
Journal of Systems Architecture 134 (2023) 102762

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Response-time analysis of mesh-based many-core systems✩

David García Villaescusa a,∗, Mario Aldea Rivas b, Michael González Harbour b

a Ikerlan, S. Coop., José María Arizmendiarrieta Pasealekua, 2, Arrasate, 20500, Gipuzkoa, Spain
b Facultad de ciencias, Universidad de Cantabria, Avenida los Castros 48, 39005, Santander, Spain

A R T I C L E I N F O

Keywords:
Real-time
Scheduling
Modeling
Network-on-chip
Many-core
MAST
Parallella
Epiphany

A B S T R A C T

Scheduling models can be used to evaluate whether a particular system is able to meet its timing constrains. In
many-core processors, with tens to hundreds of processors in the same chip, the analysis of the timing behavior
needs to include the communications network used to exchange messages between the different processors.
This paper presents a schedulability model for many-core systems based on a 2D mesh network-on-chip and
store-and-forward switching with a limitation on the maximum link utilization rate that makes the analysis
tractable. The model has been applied to the Epiphany many-core processor which has 16 cores connected
by a 4 × 4 2D mesh. The analysis results have been tested on the real hardware by executing examples
with synthetic task workloads. Those tasks are executed in a micro-kernel RTOS that we have developed. We
also describe synchronization mechanisms to send messages between the tasks, and we analyze their timing
behavior, so that they can be included in the analysis model.
1. Introduction

In the past, the evolution of processors was mostly related to
frequency improvement but, since the processors reached a power
consumption too high to dissipate, the designers have been improving
the processor’s performance by having more cores in the same System
on Chip (SoC). These processors are called multi-core processors. They
are much faster, efficient and achieve their performance improvement
by supporting parallel execution on the same chip. Most of these
processors share the memory through a common bus, as shown in
Fig. 1. When the number of cores increases the shared bus becomes a
bottleneck, as it only allows one communication transaction at a time.

Increasing the number of cores to tens or hundreds in the so-called
many-core processors, requires solving the shared bus bottleneck. This
paper focuses on processors with a 2D mesh Network-on-Chip (NoC)
communication system as shown in Fig. 2. NoCs [1] compared to
bus architectures excel in energy efficiency, scalability, reusability,
reliability and distribution of cores in a homogeneous way. They also
require less wires than a shared bus and their power consumption is
linear with the number of cores.

To send messages across the cores, the NoC uses packets, as a
unit of information. A packet could be a fraction of a message, the
whole message or even contain several messages. There are two main

✩ This work was supported in part by the Graduate Grant Program of the Universidad de Cantabria and by the Spanish Government and FEDER funds (MCIN/AEI
/10.13039/501100011033/FEDER) ‘‘Una manera de hace Europa’’ under Grant TIN2017-86520-C3-3-R(PRECON-I4).
∗ Corresponding author.
E-mail addresses: david.garcia@ikerlan.es, dgv65@alumnos.unican.es (D. García Villaescusa), aldeam@unican.es (M. Aldea Rivas), mgh@unican.es

(M. González Harbour).

switching policies to send packets through a NoC: wormhole and
store-and-forward.

• The wormhole scheme divides each packet into fixed-size flits.
The header flit has the routing information and it is the only one
governing the route. The rest of the flits of a packet follow the
header flit through the NoC in a pipelined way until the last flit,
called tail flit, reaches its destination. If the header flit is blocked,
the rest of the packet’s flits will be also be blocked in the NoC.

• The Store-and-forward (SAF) scheme operates with the full packet.
Each router waits for the full packet to arrive before operating
with it.

The many-core mesh has one tile per core with a typical configu-
ration shown in Fig. 3, with the core, its local memory and the router
connecting the tile’s core with the neighbor routers in the mesh.

As we will see in Section 2, ‘‘Related Work’’, the time behavior
analysis of systems using processors with multiple cores has already
been solved with pessimistic approximations. Part of this pessimism
is caused by an effect called ‘‘back-pressure’’, which will be described
later.

In this paper we avoid the effects of back-pressure by imposing a
packet injection rate restriction on the links of the Noc. The paper
vailable online 7 November 2022
383-7621/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sysarc.2022.102762
Received 25 January 2022; Received in revised form 23 September 2022; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

15 October 2022

https://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:david.garcia@ikerlan.es
mailto:dgv65@alumnos.unican.es
mailto:aldeam@unican.es
mailto:mgh@unican.es
https://doi.org/10.1016/j.sysarc.2022.102762
https://doi.org/10.1016/j.sysarc.2022.102762
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102762&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
Fig. 1. Multi-core topology. The bus is shared among all the cores and the shared
memory.

Fig. 2. Epiphany’s 2D mesh NoC.

Fig. 3. Many-core tile content. The core is connected to its router which, in turn, is
connected to the neighbors’ routers.

presents a schedulability model for many-core systems based on a 2D
mesh Network-on-Chip and store-and-forward switching. Our model
allows us to analyze applications composed of periodic or sporadic
end-to-end (e2e) flows. In the simplest model, each of these e2e flows
is composed of a linear sequence of computation steps or threads,
each statically mapped to a core, and activated by its predecessor
step (see Fig. 4). Other multi-path flows where each step may have
several successors and/or several predecessors are also possible, but not
considered in this article.

The main contributions of this work are:

• The modeling and analysis technique presented in this paper
allows us to study the network and the tasks behavior thanks to
2

Fig. 4. Example of an e2e flow.

the introduction of a limitation on the maximum link utilization
rate.

• Our approach includes the modeling of high-level communication
mechanisms provided by the operating system (namely Sampling
Ports and Queuing Ports).

• Unlike most of the related work, our modeling and analysis
technique has been applied and tested on a real platform: the
Epiphany many-core processor which has 16 cores connected by
a 4 × 4 2D mesh.

The rest of the paper is structured as follows. Section 2 will intro-
duce the related work on modeling many-core systems based on NoCs.
Section 3 will present the system model. A comparison with another
model from the related work is exposed in Section 4. The adaptation
of the model to the Epiphany many-core is shown in Section 5. A
simplified application is presented in Section 6 to show the modeling
process. High-level communication mechanisms are presented at Sec-
tion 7 with examples using those communication mechanisms being
shown in Section 8. Finally, Section 9 concludes the paper.

2. Related work

2.1. NoC timing studies

The first hard-real-time communication studies for multi-hop swit-
ched systems were made over Ethernet hardware with bounded end-to-
end delays as shown in Zhang [2] and Yiming [3]. The positive impact
of increasing the number of switching hubs and the topology influence
was studied by Lee [4]. Those studies set the initial considerations that
have been evolving through time.

When there are several packets traversing the NoC, determining the
exact timing of every packet is an NP-hard problem. Shi [5] mentions
that the requirements of real-time applications introduce the need for a
scheduling strategy and an analysis approach to predict whether all the
real-time packets can meet their timing bounds. In our paper a heuristic
analysis of an existing processor is introduced avoiding the usage of
heavy computation resources for its calculation.

The test analysis to check whether a multi-core system based on a
NoC can fulfill all the constraints of a specific system has been done
by Indrusiak [6]. In that paper it is assumed, for the sake of simplicity,
that the tasks can send a single message just when they finish their
computation process. For the same reasons, we will make a similar
assumption in our paper.

Becker presented a work [7] where one application is mapped to
one tile, and it has implemented in a Kalray MPPA processor. Becker
also faced the orchestration of the access to the shared memory [8]
where each core is assigned a private memory bank and access to local
and off-chip memory is exclusive among all cores. A non-preemptive
time-triggered schedule is utilized to orchestrate the access to the
shared memory statically assigned to tasks.

Several Worst-Case Response Time (WCRT) models have been pre-
sented for theoretical 2D mesh wormhole NoCs [9,10]. The back-
pressure has been identified as a big problem in the calculus of the
NoC impact on a particular packet traveling through the NoC, as it
may imply worse timing than expected. Back-pressure is defined as the
situation when, due to traffic interference in the NoC, a core generating
traffic has its execution stalled (causing the core to stop its execution).
The traffic can affect the generating core by having the output link to
the first router of the message route busy. For those models, each step

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
of an e2e flow produces a single message which is sent immediately
after it finishes its computation.

Boyer [11] introduced a network calculus formulation designed to
configure the NoC traffic limiters, that also computes guaranteed upper
bounds on the NoC traversal latencies. Some approaches and models
have been presented and compared on two case studies without any
implementation in a real processor.

Another paper considering back-pressure in the NoC analysis has
been done by Tobuschat [12]. In their analysis, the authors also de-
termine safe upper bounds on the latency of individual packets. The
model of the NoC used in their work is similar to the one we use; they
make an evaluation of the analysis results for different buffer depths,
including the case of a buffer depth of one, with a queue of a single
element per input port and round-robin arbitration, which is what is
considered in our paper. Their analysis introduces some pessimism as
we will show in the comparison performed in Section 4 with the results
of our model.

Both wormhole and SAF schemes have also been studied [13]
avoiding the analysis when a communications channel is shared by
more than one e2e flow. The paper includes a simulator to check the
timing behavior accuracy.

Gopalakrishnan [14] studied how to set the time bounds in a real-
time system using the various buses linking multiple hosts, by capping
the number of hops for a real-time message. Another work done with
a certain number of buses linking a distributed heterogeneous system
was done by Roy [15].

Nikolić [16] has also studied the NoC timing behavior but that
paper also considered for the analysis the number of links traversed and
the link traversal delay in the NoC analysis. The routing delay could
generate a self-imposed buffering in each traversed router. That is not
the case contemplated in our paper, where there is only one buffer at
each router link (so we have the same analysis no matter the buffer size
of the system). In that paper they got the conclusion that bigger buffers
do not necessarily lead to better results.

Most of the work done in NoCs is focused on the Worst-Case
Traversal Time (WCTT), considering only the time needed to travel
through the NoC rather than the WCRT of a series of tasks located
at different tiles of the processor needing to communicate with each
other. The analysis of the WCRT of the e2e flows and its tasks is the
main target of this paper.

Dasari [17] determined than an upper bound for the extra time
due to the core stalls waiting for the data to be transferred over
the underlying network should be established. This solution uses a
branch-and-prune approach.

Puffitsch [18] also simplifies the execution model to approach the
execution of safety critical applications on many-core processors in a
predictable manner. The task is scheduled through partitioned non-
preemptive off-line scheduling, data and code are stored in the local
memories to reduce implicit accesses to external memory as much as
possible, tasks communicate via message passing and delays for explicit
communication between cores are pre-computed.

A many-core model to accomplish real-time requirements was pro-
posed by Metzlaff [19] based on four assumptions for a many-core:

1. Small and simple cores.
2. A cache-less memory hierarchy.
3. A static switched NoC.
4. An independent task and network communication analysis.

These assumptions are accomplished by the Epiphany ’s design:

1. The eCore is a simple core.
2. Each eCore has its local memory and messages between cores

end up in writing/reading that local memory directly.
3. The NoC has a static routing policy.
4. In this paper we have different models for the tasks and the
3

network, although they are analyzed together.
Some papers simulate behaviors [5,6,9,10,13,14,16,19] while oth-
ers use switched Ethernet [2–4]. In this paper we implement the
modeled system in a 2D mesh based many-core processor to compare
the model with the real execution.

A different line of research also done with NoC-based many-core
processors is the task allocation. This has been studied by Benchechida
[20] with a model with certain similarities to ours. In our paper we do
not address task allocation.

2.2. Modeling and analysis tools

The MAST toolset [21] is an efficient set of tools that can be
used to apply and compare different schedulability analysis techniques.
In this paper we use one of these tools, called offset-based response
time analysis [22]. MAST defines an open model for describing event-
driven real-time systems. The tool is not directly suitable for many-core
processors so an adaptation has been done to allow studying the timing
behavior of a many-core processor. This is explained in the following
section. Even though we have used MAST, other tool like the ones
used in effect chains [23–25] could be used. The main contribution of
this paper is in the modeling techniques, rather than in the analysis
techniques themselves.

The model defined in this paper includes synchronization mecha-
nisms for many-core processors that have been introduced before [26,
27], and in this regard this paper is a continuation of those works.

2.3. Many-core processors

The model presented in this paper has been applied to the Epiphany
many-core (described in Section 5). Other many-core processors were
considered as platforms for this work and, after a deep study, they were
discarded. These many-core processors were:

• Intel Xeon Phi is a processor family that has been evolving
since 2010. Its architecture consists in a 2D mesh connecting the
tiles, each tile with 2 cores. The many-core processor with the
Knight Landing architecture [28] has 72 cores. It is not possible
to deactivate the L2 cache coherency and there is a dual core
processor in each tile.

• The many-core of the Tilera-GX architecture [29] is divided in
tiles, each tile with a 64-bits core, cache memory (L1 and L2)
and a switch used as an interface with the mesh communicating
the tiles and providing L2 cache coherency to all the cores. The
L2 cache has 256kB size.

• Kalray has a many-core MPA-256 [30] which is focused on
embedded and real-time systems. It has 288 cores distributed in
16 groups called clusters and 4 I/O subsystems each with 4 cores
able to access the external memory. Each cluster has 16 execution
cores with direct connection between them plus 1 management
core. Each cluster forms a 2D 4 × 4 NoC mesh.
The many-core architecture provides a direct partitioned system.
Each NoC has bounded messages traversal time. The cores have
local memory with 128kB size.

Even though these many-cores were good candidates as evaluation
platform for our model, they are relatively complex architectures. We
have chosen a simpler and more accessible platform, the Epiphany
many-core described in Section 5, which is based on a simple 4 × 4 2D
mesh NoC with no cache coherency between the cores, which simplifies
the model and analysis. The straightforward architecture of Epiphany,
with only a single mesh type, eases the analysis and modeling of the

NoC.

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
3. System modeling

The model used in this paper to describe the execution and com-
munication platform as well as the application tasks and messages
is based on the MAST model, using specific elements for modeling
the many-core platform and the communications among the different
cores, instead of messages and communication networks used as mod-
eling elements for traditional real-time distributed systems. The MAST
model is conceived to describe the fundamental details of the timing
behavior of a software system and its hardware platform, with the
objective of analyzing its schedulability, i.e., the ability to meet its
timing requirements under a particular scenario.

The original model and the way to use it in order to have a suitable
model for a mesh-based store and forward many-core processor will be
explained in the following subsections.

3.1. Basic model elements

The MAST model for the software architecture is based on e2e flows
activated through external events that determine the workload. Each of
these flows is described as a directed acyclic graph in which events are
used to interconnect activities performed by the system, these activities
are exclusive to . These activities are called steps in the MAST model.
Each arrival of an external event activates the execution of an instance
of the e2e flow.

In its simplest form, the e2e flows follow the so-called linear flow
model, in which the finalization of a step generates an internal event
that can end up triggering the execution of a subsequent step or ending
the flow if it is the final step (see Fig. 4).

The model of a many-core processor has 𝑛 processing resources
𝑃𝑅1, 𝑃𝑅2,… , 𝑃𝑅𝑛, one per processing core. Each core has a scheduler
with a particular scheduling policy, such as fixed priorities. Since this
paper is focusing on many-core processors with 2D mesh-based NoCs,
we adapt the notation of a processing resource by defining a 𝑃𝑅𝑖 with
its coordinates on the mesh using 𝑃𝑅𝑥𝑦 where 𝑥 is the column and 𝑦 is
the row of the processor in the mesh.

𝛤𝑖 represents an e2e flow where each step is noted as 𝜏𝑖𝑗 . Each step
is statically assigned to a particular processing resource 𝑃𝑅𝑥𝑦 with a
determined priority 𝑝𝑟𝑖𝑜𝑖𝑗 . Several steps can be mapped on the same
core as shown in Fig. 5 where the four steps of an e2e are mapped on
two cores.

An e2e flow 𝛤𝑖 is triggered by the external event 𝑒𝑖. This exter-
nal event could have one of these three different types of activation
patterns:

• Periodic event. Generated at regular intervals of time with a 𝑇𝑖
period.

• Sporadic event. Generated at irregular time intervals. They have a
minimal time between activations.

• Aperiodic event. Generated at irregular time intervals with un-
bounded arrivals in a given time interval.

Each step belonging to 𝛤𝑖 has a Worst-Case Execution Time (WCET)
𝐶𝑖𝑗 , corresponding to the worst measured execution time of a thread
in a core or an upper-bound estimation on it, assuming no contention
from other threads or messages. The step also has a best-case execution
time (BCET) or a lower-bound estimation on it, 𝐶𝑏

𝑖𝑗 .
Each e2e flow 𝛤𝑖 has a relative deadline 𝐷𝑖, implying that its last

step must be completed by this deadline, with respect to the arrival
of the external event. The deadline can be arbitrary, i.e., smaller than,
equal or larger than the periods.

Each step 𝜏𝑖𝑗 has a Worst-Case Response Time (WCRT) 𝑅𝑖𝑗 and
a Best-Case Response Time (BCRT) 𝑅𝑏

𝑖𝑗 , relative to the arrival of the
external event. The WCRT of a linear e2e flow, 𝑅𝑖, is the worst-case
response time of its last step. The system is considered schedulable if,
for each e2e flow 𝛤 , 𝑅 ≤ 𝐷 .
4

𝑖 𝑖 𝑖
Fig. 5. e2e flow mapped representation.

Modeling a many-core processor requires modeling the messages
transmitted through the NoC. These messages are generated for every
hop in an e2e flow, i.e. when the processing resource of step 𝜏𝑖𝑗 is
different from the processing resource of the successor step 𝜏𝑖(𝑗+1). In
such situation step 𝜏𝑖𝑗 can generate one or more messages, 𝑚𝑖𝑗𝑘 at the
end if its execution. As it will be justified in subsequent sections, the
generation time of all the messages is included in the execution time
of 𝜏𝑖𝑗 and a MAST delay element is introduced to model the message
traversal latency through the NoC. A delay in MAST is an event handler
that generates its output event after a time interval has elapsed from
the arrival of the input event.

As a summary, a flow 𝛤𝑖, as the one shown in Fig. 5 has a period 𝑇𝑖,
deadline 𝐷𝑖 and is formed by an ordered set of steps {𝜏𝑖1, 𝜏𝑖2,… , 𝜏𝑖𝑥}.
Each step 𝜏𝑖𝑗 is defined as {𝐶𝑖𝑗 , 𝐶𝑏

𝑖𝑗 , 𝑝𝑟𝑖𝑜𝑖𝑗 , 𝑃𝑅𝑥𝑦} respectively repre-
senting its WCET, BCET, priority and the processing resource where
the step is going to be executed. For each hop in the e2e flow a delay is
introduced in order to model the NoC behavior. The duration of these
delay blocks will be discussed in the following sections.

3.2. Network-on-Chip basic parameters

This paper contemplates a 2D mesh but the model that we have
developed could be usable for other kinds of NoC with a store-and-
forward switching control technique. In our model, messages are di-
vided into packets. A packet is considered indivisible, so it can be said
that a packet equals the concept of a flit in other networks. Each packet
is routed individually through the links of the network (depicted as
arrows in Fig. 6). As shown in Fig. 6, we assume that there is a buffer
of one packet capacity per link. The router is in charge of routing the
packets stored in its input buffers to the output links. A router will only
send packets to those links whose buffer is empty.

The NoC timing is defined by three parameters:

• NoC frequency (𝐹𝑁𝑜𝐶). This value is the number of packets gen-
erated by a core that the NoC is able to absorb, per time unit, in

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
Fig. 6. Router showing its input and output links as well as its buffers.

the absence of contention from other network traffic. The inverse
of the NoC frequency is the NoC cycle, that is, the time required
by the NoC to absorb one packet generated by a core.

• Hop latency (𝐿𝐻). The time needed by a packet to go from one
router to a neighbor one without any other packet competing for
the same resources.

• Routing arbitration latency (𝐿𝑅). The time required by the router
to perform an arbitration decision. This latency is added each time
a packet misses its arbitration turn in the router.

There could be more than one NoC used for different types of
messages (i.e., write and read messages) with different values for their
NoC parameters. Only the messages traveling through the same NoC
would share the same NoC resources.

3.3. Modeling the messages

A mesh-based many-core processor has shared memory and reading
from or writing to this memory implies messages being sent through
the NoC (operations that in some literature are referred to as ‘‘pull’’
and ‘‘push’’). This means that the execution of a task could include
multiple messages to be sent in the middle of this execution, which
would complicate modeling the application. Since we assume that each
core has its own local memory, for efficiency we assume that the task
execution always uses this local memory, we avoid the use of the shared
memory, and we limit writing to the local memory of other cores to
happen only at the end of the task’s job.

In some cases, high-level synchronization primitives are used for
the message sent at the end of a step, perhaps implying the use of
distributed mutexes or other similar primitives that require remotely
reading the local memory of the destination core. In consequence, there
could be remote read operations as well as write operations at the
end of a step, both implying messages traversing the NoC. We will
later describe the high-level synchronization primitives that we have
5

implemented and describe how to model the associated messages.
For each activation, the finalization of a step could activate another
step allocated in the same or a different 𝑃𝑅. Activation messages
between steps mapped at different 𝑃𝑅s have to travel through the NoC.
A message is composed by a set of packets. The message’s destination
step will be activated when the last packet of the last message is
received.

A key element of our model is the packet generation rate of a
message. Given a message, 𝑚𝑖𝑗𝑘, we define the packet generation rate of
𝑚𝑖𝑗𝑘, denoted 𝜌𝑖𝑗𝑘, as the inverse of the minimum number of NoC cycles
that could elapse between sending two packets of that message to the
NoC. When the message is formed by just one packet, 𝜌𝑖𝑗𝑘 will be the
inverse of the minimum interval between this packet and the closest
packet of the previous or the next messages sent from its 𝑃𝑅 with the
same output link. In the special case that there is only one packet sent
from a PR, 𝜌𝑖𝑗𝑘 will be the inverse of the minimum interval possible
between the packet sent during a step activation and the packet sent
in the next activation. That minimal interval is the best-case response
time, 𝑅𝑏𝑖𝑗 , which is multiplied in Eq. (1) by 𝐹𝑁𝑜𝐶 to obtain the desired
unit 𝑐𝑦𝑐𝑙𝑒𝑠−1:

𝜌𝑖𝑗𝑘 = 1
𝑅𝑏
𝑖𝑗 ⋅ 𝐹𝑁𝑜𝐶

𝑐𝑦𝑐𝑙𝑒𝑠−1 (1)

A read operation between 𝑃𝑅𝑥𝑦 and 𝑃𝑅𝑥′𝑦′ requires two messages:
a message from 𝑃𝑅𝑥𝑦 to 𝑃𝑅𝑥′𝑦′ indicating the memory area to read and
a second message from 𝑃𝑅𝑥′𝑦′ to 𝑃𝑅𝑥𝑦, with the contents of the read
memory area. As a consequence, every read message 𝑚𝑖𝑗𝑘 generates
another write-back message, 𝑚𝑖𝑗(𝑘+1), that will write the data swapping
the source core and the destination core. The write-back messages are
written in the reader’s local memory by the network interface, which
also means that the read message must have two addresses: where to
place the data and where the data is read from. The write-back message
will be written directly by the network interface into the local memory
of the core executing the read message operation.

As a summary, a message 𝑚𝑖𝑗𝑘, the 𝑘th message generated at the
end of step 𝜏𝑖𝑗 to a 𝑃𝑅 other that its own, is defined as a 4-tuple
{𝜌𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝑡𝑖𝑗𝑘, 𝑑𝑖𝑗𝑘} where:

• 𝜌𝑖𝑗𝑘 the generation rate of the message’s packets measured in
𝑐𝑦𝑐𝑙𝑒𝑠−1.

• 𝜇𝑖𝑗𝑘 the number of packets forming the message.
• 𝑡𝑖𝑗𝑘 the type of the message (read, write or write-back message).
• 𝑑𝑖𝑗𝑘 the destination step of the message, it takes the source role

when the type of the message is write-back.

In our model, the generation of the packets of the messages pro-
duced at the end of a step along with the time required to inject
them into the NoC will be included in the step’s execution time, as the
processor is busy during these actions. We will also charge to the step’s
execution time the interval elapsed to complete a read operation, which
includes the times required by the read request message to reach the
destination core, the network interface to perform the operation and by
the generated write message to travel back through the NoC, since we
assume the processor is stalled waiting for this last message to arrive.

The step execution finishes when the last packet of the last message
is placed in the router of its core. The next step of the e2e will be
activated as soon as that packet arrives to its destination core. In our
model, the time required by that last packet to travel through the NoC is
modeled using a MAST delay with a maximum and a minimum relative
time.

The minimum interval time assigned to the MAST delay element is
the time required by the packet to travel through the NoC in absence of
other competing packets. In such situation, the traversal time of the last
packet of a message 𝑚𝑖𝑗𝑘 only depends on the number of hops or routers
the packet must go through, 𝐻𝑖𝑗𝑘, including the origin and destination
routers, and the hop latency 𝐿𝐻 . This best-case traversal time for the
last packet of message 𝑚𝑖𝑗𝑘, 𝑇𝑇 𝑏

𝑖𝑗𝑘, is shown in Eq. (2).

𝑏
𝑇𝑇𝑖𝑗𝑘 = 𝐿𝐻 ⋅𝐻𝑖𝑗𝑘 (2)

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.

w
s
w
p

3

w
T
w
f

p
t
t
m
m
t
o

𝑃

t
t
t

n
t

i
o
i
s
p
b
c
b
m
e
B
l
i
a
l
f

l
t
a
i
i
f

r
o
d

s
u
o
a
t
r

c
u

3

r

i
m
b
c
𝐶

𝐶

r

In order to obtain the maximum interval time of the delay element
e need to estimate the worst-case traversal time of the packet, which

hould take into account other packets traversing the NoC. This value
ill be calculated in Section 3.5 after having introduced the maximum
acket rate restriction in the next section.

.4. Maximum packet rate restriction

The interference among packets complicates the calculation of the
orst-case traversal time for messages (it is an NP-hard problem [5]).
he existing NoC schedulability analysis techniques are pessimistic
hen bounding the effects of the rest of the messages, to achieve

easible analysis techniques.
In our approach, we simplify the analysis by avoiding the back-

ressure thanks to the following rate limitation: let us call 𝑀𝑥𝑦→𝑥′𝑦′

he set of higher generation rate messages that use a link between
he routers of cores 𝑃𝑅𝑥𝑦 and 𝑃𝑅𝑥′𝑦′ . When there is more than one
essage generated from the same PR that uses the same link, only the
essage with higher generation rate is included in 𝑀𝑥𝑦−>𝑥′𝑦′ . We call

he accumulated transmission rate of the link, 𝑃𝑥𝑦→𝑥′𝑦′ , the summation
f the generation rates of messages in 𝑀𝑥𝑦→𝑥′𝑦′ :

𝑥𝑦→𝑥′𝑦′ =
∑

𝑚𝑖𝑗𝑘∈𝑀𝑥𝑦→𝑥′𝑦′

𝜌𝑖𝑗𝑘 (3)

We propose as a condition to analyze the schedulability of a system
o have every link with an accumulated transmission rate not higher
han the inverse of the router arbitration latency 1

𝐿𝑅
, in other words,

hat 𝑃𝑥𝑦→𝑥′𝑦′ ≤
1
𝐿𝑅

, for every link in the NoC.
If that condition is verified by all the links we can assure that the

etwork is able to transmit the packets at least at the same rate that
hey are generated.

The aforementioned restriction allows us to get rid of most of the
nterference among messages. According to [9] there are two sources
f interference among messages to be considered: direct and indirect
nterference. Direct interference happens among messages that share
ome link of their route when the link is not able to transmit the
ackets at the rate they arrive. In such situation back-pressure could
e produced in the messages and the message generation in the core
ould get stalled. For its part, indirect interference could happen when a
ack-pressured message due to a direct interference among two or more
essages ends up affecting the traversal time of another message. For

xample, suppose we have three messages A, B and C, where messages
and C share the same link and messages A and B share a predecessor

ink in B’s path. If message B suffers back-pressure due to a direct
nterference with message C, message B will be blocked in the router
nd will consequently block its corresponding input link. If this input
ink is shared with message A, then A will suffer an indirect interference
rom message C, even though it does not share links with it.

Direct interference cannot generate back-pressure when the shared
inks verify the maximum rate restriction since this restriction ensures
hat packets will be able to be transmitted through the links of the NoC
t the rate they are generated. Indirect interference can neither exist
n systems that fulfill this restriction since, in order to have indirect
nterference, a direct interference must generate back-pressure in the
irst place.

However, there is a small and bounded source of interference that
emains in systems that verify the maximum rate restriction. This kind
f interference, related with the routers arbitration policy, will be
iscussed in the next section.

In consequence, this restriction largely simplifies the analysis. Be-
ides, this limitation is not very restrictive to the system design, as NoCs
sually have high capacity. A discussion on the impact of this limitation
n the Epiphany architecture is presented in Section 5.4. Moreover, if
system is not analyzable due to the restrictions previously proposed,

he different steps of an e2e flow could be remapped to fulfill our
estrictions.
6

As we will see, when the model is applied to the Epiphany many-
ore, in Section 5, this assumption is reasonable, as the restriction
sually imposes no limitations on the software.

.5. Packet maximum traversal times

If the system being analyzed fulfills the accumulated transmission
ate restriction, 𝑃𝑥𝑦→𝑥′𝑦′ ≤ 1

𝐿𝑅
, for every link, the interference among

packets will be bounded, because only a limited number of packets
could affect the shared links on the packet route as the link utilization
is limited by the maximum rate. The only interference among packets
will be the one caused by the router arbitration policy.

When two or more packets are simultaneously located at the entry
buffers of a router and they have the same output link, the router must
apply a routing policy for arbitrating access to the shared output link.

The most usual routing policy is round-robin. Using this policy, a
packet trying to access an output link of a router will wait, in the
worst-case scenario, until the router sends through that link a single
packet allocated in each of its input buffers. The delay caused for each
competitor packet is the 𝐿𝑅 NoC parameter.

Since we assume that the packet routes are known, we can deter-
mine the maximum number of competing packets a specific packet
could encounter at each of the traversed routers. For each router, 𝑟𝑥𝑦,
on the route of message 𝑚𝑖𝑗𝑘, we call 𝑛𝑏𝑖𝑗𝑘𝑥𝑦 the number of input
buffers used by messages sharing the same output link as the message
being analyzed (without taking into account the buffer used by the
message itself). The routing arbitration causes interference called 𝐼𝑖𝑗𝑘,
accumulated for the routers traversed by the message, calculated as:

𝐼𝑖𝑗𝑘 =
∑

𝑟𝑥𝑦∈𝑟𝑜𝑢𝑡𝑒𝑖𝑗𝑘

𝑛𝑏𝑖𝑗𝑘𝑥𝑦 ⋅ 𝐿𝑅 (4)

In consequence, the worst-case traversal time of any packet of
message 𝑚𝑖𝑗𝑘, is the best-case time obtained in Eq. (2) plus the routing
interference:

𝑇𝑇𝑖𝑗𝑘 = 𝑇𝑇 𝑏
𝑖𝑗𝑘 + 𝐼𝑖𝑗𝑘 = 𝐿𝐻 ⋅𝐻𝑖𝑗𝑘 + 𝐼𝑖𝑗𝑘 (5)

An example of the WCTT calculation of a packet in the Epiphany
architecture will be seen in Section 5.

As it has already been mentioned, round-robin is the most common
routing policy, but our model could be applied to any other fair policy.
The only requirement to apply our model is to know the maximum de-
lay the policy could suppose to a packet in relation with the maximum
number of competing packets.

3.6. Modeling the NoC with MAST elements

Summarizing what has been exposed in this section, when two
consecutive steps in an e2e flow, 𝜏𝑖𝑗 and 𝜏𝑖(𝑗+1), are allocated to different
𝑃𝑅s, at the end of the execution of step 𝜏𝑖𝑗 one or more read and write
messages will be generated in order to activate step 𝜏𝑖(𝑗+1). As stated
previously, the time required to generate the packets and to inject them
into the NoC are included in 𝐶𝑖𝑗 . In the case of read messages this time
also includes the traversal time through the NoC of the read request
and of the write-back response message.

As a consequence, the NoC traffic will affect the execution time of
the steps. In that way, each read message 𝑚𝑖𝑗𝑘 will increase the WCET
n a value equal to the maximum interference that the last packet of the
essage can suffer according to Eq. (4), plus the interference suffered

y the corresponding write-back message 𝑚𝑖𝑗(𝑘+1). Being 𝐶𝑖𝑗 the worst-
ase execution time of 𝜏𝑖𝑗 when estimated in isolation, we can calculate
′
𝑖𝑗 as:

′
𝑖𝑗 = 𝐶𝑖𝑗 +

∑

∀𝑘∶𝑡𝑖𝑗𝑘=𝑟𝑒𝑎𝑑
(𝐼𝑖𝑗𝑘 + 𝐼𝑖𝑗(𝑘+1)) (6)

It is important to notice than write messages that are not the
esponse to a read request will never increment 𝐶 . This only would
𝑖𝑗

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.

m

h
r
t

(
a
m

c
c
e
t
w

M

4

i
p
i
t

4

a
m
o
e
f

t
w
b
g
a
w
c
i

d
a
h
g
t
d

4

m
f
h

Fig. 7. (a) Two tasks mapped in two different cores sending a read request and a write
essage. (b) How those two tasks are modeled in MAST.

appen in stall situations but thanks to the maximum packet rate
estriction this is never going to happen in the systems we are able
o model.

The interval between 𝜏𝑖𝑗 injecting the last packet into the NoC
and thus, finishing its execution) and the following step 𝜏𝑖(𝑗+1) being
ctivated is modeled by a MAST delay element with minimum and
aximum interval times obtained from Eqs. (2) and (5), respectively.

A transformation of two tasks executing in different cores of a many-
ore processor into a MAST model is shown in Fig. 7. In Fig. 7.a we
an see that there are two tasks, 𝜏11 executing in core 0 × 0 and 𝜏12
xecuting in core 1 × 1. Task 𝜏11 sends a read request 𝑚111, receiving
he write-back message 𝑚112. Task 𝜏11 ends its execution by sending the
rite message 𝑚113.

In Fig. 7.b we can see how the tasks of Fig. 7.a are modeled using
AST elements:

• Task 𝜏11 will be modeled using a step executed in 𝑃𝑅00 with a
WCET 𝐶11 and a BCET 𝐶𝑏

11. As the task is performing a read oper-
ation the read request message 𝑚111 could suffer an interference
𝐼111 by the NoC and the write-back message 𝑚112 could suffer an
interference 𝐼112. This means that the worst-case scenario must
include all the possible interference as it is formulated in 𝐶 ′

11.
• The time required by the last packet of 𝑚113 to travel from

core 0 × 0 to core 0 × 1 is modeled using a delay block. The
minimum interval time of the delay is the best-case traversal time
of 𝑚113, 𝑇 𝑏

113, calculated using Eq. (2) with 𝐻113 equal to three
(the number of routers traversed by 𝑚113, including its own). For
its part, the maximum interval time of the delay is the worst-
case traversal time of 𝑚113, 𝑇113, calculated using Eq. (5), which
includes the interference suffered by the last packet of 𝑚113 due
to other packets in the NoC.

• Task 𝜏12 will be modeled using a step executed in 𝑃𝑅11. No NoC
interference is possible for this task which does not send any
message through the NoC.

. Modeling and behavior comparison

To validate and evaluate our model, in this section we will apply
t to a system described in the literature, in particular in the work
erformed by Tobuschat [12]. We have chosen this example since it
s based on a mesh similar to the one used in our model and because
he paper provides enough data to reproduce it.

.1. System description

The system described in [12], shown in Fig. 8, is made of four e2e
flows each of them with two tasks. 𝑆1 is the first task and 𝐷1 the second
7

task of the first end to end flow, for the second flow 𝑆2 is the first task
Fig. 8. Evaluation system proposed in [12].

nd 𝐷2 the second one, etc. The initial task of each e2e flow sends a
essage of one packet divided in four flits. The message uses 12.5%

f the NoC bandwidth (i.e., the initial task generates a packet of 4 flits
ach 32 cycles). The routers have input buffers with a capacity of four
lits and require four cycles to route each packet (one cycle per flit).

Our model cannot be directly applied to this system since we assume
hat flit and packet are equivalent. In order to do a fair comparison,
e will analyze a system with equivalent NoC bandwidth usage and
uffer size: in the modeled system, the initial task of each e2e flow
enerates a packet each 8 cycles and the router input buffers have
capacity of one packet. The basic parameters of the modeled NoC
ill be: 𝐹𝑁𝑜𝐶 = 1𝑐𝑦𝑐𝑙𝑒−1, 𝐿𝐻 = 1𝑐𝑦𝑐𝑙𝑒 and 𝐿𝑅 = 1𝑐𝑦𝑐𝑙𝑒. In order to

ompare the response times obtained with both models we must take
nto account that one of our cycles is equivalent to 4 cycles of [12].

The analysis in [12] only includes the messages traversal times, it
oes not include the task scheduling in the processors. In order to model
n equivalent system, we will consider the first task of each e2e flow to
ave a worst-case execution time of one cycle (just the time required to
enerate one message) and the last task to have an worst-case execution
ime of zero cycles. We have chosen an arbitrary value for the e2e flow
eadlines to be the same as the period.

.2. Rate analysis

Before performing the analysis, we must verify the system fulfills the
aximum packet rate restriction. As stated before, the first task of each

low generates a packet each 8 cycles, in consequence, all messages
ave a 𝜌 = 1

8 cycles−1 = 0.125 cycles−1.
Fig. 9 shows the accumulated transmission rate of each link mea-

sured in cycle−1. As it can be seen in the figure, all the accumulated
transmission rates are below the limit that, for this NoC, is 1

𝐿𝑅
= 1

cycle−1.

4.3. System modeling with MAST elements

The e2e flow 𝛤1 of the evaluation system is modeled as shown in
Fig. 10. The rest of e2e flows (𝛤2, 𝛤3 and 𝛤4) are quite similar, changing
the index referring to the flow and the 𝑇𝑇𝑏 for the delays m214 and
m314 which are 4 cycles. The start event of each flow has a period of
8 cycles and triggers the initial task that, in turn, executes for 1 cycle
to generate a message. The internal events that connect each step or
delay with the next are represented with big dots.

The best-case traversal time of the messages is calculated with
Eq. (2) with 𝐿𝐻 = 1 cycle, consequently, it takes 5 cycles for flows
1 and 4 (whose messages travel through five routers) and 4 cycles
for flows 2 and 3 (whose messages travel through four routers). The
worst-case traversal time of the messages, that includes the worst-case

interference of other messages due to routing arbitration, is calculated

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
Fig. 9. Accumulated transmission rate of each link of the evaluation system.

Fig. 10. MAST model of 𝛤1 in the evaluation system.

Table 1
Comparison among our model and the results provided in [12].

Flow MAST model Tobuschat model [12] iSLIP [31]

WCRT BCRT

𝛤1 8 cycles 6 cycles 70 cycles (aprox.) 12.5 cycles (aprox.)

with Equations 4 and 5 (with 𝐿𝑅 = 1 cycle). For example, in the
calculus of the worst-case traversal time of flow 1, its best-case time
is augmented by 2 due to the interference with flows 2 and 3.

Finally, the message of each flow triggers the activation of the final
task with a worst-case execution time of 0 cycles.

4.4. Response times comparison

Table 1 allows us to compare the worst-case response times ob-
tained with our model (based on MAST elements) with the analysis
proposed in [12] and the values obtained with an iSLIP algorithm
proposed in [31] that is used in [12] as reference value. Values obtained
from [12] have been divided by 4 to be comparable with our concept
of ‘‘cycle’’. The results from [12] are approximate, since the paper only
provides a graph, and does not provide exact numerical values. We can
also obtain the WCRT and the BCRT of the rest of the flows of the
system.

The pessimism introduced in the results from [12] when compared
to our results is partly due to the consideration of the back-pressure
effects. We avoid considering the back-pressure in our analysis by
8

checking that the analyzed system does not exceed the maximum rate
restriction at any of its links.

We can conclude that our analysis is much less pessimistic, ob-
taining shorter response times even when compared with the ISLIP
algorithm [31] which assumes infinite buffers.

5. Applying the model to the epiphany processor

This section describes the application of the model described in
Section 3 to the Epiphany processor [32].

5.1. Epiphany many-core

The Epiphany III processor is a many-core with 16 cores connected
by a NoC placed in a 4 × 4 2D mesh as Fig. 2 shows, where every square
is a tile that contains the router connected to the links connecting to
the neighbor tiles and the execution core of the tile itself. Each core
of the Epiphany is an eCore that executes its instructions in order, with
a frequency of 600 MHz. Each core has 32 KB of local memory. The
architecture is supported by GCC and has libraries for OpenMP and
MPI.

The routers use round-robin arbitration to dispatch the packets
arriving at them. Only the packets that share the destination link
may get blocked in the router. As there are five input links, in a
worst-case scenario all five input links would simultaneously have a
packet with the same output link destination, and by the round-robin
arbitration one of the packets would have to wait for the other four to
be transmitted.

The NoC implements an XY routing algorithm for the packets, which
means that the packets travel in first place through the columns of
the mesh and only after they reach the destination column they start
traveling through the rows.

A shared memory of 1 GB 32-bit wide DDR3L SDRAM is located
on the East side of the Epiphany mesh as show in Fig. 2. This shared
memory is not modeled in this paper.

The design could grow as it has been shown with a 1024 cores
version [33]. Unfortunately, the Epiphany V is not available in any
development board.

The inside of a tile is shown in Fig. 3, with the connections to the
routers of the neighbor tiles. The routers are connected by full-duplex
bidirectional links. There is a buffer per link of a single packet capacity
as it has been shown at Fig. 6. Any packet that wants to use a busy link
will be stopped and will have to wait there until the link is available
and the router chooses it.

The router chooses a packet (if any is available) for every free
output link. If the link corresponding to the packet’s route is busy the
router stops the packet and blocks the previous link in the route. This
could lead to a core stall if the link blocked is the one directly connected
to the eCore that is generating the message.

An Epiphany core sees the local memory of the rest of cores mapped
as its own memory (with a special address).

The Epiphany processor is integrated into the Parallella development
board [34], which has the size of a credit card and needs just 5 W to
work. Apart from the Epiphany processor, the Parallella board also has a
Zynq ARM dual-core processor that loads the code that will be executed
to every Epiphany core and starts the execution of each core.

5.2. Basic parameters of the Epiphany NoC

The NoC works at the same frequency as the eCores, consequently
for this NoC, 𝐹𝑁𝑜𝐶 = 600 MHz. Hereafter we will use the term ‘‘cycle’’
to refer to both NoC or processor cycles (1 cycle = 1

6.0𝑒8 𝑠 ≃ 1.667 ns).
The Epiphany processor has three independent 2D meshes as can be

seen in Fig. 11.

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.

t
a
w
a
a
o
g
c

i
o
d
𝑃
i
t

𝐻

5

r
a
c
i
r
t

h

E
f

h
w

Fig. 11. Epiphany’s 2D mesh NoCs.

• cMesh: used to write packets. The router arbitration on this mesh
could cause a delay of one cycle (𝐿𝑅𝑤

= 1 cycle). The router can
route a 64-bits packet per cycle and output link.

• rMesh: used for read requests. The router arbitration on this mesh
could cause a delay of eight cycles (𝐿𝑅𝑟

= 8 cycles). The router
can route a 64-bits packet per cycle and output link. Read requests
are always one packet long.

• xMesh: used to write packets destined for off-chip resources or for
another chip in a multi-chip system configuration. These features
are not modeled in this paper.

A packet traveling by cMesh or rMesh traverses the network, with a
latency of 1.5 cycles per routing hop (𝐿𝐻 = 1.5 cycles).

Both NoCs, cMesh and rMesh, have round-robin routing. Besides,
both networks are independent so the traffic of one NoC does not affect
the other NoC.

5.3. Modeling the messages

The cores in Epiphany can communicate by writing and reading
on the local memory of a remote core, which leads to two kinds of
messages in the NoC. A write operation requires a write message which
travels through the cMesh from the writing core to the target tile. For
its part, a read operation requires two messages: a read request that
travels through the rMesh from the reading core to the target tile and
a write-back message that returns through the cMesh from the target
tile to the reading core. The target tile’s core is not involved in the
operation, as the router is able to access the local memory directly.
Both, the read request and the write-back message, are one packet (64
bits) long. When a core wants to read a remote memory area larger than
64 bits, the operation is split in a number of 64-bits read requests (each
of them with its corresponding 64-bits write-back message) that are
executed one after the other (the read request 𝑚𝑖𝑗𝑘 will not be generated
until the write-back message 𝑚𝑖𝑗(𝑘−1) has arrived).

From the aforementioned behavior it can be deduced that, for long
read operations, the generation rate of the read request packets is
the inverse of the number of cycles (c) between the generation of
two consecutive read requests plus the best-case traversal times of the
read request packet and its corresponding write-back packet (Eq. (7)).
Similarly, Eq. (8) can be used to calculate the generation rate of the
write-back packets corresponding to a long read operation.

∀𝑚𝑖𝑗𝑘 ∶ 𝑡𝑖𝑗𝑘 = 𝑟𝑒𝑎𝑑, 𝜌𝑖𝑗𝑘 = 1
𝑇𝑇 𝑏

𝑖𝑗𝑘 + 𝑇𝑇 𝑏
𝑖𝑗(𝑘+1) + 𝑐

(7)

∀𝑚𝑖𝑗𝑘 ∶ 𝑡𝑖𝑗𝑘 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘, 𝜌𝑖𝑗𝑘 = 1
𝑏 𝑏 (8)
9

𝑇𝑇𝑖𝑗𝑘 + 𝑇𝑇𝑖𝑗(𝑘−1) + 𝑐 t
Fig. 12. Message direction in the test example for the evaluation of the maximum rate
restriction.

Regarding write messages, the compiler transforms long write op-
erations into calls to the memcopy C standard function. By analyzing
he assembler code of a memcopy function we have found that it is
ble to generate one packet on the NoC every three cycles. Another
ay to write consecutive packets is to perform consecutive variable
ssignments. By analyzing the assembler code of multiple variables
ssignment instructions we have found that this generates one packet
n the NoC every two cycles. This 1/2 value is the fastest packet
eneration rate that standard user’s code is able to produce on the
Mesh, and it will be used only when writing variable after variable.

As we mentioned above, the fixed routing of the Epiphany processor
s XY routing, which means that any packet will take the same route
ver and over again for the same source and destination cores, indepen-
ently of the traffic at the NoC. So, a message 𝑚𝑖𝑗𝑘 between the cores
𝑅𝑥𝑦 and 𝑃𝑅𝑥′𝑦′ performs the deterministic number of hops obtained

n Eq. (9) (notice that this value also coincides with the number of
raversed routers, including the source core’s router).

𝑖𝑗𝑘 = |𝑥 − 𝑥′| + |𝑦 − 𝑦′| + 1 (9)

.4. Maximum packet rate restriction

Since the Epiphany ’s meshes are independent, the maximum rate
estriction is calculated for each of them. That is, when Eq. (3) is
pplied to a link in the cMesh, only write (and write-back) messages are
onsidered. Likewise, only read messages are considered when Eq. (3)
s applied to a link in the rMesh. In order to verify the maximum packet
ate restriction every link in the cMesh must have an accumulated
ransmission rate not higher than 1

𝐿𝑅𝑤
and every link in the rMesh must

ave an accumulated transmission rate not higher than 1
𝐿𝑅𝑟

.
In order to show that this limitation is not very restrictive in the

piphany many-core, let us consider an example situation with the
ollowing characteristics:

• For simplicity we only consider write messages (the type of
messages most frequently used by the applications).

• All the messages are generated at a 1/3 rate using the memcopy
standard C function.

• Messages, on average, go through three routers of the NoC before
reaching their destination.

In such situation, and considering that the 4 × 4 Epiphany mesh
ash 48 links, the system could be able of supporting an application
ith up to 48 messages being sent per NoC cycle without breaking
he maximum packet rate restriction. Moreover, note that the actual

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
Fig. 13. Test example for the evaluation of the maximum rate restriction.
f
F

t

number of messages could be much longer since, as stated in Sec-
tion 3.5, when two or more messages coming from the same core share
a link, only the message with higher generation rate is included in the
calculation of the accumulated transmission rate of the link (the reason
is that messages coming from the same core cannot be generated at the
same time and, therefore, they cannot compete among them).

To endorse the statement of the low impact of the rate restriction,
let us consider an example distribution of e2e flows that maximizes
the traffic on the NoC. In this example, e2e flows are made up of four
task with a distance of three hops between tasks. The tasks in the flows
are distributed along the lines shown in Fig. 12, each flow starting in
correlative cores.

As can be seen in Fig. 13, 24 flows (96 tasks) can be placed following
the aforementioned distribution without breaking the maximum rate
restriction. Note that although the distribution of the e2e flows shown
in Fig. 12 has been designed to accommodate a high load of tasks and
messages, this is not an optimal distribution an, in fact, most links are
below the maximum rate. The development of an allocation algorithm
is out of the scope of this paper and is left as future work.

This example shows that the maximum rate restriction is not a
significant limitation even in a system with a high computational and
communications load.

5.5. Packet maximum traversal times

As a consequence of the Epiphany ’s NoC round-robin arbitration the
biggest possible delay suffered by a packet happens when it is waiting
for the rest of the inputs links of the router to be routed to the same
output link. Therefore, it has to wait for 4 packets at most.

To calculate the worst-case traversal time Eq. (5) is used with the
following variables:

• 𝐿𝐻 = 1.5 cycles, which is the latency per hop in the Epiphany
processor.
10

c

• 𝐻𝑖𝑗𝑘, which is the number of routers the message has to go
through between the source and the destination core obtained
using Eq. (9).

• 𝐼𝑖𝑗𝑘, which is the packet interference calculated with Eq. (4). For
the Epiphany processor it is transformed into Eq. (10) if it is a read
request or into Eq. (11) if it is a write or a write-back message.

𝐼𝑖𝑗𝑘 =
∑

𝑟𝑥𝑦∈𝑟𝑜𝑢𝑡𝑒𝑖𝑗

𝑛𝑏𝑖𝑗𝑘𝑥𝑦 ⋅ 𝐿𝑅𝑟
=

∑

𝑟𝑥𝑦∈𝑟𝑜𝑢𝑡𝑒𝑖𝑗

𝑛𝑏𝑖𝑗𝑘𝑥𝑦 ⋅ 8 (10)

𝐼𝑖𝑗𝑘 =
∑

𝑟𝑥𝑦∈𝑟𝑜𝑢𝑡𝑒𝑖𝑗

𝑛𝑏𝑖𝑗𝑘𝑥𝑦 ⋅ 𝐿𝑅𝑤
=

∑

𝑟𝑥𝑦∈𝑟𝑜𝑢𝑡𝑒𝑖𝑗

𝑛𝑏𝑖𝑗𝑘𝑥𝑦 ⋅ 1 (11)

6. Simple example

This section will guide the process of modeling the example system
shown in Fig. 14 formed by two e2e flows having three tasks each. The
tasks are scheduled under a fixed-priority non-preemptive scheduling
policy with the objective of having an example closer to the behavior of
M2OS-mc, which is the operating system used in our implementation.
M2OS-mc [26] is a real-time operating system designed for mesh
based many-core using a microkernel approximation. The model allows
specifying preemptive scheduling policies also. Every message in this
system is a write message as it is the simplest way to implement an
e2e flow on the Epiphany processor. The parameters of the example
system are shown in Table 2. The rates of all the messages are 1

3 cycle−1
since we are assuming they are generated by the memcopy C standard
function that, as it was previously stated, is able to generate a packet
every three cycles.

Before being able to execute any MAST analysis we need to know if
the maximum rate limitation is fulfilled for our system (𝑃𝑥𝑦→𝑥′𝑦′ ≤

1
𝐿𝑅𝑊

,
or every link in the NoC). The results of the rate study are shown in
ig. 15, which only displays links with rate higher than zero.

In Fig. 15, the rates of the links with only one message going
hrough them (only one arrow) have an accumulated rate of 0.33
ycle−1. The link from 0 × 1 to 1 × 1 has a rate of 0.66 cycle−1 as

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
Fig. 14. Example system formed by two e2e flows with three tasks each.

Table 2
Parameters of the example system.
𝛤1 (𝑇1 = 50 μs 𝐷1 = 50 μs)

𝜏11 𝐶11 = 5 μs 𝐶𝑏
11 = 4 μs 𝑃𝑟𝑖𝑜11 = 3

𝑚111 𝜇111 = 2 𝜌111 = 0.33 cycle−1

𝜏12 𝐶12 = 3 μs 𝐶𝑏
12 = 2 μs 𝑃𝑟𝑖𝑜12 = 3

𝑚121 𝜇121 = 1 𝜌121 = 0.33 cycle−1

𝜏13 𝐶13 = 7 μs 𝐶𝑏
12 = 6 μs 𝑃𝑟𝑖𝑜13 = 3

𝛤2 (𝑇1 = 160 μs 𝐷1 = 160 μs)

𝜏21 𝐶21 = 13 μs 𝐶𝑏
21 = 12 μs 𝑃𝑟𝑖𝑜21 = 2

𝑚211 𝜇211 = 4 𝜌211 = 0.33 cycle−1

𝜏22 𝐶22 = 11 μs 𝐶𝑏
22 = 10 μs 𝑃𝑟𝑖𝑜22 = 2

𝑚121 𝜇121 = 5 𝜌121 = 0.33 cycle−1

𝜏23 𝐶23 = 17 μs 𝐶𝑏
23 = 16 μs 𝑃𝑟𝑖𝑜23 = 2

Fig. 15. Accumulated transmission rate for the links of the example system (units in
cycle−1).

two messages could use the link. In contrast, although the link between
1 × 1 and 1 × 2 is also used by two messages, its accumulated rate is
0.33 cycle−1 because both messages are generated from tasks in the
same core and, in consequence, they cannot be produced concurrently.
The maximum rate limitation is verified as every NoC link has an
accumulated rate less than 1

𝐿𝑅𝑤
= 1 cycle−1.

To convert a many-core system into a MAST model we will focus
on one of the flows at a time. For each task of the e2e flow we perform
the following loop in a sequential order (starting from the first task in
the flow, following the flow order and finishing at the last task).

The conversion performed for each of the tasks is:

1. The task is transformed into a MAST step. We consider the
message generation to be part of the execution time of the step.
This step is executed at the processing resource representing the
core the task is mapped to.

2. If there is a following task on the e2e flow, and that task is
on another 𝑃𝑅, a delay block must be created to model the
message traversal time through the NoC. The best and worst-case
traversal times assigned to the delay are calculated using Eq. (2)
and Eq. (5) respectively.
11
Fig. 16. MAST model for 𝛤1.

Fig. 17. MAST model for 𝛤2.

3. If there is not a following task on the e2e flow this means that
the e2e modeling has finished and no further action is needed
for the e2e flow.

Once the MAST file of the system model is generated, any of the
MAST offset-based analysis tools can be applied.

The e2e flow modeled for 𝛤1 is shown in Fig. 16 and the model
for 𝛤2 is shown in Fig. 17. In both figures we can see the events and
activities that model both flows. The internal events that connect each
step or delay with the next are represented with big dots.

The first item of the modeled transactions are the events that will
trigger the first step of each e2e flow and have a period determined for
each flow.

The steps, which model the tasks, contain the measured or estimated
worst-case execution time 𝐶 and also the best-case execution time
𝐶𝑏 for the task execution. These times include the time required to
generate the message.

The best-case traversal time for the delays is calculated using
Eq. (2). For example, in the case of message 𝑚111 that goes through
three routers, this value is obtained as follows:

𝑇𝑇 𝑏 = 1.5𝑐𝑦𝑐𝑙𝑒𝑠 ⋅ 3 = 4.5𝑐𝑦𝑐𝑙𝑒𝑠 = 7.5 ns
111

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.

o

e

T
d

s
a
r
t

7

Table 3
Results of the MAST analysis.
𝛤1 flow

t1_event_msg 𝑅𝑏 = 4, 000 ns 𝑅 = 5, 000 ns
t2_event_msg 𝑅𝑏 = 6, 009 ns 𝑅 = 19, 010 ns
t3_event_2 𝑅𝑏 = 12, 017 ns 𝑅 = 26, 019 ns

𝛤2 flow

t4_event_msg 𝑅𝑏 = 12, 000 ns 𝑅 = 13, 000 ns
t5_event_msg 𝑅𝑏 = 22, 005 ns 𝑅 = 27, 007 ns
t6_event_2 𝑅𝑏 = 38, 010 ns 𝑅 = 44, 012 ns

Eq. (11) is used to calculate the interference suffered by each packet
f a message. For example, message 𝑚111 has one competitor message,

𝑚211, that shares the south output link of router 0 × 1 with 𝑚111. In
consequence the interference term of 𝑚111 takes the value:

𝐼111 = 𝑛𝑏11101 ∗ 𝐿𝑅𝑤
= 1 ⋅ 1𝑐𝑦𝑐𝑙𝑒 = 1𝑐𝑦𝑐𝑙𝑒 = 1.67 ns

According to Eq. (5), the worst-case traversal time of the delay used
to model message 𝑚111 is calculated as:

𝑇𝑇111 = 𝑇𝑇 𝑏
111 + 𝐼111 = 5.5𝑐𝑦𝑐𝑙𝑒𝑠 = 9.17 ns

The rest of calculations are pretty similar or without any interfer-
nce to take into account for the delay block.

Internal events concatenate activities until the last event is reached.
he worst-case response time of the end event is compared with the
eadline of the last step.

The execution of the offset-based MAST analysis for both flows is
hown in Table 3. All the response times are measured from the event
ctivated by the period. The last events of both flows have a worst-case
esponse time lower than the deadline of the respective flows, meaning
hat the system is schedulable.

. High-level communication mechanisms

The messages between the Epiphany cores explained in Section 5 are
not synchronized messages. However, it is usual to require that the data
shared among tasks is accessed in a mutually exclusive manner. In this
section we present the modeling of two synchronization mechanisms,
the sampling ports and the queuing ports, inspired in the namesake
communication ports defined in the ARINC-653 standard [35]. Both
mechanisms have been implemented in the M2OS-mc operating system
for the Epiphany many-core [26,27].

A Sampling Port (SP) enables reading and writing a simple instance
of a data element. A writing operation on an SP overwrites the existing
data. A reading operation returns the last written data. There is a
mechanism that allows the reader to know if the data item has been
read for the very first time. SPs can be used when the periods of readers
and writers are different, when having one producer and multiple
consumers or when the applications are interested only in the most
recent data.

A Queuing Port (QP) enables reading and writing a series of in-order
data elements. A QP is based on a circular FIFO queue. QPs can be
used when the periods of readers and writers are equal on average and
when the application does not want to miss any data. They are not
suitable when the periods of the writers are smaller than the periods
of the reader as this will end up in the QP missing messages. When a
task tries to write to a full QP, the operation finishes immediately with
an error notification. When a task tries to read from an empty QP the
reading task is blocked and will be awakened when a data item arrives
in the QP.

The operations on an SP or a QP are implemented as critical sec-
tions protected by a multiprocessor mutual exclusion synchronization
primitive similar to a spinlock.

A more detailed explanation of the SP and QP implementation in
12

M2OS-mc can be found at [26,27].
7.1. Epiphany’s mutex primitive

The implementation of the sampling and queuing ports requires the
use of a mutual exclusion synchronization mechanism. For this purpose,
Epiphany provides the ‘‘mutex’’ primitive. An Epiphany mutex is a kind
of spinlock that allows synchronizing two or more cores: a core trying
to lock an already locked mutex will remain stalled until the mutex is
unlocked. A mutex is implemented using an integer number located in
the local memory of one of the cores that is accessed using the mutex
operations provided by the Epiphany Hardware Utility Library (eLib).
The atomicity of the lock and unlock operations on a mutex is granted
by the NoC control hardware.

In order to lock the mutex a core issues a special read request
message that reads the value of the mutex and, in case its value is zero,
it atomically changes its value to the core ID of the core executing the
lock, consequently locking the mutex. If the value is not zero then the
mutex was locked by some other eCore and the read operation blocks
until the mutex is unlocked. The special read request is followed by a
write-back operation that writes the current value of the mutex in the
local memory of the calling core. When this returned value is obtained
the application issuing the call knows that the mutex is owned by
itself and can continue its execution. In summary, locking the mutex
is a blocking operation. During the time the application is blocked
the eCore is stalled and, therefore, this blocking time is modeled as
execution time.

The unlock operation simply consists in writing a zero on the
mutex. In consequence, it only requires a write message from the core
unlocking the mutex to the local memory of the core holding the mutex.

7.2. Modeling sampling ports

In order to model the sampling ports, we need to identify the mes-
sages generated during the execution of its write and read operations.
It is important to notice that those messages will only be generated if
the SP is located in the local memory of a core different from the one
performing the operation.

The identified messages will affect the model in the following three
aspects: (a) calculate the accumulated rate of the links of the NoC, (b)
increment the worst-case execution time of the tasks by the interference
suffered by the read and write-back messages and by the blocking time
due to the mutually exclusive use of the SP, and (c) include a delay
block to model the traversal time of the last packet on the NoC.

The pseudocode of an SP write operation is shown in Listing 1,
showing also the read (R) and write (W) messages generated for each
instruction. As described in Section 7.1, locking a mutex involves a
read message (along with its associated write-back message). The rest
of the instructions in Listing 1 will generate write messages. Therefore,
in order to consider the worst-case situation, the worst-case execution
time measured in isolation of a task that writes on an SP located in
the local memory of another core should be incremented due to the
interference suffered by the read and write-back messages according
to Eq. (6) (with the interference calculated using Eq. (10) and Eq. (11)).

Regarding the maximum rate limitation, the read message (only one
packet) will have the rate calculated with Eq. (1). Among the write
messages the one with the highest rate is the message generated to
write the data, in case the data is longer than one packet (64 bits).
In such situation, the compiler will use the memcopy function which
leads to a packet generation rate of 1

3 cycle−1. In case the data fits in
just one packet, we have measured a packet generation rate for the
three write messages in Listing 1 of 1

7 cycle−1.

Listing 1: Pseudocode of the write operation on an SP.
Lock the mutex (R)
Write the data (W)
Set the data as new (W)
Unlock the mutex (W)

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.

e
t
t
i
w
m
p
t
v

f
t
e
E
f

𝐶

S

7

p
v
s

m
o
i

C
t

d
t
g

t
p
a
t

L

L

o
i
m

e
o
w
g
e
t
s

i

8

w
i
e
o

c

The pseudocode of an SP read operation is shown in Listing 2.
Likewise for the write operation, the worst-case execution time of the
calling task must be incremented by the interference time suffered by
the read messages (and their corresponding write-back messages). The
only difference in this case is that the number of read messages depends
on the size of the data to read.

Regarding the maximum rate limitation, the rate of the read mes-
sages is calculated with Eq. (7). Inspecting the assembler code gener-
ated by the compiler we can deduce that the lowest number of instruc-
tions between two consecutive read messages (parameter c in Eq. (7))
is 25 cycles. The write message to unlock the mutex is one packet long
so, its rate will be calculated using Eq. (1). The rate of the write-back
messages generated as a response of the read requests is calculated
using Eq. (8) with the same value of c than for the read messages (25
cycles).

Listing 2: Pseudocode of the read operation on an SP.
Lock the mutex (R)
Read the data (R)
Read i f the data i s new (R)
Unlock the mutex (W)

Modeling the write and read operations on an SP also requires
including a delay element with the best and worst-case traversal times
for the write messages generated to unlock the mutex (last instructions
in Listing 1 and Listing 2). The best and worst traversal times of this
message will be calculated using Eq. (2) and Eq. (5), respectively.

Finally, it is necessary to model the blocking time due to the mutu-
ally exclusive use of the SP. In the linear e2e flows we are modeling,
each non-terminal task in an e2e flow, 𝜏𝑖𝑗 , reads from a port shared with
the previous task in the flow, 𝜏𝑖(𝑗−1), and writes in a port shared with
the following task, 𝜏𝑖(𝑗+1). In consequence, 𝜏𝑖𝑗 will suffer a blocking time
qual to the worst case duration of the write operation of the previous
ask, 𝐵𝑤𝑖(𝑗−1), plus the worst case duration of the read operation of
he following task, 𝐵𝑟𝑖(𝑗+1). These blocking values can be measured in
solation and, in order to consider the worst-case situation, augmented
ith the interference times of all the generated read and write-back
essages (calculated using Eq. (10) and Eq. (10)). Given that the
rocessor is stalled during this blocking time, the worst-case execution
imes of the task (measured in isolation) should be augmented with the
alue of the blocking times to contemplate the worst-case scenario.

To obtain the final worst-case execution time of the task, the inter-
erence times of the read and write-back messages must also be added
o the worst-case execution time (measured in isolation). The effective
xecution time 𝐶 ′

𝑖𝑗 of a non-terminal task 𝜏𝑖𝑗 will be estimated with
q. (12) (notice that terms 𝐵𝑤𝑖(𝑗−1) and 𝐵𝑟𝑖(𝑗+1) should not be included
or the first and last tasks in a flow, respectively).
′
𝑖𝑗 = 𝐶𝑖𝑗 +

∑

∀𝑘∶𝑡𝑖𝑗𝑘=𝑟𝑒𝑎𝑑
(𝐼𝑖𝑗𝑘 + 𝐼𝑖𝑗(𝑘+1)) + 𝐵𝑤𝑖(𝑗−1) + 𝐵𝑟𝑖(𝑗−1) (12)

An example of modeling two tasks using an SP is presented in
ection 8.1.

.3. Modeling queuing ports

Modeling the write and read operations on a queuing port, whose
seudocodes are shown in Listing 3 and Listing 4 respectively, is
ery similar to the sampling port modeling performed in the previous
ection.

The worst-case execution time of the tasks using a QP (typically
easured in isolation) must be augmented by the interference times

f all the read and write-back messages according to Eq. (6) (with the
nterference calculated using Eq. (10) and Eq. (11)).

We also need to obtain the packet generation rates of the messages.
onsidering the write messages in the QP write operation (Listing 3),
he highest rate corresponds to the message generated to write the
13
ata in case the data is longer than one packet. In such situation,
he compiler will use the memcopy function which leads to a packet
eneration rate of 1

3 cycles−1. In case the data fits in just one packet, we
have measured a global packet generation rate for the packets of the
three write messages of 1

8 cycles−1. The maximum generation rate of the
three read messages in Listing 3 can be obtained by applying Eq. (7)
with a value of 25 cycles for the c parameter (the value of c has been
obtained by inspecting the assembler code generated by the compiler
and measuring the delay of the remote router while reading the data
and generating the write-back message). Likewise we can calculate the
maximum generation rate of the write-back messages using Eq. (8).

Regarding the QP read operation (Listing 4), we have measured a
packet generation rate for the three write messages (one packet each)
of 1

4 cycles−1. For their part, the maximum generation rate of the
hree read messages is calculated using Eq. (7) with a value for the c
arameter of 25 cycles when the data to read is longer than one packet
nd of 44 cycles when it fits in one packet. Likewise, we can calculate
he maximum generation rate of the write-back messages using Eq. (8).

isting 3: Pseudocode of the write operation on a QP
Lock the mutex (R)
I f QP i s not f u l l (R)

A l loca te the QP s l o t (R&W)
Write the data (W)

El se
Set " f u l l QP" e r ro r

End i f
Unlock the mutex (W)

isting 4: Pseudocode of the read operation on a QP
Lock the mutex (R)
I f QP i s not empty (R)

Get QP pos i t i on (R)
Read the data (R)
Free the QP s l o t (W)
Unlock the mutex (W)

El se
Unlock the mutex (W)
Block the task

End i f

As for the SPs, a delay must be included to model the traversal time
f the write message generated to unlock the mutex (last instruction
n Listing 3 and Listing 4). The best and worst traversal times of this
essage will be calculated using Eq. (2) and Eq. (5), respectively.

We also have to model the blocking time due to the mutually
xclusive use of the QP. As in the case of the SPs, the longest operation
n a QP could be measured in isolation and should be augmented
ith the interference times of all the read and write-back messages
enerated (calculated using Eq. (10) and Eq. (11)). The worst-case
xecution times of the tasks that use the QP should be augmented with
he value of the calculated blocking time to contemplate the worst-case
cenario as shown in Eq. (12).

An example of modeling a complex system using QPs is presented
n Section 8.2.

. Modeling with ports

The algorithm used to obtain the MAST model of an application
ith one or more e2e flows using SPs or QPs to communicate the tasks

s shown in Listings 5, 6 and 7. The input data to the algorithm are the
2e flows with their steps mapped to cores and with the port type (SP
r QP) used to synchronize each pair of consecutive steps.

First of all, in Listing 5, the algorithm generates the messages
orresponding to the ports used inside the e2e flow. After that, in

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.

L
W
N
L
r

w

Listing 5: Part 1 of 3 of the pseudocode used to obtain the MAST model of an application
1 −− Crea t e messages
2 for each s tep 𝜏𝑖𝑗
3 −− Every message has t h e same sou r c e and d e s t i n a t i o n , so same 𝑇𝑇 𝑏

4 𝑇𝑇 𝑏
𝑖𝑗 = 𝐿𝐻 ⋅ |𝜏𝑖𝑗 .𝑃𝑅.𝑥 − 𝜏𝑖(𝑗+1).𝑃𝑅.𝑥| + |𝜏𝑖𝑗 .𝑃𝑅.𝑦 − 𝜏𝑖(𝑗+1).𝑃𝑅.𝑦| + 1

5 i f s tep 𝜏𝑖𝑗 wri te s on an SP
6 −− Crea t e t h e messages i d e n t i f i e d i n S e c t i o n 6.2
7 −− Message t u p l e : 𝑚𝑖𝑗𝑘 = {𝜌𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝑡𝑖𝑗𝑘 , 𝑑𝑖𝑗𝑘}
8 𝑚𝑖𝑗1 = { 1

𝑇𝑇 𝑏
𝑖𝑗+𝑇𝑇

𝑏
𝑖𝑗+𝑐

, 1 , read , 𝜏𝑖(𝑗+1) . PR}

9 𝑚𝑖𝑗2 = { 1
𝑇𝑇 𝑏

𝑖𝑗+𝑇𝑇
𝑏
𝑖𝑗+𝑐

, 1 , write−back , 𝜏𝑖(𝑗+1) . PR}

10 i f 𝜇𝑖𝑗 > 1
11 𝜌𝑖𝑗3 = 1/3
12 else
13 𝜌𝑖𝑗3 = 1/8
14 end i f
15 𝑚𝑖𝑗3 = {𝜌𝑖𝑗3 , 𝜇𝑖𝑗 , write , 𝜏𝑖𝑗(𝑗+1) . PR}
16 𝑚𝑖𝑗4 = {1/8 , 1 , write , 𝜏𝑖(𝑗+1) . PR}
17 𝑚𝑖𝑗5 = {1/8 , 1 , write , 𝜏𝑖(𝑗+1) . PR}
18 end i f
19 i f s tep 𝜏𝑖𝑗 wri te s on a QP
20 −− Crea t e t h e messages i d e n t i f i e d i n S e c t i o n 6.3
21 −− Message t u p l e : 𝑚𝑖𝑗𝑘 = {𝜌𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝑡𝑖𝑗𝑘 , 𝑑𝑖𝑗𝑘}
22 𝑚𝑖𝑗1 = { 1

𝑇𝑇 𝑏
𝑖𝑗+𝑇𝑇

𝑏
𝑖𝑗+𝑐

, 1 , read , 𝜏𝑖(𝑗+1) . PR}

23 𝑚𝑖𝑗2 = { 1
𝑇𝑇 𝑏

𝑖𝑗+𝑇𝑇
𝑏
𝑖𝑗+𝑐

, 1 , write−back , 𝜏𝑖(𝑗+1) . PR}

24 𝑚𝑖𝑗3 = {1/8 , 1 , write , 𝜏𝑖(𝑗+1) . PR}
25 𝑚𝑖𝑗4 = { 1

𝑇𝑇 𝑏
𝑖𝑗+𝑇𝑇

𝑏
𝑖𝑗+𝑐

, 1 , read , 𝜏𝑖(𝑗+1) . PR}

26 𝑚𝑖𝑗5 = { 1
𝑇𝑇 𝑏

𝑖𝑗+𝑇𝑇
𝑏
𝑖𝑗+𝑐

, 1 , write−back , 𝜏𝑖(𝑗+1) . PR}

27 𝑚𝑖𝑗6 = { 1
𝑇𝑇 𝑏

𝑖𝑗+𝑇𝑇
𝑏
𝑖𝑗+𝑐

, 1 , read , 𝜏𝑖(𝑗+1) . PR}

28 𝑚𝑖𝑗7 = { 1
𝑇𝑇 𝑏

𝑖𝑗+𝑇𝑇
𝑏
𝑖𝑗+𝑐

, 1 , write−back , 𝜏𝑖(𝑗+1) . PR}

29 i f 𝜇𝑖𝑗 > 1
30 𝜌𝑖𝑗8 = 1/3
31 else
32 𝜌𝑖𝑗8 = 1/8
33 end i f
34 𝑚𝑖𝑗8 = {𝜌𝑖𝑗8 , 𝜇𝑖𝑗 , write , 𝜏𝑖(𝑗+1) . PR}
35 𝑚𝑖𝑗9 = {1/8 , 1 , write , 𝜏𝑖(𝑗+1) . PR}
36 end i f
37 end for
isting 6, the algorithm checks the link rates of the whole system.
ith that purpose the highest rate possible per link and orthogonal
oC is accumulated using Eq. (3) as it is shown in lines 5 to 13 in
isting 6. Once every rate has been obtained, we check the maximum
ate restriction with the maximum rate of the system (1

𝐿𝑅
), which in

the case or Epiphany has to be done for each of the two orthogonal
NoCs: the cMesh accumulating the write and response messages with a
maximum rate of 1

𝐿𝑅𝑤
and the rMesh accumulating the read messages

ith a maximum rate of 1
𝐿𝑅𝑟

. This is shown in lines 23 to 30 in Listing
6. Only the message with the highest rate generated from a given PR
is considered, as only one activity will be executing in the same PR at
a given time. This is shown in lines 14 to 19 in Listing 6.

The last message of a communication mechanism operation is a
write message unlocking the spin lock. The BCTT of that last message
is obtained with Eq. (2) using 𝐿𝐻 = 1.5 and 𝐻 as in Eq. (9) as done
in line 4 in Listing 5, while the network interference to a message is
obtained with Eq. (4) that will be transformed into Eq. (11) for write
14

messages as shown in lines 2 to 6 in Listing 7.
The network interference and the mutual exclusion access to the
ports could impact the execution time of the activities, which should
be reflected in our timing analysis. The impact of the interference on
the execution of the read and write-back messages (lines 33 to 44 in
Listing 6) and the accesses to the ports (lines 9 to 21 in Listing 7) is
shown in Eq. (12).

In the following subsections we present two modeling examples to
illustrate how the algorithm works.

8.1. Sampling port modeling example

We are going to show an example of a typical sampling port ap-
plication where a task needs to read information coming from another
core to perform some calculations. A graphical representation of the
example application is shown in Fig. 18, while the parameters can be
seen in Table 4.

Task 𝜏11 updates the data formed by two packets stored in the
sampling port located at core 0 × 1. Task 𝜏12 will perform a read

operation over that local sampling port with a given polling period

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.

𝑇
e

o
s
r
g
w

Listing 6: Part 2 of 3 of the pseudocode used to obtain the MAST model of an application
1 −− Ca l c u l a t e l i n k s r a t i o
2 for each PR
3 max_𝜌𝑟 (eve ry _ l i nk) = 0
4 max_𝜌𝑤 (eve ry _ l i nk) = 0
5 for each message 𝑚𝑖𝑗𝑘 sent from 𝑃𝑅𝑥𝑦
6 for each l i nk 𝑙𝑥𝑦→𝑥′𝑦′ t raver sed by 𝑚𝑖𝑗𝑘
7 i f 𝑡𝑖𝑗𝑘 = read
8 max_𝜌𝑟 (𝑙𝑥𝑦→𝑥′𝑦′) = max(max_𝜌𝑟 (𝑙𝑥𝑦→𝑥′𝑦′) , 𝜌𝑖𝑗𝑘)
9 else −− 𝑡𝑖𝑗𝑘 = wr i t e or wr i t e−back

10 max_𝜌𝑤 (𝑙𝑥𝑦→𝑥′𝑦′) = max(max_𝜌𝑤 (𝑙𝑥𝑦→𝑥′𝑦′) , 𝜌𝑖𝑗𝑘)
11 end i f
12 end for
13 end for
14 for each read l i nk 𝑙𝑥𝑦→𝑥′𝑦′

15 𝜌𝑟 (𝑙𝑥𝑦→𝑥′𝑦′) += max_𝜌𝑟 (𝑙𝑥𝑦→𝑥′𝑦′)
16 end for
17 for each wri te l i nk 𝑙𝑥𝑦→𝑥′𝑦′

18 𝜌𝑤 (𝑙𝑥𝑦→𝑥′𝑦′) += max_𝜌𝑤 (𝑙𝑥𝑦→𝑥′𝑦′)
19 end for
20 end for
21
22 −− Check maximum r a t i o r e s t r i c t i o n
23 for each l i nk 𝑙𝑥𝑦→𝑥′𝑦′

24 i f 𝜌𝑟(𝑙𝑥𝑦→𝑥′𝑦′) >
1

𝐿𝑅𝑟

25 exi t (not analyzable)
26 end i f
27 i f 𝜌𝑤(𝑙𝑥𝑦→𝑥′𝑦′) >

1
𝐿𝑅𝑤

28 exi t (not analyzable)
29 end i f
30 end for
31
32 −− Ca l c u l a t e message i n t e r f e r e n c e s
33 for each message 𝑚𝑖𝑗𝑘
34 𝑛𝑏𝑖𝑗𝑘 = 0
35 for each router 𝑟𝑥𝑦 t raver sed by 𝑚𝑖𝑗𝑘
36 𝑛𝑏𝑖𝑗𝑘𝑥𝑦 = number of bu f f e r s of 𝑟𝑥𝑦 shar ing the output l i nk with 𝑚𝑖𝑗𝑘
37 𝑛𝑏𝑖𝑗𝑘 += 𝑛𝑏𝑖𝑗𝑘𝑥𝑦
38 end for
39 i f 𝑡𝑖𝑗𝑘 = read
40 𝐼𝑖𝑗𝑘 = 𝑛𝑏𝑖𝑗𝑘 ⋅ 𝐿𝑅𝑟

41 else
42 𝐼𝑖𝑗𝑘 = 𝑛𝑏𝑖𝑗𝑘 ⋅ 𝐿𝑅𝑤

43 end i f
44 end for
a
t

Fig. 18. Diagram of sampling port example.

𝑝𝑜𝑙𝑙 = 1.5 μs. If the data is new, 𝜏12 will execute its code for an
xecution time of 𝐶12.

The messages in Table 4 correspond to the ones identified for a write
peration on an SP shown in Listing 1 and created by the algorithm
hown in Listing 5. The read and write-back messages (𝑚111 and 𝑚112
espectively) are one packet long and, in consequence, their packet
eneration rate is calculated using Eq. (1). The write message that
rites the data, 𝑚 , has the generation rate of the memcopy function
15

113
Table 4
Parameters for the sampling port example.
𝛤1 (𝑇1 = 1 ms 𝐷1 = 1 ms)

𝜏11 𝐶11 = 5 μs 𝐶𝑏
11 = 4 μs 𝐶 ′

11 = 5.43 μs 𝑃𝑟𝑖𝑜11 = 3
𝑚111 𝜇111 = 1 𝑡111 = 𝑟𝑒𝑎𝑑 𝜌111 = 1.67 μcycles−1

𝑚112 𝜇112 = 1 𝑡112 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌112 = 1.67 μcycles−1

𝑚113 𝜇113 = 2 𝑡113 = 𝑤𝑟𝑖𝑡𝑒 𝜌113 = 0.33 cycles−1

𝑚114 𝜇114 = 1 𝑡114 = 𝑤𝑟𝑖𝑡𝑒 𝜌114 = 0.14 cycles−1

𝑚115 𝜇115 = 1 𝑡115 = 𝑤𝑟𝑖𝑡𝑒 𝜌115 = 0.14 cycles−1

𝜏12 𝐶12 = 3 μs 𝐶𝑏
12 = 2 μs 𝐶 ′

12 = 3.35 μs 𝑃𝑟𝑖𝑜11 = 3

(13 cycles−1). For their part, the write messages to set the data as new
nd unlock the mutex are both one packet long and, taken as a group,
hey have a generation rate of 1

8 cycles−1. The rate of the NoC links
is shown in Fig. 19, where we can clearly see that they all verify the
maximum rate restriction.

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
Listing 7: Part 3 of 3 of the pseudocode used to obtain the MAST model of an application
1 −− Crea t e d e l a y s
2 for each message 𝑚𝑖𝑗𝑘 tha t i s l a s t message of s tep 𝜏𝑖𝑗
3 𝑇𝑇𝑖𝑗𝑘 = 𝑇𝑇 𝑏

𝑖𝑗 + 𝐼𝑖𝑗𝑘
4 delay 𝜏𝑖𝑗 = 𝑇𝑇𝑖𝑗𝑘
5 Create delay (𝑇𝑇𝑖𝑗𝑘 , 𝑇𝑇 𝑏

𝑖𝑗𝑘) p lac ing i t a f t e r 𝜏𝑖𝑗
6 end for
7
8 −− I nc r emen t s t e p WCETs
9 for each 𝜏𝑖𝑗

10 for each 𝑚𝑖𝑗𝑘
11 i f 𝑡𝑖𝑗𝑘 = read or write−back
12 𝐶𝑖𝑗 += 𝐼𝑖𝑗𝑘 + 𝐼𝑖𝑗(𝑘+1)
13 end i f
14 end for
15 i f 𝜏𝑖𝑗 i s not the f i r s t s tep
16 𝐶𝑖𝑗 += 𝐵𝑤𝑖(𝑗−1)
17 end i f
18 i f 𝜏𝑖𝑗 i s not the l a s t s tep
19 𝐶𝑖𝑗 += 𝐵𝑟𝑖(𝑗+1)
20 end i f
21 end for
Fig. 19. Rates of the NoC links in the sampling port example.

Table 5
Results of the MAST model and the Epiphany executions for the 𝛤1 flow of the sampling
port example.

Step MAST model results Epiphany execution results

WCRT BCRT WCRT Avg RT BCRT

𝜏11 5,430 ns 4,000 ns 5,208 ns 5,048 ns 4,968 ns
𝜏12 8,985 ns 6,205 ns 8,703 ns 8,225 ns 7,795 ns

In this simple example, the read and write-back messages (𝑚111 and
𝑚112) do not suffer any interference from other packets so the worst-
case execution time of 𝜏11 does not have to be augmented by this
reason. However, the measured execution times of both tasks must
be augmented in the maximum blocking time due to the mutually
exclusive use of the SP (lines 9 to 21 in Listing 7). In this case, both
tasks perform a different operation: 𝜏11 writes two packets to the SP,
which is an operation that requires 346.67 ns, while 𝜏12 reads two
packets from the SP, which is an operation that requires 428.34 ns.
In consequence, the measured times of 𝜏11 and 𝜏12 (𝐶11 and 𝐶12) have
been incremented to the values 𝐶 ′

11 = 5.43 μs and 𝐶 ′
12 = 3.35 μs.

Besides, a delay element is added to model the traversal time
through the NoC of the last packet of the last message (𝑚115), as shown
in lines 2 to 6 in Listing 7. The best traversal time of this packet,
𝑇𝑇 𝑏

115, is calculated using Eq. (2) with 𝐿𝐻 = 1.5𝑐𝑦𝑐𝑙𝑒𝑠 = 2.5 ns and
𝐻115 = 2 ns (see line 4 of Listing 5). Since in this simple example there is
no interference, the worst-case traversal time, 𝑇𝑇115, is equal to 𝑇𝑇 𝑏

115.
Fig. 20 shows the resulting MAST elements, Table 5 shows the

response times obtained using MAST and the response times of the
Epiphany processor executing synthetic tasks with the same configu-
ration. It can be seen that the measured execution is bounded by the
MAST model worst-case results as they are lower and very close to the
ones obtained by the analysis.
16
Fig. 20. MAST model for the sampling port example.

8.2. Queuing port example

Using queuing ports to implement e2e flows can be more appropri-
ate in many cases since the blocking behavior of the read operations
avoids the need for polling.

Fig. 21 shows a system with three e2e flows. The parameters of these
flows are displayed in Tables 6 and 7. In order to show the modeling
process we will focus on e2e flow 𝛤2 and, in particular, on task 𝜏22.
The messages 𝑚221 to 𝑚229 generated for 𝜏22 correspond to the ones
identified in Listing 3.

The read messages (𝑚221, 𝑚223 and 𝑚225) go through three routers
having a 𝑇𝑇 𝑏 of 4.5 cycles (calculated using Eq. (2)) and, since they
share a link with the read messages generated by 𝜏11, their 𝑇𝑇 is 12.5
cycles (according to Eq. (5), using Eq. (10) to obtain the interference
term). The traversal times for the write-back messages (𝑚222, 𝑚224 and
𝑚226) are calculated similarly (using Eq. (11), instead Eq. (10), to obtain
the interference term), obtaining the values 𝑇𝑇 𝑏 = 4.5 cycles and
𝑇𝑇 = 5.5 cycles. The traversal times for the write messages (𝑚227, 𝑚228
and 𝑚229) are also calculated with Eq. (5) and Eq. (11), obtaining the
values 𝑇𝑇 𝑏 = 4.5 cycles and 𝑇𝑇 = 5.5 cycles. To serve as an example,
the calculation of the traversal times of one packet of a read message
(𝑚221), a write-back message (𝑚222) and a write message (𝑚227) are
shown below:

𝑇𝑇 𝑏 = 𝐿 ⋅𝐻 = 1.5 ⋅ 3 = 4.5𝑐𝑦𝑐𝑙𝑒𝑠
221 𝐻

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
Fig. 21. System example, formed by three e2e flows.

𝑇𝑇221 = 𝑇𝑇 𝑏
221 + 𝐼221 = 4.5 + 8 = 12.5𝑐𝑦𝑐𝑙𝑒𝑠

𝑇 𝑇 𝑏
222 = 𝐿𝐻 ⋅𝐻 = 1.5 ⋅ 3 = 4.5𝑐𝑦𝑐𝑙𝑒𝑠

𝑇 𝑇222 = 𝑇𝑇 𝑏
222 + 𝐼222 = 4.5 + 1 = 5.5𝑐𝑦𝑐𝑙𝑒𝑠

𝑇 𝑇 𝑏
227 = 𝐿𝐻 ⋅𝐻 = 1.5 ⋅ 3 = 4.5𝑐𝑦𝑐𝑙𝑒𝑠

𝑇 𝑇227 = 𝑇𝑇 𝑏
227 + 𝐼227 = 4.5 + 1 = 5.5𝑐𝑦𝑐𝑙𝑒𝑠

Once we have calculated the message traversal times we can get
the packet generation rates. The read messages and the write-back
messages have their packet generation rate calculated using Eq. (7)
with a value of 25 cycles for the c parameter (as was described in
Section 7.3) and the traversal times obtained in the previous paragraph.
The calculation of the packet generation rates of one read message
(𝑚221) and a write-back message (𝑚222) are shown below:

𝜌221 =
1

𝑇𝑇 𝑏
221 + 𝑇𝑇 𝑏

222 + 𝑐
= 1

4.5 + 4.5 + 25
= 1

34
𝑐𝑦𝑐𝑙𝑒𝑠−1

𝜌222 =
1

𝑇𝑇 𝑏
222 + 𝑇𝑇 𝑏

221 + 𝑐
= 1

4.5 + 4.5 + 25
= 1

34
𝑐𝑦𝑐𝑙𝑒𝑠−1

Regarding the packet generation rate of the write messages, the
most restrictive is 𝑚113 (the one that writes the data in the QP) that
has the generation rate of the memcopy function (13 cycles−1). For their
part, the write messages to set the data as new and unlock the mutex
are both one packet long and, taken as a group, they have a generation
rate of 1

8 cycles−1.
The rates of the NoC links are shown in Fig. 22 which includes the

packet generation rate of all the messages in the system. As it can be
seen, all the links verify the maximum rate restriction, as the links of
the cMesh (blue wires) could have up to rate one and the links of the
rMesh (red wires) could have up to rate 1

8 .
The worst-case execution time of 𝜏22 must be augmented in the

maximum blocking time due to the use of QPs shared with 𝜏21 and
𝜏23. The execution time of the read operation performed by 𝜏23 on
its local QP requires a time of 𝐵23 = 1602 ns. For its part, the write
operation performed by 𝜏21 on the QP on the core 1 × 1 requires a time
of 𝐵21 = 780 ns. In order to consider the worst case situation, 𝐵21 must
be augmented with the interference times of all the read and write-back
packets, but in this scenario the messages going from 𝜏21 to 𝜏22 will not
be interfered by any other packet in the NoC:

𝐵′ = 𝐵 + 𝐼 + 𝐼 + 𝐼 + 𝐼 + 𝐼 + 𝐼
17

21 21 211 212 213 214 215 216
Fig. 22. Rates of the links of the NoC for the queuing port example (read messages in
red and write and write-back messages in blue). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 23. First e2e flow modeled in MAST.

𝐵′
21 = 780 ns + 0 ns = 780 ns

Besides, in order to consider the worst case situation, the worst-case
execution time of 𝜏22 must also be augmented with the interference
times of all the read and write-back packets as shown below:

𝐶 ′
22 = 𝐶22 + 𝐵23 + 𝐵′

21 + 𝐼221 + 𝐼222 + 𝐼223 + 𝐼224 + 𝐼225 + 𝐼226

𝐶 ′
22 = 25 μs + 1602 ns + 780 ns + (25.33 + 2.5) ⋅ 3 ns

𝐶 ′
22 = 27.47 μs

The same process is followed by the rest of messages and tasks
resulting in the values displayed in Tables 6 and 7.

Figs. 23–25 show the resulting MAST elements, Table 8 shows the
response times obtained using MAST as well as the response times
of the Epiphany processor executing synthetic tasks with the same
configuration. It can be seen that the measured execution is bounded
by the MAST model worst-case results as they are lower and very close
to the ones obtained by the analysis.

9. Conclusion

The modeling and analysis technique presented in this paper allows
us to reduce the complexity of the analysis of inter-message interfer-
ence thanks to the introduction of a limitation on the maximum link
utilization rate.

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
Fig. 24. Second e2e flow modeled in MAST.

Fig. 25. Third e2e flow modeled in MAST.

Our approach includes the modeling of high-level communication
mechanisms provided by the operating system, namely sampling ports
and queuing ports.

Unlike most of the related work, our modeling and analysis tech-
nique has been applied and tested on a real platform: the Epiphany
many-core processor which has 16 cores connected by a 4 × 4 2D mesh
using a real-time operating system designed for many-core processors
called M2OS-mc.

We have verified that the synchronized messages originated by an
application running on the M2OSmc RTOS in the Epiphany many core
processor have a bounded time behavior and are correctly bounded by
the developed analysis.

The synchronized messages are fully integrated in the M2OS-mc
project and the experiments performed for this paper are easily repro-
ducible in a Parallella board.

As future work we leave the study of the behavior of real-time
systems on different platforms. Using other processors with a 2D mesh-
based NoC will be another test on the capacity of our model. We can
also study how to export this model to processors with different types
of NoCs.

Besides, to implement real industrial systems we need to develop
a synchronized way to use the I/O of the Epiphany processor and to
access the external memory. Once these features are implemented we
would need to model and analyze their timing behavior.

The design of a task allocation algorithm is proposed as further
research looking for a better response-time performance of the whole
system.
18
Table 6
Parameters for the queuing port example with three e2e flows (1/2).
𝛤1 (𝑇1 = 1 ms 𝐷1 = 1 ms)

𝜏11 𝐶11 = 35 μs 𝐶𝑏
11 = 34 μs 𝐶 ′

11 = 36.35 μs
𝑚111 𝜇111 = 1 𝑡111 = 𝑟𝑒𝑎𝑑 𝜌111 = 83.33 mcycles−1

𝑚112 𝜇112 = 1 𝑡112 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌112 = 83.34 mcycles−1

𝑚113 𝜇113 = 1 𝑡113 = 𝑟𝑒𝑎𝑑 𝜌113 = 83.33 mcycles−1

𝑚114 𝜇114 = 1 𝑡114 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌114 = 83.34 mcycles−1

𝑚115 𝜇115 = 1 𝑡115 = 𝑟𝑒𝑎𝑑 𝜌115 = 83.33 mcycles−1

𝑚116 𝜇116 = 1 𝑡116 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌116 = 83.34 mcycles−1

𝑚117 𝜇117 = 1 𝑡117 = 𝑤𝑟𝑖𝑡𝑒 𝜌117 = 58.82 mcycles−1

𝑚118 𝜇118 = 3 𝑡118 = 𝑤𝑟𝑖𝑡𝑒 𝜌118 = 0.33 cycle−1

𝑚119 𝜇119 = 1 𝑡119 = 𝑤𝑟𝑖𝑡𝑒 𝜌119 = 58.82 mcycles−1

𝜏12 𝐶12 = 23 μs 𝐶𝑏
12 = 25 μs 𝐶 ′

12 = 27.24 μs
𝑚121 𝜇121 = 1 𝑡121 = 𝑟𝑒𝑎𝑑 𝜌121 = 0.11 cycles−1

𝑚122 𝜇122 = 1 𝑡122 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌122 = 0.11 cycles−1

𝑚123 𝜇123 = 1 𝑡123 = 𝑟𝑒𝑎𝑑 𝜌123 = 0.11 cycles−1

𝑚124 𝜇124 = 1 𝑡124 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌124 = 0.11 cycles−1

𝑚125 𝜇125 = 1 𝑡125 = 𝑟𝑒𝑎𝑑 𝜌125 = 0.11 cycles−1

𝑚126 𝜇126 = 1 𝑡126 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌126 = 0.11 cycles−1

𝑚127 𝜇127 = 1 𝑡127 = 𝑤𝑟𝑖𝑡𝑒 𝜌127 = 71.43 mcycles−1

𝑚128 𝜇128 = 5 𝑡128 = 𝑤𝑟𝑖𝑡𝑒 𝜌128 = 0.33 cycle−1

𝑚129 𝜇129 = 1 𝑡129 = 𝑤𝑟𝑖𝑡𝑒 𝜌129 = 71.43 mcycles−1

𝜏13 𝐶13 = 15 μs 𝐶𝑏
13 = 14 μs 𝐶 ′

13 = 15.73 μs

𝛤2 (𝑇2 = 1 ms 𝐷2 = 1 ms)

𝜏21 𝐶21 = 20 μs 𝐶𝑏
21 = 19 μs 𝐶 ′

21 = 21.44 μs
𝑚211 𝜇211 = 1 𝑡211 = 𝑟𝑒𝑎𝑑 𝜌211 = 0.11 cycles−1

𝑚212 𝜇212 = 1 𝑡212 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌212 = 0.11 cycles−1

𝑚213 𝜇213 = 1 𝑡213 = 𝑟𝑒𝑎𝑑 𝜌213 = 0.11 cycles−1

𝑚214 𝜇214 = 1 𝑡214 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌214 = 0.11 cycles−1

𝑚215 𝜇215 = 1 𝑡215 = 𝑟𝑒𝑎𝑑 𝜌215 = 0.11 cycles−1

𝑚216 𝜇216 = 1 𝑡216 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌216 = 0.11 cycles−1

𝑚217 𝜇217 = 1 𝑡217 = 𝑤𝑟𝑖𝑡𝑒 𝜌217 = 71.43 mcycles−1

𝑚218 𝜇218 = 7 𝑡218 = 𝑤𝑟𝑖𝑡𝑒 𝜌218 = 0.33 cycles−1

𝑚219 𝜇219 = 1 𝑡219 = 𝑤𝑟𝑖𝑡𝑒 𝜌219 = 71.43 mcycles−1

𝜏22 𝐶22 = 25 μs 𝐶𝑏
22 = 23 μs 𝐶 ′

22 = 27.47 μs
𝑚221 𝜇221 = 1 𝑡221 = 𝑟𝑒𝑎𝑑 𝜌221 = 83.33 mcycles−1

𝑚222 𝜇212 = 1 𝑡222 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌222 = 83.34 mcycles−1

𝑚223 𝜇223 = 1 𝑡223 = 𝑟𝑒𝑎𝑑 𝜌223 = 83.33 mcycles−1

𝑚224 𝜇224 = 1 𝑡224 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌224 = 83.34 mcycles−1

𝑚225 𝜇225 = 1 𝑡225 = 𝑟𝑒𝑎𝑑 𝜌225 = 83.33 mcycles−1

𝑚226 𝜇226 = 1 𝑡226 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌226 = 83.34 mcycles−1

𝑚227 𝜇227 = 1 𝑡227 = 𝑤𝑟𝑖𝑡𝑒 𝜌227 = 58.82 mcycles−1

𝑚228 𝜇228 = 11 𝑡228 = 𝑤𝑟𝑖𝑡𝑒 𝜌228 = 0.33 cycles−1

𝑚229 𝜇229 = 1 𝑡229 = 𝑤𝑟𝑖𝑡𝑒 𝜌229 = 58.82 mcycles−1

𝜏23 𝐶23 = 10 μs 𝐶𝑏
23 = 9 μs 𝐶 ′

23 = 10.94 μs

Table 7
Parameters for the queuing port example with three e2e flows (2/2).
𝛤3 𝑇3 = 1 ms 𝐷3 = 1 ms

𝜏31 𝐶31 = 20 μs 𝐶𝑏
31 = 19 μs 𝐶 ′

31 = 21.69 μs
𝑚311 𝜇311 = 1 𝑡311 = 𝑟𝑒𝑎𝑑 𝜌311 = 83.33 mcycles−1

𝑚312 𝜇312 = 1 𝑡312 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌312 = 83.34 mcycles−1

𝑚313 𝜇313 = 1 𝑡313 = 𝑟𝑒𝑎𝑑 𝜌313 = 83.33 mcycles−1

𝑚314 𝜇314 = 1 𝑡314 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌314 = 83.34 mcycles−1

𝑚315 𝜇315 = 1 𝑡315 = 𝑟𝑒𝑎𝑑 𝜌315 = 83.33 mcycles−1

𝑚316 𝜇316 = 1 𝑡316 = 𝑤𝑟𝑖𝑡𝑒 − 𝑏𝑎𝑐𝑘 𝜌316 = 83.34 mcycles−1

𝑚317 𝜇317 = 1 𝑡317 = 𝑤𝑟𝑖𝑡𝑒 𝜌317 = 58.82 mcycles−1

𝑚318 𝜇318 = 13 𝑡318 = 𝑤𝑟𝑖𝑡𝑒 𝜌318 = 0.33 cycles−1

𝑚319 𝜇319 = 1 𝑡319 = 𝑤𝑟𝑖𝑡𝑒 𝜌319 = 58.82 mcycles−1

𝜏32 𝐶32 = 50 μs 𝐶𝑏
32 = 47 μs 𝐶 ′

32 = 50.9 μs

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.

.

Table 8
Results of the MAST model and the Epiphany executions for the queuing port example
𝛤1 flow

Step MAST model results Epiphany execution results

WCRT BCRT Max RT Avg RT Min RT

𝜏11 57,779 ns 34,000 ns 35,305 ns 35,247 ns 35,218 ns
𝜏12 85,039 ns 57,008 ns 71,015 ns 63,343 ns 59,458 ns
𝜏13 100,774 ns 71,013 ns 84,990 ns 77,308 ns 73,410 ns

𝛤2 flow

Step MAST model results Epiphany execution results

WCRT BCRT Max RT Avg RT Min RT

𝜏21 57,790 ns 19,000 ns 20,172 ns 20,170 ns 20,170 ns
𝜏22 85,235 ns 42,005 ns 55,698 ns 47,943 ns 43,967 ns
𝜏23 96,184 ns 51,013 ns 64,113 ns 56,350 ns 52,377 ns

𝛤3 flow

Step MAST model results Epiphany execution results

𝜏31 21,690 ns 19,000 ns 20,007 ns 20,003 ns 20,003 ns
𝜏32 72,598 ns 66,008 ns 67,868 ns 67,865 ns 67,862 ns

References

[1] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm, Computer 35
(1) (2002) 70–78, http://dx.doi.org/10.1109/2.976921.

[2] M. Zhang, J. Shi, T. Zhang, Y. Hu, Hard real-time communication over multi-hop
switched ethernet, in: 2008 International Conference on Networking, Architec-
ture, and Storage, IEEE, 2008, pp. 121–128, http://dx.doi.org/10.1109/NAS.
2008.31.

[3] A. Yiming, T. Eisaka, A switched ethernet protocol for hard real-time embedded
system applications, J. Interconnect. Netw. 6 (3) (2005) 345–360, http://dx.doi.
org/10.1142/S0219265905001460.

[4] S. Lee, K.C. Lee, H.H. Kim, Maximum communication delay of a real-time
industrial switched ethernet with multiple switching hubs, in: 30th Annual
Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, Vol. 3,
IEEE, 2004, pp. 2327–2332, http://dx.doi.org/10.1109/IECON.2004.1432163.

[5] Z. Shi, A. Burns, Real-time communication analysis for on-chip networks with
wormhole switching, in: Proceedings of the Second ACM/IEEE International
Symposium on Networks-on-Chip, NOCS ’08, IEEE Computer Society, USA, 2008,
pp. 161–170, http://dx.doi.org/10.5555/1397757.1397996, URL https://dl.acm.
org/doi/10.5555/1397757.1397996.

[6] L.S. Indrusiak, End-to-end schedulability tests for multiprocessor embedded
systems based on networks-on-chip with priority-preemptive arbitration, J. Syst.
Archit. 60 (7) (2014) 553–561, http://dx.doi.org/10.1016/j.sysarc.2014.05.002,
URL http://www.sciencedirect.com/science/article/pii/S1383762114000800.

[7] M. Becker, B. Nikolic, D. Dasari, B. Akesson, V. Nélis, M. Behnam, T. Nolte, Par-
titioning and analysis of the network-on-chip on a COTS many-core platform, in:
2017 IEEE Real-Time and Embedded Technology and Applications Symposium,
RTAS, 2017, pp. 101–112, http://dx.doi.org/10.1109/RTAS.2017.32.

[8] M. Becker, S. Mubeen, D. Dasari, M. Behnam, T. Nolte, Scheduling multi-
rate real-time applications on clustered many-core architectures with memory
constraints, in: 2018 23rd Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), 2018, pp. 560–567, http://dx.doi.org/10.1109/ASPDAC.2018.
8297382.

[9] L. Indrusiak, A. Burns, B. Nikolic, Analysis of Buffering Effects on Hard
Real-Time Priority-Preemptive Wormhole Networks, 2016, http://dx.doi.org/10.
48550/ARXIV.1606.02942, arXiv. URL https://arxiv.org/abs/1606.02942.

[10] Q. Xiong, Z. Lu, F. Wu, C. Xie, Real-time analysis for wormhole NoC: Revisited
and revised, in: Proceedings of the 26th Edition on Great Lakes Symposium
on VLSI, GLSVLSI ’16, Association for Computing Machinery, 2016, pp. 75–80,
http://dx.doi.org/10.1145/2902961.2903023.

[11] M. Boyer, A. Graillat, B. Dupont de Dinechin, J. Migge, Bounding the delays of
the MPPA network-on-chip with network calculus: Models and benchmarks, Per-
form. Eval. 143 (2020) 102124, http://dx.doi.org/10.1016/j.peva.2020.102124,
URL https://www.sciencedirect.com/science/article/pii/S0166531620300444.

[12] S. Tobuschat, R. Ernst, Real-time communication analysis for networks-on-
chip with backpressure, in: Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, 2017, pp. 590–595, http://dx.doi.org/10.23919/DATE.
2017.7927055.
19
[13] M. Dridi, F. Singhoff, S. Rubini, J.-P. Diguet, ECTM: A network-on-chip communi-
cation model to combine task and message schedulability analysis, J. Syst. Archit.
114 (2020) 101931, http://dx.doi.org/10.1016/j.sysarc.2020.101931, URL http:
//www.sciencedirect.com/science/article/pii/S1383762120301909.

[14] S. Gopalakrishnan, L. Sha, M. Caccamo, Hard Real-Time Communication in
Bus-Based Networks, IEEE, 2004, pp. 405–414, http://dx.doi.org/10.1109/REAL.
2004.24, URL https://ieeexplore.ieee.org/abstract/document/1381326.

[15] S.K. Roy, R. Devaraj, A. Sarkar, K. Maji, S. Sinha, Contention-aware optimal
scheduling of real-time precedence-constrained task graphs on heterogeneous
distributed systems, J. Syst. Archit. 105 (2020) 101706, http://dx.doi.org/10.
1016/j.sysarc.2019.101706, URL https://www.sciencedirect.com/science/article/
pii/S1383762119305132.

[16] B. Nikolić, S. Tobuschat, L. Soares Indrusiak, R. Ernst, A. Burns, Real-time
analysis of priority-preemptive NoCs with arbitrary buffer sizes and router delays,
Real-Time Syst. 55 (1) (2019) 63–105, http://dx.doi.org/10.1007/s11241-018-
9312-0.

[17] D. Dasari, B. Nikoli’c, V. N’elis, S.M. Petters, Noc contention analysis using a
branch-and-prune algorithm, ACM Trans. Embed. Comput. Syst. 13 (3s) (2014)
http://dx.doi.org/10.1145/2567937.

[18] W. Puffitsch, E. Noulard, C. Pagetti, Off-line mapping of multi-rate dependent
task sets to many-core platforms, Real-Time Syst. 51 (2015) 526–565, http:
//dx.doi.org/10.1007/s11241-015-9232-1.

[19] S. Metzlaff, J. Mische, T. Ungerer, A real-time capable many-core model, in:
Proceedings of 32nd IEEE Real-Time Systems Symposium: Work-in-Progress
Session, 2011, pp. 21–24.

[20] C. Benchehida, M.K. Benhaoua, H.-E. Zahaf, G. Lipari, Task and communi-
cation allocation for real-time tasks to networks-on-chip multiprocessors, in:
2020 Second International Conference on Embedded Distributed Systems, EDiS,
2020, pp. 9–14, http://dx.doi.org/10.1109/EDiS49545.2020.9296446, URL https:
//ieeexplore.ieee.org/document/9296446.

[21] M. Harbour, J.J. Gutiérrez, J. Palencia, J. Moyano, MAST: Modeling and analysis
suite for real time applications, in: Proceedings - Euromicro Conference on
Real-Time Systems, 2001, pp. 125–134, http://dx.doi.org/10.1109/EMRTS.2001.
934015.

[22] J. Palencia, M. Harbour, Offset-based response time analysis of distributed
systems scheduled under EDF, in: 15th Euromicro Conference on Real-Time
Systems, 2003. Proceedings, 2003, pp. 3–12, http://dx.doi.org/10.1109/EMRTS.
2003.1212721.

[23] M. Becker, D. Dasari, S. Mubeen, M. Behnam, T. Nolte, End-to-end timing
analysis of cause-effect chains in automotive embedded systems, J. Syst. Archit.
80 (C) (2017) 104–113, http://dx.doi.org/10.1016/j.sysarc.2017.09.004.

[24] A. Girault, C. Prévot, S. Quinton, R. Henia, N. Sordon, Improving and estimating
the precision of bounds on the worst-case latency of task chains, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 37 (11) (2018) 2578–2589, http://dx.
doi.org/10.1109/TCAD.2018.2861016.

[25] M. Günzel, K.-H. Chen, N. Ueter, G.v.d. Brüggen, M. Dürr, J.-J. Chen, Timing
analysis of asynchronized distributed cause-effect chains, in: 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium, RTAS, 2021,
pp. 40–52, http://dx.doi.org/10.1109/RTAS52030.2021.00012.

[26] D.G. Villaescusa, M.A. Rivas, M.G. Harbour, M2OS-Mc: An RTOS for Many-
Core Processors, in: M. Bertogna, F. Terraneo (Eds.), Second Workshop on Next
Generation Real-Time Embedded Systems, NG-RES 2021, in: OpenAccess Series in
Informatics (OASIcs), vol. 87, Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 2021, pp. 5:1–5:13, http://dx.doi.org/10.4230/OASIcs.NG-
RES.2021.5, URL https://drops.dagstuhl.de/opus/volltexte/2021/13481.

[27] D. García Villaescusa, M. Aldea Rivas, M. González Harbour, Queuing ports
for mesh based many-core processors, Ada Lett. 41 (2) (2022) 66–70, http:
//dx.doi.org/10.1145/3530801.3530804.

[28] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, Y.-C. Liu, Knights landing: Second-generation Intel Xeon Phi product,
IEEE Micro 36 (2) (2016) 34–46, http://dx.doi.org/10.1109/MM.2016.25.

[29] Corporation, Tile processor architecture overview for the tile-GX series, 2012,
URL https://cdn.manesht.ir/17871___210769647-UG130-ArchOverview-TILE-Gx.
pdf.

[30] B.D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne, P.G.
de Massas, F. Jacquet, S. Jones, N.M. Chaisemartin, F. Riss, T. Strudel, A
clustered manycore processor architecture for embedded and accelerated appli-
cations, in: 2013 IEEE High Performance Extreme Computing Conference, HPEC,
2013, pp. 1–6, http://dx.doi.org/10.1109/HPEC.2013.6670342.

[31] E.A. Rambo, R. Ernst, Worst-case communication time analysis of networks-on-
chip with shared virtual channels, in: 2015 Design, Automation Test in Europe
Conference Exhibition, DATE, 2015, pp. 537–542, http://dx.doi.org/10.7873/
DATE.2015.0023.

http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1109/NAS.2008.31
http://dx.doi.org/10.1109/NAS.2008.31
http://dx.doi.org/10.1109/NAS.2008.31
http://dx.doi.org/10.1142/S0219265905001460
http://dx.doi.org/10.1142/S0219265905001460
http://dx.doi.org/10.1142/S0219265905001460
http://dx.doi.org/10.1109/IECON.2004.1432163
http://dx.doi.org/10.5555/1397757.1397996
https://dl.acm.org/doi/10.5555/1397757.1397996
https://dl.acm.org/doi/10.5555/1397757.1397996
https://dl.acm.org/doi/10.5555/1397757.1397996
http://dx.doi.org/10.1016/j.sysarc.2014.05.002
http://www.sciencedirect.com/science/article/pii/S1383762114000800
http://dx.doi.org/10.1109/RTAS.2017.32
http://dx.doi.org/10.1109/ASPDAC.2018.8297382
http://dx.doi.org/10.1109/ASPDAC.2018.8297382
http://dx.doi.org/10.1109/ASPDAC.2018.8297382
http://dx.doi.org/10.48550/ARXIV.1606.02942
http://dx.doi.org/10.48550/ARXIV.1606.02942
http://dx.doi.org/10.48550/ARXIV.1606.02942
https://arxiv.org/abs/1606.02942
http://dx.doi.org/10.1145/2902961.2903023
http://dx.doi.org/10.1016/j.peva.2020.102124
https://www.sciencedirect.com/science/article/pii/S0166531620300444
http://dx.doi.org/10.23919/DATE.2017.7927055
http://dx.doi.org/10.23919/DATE.2017.7927055
http://dx.doi.org/10.23919/DATE.2017.7927055
http://dx.doi.org/10.1016/j.sysarc.2020.101931
http://www.sciencedirect.com/science/article/pii/S1383762120301909
http://www.sciencedirect.com/science/article/pii/S1383762120301909
http://www.sciencedirect.com/science/article/pii/S1383762120301909
http://dx.doi.org/10.1109/REAL.2004.24
http://dx.doi.org/10.1109/REAL.2004.24
http://dx.doi.org/10.1109/REAL.2004.24
https://ieeexplore.ieee.org/abstract/document/1381326
http://dx.doi.org/10.1016/j.sysarc.2019.101706
http://dx.doi.org/10.1016/j.sysarc.2019.101706
http://dx.doi.org/10.1016/j.sysarc.2019.101706
https://www.sciencedirect.com/science/article/pii/S1383762119305132
https://www.sciencedirect.com/science/article/pii/S1383762119305132
https://www.sciencedirect.com/science/article/pii/S1383762119305132
http://dx.doi.org/10.1007/s11241-018-9312-0
http://dx.doi.org/10.1007/s11241-018-9312-0
http://dx.doi.org/10.1007/s11241-018-9312-0
http://dx.doi.org/10.1145/2567937
http://dx.doi.org/10.1007/s11241-015-9232-1
http://dx.doi.org/10.1007/s11241-015-9232-1
http://dx.doi.org/10.1007/s11241-015-9232-1
http://refhub.elsevier.com/S1383-7621(22)00247-8/sb19
http://refhub.elsevier.com/S1383-7621(22)00247-8/sb19
http://refhub.elsevier.com/S1383-7621(22)00247-8/sb19
http://refhub.elsevier.com/S1383-7621(22)00247-8/sb19
http://refhub.elsevier.com/S1383-7621(22)00247-8/sb19
http://dx.doi.org/10.1109/EDiS49545.2020.9296446
https://ieeexplore.ieee.org/document/9296446
https://ieeexplore.ieee.org/document/9296446
https://ieeexplore.ieee.org/document/9296446
http://dx.doi.org/10.1109/EMRTS.2001.934015
http://dx.doi.org/10.1109/EMRTS.2001.934015
http://dx.doi.org/10.1109/EMRTS.2001.934015
http://dx.doi.org/10.1109/EMRTS.2003.1212721
http://dx.doi.org/10.1109/EMRTS.2003.1212721
http://dx.doi.org/10.1109/EMRTS.2003.1212721
http://dx.doi.org/10.1016/j.sysarc.2017.09.004
http://dx.doi.org/10.1109/TCAD.2018.2861016
http://dx.doi.org/10.1109/TCAD.2018.2861016
http://dx.doi.org/10.1109/TCAD.2018.2861016
http://dx.doi.org/10.1109/RTAS52030.2021.00012
http://dx.doi.org/10.4230/OASIcs.NG-RES.2021.5
http://dx.doi.org/10.4230/OASIcs.NG-RES.2021.5
http://dx.doi.org/10.4230/OASIcs.NG-RES.2021.5
https://drops.dagstuhl.de/opus/volltexte/2021/13481
http://dx.doi.org/10.1145/3530801.3530804
http://dx.doi.org/10.1145/3530801.3530804
http://dx.doi.org/10.1145/3530801.3530804
http://dx.doi.org/10.1109/MM.2016.25
https://cdn.manesht.ir/17871___210769647-UG130-ArchOverview-TILE-Gx.pdf
https://cdn.manesht.ir/17871___210769647-UG130-ArchOverview-TILE-Gx.pdf
https://cdn.manesht.ir/17871___210769647-UG130-ArchOverview-TILE-Gx.pdf
http://dx.doi.org/10.1109/HPEC.2013.6670342
http://dx.doi.org/10.7873/DATE.2015.0023
http://dx.doi.org/10.7873/DATE.2015.0023
http://dx.doi.org/10.7873/DATE.2015.0023

Journal of Systems Architecture 134 (2023) 102762D. García Villaescusa et al.
[32] A. Olofsson, Epiphany Architecture Reference, Technical report, Adapteva, 2013,
URL https://www.adapteva.com/docs/epiphany_arch_ref.pdf.

[33] A. Olofsson, Epiphany-v: A 1024 processor 64-bit risc system-on-chip,
2016, arXiv preprint arXiv:1610.01832. http://dx.doi.org/10.48550/ARXIV.
1610.01832.

[34] A. Olofsson, Parallella Reference Manual, Technical report, Adapteva, URL https:
//www.parallella.org/docs/parallella_manual.pdf.

[35] J.G. Balaguer, J.R.Z. Flores, J.A. de la Puente Alfaro, ARINC-653 inter-partition
communications and the ravenscar profile, in: ACM SIGAda Ada Letters, Vol.
35. No. 1, April 2015, Ada Letters (2015) 38–45, http://dx.doi.org/10.1145/
2870544.2870550, URL http://oa.upm.es/42418/.

David García Villaescusa is a Security Researcher at
Ikerlan S. Coop. He previously obtained the PhD at the
University of Cantabria. Before that he worked for Equipos
Nucleares S.A. His more recent research focuses on the
usage of mesh-based many-cores for real-time porpuses.
He has developed the free software RTOS Marte OS for
Raspberry Pi 1 (https://marte.unican.es/) and M2OS for
Epiphany III (https://m2os.unican.es/) both with GPLv3+
licence.
20
Mario Aldea Rivas is currently an Associate Professor with
the Department of Electronics and Computers, University
of Cantabria, Spain. His research interests include real-time
systems, with special focus on flexible scheduling, real-time
operating systems, and real-time languages. He has been
involved in several research and industrial projects related
with real-time and embedded technologies. He is also the
main developer of MaRTE OS, an operating system that has
served as platform to provide support for advanced real-time
services.

Michael González Harbour is a Professor in the Depart-
ment of Computer Science and Electronics at the University
of Cantabria. He works in software engineering for real-time
systems, and particularly in modelling and schedulability
analysis of distributed real-time systems, real-time operating
systems, and real-time languages. He is a co-author of ‘‘A
Practitioner’s Handbook on Real-Time Analysis’’. He has
been involved in several industrial projects using Ada to
build real-time controllers for robots. Michael has partici-
pated in the real-time working group of the POSIX standard
for portable operating system interfaces. He is one of the
principal authors of the MAST suite for modelling and
analysing real-time systems.

https://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://arxiv.org/abs/1610.01832
http://dx.doi.org/10.48550/ARXIV.1610.01832
http://dx.doi.org/10.48550/ARXIV.1610.01832
http://dx.doi.org/10.48550/ARXIV.1610.01832
https://www.parallella.org/docs/parallella_manual.pdf
https://www.parallella.org/docs/parallella_manual.pdf
https://www.parallella.org/docs/parallella_manual.pdf
http://dx.doi.org/10.1145/2870544.2870550
http://dx.doi.org/10.1145/2870544.2870550
http://dx.doi.org/10.1145/2870544.2870550
http://oa.upm.es/42418/
https://marte.unican.es/
https://m2os.unican.es/

	Response-time analysis of mesh-based many-core systems
	Introduction
	Related work
	NoC timing studies
	Modeling and analysis tools
	Many-core processors

	System modeling
	Basic model elements
	Network-on-Chip basic parameters
	Modeling the messages
	Maximum packet rate restriction
	Packet maximum traversal times
	Modeling the NoC with MAST elements

	Modeling and behavior comparison
	System description
	Rate analysis
	System modeling with MAST elements
	Response times comparison

	Applying the model to the Epiphany processor
	Epiphany many-core
	Basic parameters of the Epiphany NoC
	Modeling the messages
	Maximum packet rate restriction
	Packet maximum traversal times

	Simple example
	High-level Communication Mechanisms
	Epiphany's mutex primitive
	Modeling sampling ports
	Modeling queuing ports

	Modeling with ports
	Sampling port modeling example
	Queuing port example

	Conclusion
	Declaration of Competing Interest
	Data availability
	References

