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work we intend to fill this gap by proposing and solving two mathematical models, a mixed integer linear
programming model and a constraint programming model. A thorough analysis on the scalability of solving
these mathematical models with commercial solvers is carried out. A state-of-the-art metaheuristic algorithm
from the literature is also used as reference point for a better understanding of the results. Using solvers of
different nature allows us to improve known upper and lower bounds for all existing instances, and certify
optimality for many of them for the first time. It also enables us to structurally characterise the instances’
hardness beyond their size.

Fuzzy numbers
Mathematical models
Benchmark
Metaheuristics

1. Introduction

Scheduling aims at finding the optimal arrangement of tasks by
allocating limited resources. Due to its complex nature and its high
relevance to many sectors such as industry, building renovation, wel-
fare, education, etc., it remains a significant research field (de Fatima
Morais, dal Molin Ribeiro, Gomes da Silva, Cocco Mariani, & dos
Santos Coelho, 2022; Lunardi, Birgin, Laborie, Ronconi, & Voos, 2020;
Pinedo, 2016).

One of the most studied scheduling problems is the job shop prob-
lem (JSP) and the most common objective is to minimise the time
span required to complete the project, known as makespan. Despite
the numerous contributions in the literature, the JSP with makespan
minimisation still poses a challenge with its numerous variants and
complexity (Xiong, Shi, Ren, & Hu, 2022). Although the JSP is NP-
hard in the strong sense, recent advancements in off-the-shelf solvers
have made it possible to solve mathematical models of the problem
for small to medium size instances or, at least, to obtain good-quality

lower and upper bounds for the optimal makespan (Ku & Beck, 2016).
Also, the extension of classical constraint programming (CP) to mathe-
matical concepts such as intervals and functions have made it easier
to model the JSP while providing an interesting problem structure
for an automatic search algorithm (Laborie, 2018; Laborie, Rogerie,
Shaw, & Vilim, 2018; Novas, 2019). For larger size instances that
remain unsolved with off-the-shelf solvers, metaheuristic techniques
are often employed to find good solutions within reasonable com-
putational effort (Dokeroglu, Sevinc, Kucukyilmaz, & Cosar, 2019;
Gendreau & Potvin, 2019). Usually the evaluation of such methods in
terms of performance and effectiveness is carried out using a variety
of available benchmarks such as the instances from Adams, Balas,
and Zawack (1988), Applegate and Cook (1991), Fisher and Thomson
(1963), Lawrence (1984) or Taillard (1993).

The interest in the job shop stems not only from its complexity but
also from its applications. Indeed, it serves as a model for real-world
problems arising in many manufacturing and service industries. A wide
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list of applications of the job shop scheduling in its multiple variants
can be found in the survey from Xiong et al. (2022). Additionally, real-
life applications of the flexible variant of the job shop are reviewed
in Xie, Gao, Peng, Li, and Li (2019).

Flexibility, together with crane transportation and energy objec-
tives, are some of the characteristics that are currently being explored
to increase the applicability of the job shop problem (Du, Li, Li, & Duan,
2022; Li, Du et al., 2022). Another feature to help narrow the gap
between academic and real-life settings is uncertainty, since the lack
of complete information is an inevitable part of project management
(Hazir & Ulusoy, 2020; Verderame, Elia, Li, & Floudas, 2010). In
particular, activity durations tend to deviate from the initial estimates,
either due to inaccurate estimation or to unexpected events faced
during execution. In consequence, activity durations constitute one of
the four major sources of uncertainty in the work content, which could
broadly be defined as the effort required for completing all the project
activities (Hazir & Ulusoy, 2020).

While stochastic scheduling is the most common framework for
modelling uncertainty, it may not always be a feasible or efficient
approach. A first reason is that stochastic modelling requires a large
amount of high-quality data, which may be difficult to obtain or even
unavailable in some cases. Also, working with complex probability
distributions can be computationally demanding and time-consuming.
Finally, stochastic models may not always provide the flexibility needed
to capture a wide range of uncertainty types, including vagueness
and ambiguity. Fuzzy sets within the framework of possibility the-
ory provide an alternative model which is computationally less de-
manding while allowing for greater flexibility in representing uncer-
tainty (Dubois, Fargier, & Fortemps, 2010). Moreover, fuzzy num-
bers can be obtained based on expert opinions or subjective esti-
mates, making them a suitable alternative when data are limited or
unavailable.

The fuzzy approach to uncertainty in scheduling can be traced back
to Prade (1979), where fuzzy numbers are used to represent uncertain
processing times in a real problem concerned with building a course
schedule for a semester in a French “Grand Ecole”. A probabilistic
representation is discarded because statistical information is very poor
or even non-existent; fuzzy numbers are instead elicited based on
which values are impossible, not completely impossible, possible and
very possible given the available knowledge of the problem. A similar
approach, based on the proposal by Rommelfanger (1990), is used
in Hapke, Jaszkiewicz, and Slowinski (1994) to elicit fuzzy numbers
representing uncertain activity durations in a real software project
scheduling problem. The authors argue the difficulty of foreseeing
durations of particular activities and the inadequacy of an stochastic
approach unless the project being scheduled is very similar to previous
ones, which is not usually the case given the particularities of each
project and the rapid evolution of techniques, methodologies and tools
in software development. However, it appears that software project
managers are able in practice to estimate approximate durations of par-
ticular activities, taking into account their experience, good knowledge
about new techniques and skills of particular software engineers, natu-
rally leading to fuzzy numbers. In Petrovic, Fayad, Petrovic, Burke, and
Kendall (2008), triangular fuzzy numbers are used to model processing
times with uncertainty stemming from staff-operated machines in a
real-life scheduling problem from a printing company; the processing
time of each operation is obtained by estimating the lower and upper
bounds of the processing times as well as a modal or most likely value,
interpreted as pessimistic, moderate and optimistic processing times.
Uncertain durations appearing in a real-life scheduling problem derived
from motorway construction in Greece are also modelled as triangular
fuzzy numbers derived from the deterministic contractual durations
based on the experience of the site engineers in Maravas and Pantou-
vakis (2012). In general, Dubois et al. (2010) advocate the use of fuzzy
numbers for ill-known processing times when the available information
is in terms of more or less plausible values, so fuzzy numbers can be
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viewed as nested confidence intervals with varying plausibility levels.
In particular, triangular fuzzy numbers, with an interval of possible
values and a most-likely duration, have become a popular approach
to modelling uncertain processing times in scheduling.

Detailed reviews of the literature and benchmarks for fuzzy shop
scheduling problems up to 2016 can be found in
Abdullah and Abdolrazzagh-Nezhad (2014), Behnamian (2016) and
Palacios, Puente, Vela, and Gonzalez-Rodriguez (2016). Another review
focused on methods for population initialisation in metaheuristics
for the fuzzy job shop is presented in Shukor, Shaheed, and Ab-
dullah (2018). More recently, we encounter multiobjective fuzzy job
shop problems optimising makespan together with due-date satisfac-
tion, robustness or energy consumption (Afsar, Palacios, Puente, Vela,
& Gonzalez-Rodriguez, 2022; Palacios, Gonzalez-Rodriguez, Vela, &
Puente, 2017; Wang, Gao, & Pedrycz, 2022; Wang, Tian, Ji, & Wang,
2017) although in the case of Wang et al. (2022) they use LR fuzzy
numbers instead of the more extended triangular fuzzy numbers. Due-
date satisfaction is the single objective in Palacios, Gonzalez-Rodriguez,
Vela, and Puente (2019) and Vela, Afsar, Palacios, Gonzélez-Rodriguez,
and Puente (2020) using triangular fuzzy numbers and in Gao, Wang,
and Pedrycz (2020) using LR fuzzy numbers, while energy consumption
alone or combined with due-date satisfaction in fuzzy job shops with
triangular fuzzy numbers is addressed in Gonzalez-Rodriguez, Puente,
Palacios, and Vela (2020) and Zhao et al. (2019). In all cases, the
resulting job shop is solved using metaheuristics. Several metaheuristics
have also been proposed for the flexible variant of the fuzzy job shop,
minimising makespan on its own or in a multiobjective setting together
with total workload or energy consumption (Li, Gong and Lu, 2022; Li,
Liu, Li, & Zheng, 2021; Lin, Zhu, & Wang, 2019).

When it comes to classical JSP and other deterministic scheduling
problems, mixed integer programming is one of the most common
initial approaches, followed by constraint programming in the recent
years (Ku & Beck, 2016). Surprisingly, in the case of fuzzy JSP, these
approaches are scarce. MILP models for the fuzzy job shop are proposed
in Vela et al. (2020) for a due-date satisfaction objective function and
in Zhao et al. (2019) for a total energy objective function, in this last
case only to describe but not to solve the problem. Regarding other
problems in the family of fuzzy job shop, a MILP formulation for a
flexible bi-objective problem minimising makespan and non-processing
energy can be found in Afsar et al. (2022), where the commercial solver
is shown to be unable to tackle any but the smallest instances. A math-
ematical formulation for a problem minimising a linear combination
of makespan and total energy consumption, incorporating flexibility
and crane transportation, and with uncertain durations are modelled as
type-2 interval fuzzy numbers is provided in Li et al. (2021), here only
to give an accurate description of the problem, which is later solved
with an improved artificial immune system.

Metaheuristics constitute the majority, if not the entirety, of the
solving methods proposed in the literature for the fuzzy job shop with
makespan minimisation. Due to their nature, these methods always
provide an upper bound of the optimal solution, with no guarantee of
optimality. Assessing their performance is not a trivial issue and in fact
there is no general consensus on the performance assessment criteria.
A means of evaluating the performance of metaheuristic methods is
to measure relative errors with respect to a lower bound. Obviously,
such relative measures are only representative if the lower bound is
reasonably tight, as highlighted in Palacios et al. (2016). Otherwise,
fair and meaningful comparisons between different proposals and re-
liable performance assessments are not possible. Furthermore, the gap
between the upper and lower bounds provides some insight into the
hardness of an instance. Ultimately, only when lower and upper bounds
take the same value, optimality can be certified. Having accurate lower
bounds is thus a critical issue.

Indeed, conclusions on the relevance of new methods based on
their results on non-challenging instances might be unrealistic. For
deterministic job shop some authors have concluded that the hardness
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of an instance does not depend exclusively on the size, but also on
other indicators such as the ratio between the number of jobs and
the number of machines (Strassl & Musliu, 2022; Streeter & Smith,
2006). To our knowledge, there is no in-depth study on the hardness of
the available fuzzy JSP instances exists. The only exception is Palacios
et al. (2016), where instances are classified into challenging and non-
challenging ones based on the empirical results obtained with different
metaheuristic methods. Even then, no attempt is made to somehow
characterise their hardness.

In this work, we take the stance that commercial solvers using mixed
integer programming or constraint programming models may provide
accurate lower bounds. Additionally, the availability of different mod-
els and associated solving methods should provide a framework to
characterise the hardness of benchmark instances and the challenge
they pose.

The contributions of this paper are the following:

» We propose for two mathematical models for the fuzzy JSP: a
mixed integer linear programming model and a constraint pro-
gramming one. These models make it possible to apply the com-
mercial solvers CPLEX and CP Optimizer to the existing problem
instances.

We perform an exhaustive experimental study on a varied set
of instances, including those from the literature as well as some
new ones that complement the existing benchmarks. In total, we
consider 149 fuzzy JSP instances with sizes ranging between 36
and 2000 tasks. All instances are tackled using the two com-
mercial solvers for the mathematical models together with a
state-of-the-art metaheuristic.

We evaluate the scalability of the mathematical models and the
associated commercial solvers for fuzzy JSP based on the experi-
mental results.

Also based on the combined results from all three solving methods
we structurally characterise the instances’ hardness by identi-
fying significant indicators, hinting that size should not be the
only factor taken into account to identify the most challenging
instances.

We provide updated and more accurate upper and lower bounds
for the optimal makespan values of all 149 instances and certify,
for the first time in the literature, the optimality of solutions in
83 of them.

All these contributions fill an existing gap in the field and facilitate
scientific progress by providing a solid basis for future research in
solving methods for the fuzzy JSP with makespan minimisation.

The remaining of this paper is organised as follows. After introduc-
ing the background on the job shop problem and fuzzy durations in
Section 2, Section 3 presents the three models for the problem: the new
mixed integer linear programming and constraint programming models
together with a disjunctive graph model from the literature. Solution
methods for these models are described in detail in Section 4. Next,
the existing benchmarks are reviewed in Section 5. Section 6 presents
a thorough experimentation and, based on this, analyses the hardness
of the existing instances, finds the limitations of the exact solvers and
encourages the proposal of a new test-bed. Finally, conclusions and
future prospects are given in Section 7.

2. Background on the fuzzy job shop scheduling problem

In the job shop scheduling problem there is a set J of jobs that need
to be processed on a set M of machines or resources. Each job j € J
consists of a sequence O; of tasks or operations. Each task in O; needs to
be processed on a specific machine m from a subset M; C M with no
recirculation, meaning that no two tasks in the same job can require
the same machine. The processing of the task from O; in machine m
takes a fixed time p;,,. Preemption is not allowed and machines can
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only handle one task at a time. Therefore, when tasks are scheduled
two types of constraints need to be taken into account.

To start with, precedence constraints ensure that the tasks in job j
are executed in the order given by the sequence O;. For every task in
0;, if m € M, is the machine where it has to be executed, s;, denotes
its starting time and, succ;(m) denotes the machine where the following
task according to O; has to be processed, then:

sjm +pjm < ijuccj(m) (l)

where s; suce;(my 18 taken to be oo if m is the machine corresponding to
the last task in the sequence O;.

Capacity constraints in turn guarantee that a machine performs at
most one task at a time during its whole processing time without being
interrupted. That is, for every pair of jobs i,j € J, i # j with tasks
requiring the same machine m, the execution of these tasks cannot
overlap:

Sjm+pjm SSimvsim-"pim Ssjm (2)

An assignment of starting times to all tasks that is feasible with
respect to the aforementioned constraints is a schedule. In this work,
we tackle the most common objective in the literature, minimising
makespan (denoted as C,,,) which is defined as the time elapsed
between the start and end of the processing of all tasks, in other
words, the completion time of the last task to be processed, C, ., =
manGJ.mGMj (Sjm +ij)'

The fuzzy job shop problem (fJSP) is an extension of the JSP where
task processing times (and sometimes job due dates) are modelled using
fuzzy numbers (Abdullah & Abdolrazzagh-Nezhad, 2014; Behnamian,
2016). In the following, we describe a fuzzy job shop where uncertain
task durations are represented by triangular fuzzy numbers, which is
the most common approach in the literature.

2.1. Uncertain processing times

In the classical job shop problem, it is assumed that the processing
times of operations are known in advance and do not change. However,
in real life this is often not the case. For instance, durations of tasks such
as subcontracted activities in manufacturing, debugging in software
development or tasks performed by more or less experienced workers
are usually not deterministic. Despite this uncertainty, an expert might
have some knowledge about the duration of the task based on past
experience. One of the simplest ways of representing uncertain task
durations would be defining an experience-based confidence interval.
If different values in the interval are more plausible than others, it can
be naturally extended to a fuzzy number (Dubois et al., 2010).

The model most commonly used in the literature on fuzzy schedul-
ing is a triangular fuzzy number (TFN), consisting of an interval [a!, a%]
of possible values and a modal value a? in it. A TFN @ = (a!, %, d%), is
a fuzzy number having the following membership function:

1

=4 tad<x<d®
as—a
_a3
H(x) =1 3%l <x<d 3)
as—a-
0 tx<alordd<x

Since a natural ordering does not exist between TFNs, various
ranking methods have been studied in the literature for comparison.
Many of these are based on the expected value of a fuzzy number
a, which is generally defined as E[a] = @+2a+a) for 4 TEN. Since
E[a] is a real value, it is often used to establish an ordering on the
set of TFNs, denoted as <j (see Palacios, Gonzalez-Rodriguez, Vela,
and Puente (2015) for details). To handle uncertain durations in the
fJSP, two arithmetic operations are needed: the sum and the maximum.
By extending the corresponding operations on real numbers using the
Extension Principle the sum of two TFNs 4,b is another TFN given by
a+b=(a" +b',a+bd + b
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The maximum of two TFNs is not that simple to calculate. Besides,
the result of the operation may not be a TFN although it is a fuzzy
number. Therefore, various methods are proposed in the literature that
approximate the result by a TFN and two of these are explained below.

The first method, which is used since the early works (Fortemps,
1997; Sakawa & Kubota, 2000) to the most recent (Gao et al., 2020;
Palacios et al.,, 2016) among others, is based on a component-by-
component operation so, for every a, b TFNs:

max(@,d) ~ max 1@, b) = (max(a', b!), max(a?, b%), max(a®, b*)) (€)]

In the second method the ranking <p based on expected value is
extended so max(a, b) ~ maxR(a b) where maxR(a b) =q if E[a] > E[b]
or else if E[a] = E[b] and (@ —a') > (b® - bY) or else if E[4] = E[b],
(@—a') = (B3 —b') and a® > b2. Otherwise, max (@, b) = b. This approach
has been used in other papers such as Lei (2010a), Li, Gong et al. (2022)
and Zheng, Li, and Lei (2011).

In Lei (2010a), the author claims that the approximation error
of this criterion (maxyg) is similar or smaller than that of Sakawa
criterion (max;). On the other hand, several arguments based on a
theoretical background are given in Palacios et al. (2016) that support
the use of max;. In brief, the authors argue that max; verifies that the
resulting TFN preserves the modal and support values, despite having
the potential of artificially increasing the actual maximum. This is not
guaranteed with the approximated maximum maxy. In the framework
of scheduling problems, this means that using maxyz may lead to a
makespan value that is not a natural coverage of all possible realisations
of a schedule. That is, for a given task processing order, if the duration
of each task takes one of its possible values (i.e., a value in the support
of the corresponding TFN), then it is not guaranteed that the resulting
crisp makespan lies in the support of the fuzzy makespan calculated
with maxp, contrary to what happens with the fuzzy makespan value
calculated with max;. Therefore, in this work we adopt the use of the
max; approximation.

Let us underline the fact that for any two TFNs @ and b, if 4, =
max;(@,b) and Ay = maxg(@@ b), the inequality mly < mi holds for
i=1,2,3 and, hence, g <p m; and nig < M.

2.2. Schedule Robustness

When dealing with uncertainty, solution robustness is an important
factor to consider. A solution to a fuzzy scheduling problem is what
is referred to as predictive schedule: it gives a fuzzy interval C, .. of
possible values for the makespan. It is only when tasks are executed
in a real scenario according to the ordering provided by the predictive
schedule that we can find the real makespan value C:Y . The predictive
schedule is thus robust if the executed makespan does not deviate
much from the prediction. In fuzzy scheduling with makespan minimi-
sation, a widely-used metric of robustness is the e-robustness (Palacios,
Gonzalez-Rodriguez, Vela, & Puente, 2014). A predictive schedule is
considered to be e-robust for a given ¢ if:

[Crax — ElCrnaxll <e )
E[Cpnay]

Clearly, solutions are more robust for smaller ¢ values. When a real
execution of the schedule is not possible (for example, for synthetic
benchmark instances), a Monte-Carlo simulation can be used to gen-
erate a sample of K possible scenarios of the instance by assigning an
exact duration to each task. Several results in the literature motivate
the use of TFNs as fuzzy counterparts to uniform probability distribu-
tions (Dubois, Foulloy, Mauris, & Prade, 2004), so exact durations for
each task can be generated using a uniform distribution in the support
of the corresponding TFN. Let CX ., denote the makespan obtained
by executing the predictive schedule on the kth scenario. Then, the
average e-robustness ¢ is calculated as:

ICK . — E[Cpaxll

f= o Y e _mans 6
K g? E[Cpyy]

Computers & Industrial Engineering 183 (2023) 109454
3. Models for the fuzzy job shop scheduling problem

Both mixed integer and constraint programming models abound
in the literature on scheduling problems (e.g. Laborie et al., 2018;
Lunardi et al., 2020). However, a recent survey on fuzzy schedul-
ing (Behnamian, 2016) shows that, in this subfield, the majority of
solving methods fall in the category of metaheuristic search, amounting
to more than 70% of all the existing proposals. In this work, we intend
to take into account all three approaches (mixed integer programming,
constraint programming and metaheuristics) simultaneously. In doing
so, we hope to be able to profit from the different strengths of each
approach and related techniques and assess when is each one more
adequate.

First, we propose a mixed integer linear programming (MILP) and
a constraint programming (CP) model. As far as we know, these are
the first proposals of this kind for the fuzzy JSP. Next, we describe
a disjunctive graph model that serves as the basis for developing the
neighbourhood structures used in the most successful metaheuristic
methods.

3.1. MILP model

Mixed integer linear programming models provide a precise defini-
tion of scheduling problems (Ku & Beck, 2016; Lunardi et al., 2020). In
addition, many papers in the literature show the significance of MILP
models and the associated methods as a baseline for comparisons (La-
borie, 2018), either on their own or in the core of other algorithms
for scheduling problems (Basan, Céccola, Garcia del Valle, & Méndez,
2019; Ku & Beck, 2016).

Here, we propose a MILP formulation for the fuzzy JSP with
makespan minimisation. The parameters and variables of the model
are given in Tables 1 and 2, respectively. As mentioned before, in
fJSP the processing time p;,, of a job j on machine m is modelled as
a TFN with 3 components and each of its components is represented as

’m, I € {1,2,3}. Since processing times of the jobs are TFNs, starting
times of their operations and the makespan are also TFNs, denoted 5,
and C, ., respectively. The variables x, jm are binary and, in a feasible
solution, they would take value 1 if the task of job i immediately
precedes the task of job j on machine m (that is, if they are scheduled
back-to-back), and 0 otherwise.

min E[ mM]
s.t.
cl. 2 sjﬂ +pjuj vjielJ,le{l,23} )
8 suce m) Z * ,m+1’ vieJ meM;le{l,23) (8
Sy Z S F P =W (L=x,) VijelmeM,nM,
1e{1,2,3) 9)
N Xij =1y — Vme M, n M, (10)
ijet
i#j
qum— vVjeJ.meM;nM, a1n
ieJ
i#j
ZX,,",— VieJme M;nM, (12)
jeJ
J#
1 .
0<s, <57, <), vjeJ.me M, a3

Xiim € (0,1} Vi,jeJ,meMjnM, 14)

Constraint (7) defines the makespan by stating that C,,, is greater
than or equal to the completion time of every job. Constraint (8)
enforces the right task order within jobs. Note that x;;,, is defined if
job j and job i are both processed on machine m, i.e., if m € M; n M,,
so according to constraint (9), there is no overlap in the processing of
two consecutive tasks in a machine. Constraint (10) ensures that exactly
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Table 1 Table 3
Parameters of MILP and CP models. Variables of CP model.
J Set of all jobs Sim Starting time (TFN) of the task of job j on machine m, me M;, j € J
M Set of all machines s‘/_m Ith component of §,,, / € {1,2,3)}
M;cM Set of machines that process job j o
1€ (1,2,3) TFN components Conn Makespan (TEN)
Pim Processing time of job j on machine m (TFM), j € J, m € M Clox Ith component of makespan, / € {1,2,3}
p‘] - Ith component of 5, rfn The /th component of set of tasks (intervals) of machine m
n, Total number of jobs processed by machine m
suce; (m) The machine that succeeds machine m in the processing order
f job j > . . .
ohjof 4 X hine th . Cepek, 2004). In other words, in the crisp case, a machine m can be
. T] i i that j j . . . .
H © final machine that processes Job J defined as a set of sequence variables r,, where the intervals that define
w A large number . o . . .
each variable cannot overlap. Similarly to starting times, in the context
of fuzzy scheduling, we need to define each machine as three machines
Table 2 that follow the same processing order, so each machine is represented

Variables of MILP model.

Sim Starting time (TFN) for the processing of job j on machine m,
meM;, jeJ

S Ith component of 5, | € {1,2,3}

émax Makespan (TFN)

Cr’m Ith component of makespan, / € {1,2,3}

Xijm Binary, takes value 1 if job i immediately precedes job j

on machine m and is 0 otherwise

n,, tasks are processed in each machine, while constraints (11) and (12)
ensure that each task has at most one immediate predecessor and one
immediate successor in its machine. Constraint (13) guarantees that the
three components s!, 52,53 of the starting time of each task x actually
define a TFN 5, = (s, 52, s3). Lastly, constraint (14) defines the domain
of variables x.

To our knowledge, this is the first MILP model for fuzzy JSP in the
literature. Also, it is not a trivial extension of existing MILP models for
JSP. For instance, in Ku and Beck (2016) the authors distinguish four
types of MILP models. One of them, the so-called time-indexed model,
is also used in Laborie (2018). Our model is different since it is the
only one where decision variables model the relative order between
jobs in each machine. This choice is motivated by the fact that each
fuzzy starting time is represented by three variables s’ , i =1,2,3 and
it should not be possible that each of these variables yields a different
processing order in the machines. Also, constraints such as (13) are
specific of the fuzzy setting.

3.2. CP model

Recent advances in CP and commercial CP solvers show that it is
a promising approach when used alone or combined with many other
exact and heuristic optimisation methods for scheduling problems (La-
borie, 2018; Laborie et al., 2018; Lunardi et al., 2020). In Laborie
(2018), the authors define a modelling paradigm that extends classical
CP to integer variables with intervals and functions which is of particu-
lar interest for this work. Overall, constraint programming allows us to
model scheduling problems in a flexible way. To model the properties
of TFNs, some changes are introduced in the classical CP model for
JSP, where every task is modelled as an interval that starts at the
task’s starting time and whose length is the task’s processing time.
Specifically, we propose to have three variables representing the TFN
components of the starting time of job j on machine m are defined:
Shys 85, and s3 . To impose the component-wise ordering of the TFNs,
the constraint same — sequence from Laborie et al. (2018) is used.
Then, every task can be presented as an interval [s;.m, S§m + pﬁm] where
I € {1,2,3}. This idea is very similar to that proposed in Laborie et al.
(2018) for stochastic scheduling.

It is also possible to model the restricted capacity of a machine with
a unary— resource constraint which ensures that two tasks cannot be
performed at the same time on the same machine (Vilim, Bartak, &

with three sequence variables instead of one: r!, r? and 3. Note that

m’
r! contains all intervals [s, ,s' +p! 1 where! € {1,2,3}. It is clear
that the components of all tasks should be scheduled in the same order
inrl, r2 and r}. For a machine m that is required for processing job j
and j' (j # j'), either
! ! I
Sim TP < sj,m,Vl e {1,2,3},

Jm =

or

S+ Pl S S5 V1€ {1,2,3)
holds.

Taking all of this in consideration, in the following we present
a CP model for the fJSP with expected makespan minimisation. The
parameters and variables are given in Tables 1 and 3, respectively.

min E[@maX]

S.t.
I _ ! | .
Cmax—max{sm/+pjﬂj,VjeJ} vl e {1,2,3} (15)
unary — resource(rﬁn) Vme M,V € {1,2,3} ae)
same — sequence(r,'n, r,zn,rfn) Vme M a7

! ) ! .
sjsuccj(m) > Sim ¥ Py vVieJ,me M; Vi e {1,2,3} (18)
! I+1 :

sijSjm vVieJ,me M; Vi e {l,2} 19

Since the makespan is a TFN, the maximum completion time of each
fuzzy component is calculated separately in constraint (15). Constraint
(16) ensures that none of the operations requiring machine m overlap
for any fuzzy component. Constraint (17) imposes a unique processing
order on the problem, that is, tasks are scheduled in the same order
for every fuzzy component, which keeps the integrity of the problem.
Constraint (18) guarantees that job precedence constraints hold. Lastly,
constraint (19) ensures that each starting time is a proper TFN.

3.3. Disjunctive graph model

A classical model for JSP with makespan minimisation is the well-
known disjunctive graph model G where tasks are represented by nodes,
and constraints by arcs (Pinedo, 2016). The arcs describing the prece-
dence relations are conjunctive, whereas the ones that stand for capacity
constraints are disjunctive. The cost of every arc is the processing time
of its source node, which is a TEFN in our problem.

By selecting a disjunctive arc from each pair such that the resulting
subgraph is acyclic, we obtain a solution graph. This is often denoted as
G(o), where o is the corresponding task processing order. A solution
to the problem (i.e. a feasible schedule) can be easily computed by
propagating constraints in G(c) using the sum and the maximum of
TFNs.

This idea is extended to the case of fuzzy durations in Gonzalez
Rodriguez, Vela, Puente, and Varela (2008). Three parallel solution
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graphs G'(c), i = 1,2,3, are defined to decompose G(¢), maintaining its
topology whilst using the ith defining point of the TFN p, as the cost of
an arc (x,y) € G'(c). This decomposition allows to improve the search
ability of local search strategies, while keeping the integrity of the fuzzy
problem by not letting it turn into three independent crisp problems in
any case. This idea serves the same purpose as constraint (17) of the
CP model, which ensures that the task ordering is the same in the three
machines, thus maintaining the integrity of the problem. Since weights
in each parallel graph are deterministic, a critical path in G'(c) is the
longest path from node start to node end. The set of critical paths in
G(o) is the union of critical paths in G'(¢), i = 1,2,3. Similarly, the
set of critical nodes, arcs and blocks is the union of those sets in each
G'(0). This model offers some desirable properties that have allowed to
design some of the most successful heuristic solving methods for fJSP,
namely:

» The reversal of a critical arc in any solution graph produces a
feasible processing order (Gonzalez Rodriguez et al., 2008).

+ The reversal of a non-critical arc can never improve the makespan
(Gonzélez Rodriguez et al., 2008).

» The evaluation of the makespan after the reversal of a critical arc
can be done very efficiently using head and tail propagation in the
graph (Gonzélez Rodriguez, Vela, Hernandez-Arauzo, & Puente,
2009).

+ The use of heads and tails in the graph allows for a fast estimation
(constant computational cost) of the makespan of the solution
that results from reversing a critical arc. This estimation is also a
lower bound of the makespan (Gonzalez Rodriguez et al., 2009).

+ The reversal of an arc that is not the first or the last arc of a critical
block, can never improve the makespan (Gonzalez Rodriguez
et al., 2009).

4. Solving methods

IBM ILOG CPLEX and its CP Optimizer tool are commercial solvers
widely used to solve MILP and CP models, respectively (IBM, 2020).
Here, we run CPLEX and CP Optimizer version 12.9 with a time limit
of six hours (i.e. 21 600 s.) and using single thread to search for optimal
solutions. In both cases, if the solver finds the optimum before the time
limit, the execution stops and the run time is reported. Otherwise, if
a feasible sub-optimal solution has been obtained at the end of the
run, the corresponding lower and upper bounds for the optimum are
reported.

For the disjunctive graph model, a metaheuristic method is em-
ployed. The review of published metaheuristic methods in Palacios
et al. (2016) concluded that a memetic algorithm (MA) was the method
offering the best results for makespan minimisation across a wide set
of benchmark instances, compared with other seven state-of-the-art
solving methods from the literature: an ant bee colony algorithm, three
different genetic algorithms, two particle-swarm optimisation algo-
rithms and a swarm-based neighbourhood search. For the comparisons,
maxy and < were used as fuzzy maximum approximation and rank-
ing method respectively, since most of the state-of-the-art algorithms
reported results based on this arithmetic. A variant of MA substituting
the original local search with tabu search using a more sophisticated
neighbourhood structure was proposed in Palacios, Puente, Gonzalez-
Rodriguez, and Vela (2013) under the name HTS. The experimental
results, using max; and <j, showed that HTS outperformed MA, thus
becoming the most competitive method so far. Since then, the methods
proposed to minimise makespan for the fuzzy job shop either tackle
multiobjective problems or use fuzzy numbers other than TFNs, making
it impossible to establish any comparisons. Also, the instances used
in these works to obtain experimental results are solved to optimality
by HTS, as will be shown in Section 6. Therefore, we use HTS as a
solver for the fJSP based on the disjunctive graph model. For each of its
parameters (population size, stopping criteria for the local search and
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genetic algorithm, crossover and mutation probabilities etc.), the values
that ensure a proper convergence are chosen. Due to its stochastic
nature, it is run 30 times for each instance.

5. Available benchmarks

In this section, the benchmarks for fuzzy job shop scheduling from
the literature are summarised along with key information for mean-
ingful comparisons. A complete review of the benchmark can be found
in Palacios et al. (2016), including best-known upper bounds until then
and the fuzzy arithmetic used in each case. In addition, all the instances
are available as supplementary material.

They can be classified in two groups: the first group of instances
generated from scratch that we will call “original fuzzy instances”
and second one of “fuzzified instances” built from benchmarks for the
deterministic JSP by fuzzifying task durations.

The first group contains the set of instances proposed by Sakawa
et al. in Sakawa and Kubota (2000), Sakawa and Mori (1999), which is
extensively used for fuzzy job shop (denoted S6.1, S6.2, S6.3, S6.4 and
$10.1, S10.2, S10.3, S10.4 depending of their size 6 x 6 or 10 x 10),
and three more original instances: Lei01, Lei02 of size 15 x 10 from Lei
(2010b), and instance LPO1 of size 16 x 16 from Li and Pan (2013).

The fuzzified instances have been built from the following well-
known benchmarks: FT from Fisher and Thomson (1963), La from
Lawrence (1984), ABZ from Adams et al. (1988), ORB from Applegate
and Cook (1991) and Ta from Taillard (1993). Four different methods
have been mainly used in the literature to generate fuzzy versions of
JSP instances. the method originally proposed by Fortemps in Fortemps
(1997) for six-point fuzzy numbers (denoted F) was adapted to obtain
TFNs in Gonzélez Rodriguez et al. (2008) and Palacios et al. (2016);
another method (G) was proposed by Ghrayeb in Ghrayeb (2003), and
later used too in Niu, Jiao, and Gu (2008); a third one (Z) was proposed
by Zheng et al. in Zheng et al. (2011); and the fourth one (S) was
proposed by Song et al. in Song, Zhu, Yin, and Fuming (2006). Two
more methods were introduced in Tsujimura, Gen, and Kubota (1995)
(T) and Lin (2002) (L), but they were only applied to fuzzify two and
three instances respectively. In the following, we refer to each fuzzified
instance using the name of the original crisp instance subscripted with
the fuzzification method, in accordance with Palacios et al. (2016).

Table 4 summarises all available fJSP instances. The first two
columns contain the names of the instances and their respective sizes
represented by |J|x|M| where |J| is the number of jobs and | M| is the
number of machines. In the case of fuzzified instances, extra columns
are included showing the different fuzzification methods applied to
generate the fuzzy durations.

It is worth mentioning that other instances have been used in
other papers. However, either these instances are not available or they
correspond to different variants of the problem. Therefore, they are not
relevant for our study.

The first set of lower bounds for the expected makespan of all
instances is provided in Palacios et al. (2016). The second source
of lower bounds are optimal solutions (or lower bounds thereof) for
associated deterministic instances. In the case of fuzzified instances
obtained in such a way that every TFN is symmetric and its modal
value is the original duration, the optimal solution of the original
deterministic instance (or any lower bound thereof) provides a lower
bound for the expected makespan of the fuzzy solution (Fortemps,
1997). Such optimal solutions or lower bounds of the associated deter-
ministic instances (well-known benchmarks for JSP) can be found and
keep being updated in the literature! (van Hoorn, 2018). In the case
of original instances or instances fuzzified with non-symmetric TFNs,
thanks to the linearity of the expected value, the optimal solution (or a

1 An up-to-date record of these bounds can be found in the repository
http://optimizizer.com/jobshop.php.
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Table 4
Existing instances for fJSP.
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Instance Size Fuzz.Method Instance Size Fuzz.Method
S6.1-4 6 X6 NA Lay01 10 x5 G L
S10.1-4 10 x 10 NA Lay 02 10 x 5 S
Lei01,02 15 x 10 NA Lay 03,05 10x 5 G
LPO1 16 x 16 NA Lay 06 15 x5 L
Lay 07,09 15x5 G
FTx06 6 X6 F T G L Lay 11 20 X 5 F
FTx10 10 x 10 F G S Lay12-14 20 X 5 F G
FTx20 20 x 5 F T G Lay19 10 x 10 S
Lay 20 10 x 10 Z
ORBy1-5 10 x 10 z Lay21 15 x 10 F S z
Lay22 15 x 10 z
ABZ,5,6 10 x 10 G z Lay 24,25 15 x 10 F S
ABZ,7-9 20 x 15 F Lay36,37,39 15 x 15 S
Lay27,29 20x10 F s
Tayx21-30 20 x 20 F Lay 38,40 15 x 15 F S
Tay41-50 30 x 20 F

lower bound) of the deterministic problem where durations correspond
to the expected value of the TFNs provides a lower bound for the fuzzy
solution. Bounds for these associated deterministic instances can then
be obtained using the commercial solver IBM ILOG CPLEX (IBM, 2020).

6. Experimental results

In this section, we present the results obtained on the existing fuzzy
JSP instances with the MILP and CP solvers considering together with
the HTS algorithm. For the sake of clarity, the results will be presented
with instances organised in three groups (small, medium and large size)
according to the total number of tasks.

With the help of commercial solvers, a first aim of this study
is to identify the point before which we can rely on mathematical
models and after which metaheuristics become the dominant option.
In the process, we also intend to update the best-known lower and
upper bounds for the expected value of the optimal makespan of each
instance.

In particular, for the lower bound, we will consider the lower
bounds from the literature and those obtained from the deterministic
problems as mentioned in Section 5, together with those obtained
in this experimental study, so the maximum of these values will be
referred to as best lower bound. The expected makespan values of the
best solutions found using the different solvers mentioned in Section 4
constitute the upper bounds. The complete list of lower bounds from
the literature, as well as all the newly-found bounds are disclosed
in Appendix A. When comparing the upper bounds obtained by the
different solvers in the following subsections, the Relative Error (RE)
with respect to the best known lower bound is used:

_ E[UB] - E[LB]

RE —
E[LB]

(20)

The third goal of this study is to assess the hardness of the existing
instances, identifying those that represent a challenge for future exact
or approximate solving methods. Finally, we will also propose a new
benchmark for the fJSP, built from well-known instances for the deter-
ministic problem, and provide a first set of upper and lower bounds for
the expected makespan as reference for future research.

All the solving methods have been run on the same machine (a PC
with Intel Xeon Gold 6132 processor at 2.6 GHz and 128 Gb RAM with
Linux CentOS v.6.9) using the same programming language (C++) and
compiler. More detailed results of each method on every instance are
openly available online.?

2 Repository section at https://www.di.uniovi.es/iscop.

6.1. Small-size instances

Table 5 contains the average results on the instances with less
than 100 tasks with instances in the same family and with the same
dimension grouped together. The number and dimension of instances
in each group are shown in the second and third columns, respectively.
Columns 4, 5 and 6 report the results of the MILP solver Since it cannot
always find the optimal solution within the time limit of 6 h, column 4
(# feas.) indicates the number of instances where at least one feasible
solution is found. Column 5 (RE) gives the average relative error with
respect to the best lower bound for the instances that are not solved to
optimality. Column 6 reports the average run time for the instances
that are optimally solved within the time limit, with the dash sign
representing that all instances of this group consume the time limit
without reaching or proving optimality. Finally, columns 7 and 8 give
the average run times of CP model and HTS algorithm in seconds,
respectively. Since both methods find optimal solutions in all instances,
their RE values are not presented.

It can be observed that the instances of the first two families do not
present a challenge for any of the methods since they are optimally
solved in very short times by all three methods independently on the
fuzzification method. In the last families, MILP reaches the time limit
before proving optimality. The low (even zero) RE values mean that it
actually finds the optimal solution in many cases, but it cannot prove
its optimality. The CP model is solved optimally in a very short time in
comparison to MILP, and HTS finds (but does not certify) the optimal
solution in every run. Hence, there is a remarkable difference between
MILP and the other two methods (i.e. HTS and CP).

Although these instances could be used in the future for method
validation and verification, due to the fact that they can be optimally
solved in less than a minute by CP and in less than a fraction of a second
by HTS, it is safe to say that they are too trivial to be considered to
evaluate the performance of a new method.

6.2. Medium-size instances

In Table 6, the average results of instances from 100 to 200 tasks
(excluded) are given. As before, the name of the instance family, the
number of instances in it and the dimensions are given in the first three
columns. For the MILP, the number of instances for which a feasible
solution is found, and the average RE for these instances with respect
to the best lower bound are presented in columns 4 and 5, respectively.
Since it hits the time limit for all the instances, its run time is omitted in
the table. For the last two families, MILP cannot find a feasible solution
within the time limit, therefore the RE is represented as a dash. On
the contrary, the CP model is solved optimally within the time limit
in every case, therefore only its run time is reported. Lastly, HTS also
finds the optimal solution of each instance in at least one run, but not
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Table 5

Average results of instances with less than 100 tasks.
Family # inst. Size MILP CP HTS

# feas. RE Time (s) Time (s) Time (s)

S6.1-4 4 6 X6 4 0.00% 37.4 0.1 0.2
FT406 4 6 X6 4 0.00% 45.2 0.1 0.2
Lay01-03,05 5 10 x5 5 1.04% - 21.2 0.3
Lay06,07,09 3 15 x5 3 0.00% - 38.0 0.3

Table 6

Average results of instances from 100 to 200 tasks.
Family # inst. Size MILP CP HTS

# feas. RE Time (s) RE Time (s)

ABZ,5,6 4 10 x 10 4 3.98% 612.5 0.05% 0.9
FTx10 3 10 x 10 3 14.27% 938.8 0.38% 1.4
Lax 19,20 2 10 x 10 2 1.68% 745.5 0.16% 0.9
ORBy1-5 5 10 x 10 5 10.40% 727.6 0.26% 1.4
S$S10.1-4 4 10 x 10 4 5.32% 76.5 0.17% 1.0
FTx20 3 20 x 5 2 19.49% 236.3 0.11% 1.8
Lay11-14 7 20 x 5 3 0.00% 92.1 0.00% 0.4
Lay21-25 8 15 x 10 0 - 4868.0 0.60% 2.6
Lei01,02 2 15 x 10 0 - 5105.5 0.63% 3.4

in all of them. Columns 7 and 8 report the average RE and run time of
the HTS method are given.

In opposition to the small-size instances, in this set MILP spends
6 h without finding the optimum, and sometimes even fails to obtain a
feasible solution. However, CP can solve all instances optimally within
much shorter time. These results imply that the modelling approach has
a big impact and despite MILP being the most popular method in the
field, CP has a significant potential as far as the exact methods go. On
another note, HTS takes remarkably short time to solve all medium-
size instances. However, it does not reach the optimal solution in all
its runs as its average RE is not zero. Despite that, now that we know
the optimal expected makespan values for all these instances, we can
confirm that HTS finds high-quality suboptimal solutions in very short
time.

It is noteworthy that even among the same size instances, run times
of CP and HTS vary greatly such as for FTx10 and S10.1-4. Moreover,
instances with the same number of tasks but different structure such
as Lay19,20 and Lay11-14 have remarkable differences in CP and
HTS performances in terms of run times and RE values despite both
being from the same family. Even for the 7 Lay11-14 instances, MILP
obtains optimal solutions for 3 of them but does not even find a feasible
solution for the other 4. These results suggest that there are factors
influencing the hardness of an instance other than the total number of
tasks. This is in line with the results from Applegate and Cook (1991),
where the computational hardness of JSP instances with the same size
and structure vary remarkably.

Regarding the use of these instances as future benchmarks, instances
S$10.1-4 do not pose much of a challenge for CP and therefore do
not seem to be of special interest. On the other hand, the remaining
10 x 10 families can be considered interesting since CP needs longer
time to solve them and HTS is not finding the optimal solution in all
its runs. However, one could argue that families FTy 10 and ORBy1-5
are more challenging due to the HTS average RE. In terms of the 100-
task non-square instance set, FTy 20 family is slightly more challenging
than Lay11-14. Lastly, both families with size 15 X 10 could be taken
into account for a comparative study in the future since MILP cannot
find any feasible solutions for neither of them and CP and HTS take
considerably longer time to solve them.

6.3. Large-size instances
In Table 7, the average results of instances with 200 tasks or more

are given. Since MILP cannot find a feasible solution for any of the
instances within the time limit, it is excluded from this table. Column

4 gives the number of instances optimally solved by CP along with
their average run times in column 6. In the last two families, none of
instances are solved optimally within 6 h, so their average run times are
represented with a dash. The average RE values of the instances that
do not terminate within the time limit are given in column 5. Finally,
the average RE values with respect to best lower bound and average run
times of HTS are presented in the last columns.

In this table, run times are noticeably longer than in the previous
ones, showing that the problem takes longer time to solve as the
number of tasks increases. Among 15 instances with 200 to 300 tasks,
only 8 of them can be solved optimally by CP within the time limit.
The results of HTS point in the same direction: RE values and run times
increase compared to small or medium-size instances. As expected, the
number of tasks has a clear impact on the hardness of an instance.
However, we can see once more that it is not the only factor, since HTS
obtains better RE for Lay36—40 than for Lay27,29. We shall discuss this
further in Section 6.6. For future research, all instances in this set seem
adequate for testing solving methods. Nonetheless, it can be observed
that LPO1 and ABZ,7-9 instances are the most challenging ones, since
CP cannot find any optimal solutions and the average RE and run times
of HTS are higher, hence they are the most suitable for comparative
studies.

6.4. Taillard instances

Instance size is often viewed as a measure of difficulty (Shukor et al.,
2018). However, results from previous subsections already suggest that
size on its own may not be so decisive. To shed more light on this, we
propose a thorough analysis on fuzzy versions of the whole Ta bench-
mark (Taillard, 1993), with instance sizes ranging from 225 tasks to
2000 tasks. In addition to Tar21-30 and Tag41-50 from Palacios et al.
(2016), we use the same fuzzification method to obtain fuzzy versions
of the remaining instances in the benchmark set: Ta01-10 (15 x 15),
Ta11-20 (20 x 15), Ta31-40 (30 x 15), Ta51-60 (50 x 15), Ta61-70
(50 x 20), and Ta71-80 (100 x 20). As explained earlier, with this
fuzzification method the best-known lower bounds for the original de-
terministic instances are also lower bounds for the expected makespan.
All the new instances are made available online as supplementary data.

In Table 8, the average results of all the Ta instances are presented.
Similarly to the large-size instances, MILP cannot find any feasible
solution within the time limit in any case, hence its results are excluded.
The number of instances solved optimally by CP are given in column
4. For some instances, CP finds a feasible solution with the objective
function value equal to the best lower bound despite not terminating. We
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Table 7
Average results of instances with more than 200 tasks.
Family # inst. Size CP HTS
# opt. RE Time (s) RE Time (s)
Lay27,29 4 20 x 10 3 1.18% 6196.0 2.10% 5.6
Lay36-40 7 15 x 15 5 0.47% 1841.2 1.00% 4.9
LPO1 1 16 x 16 0 3.63% - 3.30% 10.7
ABZ,7-9 3 20 x 15 0 3.66% - 4.20% 10.5
Table 8
Average results of Taillard instances.
Family # inst. Size CP HTS
# opt. # cert. RE Time (s) RE Time (s)
Tay01-10 10 15 x 15 8 0 0.79% 6612.2 1.24% 5.2
Tay11-20 10 20 x 15 2 0 3.22% 5084.4 3.27% 11.2
Tax21-30 10 20 x 20 0 0 6.14% - 5.16% 16.9
Tay31-40 10 30 x 15 1 0 2.48% 2366.8 4.15% 26.6
Tay41-50 10 30 x 20 0 0 6.97% - 9.49% 45.4
Tay51-60 10 50 x 15 0 4 0.09% - 0.49% 55.6
Tay61-70 10 50 x 20 0 2 0.30% - 3.13% 129.4
Tay71-80 10 100 x 20 0 6 0.04% - 0.38% 273.5
Table 9 2
s
Summary of updated bounds. °
#inst. #opt. #new LB
2 | o o
Small 16 16 10 2
Medium 38 38 35
o
Large 15 6 5 ° o R
Taillard 80 23 9 2 S ;
e H _
Total 149 83 59 3 ; ‘ 3 °
3 .
bS]
call this kind of solutions as certified and the number of such solutions o | T E
is presented in column 5. The average RE of the instances that are not © | E ‘
optimally solved can be found in column 6 and the average run times of ‘ ? 1
the ones that finished before the time limit are given in column 7. In the e A

last two columns, the average RE and run times of HTS are presented.

As above, as the number of tasks increase, there are fewer instances
where the CP solver terminates before hitting the time limit. Likewise,
HTS takes longer time to run. However, for Tay51-60, Tay61-70
and Tay71-80 instances, we can observe that CP reaches the optimal
solution in 12 out of 30 instances and has quite small RE values for
the rest. This is particularly interesting when we consider that only
1 out of 30 instances from Tay21-30, Tayx31-40 and Tayx41-50 is
optimally solved despite having much smaller sizes. We can observe
a similar behaviour in the RE values of HTS: the larger instances have
surprisingly smaller RE values.

In terms of number of optimal or certified solutions and average
REs, Tay21-30 and Tay41-50 appear to be the most difficult instances
for both methods, which makes them the most challenging benchmarks
for future research. However, all of the instances on this set pose a
challenge for future solving methods.

6.5. Impact of considering uncertainty

When working with uncertainty, it is common to question whether
it is worth considering the uncertainty during the optimisation process.
Doing so may increase the complexity of the solving methods, but it
may yield more robust solutions as well, since it considers all available
information. Following the methodology used for other fuzzy schedul-
ing problems (i.e. Palacios et al., 2014, 2015), we solve the already
available instances from Section 5 without considering uncertainty. For
each fuzzy instance, we create a crisp one where the processing time of
each task is the expected value of the original TFN, and solve it using
HTS. To compare the predictive schedules obtained after solving the
fuzzy instances and the crisp ones, we use the e-robustness measure

Medium
Crisp

Medium
Fuzzy

Small
Crisp

Small
Fuzzy

Large
Fuzzy

Large
Crisp

Fig. 1. € values obtained by solving the small, medium and large sized fJSP instances
and their associated deterministic counterparts.

introduced in Section 2 generating K = 1000 scenarios. Fig. 1 shows
the € values obtained for the instances grouped by size according to
the previous sections. The figure shows that for all sizes, the schedules
obtained by solving the fuzzy instances are more robust than those ob-
tained by solving the deterministic ones. Out of the 69 tested instances,
solving the fuzzy version yields more robust solutions in 67 of them
(97%). A Wilcoxon test for paired samples reveals that for each size, the
differences are significant between the two approaches. These results
align with those of Palacios et al. (2014, 2015), showing that modelling
uncertainty leads to more robust solutions. Moreover, 44 of the tested
instances are solved to optimality both in the fuzzy and crisp versions,
showing that the optimal solution of the fuzzy problem is also more
robust than the optimal solution of its associated crisp problem.

6.6. Summary

Results have shown that, as expected from an NP-hard problem,
instance size is the main indicator of the hardness of an instance. The
commercial solver has not been able to find feasible solutions for the
MILP model for any instance with 150 tasks or more, but it is capable
of finding the optimal solution to the smallest instances, of size 6 x 6.
For instances between those sizes, MILP never terminates within the
time limit, despite reaching the optimal solutions. This indicates that
commercial solvers for the MILP model are not sufficient for medium
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Table A.10
Best known bounds for each instance.

Inst. Size E[ﬁ?] Best UB

old neto Met UB E[UB] Met
S6.1 6 %6 79.75 79.75 MC (56 80 103) 79.75 MCH
S6.2 69.25 70.25 MC (51 70 90) 70.25 MCH
S6.3 66.00 66.25 MC (51 65 84) 66.25 MCH
S6.4 36.00 36.00 MC (27 36 45) 36.00 MCH
S10.1 10 x 10 128.50 128.75 Cc (96 129 161) 128.75 CH
S10.2 122.50 123.75 C (92 120 163) 123.75 CH
S$10.3 115.00 115.00 C (85 116 143) 115.00 CH
S10.4 45.75 46.50 Cc (28 47 64) 46.50 CH
Lei01 15 x 10 197.25 198.75 C (136 200 259) 198.75 C
Lei02 163.00 165.00 Cc (118 164 214) 165.00 CH
LPO1 16 x 16 186.00 155.75 Cc (144 187 246) 191.00 H
FT:06 6 %6 55.00 55.00 MC (54 55 56) 55.00 MCH
FT06 55.25 55.25 MC (42 55 69) 55.25 MCH
FT506 55.75 55.75 MC (52 55 61) 55.75 MCH
FT 06 56.25 56.25 MC (42 55 73) 56.25 MCH
FT:10 10 x 10 930.00 932.75 C (882 930 989) 93275 CH
FTg10 938.50 945.75 Cc (865 930 1058) 945.75 CH
FTg10 935.25 937.75 Cc (844 930 1047) 937.75 CH
FTe20 20 X 5 1165.00 1165.50 Cc (1094 1165 1238) 1165.50 CH
FT;20 1164.25 1164.50 Cc (1112 1165 1216) 1164.50 CH
FT520 1189.75 1190.00 C (1074 1165 1356) 1190.00 CH
ORB,01 10 x 10 1073.50 1074.00 C (961 1060 1215) 1074.00 CH
ORB,02 896.00 896.00 Cc (784 889 1022) 896.00 CH
ORB,03 1015.25 1015.25 Cc (900 1005 1151) 1015.25 CH
ORB,04 1014.50 1015.00 C (894 1006 1154) 1015.00 CH
ORB,05 897.25 898.00 C (800 887 1018) 898.00 CH
ABZs5 10 x 10 1247.00 1251.00 C (1126 1236 1406) 1251.00 C
ABZ,5 1248.75 1250.75 Cc (1111 1239 1414) 1250.75 C
ABZ;6 950.25 957.50 Cc (876 943 1068) 957.50 C
ABZ,6 952.50 954.25 C (842 945 1085) 954.25 C
ABZ.7 20 x 15 656.00 638.00 Cc (628 660 703) 662.75 C
ABZ:8 648.00 538.50 C (643 675 718) 677.75 H
ABZ:9 678.00 552.50 Cc (653 687 731) 689.50 H
Lag01 10x 5 - 674.00 mMC (625 666 739) 674.00 CH
La 01 - 673.75 MC (501 666 862) 673.75 CH
Lag02 - 656.00 MC (601 655 713) 656.00 CH
Lag03 - 612.75 MC (549 597 708) 612.75 CH
Lag05 - 599.75 MC (548 593 665) 599.75 CH
La 06 15x 5 - 926.25 mMC (667 926 1186) 926.25 CH
Lag07 - 901.00 MC (821 890 1003) 901.00 CH
Lag09 - 959.00 MC (869 951 1065) 959.00 CH
Lag11 20 x 5 - 1222.00 Cc (1164 1222 1280) 1222.00 CH
Lag12 - 1039.00 C (975 1039 1103) 1039.00 CH
Lag12 - 1062.50 Cc (968 1039 1204) 1062.50 CH
Lap13 - 1150.00 Cc (1072 1150 1228) 1150.00 CH
Lag13 - 1174.00 C (1070 1150 1326) 1174.00 CH
Lag14 - 1292.00 C (1203 1292 1381) 1292.00 CH
Lag14 - 1325.75 Cc (1197 1292 1522) 1325.75 CH
Lag19 10 x 10 843.25 846.00 Cc (752 842 948) 846.00 CH
Laz20 912.50 914.00 Cc (816 902 1036) 914.00 CH
Lag21 15 x 10 1046.00 1049.25 Cc (977 1046 1128) 1049.25 C
Lag21 1044.75 1050.50 Cc (943 1046 1167) 1050.50 CH
Laz21 1056.50 1057.75 C (943 1046 1196) 1057.75 C
La,22 937.00 938.00 C (833 927 1065) 938.00 C
Lag24 935.00 938.75 C (871 937 1010) 938.75 C
Lag24 938.25 942.25 Cc (840 938 1053) 942.25 C
Lag25 977.00 978.50 Cc (913 978 1045) 978.50 CH
Lag25 985.75 986.75 C (882 977 1111) 986.75 C

to large-size instances, and the use of more advanced and tailored exact
solving methods is recommended.

Size is not the only factor affecting the solving methods. For exam-
ple MILP has found the optimal solutions to all instances of size 15 x 5
(without certifying it), but it could not find it for the instances of size
10 x 5. Similarly, in the set of instances with 100 tasks MILP finds

10

(continued on next page)

feasible solutions for all instances of size 10 x 10, but the RE values
are far from being similar.

Regarding the CP model, the solver can find solutions to larger-
size instances within a reasonable time limit. In fact, it can reach
optimality on all instances with less than 200 tasks within the time
limit. Furthermore, it finds better bounds than the MILP model in all
instances and, when both methods can reach optimality, CP is faster.
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Inst. Size E[lji] Best UB
old netw Met. UB E[UB] Met.

Lap27 20 x 10 1235.00 1235.00 c (1154 1235 1316) 1235.00 c
Lag27 1233.00 1233.00 c (1132 1242 1365) 1245.25 H
Lag29 1152.00 935.50 c (1081 1154 1238) 1156.75 c
Lag29 1156.50 935.00 c (1058 1165 1315) 117575 H
Lag36 15 x 15 1277.00 1281.50 c (1160 1275 1416) 1281.50 c
Lag37 1398.25 1405.00 c (1262 1399 1560) 1405.00 c
La38 1196.00 1025.50 c (1128 1196 1284) 1201.00 c
Lag38 1204.50 1026.00 c (1091 1205 1342) 1210.75 CH
Lag39 1234.00 1241.25 c (1112 1233 1387) 1241.25 c
Lap40 1222.00 122675 c (1146 1224 1313) 122675 c
Lag40 1226.50 1233.00 c (1119 1228 1357) 1233.00 CH

20000 - Runtime (s.) optimality. For instances with more than 200 tasks, the lower and upper

18000 - ° bounds that CP reports are not equal, thus it cannot prove optimality.

16000 - On the other hand, HTS provides similar upper bounds in much less

14000 H time, so metaheuristics can be seen as a better alternative for large-size

12000 - instances.

10000 - ° During the experimental study, many bounds for the fJSP have been
8000 -+ updated. Table 9 summarises the number of new bounds and optimal
6000 - ° solutions found per instance set. Instance sets, number of instances
4000 ~ . . per set, number of optimal solutions reached, and number of newly
2000 -+ . S Umber of tasks found lower bounds are presented. In total, optimal solutions have

0 - * 1 been certified for 83 instances, confirming 24 of the existing lower
0 50 100 150 200

Fig. 2. Average run time taken by CP to prove optimality on instances grouped by
size.

Fig. 2 shows the time elapsed to solve CP on the instance sizes that
could be solved to optimality sorted by size. On average, the behaviour
is as before: the larger the instance, the longer it takes to prove
optimality. However, we can see a high variance among instances of the
same size, indicating once more that size is not the only factor affecting
difficulty.

In fact, the ratio between the number of machines and the number
of jobs (r = |M|/|J]) seems to be a contributing factor for instance
difficulty. Consider for example the instances FTy 10 and FTy20, from
the same test-bed and with the same number of tasks, but with ratios
r = 1 and r = 0.25 respectively. The CP model is optimally solved
in all cases, but it takes four times longer on average for the three
fuzzy instances obtained from FT10 compared to the three instances
obtained from FT20. HTS can also find the optimal solution in all cases,
but the RE of an average solution is 0.38% on the FT10 instances
compared to 0.11% on the FT20. This is even more obvious when
looking at fuzzy instances from La19,20 and La11-14. This pattern is
clearer when studying the Ta family in terms of RE values for CP and
HTS. The impact of the ratio r also seems to increase with instance
size: instances Ta,71-80 with 2000 tasks and r = 0.2 present smaller
RE average values than instances with fewer tasks but higher ratio.
The same happens with instances Ta;21-30 (» = 0.5). Regarding the
different fuzzification methods, a more detailed study has not shown
significant differences between the results on instances made with
different fuzzification methods, thus this does not appear to be an
influencing factor.

In summary, the MILP model is always outperformed by the CP
model (in this sense results are completely aligned with the determin-
istic counterpart (Laborie, 2018)). Thanks to these models, solvers can
find and certify optimality for small and medium-size instances. We
can also experimentally confirm that the run time depends not only
on the instance size, but also on other factors, in particular, the ratio
r. Up to medium size, the state-of-the-art metaheuristic can also find
the optimal solution in at least one of its runs, if not all, in much
shorter time. However, due to its nature it is not capable of certifying

11

bounds for the expected makespan to be optimal and reporting 59
new ones. Among these, 40 of them improve the previously known LB
values and 19 are reported for the first time. Detailed data for each
instance (former best LB, new LB, best feasible makespan TFN and
best expected UB, along with the methods that allow us to compute
these bounds) are provided in Appendix A.

7. Conclusions

In this paper we have addressed the fuzzy JSP with makespan
minimisation. We have proposed two mathematical models for this
problem: a MILP and a CP model. Both models are solved with off-
the-shelf solvers. A disjunctive graph model from the literature is also
considered and a competitive metaheuristic (HTS) from the literature
is used as solving method.

Combining all three approaches, we have carried out a critical eval-
uation of all available test-beds. In total, 149 fuzzy instances ranging
from size 6 x 6 to 100 x 20, have been covered. Our study has shown
the potential of exact solvers for the fuzzy job shop problem, solving
to optimality the majority of the instances from the literature within
a reasonable amount of time. Besides providing optimal solutions, we
have also improved the former best LB and reported many new LB
for the first time. The limitations of each method have been studied,
showing that CP outperforms MILP in small to medium-size instances,
but it starts failing to prove optimality when instances have 200 tasks
or more. After that point, meta-heuristics provide similar results in less
time. Numerous upper bounds for the expected makespan have been
also found based on the best feasible solution for those instances where
the optimum has not been found yet. We have also proposed 60 new
fuzzy instances of varied sizes to increase the variety of benchmark
instances for future research.

Additionally, a thorough analysis of the difficulty of the existing
benchmark instances has shown that, as expected, larger instances tend
to be more difficult. But size is not the only factor to take into account.
In particular the ratio between the number of machines and number
of jobs also seems to be a relevant factor. Based on the computational
analysis, we have indicated those instances that appear to be interesting
as benchmarks for future research on fJSP. We have made all our results
publicly available to the research community, together with LB and
U B values for the expected makespan as well as the makespan of the
best feasible solution, for future reference.
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Table A.11
Best known bounds for fuzzified Taillard instances.

Inst. Size E[]ji] Best UB

old new Met. UB E[UB] Met.
Tag01 15 x 15 1231.00 1238.75 Cc (1149, 1231, 1344) 1238.75 CH
Tap02 1244.00 1246.00 Cc (1152, 1245, 1342) 1246.00 CH
Tag03 1218.00 1223.00 Cc (1147, 1219, 1307) 1223.00 C
Taz04 1175.00 1177.00 Cc (1083, 1175, 1275) 1177.00 CH
Tag05 1224.00 1030.00 Cc (1158, 1224, 1319) 1231.25 C
Tar06 1238.00 1011.25 Cc (1156, 1241, 1341) 1244.75 H
Tag07 1227.00 1231.25 Cc (1147, 1228, 1322) 1231.25 CH
Tag08 1217.00 1224.25 C (1134, 1218, 1327) 1224.25 CH
Tag09 1274.00 1280.50 (o (1181, 1274, 1393) 1280.50 C
Tar10 1241.00 1243.75 Cc (1163, 1243, 1326) 1243.75 CH
Tapll 20 x 15 1357.00 1118.50 Cc (1289, 1378, 1492) 1384.25 H
Tagl2 1367.00 1188.50 Cc (1279, 1377, 1488) 1380.25 C
Tagl3 1342.00 1094.50 Cc (1269, 1358, 1478) 1365.75 H
Tag14 1345.00 1345.00 C (1248, 1345, 1442) 1345.00 C
Tag15 1339.00 1071.50 Cc (1274, 1366, 1483) 1372.25 H
Tar16 1360.00 1109.50 Cc (1276, 1368, 1475) 1371.75 H
Tagl7 1462.00 1468.25 C (1352, 1464, 1593) 1468.25 [
Tap18 1377.00 1134.50 Cc (1331, 1433, 1538) 1433.75 H
Tag19 1332.00 1090.75 Cc (1251, 1349, 1468) 1354.25 H
Tap20 1348.00 1135.00 Cc (1257, 1366, 1492) 1370.25 H
Tag21 20 x 20 1642.00 1372.50 C (1561, 1669, 1804) 1675.75 H
Tag22 1561.00 1336.50 C (1521, 1627, 1764) 1634.75 H
Tag23 1518.00 1314.25 Cc (1493, 1578, 1692) 1585.25 H
Tag24 1644.00 1351.50 Cc (1552, 1665, 1798) 1670.00 H
Tag25 1558.00 1323.50 (o (1530, 1633, 1756) 1638.00 H
Tar26 1591.00 1355.50 Cc (1582, 1680, 1795) 1684.25 H
Tag27 1652.00 1438.50 Cc (1585, 1694, 1828) 1700.25 H
Tap28 1603.00 1399.00 Cc (1514, 1628, 1748) 1629.50 H
Tag29 1583.00 1357.75 Cc (1541, 1645, 1766) 1649.25 H
Tar30 1528.00 1316.00 Cc (1505, 1607, 1718) 1609.25 H
Tap31 30 x 15 1764.00 1379.50 Cc (1669, 1783, 1905) 1785.00 H
Tag32 1774.00 1378.50 Cc (1690, 1824, 1979) 1829.25 C
Tap33 1788.00 1424.50 C (1724, 1849, 1992) 1853.50 H
Tag34 1828.00 1441.50 Cc (1709, 1866, 2023) 1866.00 C
Tap35 2007.00 2007.00 Cc (1847, 2007, 2167) 2007.00 CH
Tap36 1819.00 1436.00 C (1720, 1847, 1987) 1850.25 C
Tag37 1771.00 1423.50 C (1647, 1796, 1967) 1801.50 C
Tap38 1673.00 1321.25 Cc (1575, 1692, 1847) 1701.50 C
Tag39 1795.00 1385.00 C (1709, 1815, 1945) 1821.00 H
Tag40 1651.00 1314.00 (o (1600, 1714, 1858) 1721.50 [
Tap4l 30 x 20 1906.00 1564.00 Cc (1958, 2090, 2222) 2090.00 C
Tag42 1884.00 1563.50 Cc (1883, 2019, 2173) 2023.50 H
Tag43 1809.00 1548.00 Cc (1809, 1949, 2090) 1949.25 C
Tap44 1948.00 1575.00 C (1933, 2044, 2173) 2048.50 C
Tap45 1997.00 1650.00 Cc (1928, 2036, 2170) 2042.50 C
Tag46 1957.00 1626.00 Cc (1949, 2066, 2215) 2074.00 C
Tap47 1807.00 1576.00 Cc (1828, 1973, 2120) 1973.50 C
Tap48 1912.00 1641.00 Cc (1881, 2012, 2160) 2016.25 [
Tag49 1931.00 1576.00 Cc (1897, 2030, 2177) 2033.50 C
Tag50 1833.00 1528.50 Cc (1894, 2019, 2158) 2022.50 H
Tag51 50 x 15 2760.00 1867.50 Cc (2549, 2760, 2971) 2760.00 CH
Tag52 2756.00 1881.50 C (2581, 2756, 2931) 2756.00 CH
Tap53 2717.00 1830.00 C (2521, 2717, 2915) 2717.50 CH
Tag54 2839.00 2002.00 Cc (2605, 2839, 3073) 2839.00 CH
Tag55 2679.00 1809.50 Cc (2497, 2679, 2880) 2683.75 C
Tag56 2781.00 1853.00 C (2574, 2781, 2994) 2782.50 CH
Tag57 2943.00 2040.00 Cc (2719, 2943, 3167) 2943.00 CH
Tap58 2885.00 1963.50 Cc (2682, 2885, 3128) 2895.00 CH
Tag59 2655.00 1809.00 Cc (2469, 2655, 2865) 2661.00 CH
Tag60 2723.00 1898.50 C (2525, 2723, 2927) 2724.50 CH
Tap61 50 x 20 2868.00 2078.00 (o (2691, 2868, 3072) 2874.75 [
Tag62 2869.00 2124.25 Cc (2729, 2904, 3085) 2905.50 C
Tap63 2755.00 2022.00 Cc (2529, 2755, 2987) 2756.50 C
Tar64 2702.00 1973.50 Cc (2495, 2702, 2909) 2702.00 C
Tag65 2725.00 2002.00 Cc (2559, 2725, 2948) 2739.25 C
Ta66 2845.00 2103.50 Cc (2625, 2845, 3094) 2852.25 C
Tap67 2825.00 2057.50 C (2606, 2826, 3083) 2835.25 C
Tap68 2784.00 2075.00 C (2609, 2784, 2971) 2787.00 C
Tag69 3071.00 2247.50 Cc (2850, 3071, 3292) 3071.00 CH
Tag70 2995.00 2126.25 Cc (2792, 2995, 3219) 3000.25 C

(continued on next page)
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Inst. Size E[E\B] Best UB

old new Met. UB E[UB] Met.
Tap71 100 x 20 5464.00 3406.50 C (5089, 5464, 5839) 5464.00 CH
Tag72 5181.00 3228.00 C (4822, 5181, 5540) 5181.00 CH
Tag73 5568.00 3469.25 C (5195, 5568, 5941) 5568.00 CH
Tag74 5339.00 3320.25 C (4950, 5339, 5739) 5341.75 CH
Tag75 5392.00 3369.50 C (4959, 5392, 5830) 5393.25 c
Tag76 5342.00 3310.25 C (5022, 5342, 5736) 5360.50 CH
Tag77 5436.00 3340.00 C (5050, 5436, 5822) 5436.00 CH
Tag78 5394.00 3347.00 C (4980, 5394, 5808) 5394.00 CH
Tag79 5358.00 3330.00 C (4974, 5358, 5744) 5358.50 CH
Tag80 5183.00 3208.75 C (4833, 5183, 5533) 5183.00 CH
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Appendix A. Detailed solutions

Tables A.10 and A.11 contain the best bounds found during this
work grouped by instance family and size. For each group, the size is
given next to the first instance’s name. Column E[LB],, reports the
best known lower bound, either from the literature, or obtained by ap-
plying the method explained in Section 5 for instances with symmetric
TFN values. A dash represents that no previous LB is available. Column
E [ﬁi‘],,ew contains the best lower bound found in this work, together
with the method(s) that reached that value. The best lower bound
for each instance is highlighted in bold. Regarding the upper bounds,
column BestUB reports the best found upper bound together with its
expected value and the method(s) that obtained it. If the U B is proven
to be optimal, it is highlighted in bold. For the sake of simplicity, we
use letters M, C andH to refer to MILP, CP and HTS respectively.
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