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High sensitization efficiency 
and energy transfer routes for 
population inversion at low pump 
intensity in Er organic complexes 
for IR amplification
J. X. Hu1,2, S. Karamshuk2,3, J. Gorbaciova2, H. Q. Ye4, H. Lu5, Y. P. Zhang2, Y. X. Zheng  6,  
X. Liang6, I. Hernández7, P. B. Wyatt3 & W. P. Gillin  1,2

Organic erbium complexes have long been of interest due to their potential for using the strong 
absorption into the organic to sensitise the erbium emission. Despite this interest there is remarkably 
little quantitative information on how effective the approach is and the discussion of the energy transfer 
mechanism is generally vague. Here we accurately quantify the sensitisation as a function of excitation 
pump density and model it using a rate equation approach. As a result, we can calculate the degree of 
population inversion for the erbium ions as a function of the pump intensity. We demonstrate that even 
when we increase the erbium concentration in the films from ~10 to ~80% we find a relatively small 
decrease in the sensitisation which we attribute to the large (>20 Å) Förster radius for the sensitisation 
process. We show that we can obtain population inversion in our films at very low pump powers 
~600 mW/cm2. The calculated Förster radius for the organic erbium complexes suggests design rules for 
energy transfer between antennas and erbium ions in molecular systems and hybrid organic-inorganic 
nanoparticles.

Erbium has long been of interest as a near infrared (NIR) emitter as its emission wavelength (1.5 µm) matches 
perfectly to the low loss transmission wavelengths for silica optical fibres1–4. It is extensively used in the erbium 
doped optical amplifier which is the technology that underpins the global fibre optic networks that are vital for 
long-distance broadband data transmission5,6. In these systems the erbium ions are doped into silica glass but 
due to the poor solubility and a low absorption cross section for the erbium ions the amplifiers need long gain 
regions and high power pump lasers (typically ~100 kW/cm2). Sensitisation of erbium ions to improve their 
effective absorption cross section has been used for many years and the most successful sensitizer has been to 
co-dope erbium ions with ytterbium7–10. This has an absorption cross section at ~980 nm that is about an order 
of magnitude greater than that of erbium and once excited the ytterbium very efficiently transfers its energy to 
nearby erbium ions. However, even with ytterbium as a sensitizer it is still necessary to use lasers to achieve the 
high excitation densities required for population inversion.

It has long been suggested that lanthanide ions could be sensitised by incorporating them into an organic 
host and using the “antenna effect” where the pump light is absorbed by the organic moiety and the energy is 
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efficiently transferred to the lanthanide11–13. As the absorption by organic ligands is typically 106 times greater 
than that of erbium this approach has the potential to dramatically improve the effective absorption cross-section 
for the ions. In addition, it also allows for the possibility of increasing the maximum erbium concentration by 
effectively removing the solid solubility limits and providing precise control on the inter-ion distance which can 
be used to remove ion-ion interactions. Using organics it is possible to achieve erbium concentrations of up to 
4.5 × 1020 cm−3 (the highest concentration used in this study) which is up to an order of magnitude greater than 
can generally be achieved in glasses14. When this is coupled with the increase in the effective absorption cross 
section this results in an approach that can lead to high gain in very compact devices with low intensity pump 
sources such as low-cost LEDs. Ultimately these materials can be integrated directly onto silicon photonic circuits 
and can provide distributed gain to counter the intrinsic losses in those structures but more excitingly they offer 
the possibility of producing a cost-effective silicon laser. Given that the organic molecules used are semiconduc-
tors then this also leads to the possibility of producing integrated laser devices that can be electrically pumped.

Despite several decades of research there is still little information as to how efficient the sensitisation of erbium 
by an organic host can be15–17. Much of the work on organic erbium materials has been hampered by the excep-
tionally low quantum efficiencies for erbium emission, which is caused by the vibrational quenching through 
high-energy oscillators of CH, OH and NH bonds in the organics18–20. Regardless of the low quantum efficiencies 
that have commonly been achieved in erbium organic materials it is still the case that most of the published work 
merely demonstrates that some energy transfer must be occurring between the organic and the erbium with few 
attempts to fully quantify it21. In recent works we have used excitation spectroscopy to give some quantification 
of the integrated sensitisation and demonstrated that it can range from the very low (factor of ~5)22 to the very 
high (~10000)23. However, the use of excitation spectroscopy only tends to provide data over a limited range of 
excitation intensities and can be prone to error at high sensitisation due to the difficulty in observing the direct 
absorption into the ion. In this work, we perform quantitative measurements of the erbium emission intensity 
as a function of pump power using two different wavelengths. One pump laser is at 655 nm so that it is solely 
absorbed by the 4I15/2 to 4F9/2 transition in the erbium ions whilst the second is at 407 nm which is solely absorbed 
by the organic chromophore. For the organic erbium complex we used erbium(III) tetrakis(pentafluorophenyl)
imidodiphosphinate24, (Er(F-TPIP)3), which we have demonstrated can have a quantum efficiency of ~7% when 
deposited by vacuum sublimation in a vacuum of ~10−7 mbar. For the chromophore we utilised the zinc(II) salt 
of 2-(3,4,5,6-tetrafluoro-2-hydroxyphenyl)-4,5,6,7-tetrafluorobenzothiazole, Zn(F-BTZ)2, which we have already 
shown can have efficient energy transfer to the erbium ions23. We have quantified the sensitisation in a series 
of films as a function of molar erbium concentrations and developed a simple rate equation model that allows 
us to not only quantify the sensitisation but also calculate the population of erbium ions in the excited state as 
a function of excitation pump power. Using this model, we have demonstrated that we can achieve population 
inversion for the erbium ions at excitation levels as low as 500 mW/cm2 and that with a modest increase in the 
quantum efficiency of the erbium to 50% this power requirement can be reduced to only 40 mW/cm2. We have 
also calculated the Förster radius for the sensitization process and discuss their implications for energy transfer 
at a nanoscale level.

Results and Discussion
In Fig. 1 we show the excitation spectrum for the co-doped film recorded for the 4I13/2 to 4I15/2 transition at 
1535 nm. This was recorded using a monochromated Xe lamp as an excitation source and it can be clearly seen 

Figure 1. The 1535 nm excitation spectrum for the Zn(F-BTZ)2 film doped with 9% Er(F-TPIP)3. Data at 
wavelengths longer than 475 nm have been scaled by a factor of 100. A weak direct absorption into the 4F9/2 level 
can just be observed.
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that the excitation through the ligand is dramatically stronger than the direct absorption into the 4I15/2 to 2H11/2 
(~520 nm) and 4I15/2 to 4F9/2 (~655 nm) Er3+ levels. There is still a weak tail from the ligand excitation at 520 nm 
and hence we have used the 4I15/2 to 4F9/2 at 655 nm for the detailed sensitisation measurements. Due to the weak 
direct absorption into erbium in the visible it is often difficult to obtain high quality excitation spectra for the 
direct absorption unless there is a high concentration of erbium ions in the sample. This can make the quantifica-
tion of the sensitisation using this method prone to error.

In Fig. 2a we plot the erbium emission intensity as a function of the incident power density for a 9% doped 
Er(F-TPIP)3-Zn(F-BTZ)2 under both 655 nm and 407 nm excitation. Under 655 nm excitation we are only able 
to measure the Er emission at large pump power densities due to the weak absorption of the erbium in the thin 
films. It can be seen that the emission intensity is linear with the excitation pump density. For 407 nm excitation 
we can detect the erbium emission intensity at much lower power densities and it can be seen that the Er emission 
tends to saturate with increasing pump power. The solid lines are a fit to the data using a simple rate equation 
approach where we take the erbium ion as being a three level system consisting of the ground state (4I15/2), the 
emissive first excited state (4I13/2) and the directly excited state (4F9/2). In Fig. 3 we provide a Jablonski diagram for 
the system along with the simplified energy level diagram and the corresponding rate equations used to model the 
results. For the rate equations only three levels are taken into account: the ground state (4I15/2) of the Er3+, (with 
a population of N0), the first excited state (4I13/2) of the Er3+, (with a population of N1), and the third excited state 
(4F9/2) of the Er3+, (with a population of N2). The transition rate, A20, (4F9/2 to 4I15/2) was taken as 1000 s−1 and was 
obtained from a Judd-Ofelt calculation for Er(F-TPIP)3

25. The transition rate A21 (4F9/2 to 4I13/2) (τ21 = 0.5 µs) was 
measured directly from the rise time for the 4I13/2 to 4I15/2 transition when the 4F9/2 level was excited directly using 

Figure 2. The intensity of the Er 4I13/2 to 4I15/2 transition at 1530 nm as a function of the pump laser power 
density for Zn(F-BTZ)2 films doped with (a) 9% Er(F-TPIP)3 and (b) 23% Er(F-TPIP)3. The black data are for 
the 407 nm excitation and the red data (right hand axis) are for the 655 nm excitation. The solid lines are the 
results of the rate equation modelling.

Figure 3. Jablonski diagram for the energy transfer between the chromophore and the erbium ion. The rate 
equations are based on the simplified energy level diagram using only the ground, first and third excited states. 
Sensitisation is included simply through a sensitisation factor, FSEN, which is a multiplier for the absorption from 
the ground state to the third excited level.
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an ~5 ns pulse at 655 nm from an OPO. The initial population of ions in the ground state (N0) is known from the 
Er concentration in the films. The decay lifetime for the 4I13/2 to 4I15/2 transition was measured directly as a func-
tion of 407 nm excitation intensity for each sample. In every case the decay was found to be bi-exponential with 
a long lifetime component of ~700 ± 50 µs and a short component of ~400 ± 50 µs. When we directly excited the 
erbium in these films with an ~5 ns pulse at 520 nm we always observed mono-exponential decay with the 700 µs 
decay component. This implies that the 400 µs component is a function of the very high excitation conditions that 
occur with continuous illumination and high sensitisation. The average lifetime of this transition generally shows 
a small (<10%) linear decrease with increasing power density caused by a shift in the relative populations of the 
two lifetime states. There was no systematic variation in lifetimes as a function of the erbium concentration. The 
value of A10 we used in our model was therefore determined from a linear fit to this average lifetime and hence 
was a function of the excitation intensity. The pump rate, RP, is given by the absorption cross-section for the 4I15/2 
to 4F9/2 (σabs = 1.3 × 10−21 cm2) multiplied by the photon flux density (ϕ)25. The fit to the 655 nm data only has a 
single scaling factor in it to convert the emission rate from the model (N1A10) into the arbitrary units of the inten-
sity measured by the photomultiplier. As the experimental setup is identical under 655 nm and 407 nm excitation 
this scaling factor remains constant.

From Fig. 2a it can be seen that the fit to the 655 nm data shows a straight line passing through the origin as 
one would expect, considering the low absorption cross section for erbium at this wavelength which results in a 
low concentration of erbium ions in the excited state. The error bars show the statistical error as we repeat each 
measurement 10 times. For the 407 nm excitation the power density plotted is the actual power density absorbed 
by the chromophore and we ignored all the detail of the energy transfer processes both within the chromophore 
and between the chromophore and the erbium ion and simply approximated this by a sensitisation factor, FSEN, 
which is a multiplier to the absorption cross section of the 4I15/2 to 4F9/2 transition. This does not mean that the 
sensitisation is actually going through this level, only that it can be modelled as an effective increase in the absorp-
tion coefficient for the erbium. This is a very simple approach which does not take into account any competing 
process that may be occurring within the sensitizer (such as triplet-triplet annihilation at high pump powers). 
The solid line through the 407 nm data in Fig. 2 is the result of this model using a sensitisation factor of 5200 and 
shows that this simple model provides an excellent fit to the experimental data. The output of the rate equation 
approach is the population of each level as a function of excitation power and we multiply the population of the 
first excited state (N1) by the transition rate, A10, to obtain the luminescence intensity from the erbium. As the 
value of A10 is almost constant over the range of excitation powers used (and the small variation is taken into 
account in our model) the sublinear shape of the 407 nm excited emission is a direct measure of the population 
of ions that are in the excited state (N1). We are therefore able to directly calculate the ratio of erbium ions in 
the excited state compared to those in the ground state (N0) and can determine that in the 9% sample we have 
achieved population inversion (50% of the ions in the excited state) at a pump density of ~600 mW/cm2. For the 
23% doped Er(F-TPIP)3-Zn(F-BTZ)2 film (Fig. 2b) we obtained a similar excellent fit to the data with a calculated 
sensitisation factor of 3900. This reduction in the sensitisation factor is probably an effect of the lower concentra-
tion of chromophore molecules available to excite the erbium ions.

Figure 4 shows the equivalent data for the 44%, 64% and 81% doped Er(F-TPIP)3-Zn(F-BTZ)2 films. The 
sensitisation factors used to achieve the fits shown are 2500, 2400 and 2200 for the 44%, 64% and 81% films 

Figure 4. Top panel is the intensity of the Er 4I13/2 to 4I15/2 transition at 1530 nm as a function of the pump 
laser power density for the (a) 44%, (b) 64% and (c) 81% Er(F-TPIP)3 films. The black data are for the 407 nm 
excitation and the red data (right hand axis) are for the 655 nm excitation. The solid lines are the results of the 
rate equation modelling. In the bottom panel is the ratio of the long and short component of the Er 4I13/2 to 4I15/2 
transition lifetime in the same samples. The black data are the proportion of the long component and the red 
data the proportion of the short component.
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respectively. In each of these films we can see that our model works at low excitation densities but the exper-
imental data fall below the model as the pump power density increases. Given that the concentration of the 
Zn(F-BTZ)2 chromophore is decreasing it is unlikely that this is due to some decrease in the number of excited 
states (triplets) present in these films with increasing excitation intensity as the probabilities of likely quenching 
processes (e.g. triplet-triplet annihilation) are reduced at lower chromophore concentrations. Similarly, we have 
kept the total number of Zn(F-BTZ)2 molecules constant in each film so it cannot be due to a lower absorption by 
the chromophore. In addition as each chromophore is effectively in the presence of a greater number of erbium 
ions it is unlikely to be due to there not being enough erbium ions present to be excited in these films. As can be 
seen in Fig. 4, the deviation from the model gets worse as the erbium concentration increases; this implies that 
there must be additional de-excitation routes for the erbium ions at higher concentrations. It is well known that 
as the Er3+- Er3+ separation decreases the probability for inter-ion quenching increases4. We noted earlier that the 
erbium lifetime shows a bi-exponential decay with a long and short lifetime component and that there is a shift 
from the population with the longer lifetime to the shorter one as the pump power increases. In Fig. 4 we plot the 
relative contributions of the two lifetime components as a function of the excitation power. For the 9% film the 
long lifetime component accounts for nearly 100% of the emission at low excitation pump powers and decreases 
to ~80% at the maximum pump power. For the 23% film the long component accounts for ~80% at low excitation 
powers and this reduces to ~60% at the maximum pump power. However, for the films with 44% Er concentra-
tion and higher a different behaviour is observed. For the 44% film at low excitation powers the long component 
accounts for >80% of the emission but at an excitation power density of ~1000 mW/cm2 this reduces to ~50% 
and remains at that level as the pump power is increased. This change in the erbium decay time corresponds to the 
point where the experimental data start to deviate from the model (~790 mW/cm2). For the 64% film the effect 
is even more dramatic with the long component decreasing from ~100% at low power to 50% at ~600 mW/cm2 
and for the 81% film the long component shows a similar effect but keeps reducing to ~20% at a pump power of 
~1000 mW/cm2. Again these changes in the erbium decay lifetimes correspond to the power density where the 
experimental data start to deviate from the model. This correlation between the deviation of the 407 nm excited 
data from the model and the observed reduction in the lifetime of the erbium ions in the film suggests that with 
the higher erbium concentration films we are starting to observe ion-ion quenching with increasing pump power. 
Although this effect is taken into account in the measured decay time as a function of excitation intensity the 
model does not account for the fact that ion-ion interactions can effectively quench more than one ion in a single 
process (One example of this could be cooperative up-conversion between two excited erbium ions followed by 
energy transfer back to the chromophore) and hence the number of excited erbium ions in the sample falls below 
the model.

From the rate equation model, we can determine the percentage of ions in the first excited state relative to the 
ground state as a function of excitation intensity. Using this model, we can determine that the deviation of the 
experimental data from the model occurs when the population of excited ions in the layer reaches ~30% (35%, 
24% and 21% for the 44%, 64% and 81% Er(F-TPIP)3 films respectively). The fact that these relatively high popu-
lations in the excited state are needed to see a reduction in the Er emission lifetime also supports the proposal that 
this is probably due to ion-ion interactions. As the model directly gives us the populations in the different levels 
we can use it to determine the pump power density where we see the onset of population inversion (<50% of ions 
in the ground state). For our 9% and 23% Er(F-TPIP)3 films we find that this occurs at pump power densities of 
620 mW/cm2 and 850 mW/cm2 respectively. These values are remarkably low and within the range that can easily 
be obtained using a conventional LED as a pump source. If we were able to increase the quantum efficiency of the 
erbium ions to 50% (For example by reducing quenching caused by residual impurities) then we would be able 
to reduce the pump power needed for population inversion to ~50 mW/cm2 and ~70 mW/cm2 respectively. This 
would be within the range that can easily be achieved by using an OLED as the pump source and would open the 
possibility of fabricating a purely organic, electrically driven device.

It is generally assumed that the major energy transfer mechanism between an excited state on an organic 
molecule and a lanthanide ion is via the triplet state of the organic and hence that photoexcited molecules must 
undergo intersystem crossing (ISC)26. The Zn(F-BTZ)2 chromophore used in these experiments has enhanced 
ISC, compared to the hydrogenated version, due to the effect of the large number of fluorine atoms that have 
replaced the hydrogen. This can be seen in the low temperature photoluminescence of the material (Fig. 5a) 
which shows a distinct triplet emission. For a 200 nm film of Zn(F-BTZ)2 we measured an 80 K recombination 
lifetime for the triplet of ~20 ms. This film showed distinct delayed singlet emission following excitation with a 
~5 ns pulse which peaked about 500 ns and decays after about 2 µs (see Fig. 6). This delayed fluorescence is indic-
ative of triplet-triplet annihilation within the layer. We therefore prepared a sample where the same quantity of 
Zn(F-BTZ)2 is co-evaporated into an optically inert Y(F-TPIP)3 matrix so that the final layer has the molar con-
centrations of 80% Y(F-TPIP)3 and 20% Zn(F-BTZ)2. This has the effect of separating the Zn(F-BTZ)2 molecules 
so as to reduce triplet quenching interactions. As a result, the photoluminescence, shown in Fig. 5b is now dom-
inated by emission from the triplet which has a lifetime of ~120 ms. In this film. the absolute photoluminescence 
intensity of the singlet emission is reduced by ~10% from that in the pure film whilst the intensity from the triplet 
emission is ~60% greater than that for the singlet. These spectra were all recorded by integrating the area under 
the decay curve after excitation with a 50 ms laser pulse (at a repetition rate of 0.27 Hz). Due to the long lifetime 
for the triplet, coupled with the relatively high ISC rate, these long laser pulses allow time for a build-up in the 
triplet population. Figure 5c shows the photoluminescence from a similar film where the Zn(F-BTZ)2 has been 
diluted with 80% Er(F-TPIP)3. Here the dilution means that the self-quenching of the Zn(F-BTZ)2 is reduced as in 
the Y(F-TPIP)3 doped film. However, in the Er(F-TPIP)3 doped film the triplet emission intensity is only 25% of 
that measured in the Y(F-TPIP)3 doped film and the singlet emission is reduced by over 50%. The triplet lifetime 
is only ~60 ms in this film. These results demonstrate that for Zn(F-BTZ)2 as a sensitizer of Er(F-TPIP)3 both 
singlets and triplets couple very efficiently into the Er3+ ions. The fact that the singlet lifetime in this material is 
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only of the order of 10 ns shows how efficient this energy transfer must be for ~50% of the singlets to be quenched. 
Using Equation 1 we have calculated the Förster radius, R0, for the singlet to couple to the Er3+ ion.
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Where NA is Avogadro’s number, κ2 is the dipole orientation factor which we have taken as 2/3, QD is the quan-
tum yield of the donor which we have assumed to be unity, n is the refractive index of the medium (1.49 for 
Er(F-TPIP)3 and 1.60 for Zn(F-BTZ)2 both at 633 nm), fD(λ) is the normalised donor emission spectra (given in 
Fig. 7 for Zn(F-BTZ)2) and εA(λ) is the acceptor molar absorption coefficient (also given in Fig. 7 for Er(F-TPIP)3). 
We do not rule out the possibility for Dexter transfer occurring in these films but the fact that our erbium ions 
are in one molecule (with a radius of ~7 Å) and the chromophore is a separate molecule, and not necessarily the 
next nearest neighbour, means that they are physically separated and hence the possibility of there being sig-
nificant overlap of their wave-functions is reduced. For the singlet emission shown in Fig. 6 we obtain a Förster 
radius of ~21 Å whereas due to the improved spectra overlap this increases to 25 Å when the triplet emission is 

Figure 5. The 80 K photoluminescence from (a) a 200 nm film of Zn(F-BTZ)2, (b) 200 nm of Zn(F-BTZ)2 co-
doped into a 80% Y(F-TPIP)3 and (c) 200 nm of Zn(F-BTZ)2 co-doped into a 80% Er(F-TPIP)3.

Figure 6. Time evolution of the singlet emission (a) and triplet emission (b) from delayed fluorescence 
measurement conducted on the pure Zn(F-BTZ)2 film, 80% Y(F-TPIP)3-Zn(F-BTZ)2 film and 80% Er(F-
TPIP)3-Zn(F-BTZ)2 film under 80 K.
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included. As the Förster radius is defined as the distance at which there is a 50% probability of energy transfer 
from the donor to the acceptor and given that the “radius” of an Er(F-TPIP)3 molecule is ~7 Å this demonstrates 
that if the chromophore is in a nearest neighbour location the coupling should be very strong whereas even in 
a second nearest neighbour location there should still be very good coupling. We have seen a 50% reduction in 
both the singlet intensity and the triplet lifetime in the 80% Er(F-TPIP)3 doped film. This should correspond to 
the chromophore molecules being >20 Å from any Er ions which is obviously not true in the 80% doped films. 
Therefore, one might expect the observed quenching to be much higher. However, the excitation power density 
used in these films is of the order 300–600 mW/cm2 (10 mW laser intensity and a spot diameter of ~1.5–2 mm); 
at room temperature this was sufficient to have ~20% of the Er3+ ions in the excited state and these ions are going 
to be the ones that are closest to the chromophore molecules. Therefore, under these large excitation intensities it 
would be expected that chromophores will excite Er ions efficiently and then be re-excited by the pump and that 
once the nearest Er ions have been excited the chromophore molecules will no longer be quenched. It is therefore 
the case that at this excitation density there are extra excited states within the Zn(F-BTZ)2 to replenish Er3+ that 
are de-excited. This would be a fundamental requirement for maintaining gain in a laser application.

An alternative approach to using organic sensitizers with IR emitting lanthanides has been to couple them to 
doped inorganic nanoparticles27–30. This type of composite based on inorganic nanoparticles also have organic 
groups on the surface and can be dispersed in organic solvents. Effective protection the lanthanide from the 
organic environment by nanoparticles has been achieved so as to produce relatively long infrared lifetimes29. The 
size of nanoparticles (typically larger or of the order of ~10 nm) is probably the main obstacle to achieve efficient 
sensitization, as we have shown that the Förster energy transfer from a visible chromophore into erbium operates 
in the range of ~2 nm which limits sensitisation into the core of the nanoparticle29. Nevertheless, further reduc-
tion of nanoparticle size will also lead to increased quenching of the erbium ions through interaction with OH 
and CH groups on the surface.

In conclusion, we have demonstrated a method for accurately determining the sensitisation of erbium ions in 
an organic host through a chromophore. We have shown that the sensitisation can be easily modelled as a simple 
scaling of the absorption cross section for the ion provided that ion-ion quenching interactions can be removed 
by keeping the Er(F-TPIP)3 concentration below ~44%. Using this approach we have been able to accurately 
quantify the sensitisation to a value of 5200 for a 9% film and 3700 for a 23% film and we find that the sensitisa-
tion saturates at ~2200 for erbium concentrations from 44 to 81%. This result is particularly exciting as it means 
that it is possible to get significant increases in excited erbium atoms in a film without further reduction in the 
sensitisation provided by the organic. If we were able to reduce the ion-ion quenching by using bulkier ligands 
that increase the spacing between erbium ions then we might be able to remove the ion-ion quenching with only 
a modest reduction in the erbium concentration whilst keeping a very high sensitisation factor. The model has 
also allowed us to demonstrate that we can obtain population inversion in these layers at very low optical power 
densities that are well within the range that can be achieved over large areas using conventional LED illumination. 
We have also demonstrated that both the singlet and triplet states of the chromophore can effectively couple into 
the Er3+ ions but due to their longer lifetimes it would be best to use chromophores with higher ISC rates in order 
to provide a reservoir of excited states to replace Er3+ ions that are de-excited to their ground state.

Methods
Co-doped films of Zn(F-BTZ)2 and Er(F-TPIP)3 were deposited by vacuum sublimation at a base pressure of 
~10−7 mbar onto a glass substrate. The layers were then encapsulated with a 100 nm film of aluminium to protect 
the material from atmospheric degradation. Samples were prepared with Er(F-TPIP)3 mole fractions of 9, 23, 44, 
64 and 81% and each film was grown with an identical amount of the Zn(F-BTZ)2 chromophore (50 nm effective 

Figure 7. The molar absorption spectrum for Er(F-TPIP)3 and the room temperature photoluminescence 
spectrum for Zn(F-BTZ)2 which are used to calculate the Förster radius for energy transfer between the 
chromophore and the Er ions.
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thickness) in order to ensure that the absorption of the 407 nm laser was constant for each film. 50 nm was chosen 
as this thickness (coupled with the reflective Al capping layer) ensured that the intensity of the light absorbed was 
relatively uniform (~20% variation) through the film. In order to ensure consistent and reproducible absorption 
and emission detection between samples, the two different pump lasers were made co-axial and brought in nor-
mal to the sample surface in every case. The emission was also collected normal to the sample surface, dispersed 
in a Triax 550 spectrometer and detected using a Hamamatsu R5509-72 IR-PMT. The erbium emission intensity 
was measured at 1532 nm. For both lasers the beams were expanded and a uniform illumination of the sample, 
through a 1 mm diameter hole, was used. The power density of each measurement was measured directly by 
replacing the sample with a calibrated silicon photodetector. Ten measurements of the erbium emission intensity 
were recorded for each excitation power density and the average and standard error calculated for each. Each 
sample measurement was repeated on different days to ensure that the results were reproducible.

All films were flat and uniform with low surface roughness and no evidence of agglomeration of the two 
molecules.
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