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A MATHEMATICAL JUSTIFICATION FOR METRONOMIC

CHEMOTHERAPY IN ONCOLOGY

Luis A. Fernández1,* , Cecilia Pola1 and Judith Sáinz-Pardo2

Abstract. We mathematically justify metronomic chemotherapy as the best strategy to apply many
cytotoxic drugs in oncology for both curative and palliative approaches, assuming the classical pharma-
cokinetic model together with the Emax pharmacodynamic and the Norton-Simon hypothesis. From the
mathematical point of view, we will consider two mixed-integer nonlinear optimization problems, where
the unknowns are the number of the doses and the quantity of each one, adjusting the administration
times a posteriori.
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1. Introduction

Since the origins of chemotherapy in oncology, the standard and most widely used treatment has been the
maximum tolerated dose (MTD): “the higher the dose, the better”, whose rationale seems very intuitive. As
everyone knows, the trade-off lies in the side effects due to drug toxicity, which not only diminishes quality of
life for the patient (adding more illness to the existing one), but also make it necessary to impose rest periods
between cycles of therapy, which compromises a good resolution of the cancer treatment. For this reason, the
design of more effective and less toxic chemotherapeutic regimens (by choosing the timing and fractionation of
the doses) is a very active area of research in oncology.

A turning point in cancer chemotherapy treatments can be placed in the year 2000, when a revolutionary
alternative approach called “metronomic chemotherapy” (MC) was proposed, see [14] and the references therein.
According to National Cancer Institute [9], this is the “treatment in which low doses of anticancer drugs are given
on a continuous or frequent, regular schedule (such as daily or weekly), usually over a long time. Metronomic
chemotherapy causes less severe side effects than standard chemotherapy. Giving low doses of chemotherapy
may stop the growth of new blood vessels that tumors need to grow”. In oncology, this last effect is referred to
as “anti-angiogenesis”.

The historical controversy between efficacy in tumor killing and lack of toxicity has given rise to numerous
studies and experimental trials comparing MTD and MC, the main conclusion of which can be summarized

Keywords and phrases: Metronomic chemotherapy, mixed-integer nonlinear optimization, Norton-Simon hypothesis, Emax
model.
1 Department of Mathematics, Statistics and Computation, Universidad de Cantabria, Avda. de los Castros, s/n, 39005
Santander, Spain.
2 Advanced Computing and e-Science Group, Instituto de F́ısica de Cantabria (IFCA), Universidad de Cantabria-CSIC, Avda.
de los Castros, s/n, 39005 Santander, Spain.

* Corresponding author: lafernandez@unican.es

© The authors. Published by EDP Sciences, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/mmnp/2022010
https://www.mmnp-journal.org/
https://orcid.org/0000-0002-1962-4302
https://orcid.org/0000-0003-1626-5508
https://orcid.org/0000-0002-8387-578X
mailto:lafernandez@unican.es
https://creativecommons.org/licenses/by/4.0


2 L.A. FERNÁNDEZ ET AL.

by saying that “the body of experimental and clinical evidence, coupled with theoretical considerations [...]
point to MC as a preferred course of action”, see [7]. Among the theoretical considerations, in addition to the
anti-angiogenesis effect, we can mention that MC can activate anti-tumor immunity and minimize therapeutic
resistance.

In this work, we will justify mathematically that MC is the best strategy in oncology for many cytotoxic drugs
and both curative and palliative treatments, using simple well-established mathematical models and without
taking those additional benefits into account. To that end, we will study two different optimization problems
that arise when modeling usual chemotherapy treatments for cancer: to minimize the tumor volume at a fixed
final time (curative approach) or to minimize the total cumulative dose that a patient must take during a
specific period of time for maintaining the tumor volume below a given threshold (palliative approach). We
will assume a Gomperztian type tumor growth and the Norton-Simon hypothesis to represent the growth-
inhibitory influence due to the cytotoxic chemotherapy effect (see [11, 15]) with the classical pharmacokinetics
and the Emax pharmacodynamic model. As far as we know, the first reference on this topic including some
mathematical argumentation is [6], where the efficiency of MC was related with heterogeneous tumor populations
(sensitive/resistant cells) assuming the log-kill hypothesis and Skipper’s pharmacodynamic model; see also [8]
and the references therein.

From the mathematical point of view, the optimization problems under our consideration are nonlinear and
of mixed-integer type (where we will have the number of treatment doses as an integer variable, N , and the
amount of each individual dose as a continuous variable, di). In both cases we will give explicit expressions of the
approximated optimal solutions which will lead us to choose treatments corresponding to MC. A posteriori, the
administration times can be adjusted (in fact, in several ways) completing the description of the treatment. We
will illustrate the utility of our approach with numerical experiments concerning the treatment of some brain
tumors that exhibit Gompertzian growth (see [16]) using a cytotoxic drug called Temozolomide. This drug is
the subject of many clinical and biological recent studies (see [2, 4, 10, 12] and their references). The origin of
this paper was an academic project [13] submitted by the third author under the supervision of the other two
authors.

2. Associated optimization problems

Gompertz’s law has often been used to simulate the growth of some untreated tumors (see for instance [1]).
In mathematical terms this can be described by the following ordinary differential equation (ODE):

L′(t) = Ψ(L(t)), (2.1)

where

Ψ(L) = ξL log

(
θ

L

)
.

In the above equations, L(t) represents the tumor volume (or tumor size) at time t, ξ its growth rate and θ
the maximum size it can reach (also called carrying capacity for biological systems). In practice, the parameters
ξ and θ can also change with time (due to angiogenesis), but here we will focus on the simpler problem in which
they are fixed.

As mentioned before, when using a cytotoxic drug to treat the tumor, we will consider the Norton-Simon
hypothesis to model its effect; more precisely, we will assume that the growth-inhibiting effect due to the
treatment is proportional to the growth rate of the untreated tumor (see [11, 15]). Mathematically, this can be
written as

L′(t) = Ψ(L(t))(1− ρ(t)). (2.2)
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Here the term Ψ(L(t))ρ(t) represents the growth-inhibitory influence due to the cytotoxic chemotherapy effect
and it reflects both, the level of the therapy at time t, ρ(t), and the tumor’s sensitivity to therapy.

First, let us present a general result for the existence and uniqueness of solution for the Cauchy problem
associated with (2.2) (see [5] for the proof). As usual, we will denote by W 1,∞(0, T ) the Sobolev space of all
functions in L∞(0, T ) having first order weak derivative (in the distributional sense) also belonging to L∞(0, T ).
It is well known that W 1,∞(0, T ) can be identified with C0,1[0, T ], the space of Lipschitz continuous functions
in [0, T ], after a possible redefinition on a set of zero measure.

Theorem 2.1. Let us assume that ξ, θ, L0 and T are given positive real numbers, L0 ∈ (0, θ) and ρ ∈ L∞(0, T ).
Then, there exists a unique solution L ∈W 1,∞(0, T ) of the following Cauchy problem

L′(t) = ξL(t) log

(
θ

L(t)

)
(1− ρ(t)), L(0) = L0, (2.3)

given by

L(t) = θ exp

(
log (L0/θ) exp (−ξ

∫ t

0

(1− ρ(s))ds)

)
, ∀t ∈ [0, T ]. (2.4)

Depending on the expression of ρ(t), different pharmacodynamics (PD) can be studied. In this work we
consider the classic Emax model:

ρ(t) =
k1c(t)

k2 + c(t)
, (2.5)

where k1 and k2 are fixed positive real numbers and c(t) denotes the concentration of the drug in the tumor at
time t. More precisely, k1 represents the maximum effect of the drug on the tumor and k2 is the half maximal
effective concentration, i.e the concentration producing 50% of the maximum effect, usually denoted by EC50.
Other choices have been considered in the literature, as the Skipper model where ρ(t) = k1c(t). The Emax
model seems to be more appropriate from the clinical point of view because it saturates for high concentration
values.

Another crucial term is related with the pharmacokinetics (PK). We use the following Cauchy problem to
describe the PK of the drug:  c′(t) = −λc(t) +

N∑
i=1

σdiδ(t− ti),

c(0) = 0.

(2.6)

The coefficient λ is the clearance rate and it is related to the half-life of the drug (t1/2) by the expression
λ = log(2)/t1/2. The second term on the right hand of the equation depends on both the specific drug and the
way it is administered. We assume that N doses, {di}Ni=1, will be used at N dosage times, {ti}Ni=1, such that
0 ≤ t1 < . . . < tN . The coefficient σ is determined on the basis of drug-, patient- and tumor-specific parameters.
For instance, in the case of brain tumors the drug loss during the transport to the brain has to be taken into

account, see [2] and the references therein. In other cases, σ =
α

VDβ
, where α is the patient’s body surface area,

VD is the volume of distribution of the drug (given in l/kg) and β is the patient weight in kg. Finally, δ(t− ti)
is the Dirac delta distribution concentrated at ti.

In principle, it seems reasonable to consider the administration times {ti}Ni=1 as variables of the optimization
problems, as well as N and the doses {di}Ni=1. However, this approach would lead us into serious difficulties
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because the criterion for deciding a priori the characteristics that determine the feasible protocols may be
unknown even to the specialist and in practice, this would make the mathematical approach unfeasible. Instead,
after some calculations and under our main hypothesis (3.4), see below, we will obtain formulations that are
independent of the administration times and valid for many cytotoxic drugs. For these cases we propose to
consider the administration times set in a first step (patterned or irregularly distributed, as one prefers, but
verifying condition (3.4)), readjusting them after the optimization process has finished, i.e., once N and the
doses {di}Ni=1 have been determined.

In this paper we are interested in the solutions of two optimization problems associated with the Cauchy
problem (2.3) using the Emax model (2.5) and when the following data are given: the final time T (T >
tN ) and the levels of effectiveness and the toxicity of each individual dose, dmin and dmax, respectively. We
assume 0 < dmin < dmax. To simplify some expressions we will use tN+1 = T . As we have explained before, the
administration times ti, i = 1, . . . , N , are fixed a priori satisfying (3.4), but the number N of the treatment
doses is a variable to be determined.

Firstly, we consider a curative approach with the goal of minimizing the tumor volume at the final time T
with a fixed cumulative dose, D, that will be divided into N smaller doses, {di}Ni=1, to be determined. Hence
we formulate the following problem with N + 1 variables

(P1)



min L(T ),
N ∈ N, d = (d1, . . . , dN ) ∈ RN ,

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, i = 1, . . . , N.

(2.7)

Using (2.4) and the fact that L0 < θ (where L0 is the initial tumor size), we transform (P1) into the following
problem: 

max

∫ T

0

ρ(s)ds,

N ∈ N, d = (d1, . . . , dN ) ∈ RN ,

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, i = 1, . . . , N.

(2.8)

Now, let’s formulate the problem related to a palliative approach in which we want to minimize the total
dose (determining N and di, for i = 1, . . . , N) while maintaining the tumor volume at T below a given threshold
L∗ > 0 that is not harmful to the patient, allowing him to have an acceptable quality of life. We consider the
same bound constraints on the individual doses as in the previous optimization problem:

(P2)


min

N∑
i=1

di,

N ∈ N, d = (d1, . . . , dN ) ∈ RN ,
subject to L(T ) ≤ L∗,

dmin ≤ di ≤ dmax, i = 1, . . . , N.

(2.9)

Using again (2.4), it is easy to check the equivalence:

L(T ) ≤ L∗ ⇐⇒
∫ T

0

ρ(s)ds ≥ T + TR,with TR =
1

ξ
log

(
log (L∗/θ)

log (L0/θ)

)
. (2.10)
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Therefore, we can reformulate the problem (P2) as follows:

min

N∑
i=1

di,

N ∈ N, d = (d1, . . . , dN ) ∈ RN ,

subject to

∫ T

0

ρ(s)ds ≥ T + TR,

dmin ≤ di ≤ dmax, i = 1, . . . , N.

(2.11)

3. Optimal treatments

In view of our optimization problems it is convenient to have an explicit formulation for the concentration
of the drug.

Proposition 3.1. The solution of the Cauchy problem (2.6) is given by

c(t) =



0, if t ∈ [0, t1),
σe−λteλt1d1, if t ∈ [t1, t2),
σe−λt(eλt1d1 + eλt2d2), if t ∈ [t2, t3),
...

...
σe−λt(eλt1d1 + . . .+ eλtN−1dN−1), if t ∈ [tN−1, tN ),
σe−λt(eλt1d1 + . . .+ eλtNdN ), if t ∈ [tN , T ).

(3.1)

Proof. Applying Laplace transform to problem (2.6) we get

sL(c)(s) = −λL(c)(s) +

N∑
i=1

σdie
−sti ,

and consequently,

L(c)(s) =

N∑
i=1

σdi
e−sti

s+ λ
=

N∑
i=1

σdie
−stiL(e−λt)(s) =

N∑
i=1

σdiL(gi)(s),

where

gi(t) =

{
0, if 0 ≤ t ≤ ti,
e−λ(t−ti), if t ≥ ti.

This implies that

c(t) =

N∑
i=1

σdigi(t),

which is equivalent to (3.1).

We continue by obtaining the expression for the integral term appearing in (2.8) and (2.11). In this respect,
we present the following result:
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Lemma 3.2. Let us assume that c(t) is given by (3.1) and ρ(t) by (2.5). Then, it is verified that

∫ T

0

ρ(s) ds =
k1

λ
log


(d1 + k̃2)

N∏
i=2

(

i−1∑
j=1

dje
λ(tj−ti) + di + k̃2)

N∏
i=1

(

i∑
j=1

djeλ(tj−ti+1) + k̃2)

 , (3.2)

where k̃2 = k2/σ and tN+1 = T .

Proof. Using (3.1) and the definition of ρ, we derive (3.2) from the following equalities:

∫ t2

t1

c(s)

k2 + c(s)
ds =

1

λ
log

(
d1 + k̃2

d1eλ(t1−t2) + k̃2

)
,

∫ ti+1

ti

c(s)

k2 + c(s)
ds =

1

λ
log

(
d1e

λ(t1−ti) + · · ·+ di−1e
λ(ti−1−ti) + di + k̃2

d1eλ(t1−ti+1) + · · ·+ dieλ(ti−ti+1) + k̃2

)
,

for i = 2, . . . , N − 1 and taking into account that the integral corresponding to the interval [tN , T ] is similar to
the previous expression changing ti by tN and ti+1 by T .

3.1. Curative approach

We start by considering the problem (P1) defined in Section 2 (in which we want to minimize the tumor
volume at time T with a fixed cumulative dose D). In this case, using (2.8), (3.2), the positivity of k1/λ and
the monotonicity of the logarithm function, we reformulate the problem (P1) as follows:



Max f1(N, d) =

(d1 + k̃2)

N∏
i=2

(

i−1∑
j=1

dje
λ(tj−ti) + di + k̃2)

N∏
i=1

(

i∑
j=1

djeλ(tj−ti+1) + k̃2)

,

N ∈ N, d = (d1, . . . , dN ) ∈ RN ,

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, i = 1, . . . , N.

(3.3)

Note that it is a mixed-integer nonlinear optimization problem with an integer variable, N , and N continuous
variables, di.

In order to simplify the objective function f1, along the rest of the work, we will assume the main hypothesis
that we are considering cytotoxic drugs such that their half maximal effective concentrations (k2) and their
maximum tolerated dose concentrations (σdmax) verify the following condition:

σdmaxe
−λs � k2, (3.4)
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where s denotes the minimum of the elapsed time periods; this is

s = min{ti+1 − ti : i = 1, . . . , N}.

Let us stress that this condition holds (at least) when λ is sufficiently large (or equivalently, the half-life of the
drug is sufficiently small). We will show later that many of the common cytotoxic drugs meet this condition,
see Table 1.

Assuming (3.4) and recalling that k̃2 = k2/σ, we have the following approximation for the objective function:

f1(N, d) ≈
N∏
i=1

(
di

k̃2

+ 1

)
, (3.5)

that leads to the mixed-integer nonlinear programming problem:

(P̂1)



Max f̂1(N, d) =

N∏
i=1

(
di

k̃2

+ 1

)
,

N ∈ N, d = (d1, . . . , dN ) ∈ RN ,

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, i = 1, . . . , N.

(3.6)

At this point, it is very important to underline that the administration times {ti}Ni=1 do not appear in the

formulation of (P̂1). This is a crucial property that will allow us to break the vicious circle mentioned in the

previous section: for many cytotoxic drugs we will first determine N and the doses {di}Ni=1 as the solution of

(P̂1) and then assign appropriate administration times, checking that (3.4) holds.
Using the bound constraints and the total dose value, in order to have a non-empty set of feasible points, we

must assume

[D/dmax, D/dmin] ∩ N 6= ∅. (3.7)

In particular, hypothesis (3.7) implies that only a finite number of values for variable N have to be taken
into account to solve the optimization problem. Namely,

N ∈ {dD/dmaxe, . . . , bD/dminc}, (3.8)

where bxc denotes the greatest integer less than or equal to x and dxe the least integer greater than or equal to
x.

Now, for each fixed feasible value of N , we can formulate the following continuous nonlinear programming
problem:

(P̂N1 )



Max f̂N1 (d) =

N∏
i=1

(
di

k̃2

+ 1

)
,

d = (d1, . . . , dN ) ∈ RN ,

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, i = 1, . . . , N.

(3.9)
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It is not difficult to prove that equal-dosage is the optimal solution of the previous problem:

Theorem 3.3. Let us assume that dmin > 0 and (3.7). Then, for each N verifying (3.8), the problem (P̂N1 ) has

a unique optimal solution d̂ given by

d̂i = D/N, for i = 1, . . . , N.

Proof. For any feasible point d, using the relation between the geometric and arithmetic means, we get

N

√√√√ N∏
i=1

(
di

k̃2

+ 1

)
≤ 1

N

N∑
i=1

(
di

k̃2

+ 1

)
=

D

Nk̃2

+ 1,

and therefore, f̂N1 (d) ≤
(

D
Nk̃2

+ 1
)N

. By the hypotheses, d̂ = (D/N, . . . ,D/N) is a feasible point for (P̂N1 ) such

that the corresponding objective function value reaches the above upper bound, so the conclusion of the theorem
follows straightforwardly.

As a consequence, the optimal solution of the approximate mixed-integer optimization problem (P̂1) leads to
the longest feasible treatment:

Corollary 3.4. Let us assume that dmin > 0 and (3.7). Then the optimal solution of (P̂1) is given by (N̂ , d̂),

with N̂ = bD/dminc and d̂i = D/N̂, for i = 1, . . . , N̂ .

Proof. This can be deduced combining Theorem 3.3 with the fact that the auxiliary function

ϕ1(x) =

(
1

x
+ 1

)x
is strictly increasing in (0,+∞) and noticing that

f̂1(N, d̂) =

(
D

Nk̃2

+ 1

)N
=

(
ϕ1

(
Nk̃2

D

)) D
k̃2

.

Furthermore, we can study the dependence of the objective function optimal value with respect to dmin.
Using previous expressions, we derive

f̂1(N̂ , d̂) =

(
D

N̂k̃2

+ 1

)N̂
≈
(
dmin

k̃2

+ 1

) D
dmin

=

(
ϕ1

(
k̃2

dmin

)) D
k̃2

.

On the one hand, this implies that to increase f̂1(N̂ , d̂) (and therefore to decrease the tumor size at the fixed
final time) is interesting to take dmin as small as possible, in line with the principles of MC. But, on the other
hand, from the clinical point of view, it is known that for any drug there is a minimum effective dose (the
smallest dose with a discernible useful effect) that must be taken into account. In general, its estimation (and
even its definition) remains controversial and this carries over to the determination of the optimal dmin in the
practice.
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Table 1. Parameter values for some cytotoxic drugs.

Generic name s (days) λ (days−1) exp(−λs)

Bleomycin 1 8.318e+00 2.441e−04
Capecitabine 0.5 3.869e+01 3.973e−09
Carboplatin 28 5.545e+00 3.709e−68
Cisplatin 28 3.327e+01 0
Dacarbazine 1 3.327e+00 3.590e−02
Docetaxel 21 1.498e+00 2.146e−14
Doxorubicin 21 3.466e−01 6.905e−04
Gemcitabine 7 1.060e+01 6.136e−33
Melphalan 1 1.331e+01 1.660e−06
Methotrexate 1 5.545e+00 3.906e−03
Paclitaxel 21 8.235e−01 3.084e−08
Pentostatin 14 2.919e+00 1.799e−18
Temozolomide 1 9.242e+00 9.689e−05
Topotecan 1 5.545e+00 3.906e−03
Vinorelbine 7 6.006e−01 1.494e−02

Remark 3.5. i) Choosing the Gompertzian law for the untreated tumor growth is not a crucial aspect for
deriving our results. Other typical ODEs with sigmoid-type solutions may be reasonable choices, such as
(2.1) with

Ψ(L) =
ξ

γ
L

(
1−

(
L

θ

)γ)
,

with γ > 0. For γ = 1, we recover the well-known logistic ODE, meanwhile for small γ > 0 , this is an
approximation of the Gompertz ODE, see [1]. All these options lead to the same results.

ii) Instead, it can be shown that the Norton-Simon hypothesis is crucial for our argument. There are other
classical hypotheses such as the log-kill one. It states that a given dose of chemotherapy kills the same
fraction of tumor cells regardless of the size of the tumor at the time of treatment, which leads to the
following problem

L′(t) = ξL(t) log

(
θ

L(t)

)
− ρ(t)L(t), L(0) = L0, (3.10)

instead of (2.3). Although the log-kill hypothesis continues to appear frequently in the literature, it was
shown in [11] to be inconsistent with some clinical experiences.

iii) We have studied a related problem for continuous (non-discrete) drug infusion in [5] (labeled (OP2) with
G = G2). There, it was proved the appearance of a constant maintenance infusion rate (during a fairly
long time interval) in the expression of the optimal control. This can be seen as a piecewise continuous
version of our previous Corollary 3.4.

iv) We present Table 1 to illustrate the verification of our main hypothesis (3.4) for several cytotoxic drugs.
The drug name appears in the first column, then two columns show the values of the minimum time
interval between doses (s) for the usual monotherapy treatments and the clearance rate (λ) from the data
of [3] and finally, the value exp(−λs) appears in the last column. Taking into account these values, we
observe that, for our main hypothesis to be fulfilled in all cases, it is sufficient for the half maximal effective
concentration (k2) to be significantly higher than 4% of the concentration associated with the maximum
tolerated dose (σdmax), which does not seem to be a very demanding condition.
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Table 2. Parameter values used for the numerical experiments.

Parameters Temozolomide (TMZ)

λ (days−1) 9.242
ξ (days−1) 5.51e−3
k1 60
k2 (mg/l) 3.6e−1
σ (m2/l) 4e−3
dmax (mg/m2) 200
T (days) 210
L0/θ 2.5e−1
t1 0

Among the drugs listed in Table 1, we have chosen Temozolomide (TMZ) for our numerical experiments. TMZ
is an oral alkylating agent with antitumor activity in high and low grade gliomas (HGG and LGG, respectively).
In the monotherapy phase for adult patients with newly-diagnosed glioblastoma multiforme, TMZ is usually
administered consecutively for 5 days of every 28 days (this is denoted by 5/28d) for a maximum of 6 cycles
with individual doses of 150 mg/m2 in first cycle and 200 mg/m2 in the others. So, taking into account this
usual treatment (UT), we have fixed T = 210 days for the final time (approximately two months after the end
of UT) and D = 5750 mg/m2 for the cumulative dose.

The parameter values used for our numerical computations are showed in Table 2. The growth rate ξ depends
on the type of tumor; the value ξ= 5.51e−3 could correspond to an HGG with a volume-doubling time about
126 days (see [16] for growth dynamics of glioblastomas). Following [2], we have used σ = 4e−3 that corresponds
to a woman with a body surface of 1.6 m2 and it takes into account the fraction of TMZ getting to her brain
interstitium. We have chosen k2 = 3.6e−1 mg/l, a value that is consistent with predicted peak concentrations
of TMZ from [2, 12]; also k1 = 60 for illustrative purposes. Let us note that the parameter k1 does not play any
role either in the optimization process of this subsection nor in the main hypothesis (3.4), but it influences the
evaluation of the tumor size. Moreover, let us stress that (3.4) holds in this case, because

σdmaxe
−λs ≈ 7.75e−5� k2 = 3.6e−1,

with s = 1. Finally, let us underline that the value of θ is unnecessary here, because the initial datum and the
results are given rescaled in the form L0/θ and L(t)/θ, respectively (see Tab. 2 and all figures).

In Table 3 we present some numerical results to illustrate and compare the optimal treatments of (3.3) with
fixed N (denoted by (PN1 )) to those associated with (P̂N1 ) in the case of doses between dmin = 100 mg/m2

and dmax = 200 mg/m2. To solve the problems (PN1 ), we have used FMINCON (a nonlinear programming
solver provided in MATLAB’s Optimization Toolbox) with the SQP algorithm and the value 1.e−8 for the
optimality tolerance. Here, we present results only for the feasible values of N , taking into account the length
of the treatment interval (210 days) and the number of dosage times for the 5/28d schedule: N ∈ [29, 40]. This
number N appears in the first column; then we present two columns with the individual doses of the treatment
described in Theorem 3.3 for (P̂N1 ) and the ratio of the final tumor volume to the initial volume, L(T )/L0,
for an initial medium size tumor (25% of carrying capacity); the next three columns report results given by
FMINCON: the minimum and maximum values reached by the individual doses of each treatment, d̄min and
d̄max, and its corresponding ratio L(T )/L0. Let us note at this point that, for each value of N , the individual
doses obtained with FMINCON are almost identical and moreover the best solution is reached administering 40
doses. The last line of the table is associated to UT described above using N = 30 doses. It is noteworthy that
with it the final tumor volume is 91% of the initial volume while the best treatment provides 73%. At the top
of Figure 1 we see the evolution of the tumor volume, L(t)/θ, for a selection of treatments of Table 3: UT, the
35-dose treatment and the 40-dose treatment in black, blue and red, respectively. The circles and stars mark the
drug administration times (from the 5/28d schedule) used for the graphs. Note that UT is the shortest (it ends
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Table 3. Results with D = 5750 mg/m2, dmin = 100 mg/m2 and 5/28d schedule.

(P̂N1 ) (PN1 )

N D/N L(T )/L0 d̄min d̄max L(T )/L0

29 198.28 0.93 198.26 198.32 0.93
30 191.67 0.91 191.65 191.71 0.91
31 185.48 0.89 185.47 185.54 0.89
32 179.69 0.87 179.67 179.72 0.87
33 174.24 0.85 174.23 174.28 0.85
34 169.12 0.83 169.10 169.15 0.83
35 164.29 0.81 164.27 164.32 0.81
36 159.72 0.79 159.71 159.77 0.79
37 155.41 0.77 155.39 155.43 0.77
38 151.32 0.76 151.30 151.34 0.76
39 147.44 0.74 147.42 147.46 0.74
40 143.75 0.73 143.74 143.78 0.73

30 (UT) 150 200 0.91

Figure 1. Optimization results for TMZ (see Tabs. 3 and 5).

in 145 days). To illustrate that the distribution of the dosage times does not influence the final tumor size, we
present three treatments with N = 30 doses in Figure 2: UT, one with the UT doses equally distributed in time
and another with one given at t1 = 0 and the other 29 doses of UT concentrated at the end of the interval (in
this case we do not take into account the medical feasibility of the treatments). The tumor size during the last
six days is practically the same in all cases (with a difference from the size given by UT less than 4.0558e−5).

The most relevant results of this section are given in Table 4 and at the top of Figure 3, where we show
the influence of the level dmin and compare four optimal treatments corresponding to (P̂1) requiring the same
cumulative dose (D = 5750 mg/m2). The rest of the parameters are given in Table 2. As we have mentioned
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Figure 2. Tumor volume evolution with UT doses distributed in three different ways.

Table 4. Results for (P̂1) with D = 5750 mg/m2 varying dmin.

dmin N̂ D/N̂ Schedule L(T )/L0 Dose intensity

150 38 151.32 7/14d 0.76 78.77
100 57 100.88 21/28d 0.53 80.99
75 76 75.66 21/28d 0.41 59.28
50 115 50.00 28/28d 0.27 50.00

previously, first dmin is fixed and (P̂1) is solved (using Corollary 3.4) to determine N̂ and {d̂i}N̂i=1; then, we have
selected the most appropriate schedules for TMZ considered in some studies, see [10]: the 7/14d with doses of
150 mg/m2, the 21/28d with doses of 100 mg/m2 and 75 mg/m2 and the daily regimen with 50 mg/m2 doses.
The results of the penultimate column of Table 4 and the graphics of Figure 3 have been calculated with the
times given by these schedules. Let us underline that the specific values of the administration times do not affect
the optimal solutions (defined by the values of the second and third columns) and the only relevant factor is
the maximum number of doses that can be administered with the chosen dmin. In the fifth column, we observe
that the greatest tumor shrinkage is achieved with the longest treatment which also has the lowest doses, in line
with MC. Moreover, three of the treatments of Table 4 are more effective than the best treatment of Table 3,
all of them improving UT. As predicted by the Norton-Simon hypothesis [15], it is apparent that the optimal
solution is more “dose-dense” than other feasible protocols, see the top of Figure 3 (the period between cycles is
shorter). However, concerning the “dose-intensity” (defined as the total dose administered during a treatment,
divided by its duration) it can be seen in the last column of Table 4 that the optimal protocol has the lowest.

3.2. Palliative approach

In this section we are interested in the optimization problem (P2), i.e., we want to minimize the total
administered dose with a constraint on the tumor size at the final time: L(T ) ≤ L∗, where L∗ is a level given in
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Figure 3. Optimization results with TMZ (see Tabs. 4 and 6).

advance. Using (2.10) and Lemma 3.2, that constraint is equivalent to the following inequality:

f1(N, d) ≥ eT̃R ,

being f1 the objective function of problem (3.3) and

T̃R
def
=

λ

k1
(T + TR). (3.11)

Let us remember that TR depends on the data ξ, θ, L0 and L∗ (see (2.10)). Therefore, through (2.11), the
optimization problem (P2) can be reformulated as follows:


min f2(N, d) =

N∑
i=1

di,

N ∈ N, d = (d1, . . . , dN ) ∈ RN ,
subject to f1(N, d) ≥ eT̃R ,

dmin ≤ di ≤ dmax, i = 1, . . . , N,

(3.12)

with dmin > 0 and T̃R ∈ R defined in (3.11). Using the approximation (3.5) in the nonlinear constraint, we arrive
to the following nonlinear programming problem

(P̂2)


min f2(N, d) =

N∑
i=1

di,

N ∈ N, d = (d1, . . . , dN ) ∈ RN ,
subject to f̂1(N, d) ≥ eT̃R ,

dmin ≤ di ≤ dmax, i = 1, . . . , N,

(3.13)
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with f̂1 defined in (3.6). As one can see, (P̂2) is also a mixed-integer nonlinear optimization problem with an
integer variable N and N continuous variables, di.

In this case, let us remark that the set of feasible values for N is infinite: using the general inequality constraint
and the upper bound constraints, the following inequality should be satisfied

N ≥ dT̃R/log(dmax/k̃2 + 1)e def= Nmin.

In fact, only a finite subset has practical interest, i.e., those values that also verify

N ≤ Nmax
def
= dT̃R/log(dmin/k̃2 + 1)e,

because at least the pair (Nmax, dmin, . . . , dmin︸ ︷︷ ︸
Nmax

) is feasible and any other feasible pair with larger value of N

will produce a greater value of the objective function f2. Therefore, to have a non-empty set of feasible points
we will assume

[Nmin, Nmax] ∩ N 6= ∅. (3.14)

Now, as in the previous subsection, we will focus on the associated continuous problems generated when the
value of the integer variable N is fixed:

(P̂N2 )


min fN2 (d) =

N∑
i=1

di,

d = (d1, . . . , dN ) ∈ RN ,
subject to f̂N1 (d) ≥ eT̃R ,

dmin ≤ di ≤ dmax, i = 1, . . . , N,

(3.15)

with the function f̂N1 defined in (3.9). In the following result we show that the optimal treatment for (P̂N2 ) has
also equal doses and moreover, we obtain the explicit formula to determine them:

Theorem 3.6. Let us assume dmin > 0 and

N ∈ [Nmin, Nmax − 1]. (3.16)

Then, the optimization problem (P̂N2 ) has a unique solution d̂ = (d̂1, . . . , d̂N ) given by

d̂i = k̃2(eT̃R/N − 1), for i = 1, . . . , N. (3.17)

Proof. First of all, it is easy to check that the proposed dose vector is feasible for the problem (P̂N2 ), if N verifies
(3.16). On the other hand, using once more the relation between the geometric and arithmetic means, the doses
of any feasible treatment for (P̂N2 ) verify the following inequalities

1

N

N∑
i=1

(di + k̃2) ≥
(
k̃N2 f̂

N
1 (d)

)1/N

≥ k̃2e
T̃R/N ,
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and consequently,

N∑
i=1

di ≥ Nk̃2(eT̃R/N − 1). (3.18)

Taking into account that the lower bound of (3.18) is equal to fN2 (d̂), the conclusion follows.

Finally, we determine the optimal solution of the approximate mixed-integer optimization problem of the
palliative approach.

Corollary 3.7. Let us assume that dmin > 0 and (3.14). Then a global optimal solution of (P̂2) problem is

given by (N̂ , d̂) with

a) N̂ = Nmax − 1 and d̂i = d∗, for i = 1, . . . , N̂ , if (Nmax − 1)d∗ ≤ Nmaxdmin,

b) N̂ = Nmax and d̂i = dmin, for i = 1, . . . , N̂ , if (Nmax − 1)d∗ ≥ Nmaxdmin,

where d∗ = k̃2(eT̃R/(Nmax−1) − 1).

Proof. This can be deduced combining Theorem 3.6 with the fact that the auxiliary function ϕ2(x) = x(e1/x−1)
is strictly decreasing in (0,+∞) and

f2(N, d̂) = Nk̃2(eT̃R/N − 1) = T̃Rk̃2ϕ2

(
N

T̃R

)
, (3.19)

for N ≤ Nmax − 1 and using that (dmin, . . . , dmin︸ ︷︷ ︸
Nmax

) is the solution of (P̂Nmax
2 ).

Remark 3.8. i) Let us note that both possibilities presented in Corollary 3.7 can occur in practical situa-
tions: for example, it can be observed in Table 6 below that option a) is true for dmin ∈ {50, 100}, while
the option b) holds for dmin ∈ {75, 150}.

ii) For the trivial cases we recover the expected solutions. For instance, when L∗ → θ−, we derive that eT̃R → 0

and the nonlinear constraint is always verified. Therefore the solution of (P̂2) is given by (N̂ , d̂) = (1, dmin),
as one can expect from the beginning.

iii) We can also observe that Nmax is a decreasing function of dmin; in fact, Nmax → +∞ when dmin → 0.
Moreover, in case a), we have

dmin ≤ d∗ ≤
Nmax

Nmax − 1
dmin,

and d∗ ≈ dmin for Nmax sufficiently large. From here we deduce that case a) is the prevalent one when
dmin is small enough.

iv) Once more, we can now study the dependence of the optimal cumulative dose with respect to dmin. Taking
(3.19) and previous remark into account, we conclude that

f2(N̂ , d̂) = T̃Rk̃2ϕ2

(
Nmax − 1

T̃R

)
≈ T̃Rk̃2ϕ2

(
1

log(dmin/k̃2 + 1)
− 1

T̃R

)
,

and to decrease f2(N̂ , d̂) we have to take dmin as small as possible. Again, this is in line with the principles
of MC.
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Table 5. Results with L? = 0.1813θ, dmin = 100 mg/m2 and 5/28d schedule.

(P̂N2 ) (PN2 )

N d̂i fN2 L(T )/θ d̄min d̄max (fN2 )opt L(T )/θ

33 196.18 6473.84 0.18134 196.20957 196.21000 6474.92 0.18130
34 186.60 6344.54 0.18134 186.63372 186.63413 6345.55 0.18130
35 177.87 6225.51 0.18134 177.89874 177.89913 6226.46 0.18130
36 169.88 6115.59 0.18134 169.90161 169.90211 6116.46 0.18130
37 162.54 6013.81 0.18134 162.55750 162.55786 6014.63 0.18130
38 155.77 5919.30 0.18134 155.79148 155.79182 5920.08 0.18130
39 149.52 5831.32 0.18133 149.54009 149.54041 5832.07 0.18130
40 143.73 5749.24 0.18133 143.74862 143.74893 5749.95 0.18130

Table 6. Results for (P̂2) with L? = 0.1813θ varying dmin.

dmin N̂ d̂i f N̂2 Schedule L(T )/θ Dose intensity

150 39 150.00 5850.00 7/14d 0.18047 79.05
100 51 100.25 5112.64 21/28d 0.18133 78.66
75 63 75.00 4725.00 21/28d 0.18119 61.36
50 86 50.29 4324.78 28/28d 0.18132 50.29

Tables 5 and 6 together with the plots at the bottom of Figures 1 and 3 are devoted to the palliative approach
with TMZ. We have considered the threshold L? = 0.1813θ which is associated to the size of the tumor at the
final time T with the best treatment of the curative approach in Table 3.

Let us remember that in Figure 1 we are considering treatments with a maximum of 40 doses and dmin =
100 mg/m2. Now, we do the same for Table 5 that presents two kind of optimal solutions: for each value of
N , the following three columns are devoted to problems (P̂N2 ) and the last four columns correspond to optimal
solutions obtained with FMINCON for problems (PN2 ), setting the value for N in (3.12). Columns with labels
d̄min and d̄max show the minimum and maximum doses of each treatment given by FMINCON, respectively.
Let us note that both values in each row are almost equal. Third and seventh columns (with labels fN2 and
(fN2 )opt) present the total dose associated to each optimal solution. Let us observe that we obtain similar results

for both problems and the tumor size level is slightly exceeded by the solutions of (P̂N2 ). Moreover, we check
that the longest treatment is the best from the point of view used in this subsection. The plot at the bottom of
Figure 1 shows the evolution of the tumor volume with three of these treatments computed with FMINCON:
the best treatment with a red line and asterisk markers for its 40 individual doses, the shortest treatment (with
N = 33 doses) with a black line and finally, the treatment of 37 doses with a blue line and circle markers. Both
in this plot and in the last column of the Table 5 we see that all treatments have the same tumor volume at the
final observation time (T = 210) reaching the threshold L?/θ.

Last but not least, in Table 6 and at the bottom of Figure 3 we show the influence of the level dmin cor-
responding to the palliative approach. Again, once we have fixed dmin and solved (P̂2), using Corollary 3.7 to

determine N̂ and {d̂i : i = 1, ..., N̂}, we have selected the more appropriated schedules used for TMZ. All the
treatments in the table keep the tumor below or very close to the given L? level, and the longest treatment
(that also has the lowest doses) is the best because it has the lowest cumulative dose. These results are also con-
sistent with MC. The corresponding tumor volumes, L(t)/θ, for a medium-sized initial tumor (25% of carrying
capacity) with the treatments in Table 6 are shown in the plot at the bottom of Figure 3. The final parts of the
four curves are graphically indistinguishable. Specifically, from day 86 onwards, the L∞ norm of the numerical
differences between their values is less than 2.1447e−03. This is surprising because the total doses administered
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during the four treatments are quite different, but it is a clear evidence of the superiority of MC and the plot
accurately reflects what is happening.

The computations were performed on a 3.9 GHz Core i5-8265U machine, with 8 GB RAM running under
the 64-bit version of Windows 10 and MATLAB R2019b.

4. Conclusions

Throughout this work we have given a mathematical justification supporting metronomic chemotherapy (MC)
as the best option for many cytotoxic drugs (i.e., when the main hypothesis (3.4) holds) for both curative and
palliative approaches in oncology. First, we have obtained explicit expressions of global optimal solutions of (P̂1)
and (P̂2) problems (given by Corollaries 3.4 and 3.7) that are approximations of (P1) and (P2), respectively.
Once more, we emphasize that the administration times do not appear in the formulation of (P̂1) and (P̂2)
and for both cases the optimal solutions lead to the longest feasible treatments with equal doses, which are
in line with MC. We further deduce mathematically that it is convenient to take the effectiveness level dmin

as small as possible (above the minimum effective dose). Numerical experiments with TMZ support the high
quality of the solutions of (P̂1) and (P̂2) with respect to those of (P1) and (P2), respectively, and illustrate the
theoretical results. Moreover, the optimal treatments calculated for both curative and palliative approaches are
quite similar. Finally, with our method, the administration times are adjusted a posteriori (once the number of
doses and the individual doses of the treatment are determined).

In our work we have used a simple mathematical model being crucial the Norton-Simon hypothesis, the Emax
model, the PK of the drug given by (2.6) and the main hypothesis (3.4). In the future, we would like to analyze
several generalizations and extensions from a mathematical point of view, including some relevant factors such
as drug resistance and anti-angiogenesis effect or the case when (3.4) fails. We think that both theoretical and
numerical results would be very useful for clinical purposes.
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