial value. Note the greater growth 
of extracted materials and disasters frequency; the latter shows a change in trend (“umbrella handle”) in this century. 
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Whereas population has increased by a factor of 1.6 in just over three 
decades, GDP grew by 2.6 times, energy consumption by a factor of 1.9, 
CO2 emissions by a factor of 1.8 and technological denudation (extrac-
tion of soil, sediment and rock) by 3.8-fold (World Bank, 2021a,b; Our 
World in Data, 2023; Cooper et al., 2018). The latter growth is consid-
erably greater than the one experienced by the use of other resources 
(material footprint, Wiedmann et al., 2020). In other words, production 
of each GDP unit has required greater “technological denudation” with 
time, whereas it has generated less net CO2 per GDP unit. If the period 
after 1900 were considered, increase factors for these parameters would 
be, respectively, 4.7, 23, 15,19 and 80-fold. 

Data on sedimentation rates are, given the inherent difficulties in 
measuring the involved processes, much less complete than for the other 
data sets. The results presented provide approximate (unweighted) 
average global values for three discrete periods, pre-1900, 1900–1950 
and post 1950, and they represent a “coarse grain image” of global 
sedimentation since the end of the 19th century (Cendrero et al., 2020, 
2022). The available sedimentation rate data are of a discrete nature, 
and therefore direct quantitative comparison between these and the 
other parameters is not possible, but they show that sedimentation (as a 
reflection of denudation and sediment generation) also grew more than 
population. Considering consistent temporal and spatial correlations 
between land transformation and sediment yield, as well as a robust 
physical basis for a causal link between them, it seems reasonable to 
think that the leading mechanism responsible for the observed wide-
spread increase in the global sedimentation rates are the profound land 
use/land cover changes. As we underscore above, this by no means in-
tends to discount the role of climate change. Nevertheless, as we note, 
the much more heterogeneous nature of recent changes in the mean 
precipitation regime (in some cases, decreases or lack of a detectable 
trend) and often relatively modest magnitude of recorded increases lead 
us to suggest that, thus far, climate change has likely been a secondary 
contributing factor. Of course, the relative importance of both factors 
may vary geographically and could change in the future, given the rapid 
acceleration in climate change (IPCC, 2021, Chapter 11). Our interpre-
tation of the available evidence resembles the conclusions reached for 
biodiversity loss - in that case, land use/land cover changes are also 
believed to be the primary underlying mechanism (IPBES, 2019). 
Therefore, it is not unreasonable to think that the observed increase in 
global sedimentation rates (as a consequence of erosion and sediment 
generation) is mainly an effect of land use/land cover changes. 

The fact that erosion has increased in recent times (mainly as an 
indirect effect of human activities affecting land surface), in different 
regions and at the global level, has been highlighted by various authors. 
As formerly described (Cendrero et al., 2022), in the Russian plain, since 
the 18th century, a two to three order of magnitude increase of erosion 
in cultivated areas has been reported (Sidorchuk and Golosov, 2003; 
Sidorchuk et al., 2006). A substantial increase in erosion rates has been 
documented in the Polish Carpathians since the 1950s, consequence of 
changing land-use policies and practices (Bucała-Hrabia, 2018; Kijow-
ska-Strugała et al., 2018). In Iceland, denudation increased significantly 
because of grazing and related land cover changes during last century 
(Beylich, 1999; Beylich, 2011). An increase in erosion and a subsequent 
decrease, caused by an intensification of agricultural activity followed 
by abandonment, have been described in Italy (Innocenti and Pranzini, 
1993; Coratza and Parenti, 2021). In major Chinese rivers, the contri-
bution of human activities to the important augmentation of sediment 
fluxes observed since the middle of last century has been clearly greater 
than the contribution of climate change (D. Li et al., 2018; T. Li et al., 
2018). At a global scale, Cohen et al. (2014) made correlations between 
suspended sediment from soil erosion and water discharge dynamics in 
large basins from 1960 to 2010. They found a considerable discrepancy 
between water discharge and suspended sediment fluctuations for some 
continents, especially Asia and Europe, which would be related to relief 
conditions and lithology and very likely with land use/land cover pat-
terns. Another global analysis of soil erosion covering the period 

2001–2012 (Borrelli et al., 2017) found an increase in erosion rates, 
attributable to land use/land cover changes, mainly from forest to 
cultivated land. Wuepper et al. (2020) showed that “political borders” 
determine, to greater extent than “natural borders”, differences in soil 
erosion between countries, clearly illustrating the crucial role of land 
use policies at the regional scale. Indirectly, this work is also suggestive 
of a more pronounced role of direct land transformation in comparison 
to climate change. The effect of the latter driver is far more likely to be 
modulated by natural rather than political or administrative boundaries. 
In any case, as numerous authors have pointed out, in “undisturbed 
environments” such as in cold environments, where human pressure is 
limited, the effects of climate change are prevalent (Beylich et al., 2016; 
Zhang et al., 2022). 

2.2. Geomorphic disasters 

The disaster data used in this work come from Emergency Events 
Database, created in 1988 (EM-DAT, n.d). This database contains data 
on the occurrence and impacts of disasters worldwide from 1900 to the 
present, with individual entries for each country affected, including a 
description of magnitude and effects. In this work only the number of 
events has been considered. Comparison of magnitude or effects be-
tween disasters of very different nature implies great uncertainty. 
Therefore, we have restricted our analysis to event frequency, a coarse- 
grain analysis that, nevertheless, reveals interesting patterns. 

Due to biases, EM-DAT (EM-DAT, 2023) recommends avoiding the 
use of what it calls historical data, prior to this century. However, 
considering only this short period would greatly limit any temporal 
analysis, and would focus on a time interval that, according to other 
lines of evidence, represents a change of trend (or even a reversal), from 
increasing to decreasing (the “umbrella handle” or “hockey stick”, using 
a term similar to the well-known graph that describes global tempera-
ture for the last thousand years, but in this case with the “handle” facing 
up). For this reason, in our analysis we slightly expanded the time 
window, but maintaining a quite homogeneous level of data confidence, 
because the same data collection criteria have been used throughout the 
period considered. 

Some considerations about the limitations of the data used must be 
considered. Concerning missing events, Koç and Thieken (2018) and Lin 
et al. (2021) compared EM-DAT data with other databases or local data 
banks, highlighting some gaps. The main inaccuracies affect such data as 
magnitude, monetary losses, fatalities, etc., but these items are not used 
in this work. The quality of the data (number of events in this case) is 
conditioned by the criteria for data gathering and the sources of infor-
mation. An event is only included in EM-DAT if one of the following 
criteria are fulfilled: (1) 10 or more people died in the event; (2) 100 or 
more people were affected by the event; (3) a state emergency was 
declared; and/or (4) there was a call for international assistance. The 
database is compiled from various sources, including UN agencies, non- 
governmental organizations, reinsurance companies, research institutes, 
and press agencies. As source reporting has improved over the years, 
EM-DAT data coverage has improved significantly with time, especially 
over the last 40 years. Limitations in the quality of disaster databases 
arising from data collection procedures have been discussed (Guha-Sapir 
and Below, 2002; Osuteye et al., 2017; Jones et al., 2021). Limitations in 
the availability of data on low-intensity disaster events due to the in-
clusion criteria specified in EM-DAT are well known and consequently, 
high-impact events tend to be better represented. Inhomogeneous 
coverage over time leads to a time bias that manifests itself in an in-
crease in occurrence that began in the 1960s, largely due to successive 
improvements in data recording. Consequently, inferring information 
about the causes of disasters must be done with great caution. In this 
work we use both a short (post-1990) and a long (post-1900) data series 
only for comparisons between different types of disasters. The former 
data, covering the period with readily available remote sensing capa-
bilities (e.g., satellite imagery from various Earth Observation programs 
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such as Landsat), enables analysis with higher confidence, due to 
reduced likelihood for temporal bias, and the latter provides informa-
tion (of a fuzzier nature) on long-term evolution. The uncertainty about 
the “older” events affects the annual frequency of events, but especially 
other parameters associated with disasters such as characteristics or 
damage caused. However, we believe that the recording of event num-
ber since 1990 is likely to be reasonably homogenous, from the point of 
view of completeness. Furthermore, some types of disasters (earth-
quakes and volcanoes), for which instrumental records (much less 
affected by the indicated bias) have existed for more than a century, 
provide a means of comparison with other types of disasters. There are 
also some other biases to take into consideration. For instance, EM-DAT 
(EM-DAT, 2023) mentions that recording of heat waves is less complete, 
or that data collection is not as good in less-developed countries. 

All those limitations must be kept in mind when analysing the results 
presented in this coarse-grain analysis. However, independent analyses 
on geomorphic event frequency (specifically landslides, Guzzetti and 
Tonelli, 2004; Damm and Klose, 2015; Lin and Wang, 2018 and Rivas 
et al., 2022) show broadly similar patterns to those observed in EM-DAT 
database, a clear general increase since the middle of the 20th century 
and a change in trend in the last two to three decades. 

Less uncertainty is found in some regional databases, such as the 
Historical Analysis of Natural Hazards in Europe (HANZE) (Paprotny 
et al., 2018a), which includes >1564 floods that have caused damage in 
37 European countries since 1870. Records on floods have been 
captured from many sources: news reports, government data, public 
data banks (including EM-DAT), and scientific literature. From this 
database, Paprotny et al. (2018b) show that there has been an increase 
in the number of events and flooded area per year during the period 
1870–2016 (almost 150 years), but when correcting the number of 
under-recorded events they find that the increase is clearly smaller. 
Since the late 1980’s they find an increase in frequency of events fol-
lowed by a reduction after about 2000 (Paprotny et al., 2018a; fig. 5), 
similar to our findings. Even with corrections to include gaps, the area 
affected by floods per year shows continuous significant growth. These 
authors make it clear that due to the small number of events recorded, 
the correction applied has considerable uncertainty. 

At a more detailed scale, the Spanish Mediterranean Coastal Flood 
database (Gil-Guirado et al., 2019) contains 3008 events that have 
caused damage in all municipalities on the Spanish Mediterranean coast, 
from 1960 to 2015, inventoried from a systematic review of the main 
newspapers of the region. The authors detect a significant growth trend 
in frequency (2.3 % annually with respect to the average) and in the 
affected area since the 1980s. This coincides with the data from the flood 
database on insured assets of the National Insurance Consortium of 
Spain (Consorcio de Compensación de Seguros, 2019). In the case of 
other “hydrogeomorphic” disasters, such as landslides, the biases of the 
data banks, especially the regional and global ones, can be much greater 
since they generally cause less damage. 

It seems clear, therefore, that all data banks suffer from some type of 
bias to a greater or lesser degree. Although there is not an absolute proof, 
everything points to an increase in the frequency of events during the 
twentieth century and a possible change in recent decades. 

Of particular interest is the increase in the frequency of disasters 
related to geomorphic processes (Fig. 1), by a factor of approximately 
3.5 since 1990, even including the “umbrella handle”. The factor would 
be much greater if the comparison were made since the early 20th 
century. Of course, an augmentation of the number of any kind of 
registered disasters with time should be expected. However, in the case 
of “natural” disasters greater recorded frequency does not necessarily 
mean a greater occurrence of dangerous natural events. As previously 
discussed, factors contributing to the increase in the number of reported 
disasters also include better data gathering and greater exposure, 
derived from growing population and urban expansion. These factors 
affect all “natural” disasters and are a plausible explanation of their 
increasing frequency in all regions (Cendrero et al., 2020). Greater 

exposure and improved data gathering explain the reported augmenta-
tion of disasters caused by volcanoes and earthquakes, during the last 
20th century. Increasing urbanization in floodplains is also clearly 
behind the growing frequency of flood disasters (Tellman et al., 2021). 
Of course, in the case of “hydrogeomorphic” disasters (those related 
with water/land surface interaction, such as floods and landslides), 
climate change could be playing a role. However, the very important 
increase registered (Fig. 2), greater than the one observed for other types 
of natural disasters, is probably not attributable to those factors, espe-
cially if we consider that, so far, during the 21st century, the trend has 
been reversed (“umbrella handle”), while both climate change and 
occupation of floodplains keep growing. This recent trend is likely due to 
better mitigation and land-use practices, which probably also explain 
the reduction in the number of fatalities (Paprotny et al., 2018a). 
Moreover, the correlation between geomorphic disasters frequency and 
GDP is very high (with global coefficients >0.8; Cendrero et al., 2020). 
These authors showed, in their Fig. 3, that geomorphic disasters fre-
quency experienced a clear and strong increase in all regions of the 
world, irrespective of the sense of rainfall changes (increase, stability, 
decrease). 

In the case of disasters related to climate/meteorological and 
geomorphic processes, climate change, and the related greater occur-
rence of extreme weather events, are an additional factor. This is 
probably why the frequency of “climate/meteorological” and “hydro-
geomorphic” disasters increased more than the other disasters. It is 
important to note that the ratio between the frequency of geomorphic 
disasters and the frequency of purely meteorological disasters (not 
involving land surface behaviour), at global level, has roughly multi-
plied by 2 in the last four decades (and has increased by a factor of >10 
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Fig. 2. Frequency of natural disasters in the world by type from 1900 to 2022. 
Graph prepared from the EM-DAT database (EM-DAT, access May 2023), 
following the criteria used by UN (2016). Hydrological: floods, landslides, 
waves; Meteorological: extreme temperature, fog, storms; Climatological: 
droughts, glacial lake outbursts, wildfires; Geophysical: earthquakes, dry mass 
movements, volcanic activity; Biological: epidemics, insect infestations, ani-
mal accidents. 
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in the period 1900–2022; Fig. 3). There is no reason we can think of for 
human exposure/vulnerability and data gathering procedures to differ 
between both groups of disasters to the extent that would explain this 
growing gap. Therefore, the most plausible explanation for the observed 
increase is that it is caused by agriculture, forestry, mining, construction, 
urban expansion and infrastructure development, which affect the 
former but not the latter disasters. Land use/Land cover changes affect 
the behaviour of geomorphic processes (infiltration/runoff) and the 
sensitivity of the surface layer (erodibility and instability of soil and 
regolith in general), thus increasing denudation rates as well as the 
frequency of hazardous events. Of course, apart from the general effect 
of land surface transformation on denudation, an increase in the number 
of intense flood and landslide events also contributes to greater sediment 
generation and sediment yield. Moreover, the fact that since the 
beginning of the 21st century a reduction in the frequency of disasters 
has been observed can hardly be attributed to a reversing trend in 
climate change. A more plausible explanation is an improvement of 
preventive mitigation measures, largely because of better, we insist, 
land-use practices. 

There may be a bias towards the detriment of “climate/meteoro-
logical” disasters as we go back in time, but not in recent decades when 
concern about climate change is very general. However, the growth of 
the ratio between “hydrogeomorphic” and “climate/meteorological” 
disasters is greater in recent decades (despite the change in trend 
observed) than in the period 1900–2022. 

Other geomorphic responses to land surface transformation (erosion 
and sedimentation rates, terrain instability and landslides, runoff and 
related flood hazards), have been widely documented (e.g., Amaranthus 
et al., 1985; Clark, 1987; Glade, 2003; Beylich et al., 2005; Imaizumi 
et al., 2008; Guthrie, 2015; Besset et al., 2019; Golosov and Walling, 
2019; Broeckx et al., 2020; Cienciala et al., 2020). The existence of an 
“Anthropocene” signal in river delta evolution was discussed by Ibáñez 
et al. (2019). It seems possible, or even likely, that these types of re-
sponses represent a global trend (Chen et al., 2022; Syvitski et al., 2022). 

Thus, although climate change (particularly rainfall regime) affects 
both sediment generation/transport/deposition and frequency of 
geomorphic disasters, the evidence presented here indicates that, at 
least thus far, this factor has been less important than land surface 
transformation. In particular, at present, the majority global denudation 
appears to be caused by direct human excavation (technological), and 
indirectly induced by land surface alteration (Cooper et al., 2018; 
Syvitski et al., 2022; Cendrero et al., 2022) In this context, it is especially 

suitable to consider the communiqué issued on 23rd, May 2023 during 
the European Climate Conference, which gathered in Warsaw 90 climate 
scientists from 45 countries across Europe and Central Asia, to assess 
climate change and the progress towards reaching climate neutrality. 
We quote the communiqué (our highlighting, in bold): “3. The prin-
cipal ecological manifestations are aggravated by climate change, 
but are primarily driven by deficient land, soil and water man-
agement. These include: loss of biodiversity, loss of ecosystem functions 
and services, soil degradation and desertification, and deterioration of 
freshwater resources”. 

2.3. Geomorphic change acceleration and drivers 

The evidence presented above strongly indicates the existence of a 
chain of cause/effects relationships between GDP and geomorphic 
processes (Cendrero et al., 2006), wherein population growth and eco-
nomic and technological development drive profound changes in 
geomorphic processes in general, including denudation and sediment 
dynamics. Humans appear to be now, at a global level and by far, the 
major geomorphic agent (Ter-Stepanian, 1988; Hooke, 2000; Steffen 
et al., 2004; Wilkinson, 2005; Rivas et al., 2006; Cooper et al., 2018; 
Owens, 2020; Syvitski et al., 2022; Cendrero et al., 2022). Denudation 
rates (direct and indirect) and rates of other processes have increased by 
one order of magnitude, or more, in less than one century (Cendrero 
et al., 2022). This landscape response is unique, geologically unprece-
dented, and distinct from those controlled by purely geological pro-
cesses. As a result, the present model of geomorphic evolution shows 
important quantitative and qualitative differences (Rivas et al., 2006) 
with respect to pre-Anthropocene times. The effects of humans on 
geomorphic processes mediated by climate change (changes in infiltra-
tion/runoff, aridification, vegetation dynamics, etc.) are indisputable 
and difficult to isolate, but the sheer magnitude of Earth materials 
directly and indirectly displaced as consequence of human activities, 
suggests that this cumulative process has probably been the dominant 
factor. Importantly, these direct and indirect human impacts on 
geomorphic dynamics might be synergistic, significantly increasing the 
consequences of human-driven contemporary environmental change. 

We emphasize that our premise is not to argue that presently 
geomorphic change is driven by land transformation instead of climatic 
factors. We rather wish to highlight that both drivers are important, with 
the former apparently dominating over the latter (at least thus far) and 
having, as the latter, a global character. It is equally essential to 
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Fig. 3. Ratio of world disasters related to hydrogeomorphical disasters (floods and landslides) and disasters related to purely climate events (not associated with land 
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acknowledge geographical heterogeneity, with respect to both the di-
versity of local and regional societies (Bierman et al., 2016) and bio-
physical environments. In “undisturbed” regions and environments, the 
evolution of contemporary geomorphic processes is essentially deter-
mined by climate change and geological factors, not direct human im-
pacts (Beylich, 2016; Li et al., 2020, 2021), but they do not appear to 
determine the global scale of its effects. 

The changes described suggest that there is a “Great Geomorphic 
Acceleration” (Bruschi et al., 2013; Forte et al., 2016), a part of the more 
general phenomenon of the Great Acceleration (Steffen et al., 2011). 
This acceleration is especially marked after World War II, coinciding 
with the moment suggested by different authors for the Holocene- 
Anthropocene boundary (Cendrero et al., 2011, Bruschi et al., 2011; 
Steffen et al., 2015; Zalasiewicz et al., 2015, 2021; Cendrero et al., 2020; 
Syvitski et al., 2020), which might represent a phase transition of the 
Earth System (Bertolani and Francisco, 2018). 

In light of this profound anthropogenic effect, we should consider to 
what extent an understanding of geomorphic processes based merely on 
“natural” factors (Rhoads, 2006) is possible. Such a physical-based 
approach has been dominant in the geosciences since the mid-20th 
century (Strahler, 1952). In our view, it is clear that – except in rela-
tively remote and/or unaffected areas – attempts to understand the 
contemporary dynamics of geomorphic systems without explicitly 
considering the direct and indirect impacts of human drivers are bound 
to lead to inaccurate results. Research integrating biophysical and social 
processes (Ashmore, 2015; Sivapalan et al., 2012, 2014) seems partic-
ularly fitting and a fertile ground for new insights into Earth surface 
dynamics, and/or human-biophysical systems in general (Kotchen and 
Young, 2007; Brondizio et al., 2016; Viles, 2020). The implications of 
the Anthropocene geomorphic acceleration also extend to other fields, 
such as sustainability, suggesting that global efforts to reduce human-
ity’s environmental footprint must consider land surface dynamics in 
addition to other criteria such as climate system or biodiversity (e.g., 
IPBES, 2019; IPCC, 2022). 

3. Concluding remarks and open questions 

On the basis of the new data and results presented here, as well as 
those in former contributions, a few tentative conclusions can be drawn:  

- Denudation and sedimentation rates have increased by about one 
order of magnitude since the end of the 19th century;  

- The majority of denudation (understood here as transfer of geologic 
materials on land surface) is presently attributable to direct, tech-
nological denudation;  

- The frequency of disasters related to water/land surface interaction 
has increased about three-fold since 1990 (much more than other 
manifestations of human activity, such as population, energy con-
sumption, CO2 emissions, etc.);  

- This “Great Geomorphic Acceleration” is a dimension of the broader 
phenomenon of “The Great Acceleration”;  

- It appears that in the Anthropocene, the traditional model of 
geomorphic evolution should be updated to consider the leading role 
of human-driven land transformation; 

- Human capability to affect natural systems in general and geomor-
phic ones in particular, can be expressed in terms of GDP density, 
which is increasing more rapidly than population. In particular, the 
magnitude of technological denudation appears to be coupled to 
GDP and is increasing much more rapidly than such capability;  

- This relationship offers compelling evidence for an accelerated 
response of geomorphic systems to socio-economic drivers. This 
response could represent a synergistic effect of land transformation 
and climate change, with the former probably as a more determining 
factor so far;  

- If this social-geomorphic coupling were confirmed, policies and 
regulations for the reduction of erosion and soil loss, or disasters 

linked to geomorphic processes, should focus not only on the obvi-
ously necessary climate change mitigation, but also (perhaps even 
more so) on direct land use/land cover change mitigation. The latter 
offer the possibility to act at national or even local level (bottom-up 
approach). The data presented suggest that, whereas we are reducing 
greenhouse gasses emissions caused by GDP unit produced, we are 
also increasing our pressure and impact on geomorphic processes. 
However, it seems that the trend of increasing “hydrogeomorphic” 
disasters frequency may be slowing. This is likely as consequence of 
the international and national disaster mitigation efforts started in 
the 1990s, including better land use practices. 

We believe that these conclusions represent a reasonable interpre-
tation of existing evidence, worthy of further and different analyses to 
confirm or discard them. More geomorphic data, with global coverage, 
are necessary to advance our ability to make a more definite assessment 
and fully grasp the complexity of social-geomorphic linkages. Given the 
very important present (and probably future) role of humans as 
geomorphic agents, an intensification of research efforts on this topic 
would be desirable. It would help to improve policies for the mitigation 
of the effects described. 
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Oldfield, F., Richardson, K., Schellnhuber, H.-J., Turner, B.L., Wasson, R.J., 2004. 
Global Change and the Earth System: A Planet Under Pressure. Springer-Verlag, 
Berlin, Heidelberg, N. York.  

Steffen, W., Grinevald, J., Crutzen, P., McNeill, J., 2011. The Anthropocene: conceptual 
and historical perspectives. Phil. Trans. R. Soc. A 369, 842–867. https://doi.org/ 
10.1098/rsta.2010.0327. 

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., Ludwig, C., 2015. The trajectory of 
the Anthropocene: the Great Acceleration. Anthr. Rev. 2 (1), 81–98. https://doi.org/ 
10.1177/2053019614564785. 

Stoppani, A., 1871-73. Corso di Geologia. Bernardoni e Brigola Editori. Milano.  
Strahler, A.N., 1952. Dynamic basis of geomorphology. Geol. Soc. Am. Bull. 63, 923–938. 
Summerfield, M.A., Hulton, N.J., 1994. Natural controls of fluvial denudation rates in 

major world drainage basins. J. Geophys. Res. Solid Earth 99 (B7), 13871–13883. 
Swindles, G.T., Roland, T.P., Ruffell, A., 2023. The ‘Anthropocene’ is most useful as an 

informal concept. J. Quat. Sci. 38 (4), 453–454. https://doi.org/10.1002/jqs.3492. 
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