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A B S T R A C T

In this paper we derive three new asymptotic models for a hyperbolic–hyperbolic–elliptic system
of PDEs describing the motion of a collision-free plasma in a magnetic field. The first of these
models takes the form of a non-linear and non-local Boussinesq system (for the ionic density and
velocity) while the second is a non-local wave equation (for the ionic density). Moreover, we
derive a unidirectional asymptotic model of the latter which is closely related to the well-known
Fornberg–Whitham equation. We also provide the well-posedness of these asymptotic models
in Sobolev spaces. To conclude, we demonstrate the existence of a class of initial data which
exhibit wave breaking for the unidirectional model.

. Introduction

The motion of a cold plasma in a magnetic field consisting of singly-charged particles can be described by the following system
f PDEs [2,12]

𝑛𝑡 + (𝑢𝑛)𝑥 = 0, (1a)

𝑢𝑡 + 𝑢𝑢𝑥 +
𝑏𝑏𝑥
𝑛

= 0, (1b)

𝑏 − 𝑛 −
(

𝑏𝑥
𝑛

)

𝑥
= 0 (1c)

here 𝑛, 𝑢 and 𝑏 are the ionic density, the ionic velocity and the magnetic field, respectively. Moreover, it has also been used
s a simplified model to describe the motion of collision-free two fluid model where the electron inertial, charge separation and
isplacement current are neglected and the Poisson equation (1c) is initially satisfied, [2,20]. In (1) the spatial domain 𝛺 is either
= R or 𝛺 = S1 (i.e. 𝑥 ∈ R or 𝑥 ∈ [−𝜋, 𝜋] with periodic boundary conditions) and the time variable satisfies 𝑡 ∈ [0, 𝑇 ] for certain
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0 < 𝑇 ≤ ∞. The corresponding initial-value problem (ivp) consists of the system (1) along with initial conditions

𝑛(𝑥, 0) = 𝑛0(𝑥), 𝑢(𝑥, 0) = 𝑢0(𝑥), (2)

which are assumed to be smooth enough for the purposes of the work.
System (1) was introduced by Gardner & Morikawa [12]. Furthermore, Gardner & Morikawa formally showed that the solutions

of (1) converge to solutions of the Korteweg–de Vries equation (see also the paper by Su & Gardner [27]). Berezin & Karpman
extended this formal limit to the case where the wave propagates at certain angles with respect to the magnetic field [2], i.e. for
angles satisfying certain size conditions. Later on, Kakutani, Ono, Taniuti & Wei [20] removed the hypothesis on the angle. This
formal KdV limit was recently justified by Pu & Li [24].

1.1. Contributions and main results

The purpose of this paper is two-fold. First, we derive three asymptotic models for the hyperbolic–hyperbolic–elliptic system of
PDEs describing the motion of a collision-free plasma in a magnetic field given in (1). The method to obtain the new asymptotic
models relies on a multi-scale expansion (cf. e. g. [1,3–5,9,13,14]) which reduces the full system (1) to a cascade of linear equations
which can be closed up to some order of precision.

More specifically, writing

𝑛 = 1 +𝑁, 𝑈 = 𝑢, 𝑏 = 1 + 𝐵, (3)

and, for 𝜀 > 0, introducing the formal expansions

𝑁 =
∞
∑

𝓁=0
𝜀𝓁+1𝑁 (𝓁), 𝐵 =

∞
∑

𝓁=0
𝜀𝓁+1𝐵(𝓁), 𝑈 =

∞
∑

𝓁=0
𝜀𝓁+1𝑈 (𝓁), (4)

then the first model is an 𝑂(𝜖2) approximation of (1) and takes the form of the following Boussinesq type system

ℎ𝑡 + (ℎ𝑣)𝑥 + 𝑣𝑥 = 0, (5a)

𝑣𝑡 + 𝑣𝑣𝑥 + [L ,N ℎ]ℎ + N ℎ = 0, (5b)

for ℎ = 𝜀𝑁 (0) + 𝜀2𝑁 (1), 𝑣 = 𝜀𝑈 (0) + 𝜀2𝑈 (1). The nonlocal terms in (5) are given by

L = −𝜕2𝑥(1 − 𝜕2𝑥)
−1, N = 𝜕𝑥(1 − 𝜕2𝑥)

−1 (so 𝜕𝑥N = −L ), (6)

which are Fourier multiplier operators with symbols

L̂ ℎ(𝜉) =
𝜉2

1 + 𝜉2
ℎ̂(𝜉), N̂ ℎ(𝜉) =

𝑖𝜉
1 + 𝜉2

ℎ̂(𝜉). (7)

(where ℎ̂(𝜉) denotes the Fourier transform of ℎ at 𝜉) and [L , ⋅] ⋅ denotes the commutator

[L , 𝑓 ] 𝑔 = L (𝑓𝑔) − 𝑓L 𝑔. (8)

The extra assumption 𝑈 (0) = 𝑁 (0) in (4) leads to the formal derivation of the second asymptotic model, as a bidirectional single
non-local wave equation

ℎ𝑡𝑡 + L ℎ =
(

ℎℎ𝑥 + [L ,N ℎ]ℎ
)

𝑥 − 2
(

ℎℎ𝑡
)

𝑥 . (9)

The formal reduction of (9) to the corresponding unidirectional version, cf. [29], yields

ℎ𝑡 = −1
2
(

3ℎℎ𝑥 − [L ,N ℎ]ℎ − N ℎ − ℎ𝑥
)

, (10)

eing the third asymptotic model introduced in the present paper. We note that the unidirectional equation (10) has strong
imilarities with the well-known equation

𝑢𝑡 +
3
2
𝑢𝑢𝑥 = N 𝑢, (11)

proposed by Fornberg & Whitham as a model for breaking waves [11]. The latter equation has been intensively studied during the
last decades and several results regarding the well-posedness of the ivp in different functional spaces as well as various wave-breaking
criteria have appeared in the literature [15–19,30]. A significant difference between the structure of Eq. (11) and the unidirectional
equation (10) derived in the present paper is the emergence of the nonlocal commutator-type term.

The second purpose of this work is the study of several analytical properties of the models (5), (9), and (10). They are mainly
concerned with the existence of conserved quantities, well-posedness (in the sense of existence and uniqueness of solutions of the
corresponding ivp), and the formation of special solutions. This paper will focus on the first two points, while the existence and
dynamics of solitary-wave solutions will be the object of a separate forthcoming study.
2

Specifically, the results shown in this paper can be summarized as follows:
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• The system (5) and the unidirectional model (10) admit several quantities preserved by the solutions in suitable spaces,
including a Hamiltonian structure. On the other hand, (9) can be written in a conservation form, leading in a natural way to
the existence of a conserved quantity.

• The system (5) is locally well posed on a modified Sobolev space involving the operator L .
• The bidirectional non-local wave Eq. (9) has a unique local solution close to the equilibrium and for initial data with sufficiently

small 𝐿∞ norm.
• The ivp for Eq. (10) is locally well-posed in Sobolev spaces 𝐻𝑠(R) for 𝑠 > 3

2 . Furthermore, a blow-up criterion for the solution
by means of a logarithmic Sobolev inequality is provided. In addition, smooth solutions of (10) are shown to exhibit wave
breaking under a suitable hypothesis on the initial condition.

.2. Structure of the paper

In Section 2 we present the asymptotic derivation of the three models studied in this paper from the motion of a cold plasma by
eans of a multi-scale expansion. Section 3 is devoted to the study of conservation properties of the models derived in Section 2.

ocused on well-posedness, the nonlocal Boussinesq system (5) is analyzed in Section 4, while local existence for the bidirectional
on-local wave Eq. (9) close to the equilibrium state is studied in Section 5. Concerning the unidirectional model (10), well-posedness
nd blow-up criteria for the solutions are derived in Section 6. These results are finished off in Section 7, where wave breaking of
ome smooth solutions for the unidirectional model is shown.

.3. Preliminaries and notation

Let us next introduce some notation that will be used throughout the rest of the paper.

he functional spaces
For 1 ≤ 𝑝 ≤ ∞, let 𝐿𝑝 = 𝐿𝑝(R) be the usual normed space of 𝐿𝑝-functions on R with ‖ ⋅ ‖𝑝 as the associated norm. For 𝑠 ∈ R, the

inhomogeneous Sobolev space 𝐻𝑠 = 𝐻𝑠(R) is defined as

𝐻𝑠(R) ≜
{

𝑓 ∈ 𝐿2(R) ∶ ‖𝑓‖2𝐻𝑠(R) = ∫R
(1 + 𝜉2)𝑠|𝑓 (𝜉)|

2
< +∞

}

,

with norm

‖𝑓‖2𝐻𝑠 = ‖𝑓‖2
𝐿2 + ‖𝑓‖2𝐻̇𝑠 ,

where ‖𝑓‖𝐻̇𝑠 = ‖𝛬𝑠𝑓‖𝐿2 and 𝛬𝑠 is defined by 𝛬𝑠𝑓 (𝜉) = |𝜉|𝑠𝑓 (𝜉), where 𝑓 is the Fourier transform of 𝑓 .
The space of functions with bounded mean oscillation BMO(R) (cf. [25,26]) is defined by

BMO(R) ≜

{

𝑓 ∈ 𝐿1
loc(R) ∶ ‖𝑓‖BMO(R) = sup

𝑟>0,𝑥0∈R∫

𝑥0+𝑟

𝑥0−𝑟
|

|

𝑓 (𝑥) − 𝑓 (𝑥)|
|

𝑑𝑥 < +∞

}

,

where 𝑓 (𝑥) = 1
2𝑟 ∫

𝑥0+𝑟
𝑥0−𝑟

𝑓 (𝑦) 𝑑𝑦.
Next, let us introduce two lemmas with useful estimates regarding Sobolev spaces. The first one deals with the so called

Kato-Ponce commutator estimate.

Lemma 1.1 ([21,22]). If 𝑓, 𝑔 ∈ 𝐻𝑠 ⋂𝑊 1,∞ with 𝑠 > 0, then for 𝑝, 𝑝𝑖 ∈ (1,∞) with 𝑖 = 1,… , 4 and 1
𝑝 = 1

𝑝1
+ 1

𝑝2
= 1

𝑝3
+ 1

𝑝4
, we have

‖

[

𝛬𝑠, 𝑓
]

𝑔‖𝐿𝑝 ≤ 𝐶𝑠,𝑝(‖𝜕𝑥𝑓‖𝐿𝑝1 ‖𝛬𝑠−1𝑔‖𝐿𝑝2 + ‖𝛬𝑠𝑓‖𝐿𝑝3 ‖𝑔‖𝐿𝑝4 ),

and

‖𝛬𝑠(𝑓𝑔)‖𝐿𝑝 ≤ 𝐶𝑠,𝑝(‖𝑓‖𝐿𝑝1 ‖𝛬𝑠𝑔‖𝐿𝑝2 + ‖𝛬𝑠𝑓‖𝐿𝑝3 ‖𝑔‖𝐿𝑝4 ).

The second gives a logarithmic Sobolev inequality.

Lemma 1.2 ([10]). Let 𝑠 > 1
2 . There exists a constant 𝐶 = 𝐶(𝑠) > 0 such that

‖𝑓‖𝐿∞ ≤ 𝐶
(

1 + ‖𝑓‖BMO
[

1 + log(1 + ‖𝑓‖𝐻𝑠(R))
])

,

𝑠

3

holds for all 𝑓 ∈ 𝐻 .
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The Helmholtz operator
We denote by Q the operator (1 − 𝜕2𝑥)

−1 which acting on functions 𝑓 ∈ 𝐿2(R) has the representation

Q𝑓 (𝑥) = [𝐺 ⋆ 𝑓 ](𝑥) = ∫R
𝐺(𝑥 − 𝜂)𝑓 (𝜂) 𝑑𝜂, 𝐺(𝑥) = 1

2
𝑒−|𝑥|, 𝑥 ∈ R. (12)

urthermore, the Fourier symbol of Q is

Q̂𝑓 (𝜉) = 1
1 + |𝜉|2

𝑓 (𝜉),

and by a simple computation we have that Q𝑓 ∈ 𝐻2 if 𝑓 ∈ 𝐿2 and

𝜕2𝑥Q𝑓 (𝑥) = (Q − I) 𝑓 (𝑥), 𝑥 ∈ R, (13)

where I denotes the identity operator.

Constants
Throughout the paper 𝐶 = 𝐶(⋅) will denote a positive constant that may depend on fixed parameters and 𝑥 ≲ 𝑦 (𝑥 ≳ 𝑦) means

that 𝑥 ≤ 𝐶𝑦 (𝑥 ≥ 𝐶𝑦) holds for some 𝐶.

2. Derivation of the asymptotic models

In this section, we derive the three asymptotic models (5), (9), and (10) of system (1) by means of a multi-scale expansion
(cf. [3–5,9,13,14]).

2.1. The non-local Boussinesq model

Using (3), the system (1) can be equivalently written as

𝑁𝑡 + (𝑈𝑁)𝑥 + 𝑈𝑥 = 0, (14a)

𝑈𝑡 + 𝑈𝑈𝑥 +
(1 + 𝐵)𝐵𝑥
1 +𝑁

= 0, (14b)

𝐵 −𝑁 −
(

𝐵𝑥
1 +𝑁

)

𝑥
= 0. (14c)

In this new variables, the initial data (2) takes the form

𝑁(𝑥, 0) = 𝑛0(𝑥) − 1, 𝑈 (𝑥, 0) = 𝑢0(𝑥). (15)

Furthermore, we can rewrite (14b) as

𝑈𝑡 + 𝑈𝑈𝑥 + 𝐵𝑥 + 𝐵𝐵𝑥 + 𝑈𝑡𝑁 +𝑁𝑈𝑈𝑥 = 0.

Similarly, (14c) can be expanded

𝐵 −𝑁 −
𝐵𝑥𝑥
1 +𝑁

+
𝐵𝑥

(1 +𝑁)2
𝑁𝑥 = 0,

and then it takes the similar form

𝐵 −𝑁 + 𝐵𝑁2 −𝑁3 + 2𝑁𝐵 − 2𝑁2 − 𝐵𝑥𝑥 −𝑁𝐵𝑥𝑥 + 𝐵𝑥𝑁𝑥 = 0.

hen, (14) becomes

𝑁𝑡 + 𝑈𝑥 = −(𝑁𝑈 )𝑥, (16a)

𝑈𝑡 + 𝐵𝑥 = −𝑈𝑈𝑥 − 𝐵𝐵𝑥 − 𝑈𝑡𝑁 −𝑁𝑈𝑈𝑥, (16b)

𝐵 −𝑁 − 𝐵𝑥𝑥 = −𝐵𝑁2 +𝑁3 − 2𝑁𝐵 + 2𝑁2 +𝑁𝐵𝑥𝑥 − 𝐵𝑥𝑁𝑥. (16c)

Now, from the ansatz (4) and equating in powers of 𝜖, the system (16) leads to a cascade of linear equations for the coefficients
𝑁 (𝓁), 𝐵(𝓁), and 𝑈 (𝓁). The first terms satisfy

𝑁 (0)
𝑡 + 𝑈 (0)

𝑥 = 0, (17a)

𝑈 (0)
𝑡 + 𝐵(0)

𝑥 = 0, (17b)

𝐵(0) −𝑁 (0) − 𝐵(0)
𝑥𝑥 = 0, (17c)

with initial data from (15). System (17) can be explicitly decoupled and we find

𝑁 (0) + 𝑈 (0) = 0, (18a)
4

𝑡 𝑥
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𝑈 (0)
𝑡 + 𝜕𝑥(1 − 𝜕2𝑥)

−1𝑁 (0) = 0, (18b)

𝐵(0) = (1 − 𝜕2𝑥)
−1𝑁 (0). (18c)

hen, (17a), (17b) lead to

𝑁 (0)
𝑡𝑡 + L𝑁 (0) = 0, 𝑈 (0)

𝑡𝑡 + L𝑈 (0) = 0. (19)

he second term in the expansion solves

𝑁 (1)
𝑡 + 𝑈 (1)

𝑥 = −(𝑁 (0)𝑈 (0))𝑥, (20a)

𝑈 (1)
𝑡 + 𝐵(1)

𝑥 = −𝑈 (0)𝑈 (0)
𝑥 − 𝐵(0)𝐵(0)

𝑥 − 𝑈 (0)
𝑡 𝑁 (0), (20b)

𝐵(1) −𝑁 (1) − 𝐵(1)
𝑥𝑥 = −2𝑁 (0)𝐵(0) + 2(𝑁 (0))2 +𝑁 (0)𝐵(0)

𝑥𝑥 − 𝐵(0)
𝑥 𝑁 (0)

𝑥 . (20c)

ote that, using (17c), the Eq. (20c) can be written as

𝐵(1) −𝑁 (1) − 𝐵(1)
𝑥𝑥 = −2𝑁 (0)(𝐵(0) −𝑁 (0) − 𝐵(0)

𝑥𝑥 ) −𝑁 (0)𝐵(0)
𝑥𝑥 − 𝐵(0)

𝑥 𝑁 (0)
𝑥

= −(𝑁 (0)𝐵(0)
𝑥 )𝑥.

hen, from (18c), we have

𝐵(1) = (1 − 𝜕2𝑥)
−1𝑁 (1) − N (𝑁 (0)𝐵(0)

𝑥 ) = (1 − 𝜕2𝑥)
−1𝑁 (1) − N (𝑁 (0)N 𝑁 (0)). (21)

ow, using (18b)–(18c), Eq. (20b) can be written as

𝑈 (1)
𝑡 + 𝐵(1)

𝑥 = −𝑈 (0)𝑈 (0)
𝑥 − 𝐵(0)(N 𝑁 (0)) + (N 𝑁 (0))𝑁 (0).

urthermore, from (18b), note that the last two terms can be written as

−𝐵(0)(N 𝑁 (0)) + (N 𝑁 (0))𝑁 (0) = −N 𝑁 (0)𝐵(0)
𝑥𝑥 ,

nd using (18c) again we obtain

𝑈 (1)
𝑡 + 𝐵(1)

𝑥 = −𝑈 (0)𝑈 (0)
𝑥 + N 𝑁 (0)L𝑁 (0). (22)

Substitution of 𝐵(1) from (21) into (22) leads to

𝑈 (1)
𝑡 + N 𝑁 (1) = −L (𝑁 (0)N 𝑁 (0)) − 𝑈 (0)𝑈 (0)

𝑥 + N 𝑁 (0)L𝑁 (0)

= −𝑈 (0)𝑈 (0)
𝑥 −

[

L ,N 𝑁 (0)]𝑁 (0), (23)

here the commutator is given by (8). The approximate model (5) for the truncations ℎ = 𝜀𝑁 (0) + 𝜀2𝑁 (1), 𝑣 = 𝜀𝑈 (0) + 𝜀2𝑈 (1), is
erived from (23) after neglecting (𝜀3) terms.

.2. The non-local single wave equation model

From (19) we observe that 𝑁 (0) and 𝑈 (0) satisfy the same linear nonlocal wave equation. Thus, under the extra assumption of
aving the same initial data, we can conclude that

𝑈 (0) = 𝑁 (0). (24)

his will allow to further simplify the system (5). Taking the time derivative of (20a) and using (23) we find that

𝑁 (1)
𝑡𝑡 − N 𝑁 (1)

𝑥 = (𝑈 (0)𝑈 (0)
𝑥 )𝑥 −

[

L ,N 𝑁 (0)]𝑁 (0)
𝑥 − (𝑁 (0)𝑈 (0))𝑥𝑡.

urthermore, from (24) and (6), we conclude that

𝑁 (1)
𝑡𝑡 + L𝑁 (1) =

(

𝑁 (0)𝑁 (0)
𝑥 +

[

L ,N 𝑁 (0)]𝑁 (0))
𝑥 − 2

(

𝑁 (0)𝑁 (0)
𝑡

)

𝑥
.

onsidering now the truncation ℎ = 𝜀𝑁 (0) + 𝜀2𝑁 (1), and neglecting contributions of order (𝜀3) in the last expression, the single
ave Eq. (9) emerges.

.3. The unidirectional non local wave model

In this section, we derive the unidirectional asymptotic model (10). We introduce the following far field variables

𝜒 = 𝑥 − 𝑡, 𝜏 = 𝜀𝑡. (25)

sing the chain rule we have that

𝜕2 ℎ(𝜒(𝑥, 𝑡), 𝜏(𝑡)) = ℎ − 𝜀ℎ − 𝜀ℎ + 𝜀2ℎ .
5

𝜕𝑡2 𝜒𝜒 𝜒𝜏 𝜏𝜒 𝜏𝜏
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On the other hand, using the representation (12) of the Helmholtz operator Q, it is not hard to see that Q = (1− 𝜕𝜒𝜒 )−1. Therefore,
rom the change of variables (25) and neglecting terms of order (𝜀3) (notice that by construction ℎ ∼ (𝜀)), we find that Eq. (9)
ecomes

(

ℎ𝜒 − 2𝜀ℎ𝜏
)

𝜒 + (N ℎ)𝜒 =
(

3ℎℎ𝜒 − [L ,N ℎ]ℎ
)

𝜒

hich after integrating in 𝜒 , reordering terms and going back by abuse of notation to variables 𝑥 and 𝑡 we obtain (10).

. Conserved quantities

In this section we derive some conserved quantities of the models above. We start with the system (5). Note first that we can
rite

[L ,N ℎ]ℎ = L (ℎN ℎ) + 1
2
𝜕𝑥 (N ℎ)2 . (26)

Property (26) leads to the formulation of (5) in conservation form

𝜕𝑡

(

ℎ
𝑣

)

+ 𝜕𝑥𝑓 (ℎ, 𝑣) = 0,

where

𝑓 (ℎ, 𝑣) =

(

𝑣(1 + ℎ)
𝑣2

2 − N (ℎN ℎ) + 1
2 (N ℎ)2 + Qℎ

)

.

Then, if 𝑢 = Qℎ and we assume that ℎ, 𝑣, 𝑢, 𝑢𝑥 → 0 as |𝑥| → ∞, we obtain the preservation of

𝐼1(ℎ, 𝑣) = ∫R
ℎ𝑑𝑥, 𝐼2(ℎ, 𝑣) = ∫R

𝑣𝑑𝑥.

On the other hand, the following lemma is used below to derive a third conserved quantity.

Lemma 3.1. If ℎ → 0 as |𝑥| → ∞, then:

∫R
ℎL (ℎN ℎ) 𝑑𝑥 = −1

2 ∫R
ℎ𝜕𝑥 (N ℎ)2 𝑑𝑥,

∫R
ℎN ℎ𝑑𝑥 = 0. (27a)

Proof. We use the Fourier symbols of the operators L ,N , the relation 𝜕𝑥N = −L , and Plancherel identity to have the following
identities:

∫R
ℎL (ℎN ℎ) 𝑑𝑥 = ∫R

ℎN ℎL ℎ𝑑𝑥 = −∫R
ℎN ℎ𝜕𝑥N ℎ𝑑𝑥 = −1

2 ∫R
ℎ𝜕𝑥 (N ℎ)2 𝑑𝑥,

∫R
ℎN ℎ𝑑𝑥 = −∫R

(N ℎ)ℎ𝑑𝑥. □

Proposition 3.2. Let ℎ, 𝑣 be solutions of (5) with ℎ, 𝑣 → 0 as |𝑥| → ∞ and let

𝐼(ℎ, 𝑣) = ∫R
ℎ𝑣𝑑𝑥 = ∫R

(𝑢𝑣 + 𝑢𝑥𝑣𝑥)𝑑𝑥, (28)

where 𝑢 = Qℎ. Then
𝑑
𝑑𝑡

𝐼(ℎ, 𝑣) = 0.

roof. Using (26), we write (5) in the form

ℎ𝑡 + (ℎ𝑣)𝑥 + 𝑣𝑥 = 0, (29a)

𝑣𝑡 + 𝑣𝑣𝑥 + L (ℎN ℎ) + 1
2
𝜕𝑥 (N ℎ)2 + N ℎ = 0. (29b)

Multiplying (29a) by 𝑣, (29b) by ℎ, adding these two amounts, using Lemma 3.1, and the hypotheses on ℎ and 𝑣, we have

∫R

(

ℎ𝑡𝑣 + 𝑣𝑡ℎ + 𝑣((1 + ℎ)𝑣)𝑥 + 𝑣𝑣𝑥ℎ
)

𝑑𝑥 = 0.

Finally, using that ℎ, 𝑣 → 0 as |𝑥| → ∞ again, note that

∫R

(

𝑣((1 + ℎ)𝑣)𝑥 + 𝑣𝑣𝑥ℎ
)

𝑑𝑥 = ∫R

(

𝑣𝑣𝑥 + 𝑣(ℎ𝑣)𝑥 + 𝑣𝑣𝑥ℎ
)

𝑑𝑥,

=
(

𝜕
(

𝑣2
)

− 𝑣𝑥ℎ𝑣 + 𝑣𝑥ℎ𝑣
)

𝑑𝑥 = 0. □
6

∫R 𝜕𝑥 2
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A final result on (5) is the Hamiltonian formulation. The proof is direct.

heorem 1. The system (5) admits a Hamiltonian structure

𝜕𝑡

(

ℎ
𝑣

)

= J 𝛿𝐸(ℎ, 𝑣),

here the solution pair (ℎ, 𝑣) is smooth enough and vanishes at infinity,

𝛿𝐸 =
( 𝛿𝐸
𝛿ℎ

, 𝛿𝐸
𝛿𝑣

)𝑇
,

denotes the variational derivative,

J = −𝜕𝑥

(

0 1
1 0

)

,

and

𝐸(ℎ, 𝑣) = 1
2 ∫R

(

𝑣2(1 + ℎ) + (Bℎ)2 + ℎ(N ℎ)2
)

𝑑𝑥, Q = B2.

On the other hand, using (26), the bidirectional model (9) can be written in a conservation form

𝜕𝑡(ℎ𝑡 + 𝜕𝑥ℎ
2) − 𝜕𝑥

(

N ℎ + 𝜕𝑥

(

ℎ2

2

)

− 𝜕𝑥N (ℎN ℎ) + 𝜕𝑥

(

(N ℎ)2

2

))

= 0,

hich, assuming that ℎ is sufficiently smooth and that ℎ𝑥 vanishes at infinity, implies that

𝑑
𝑑𝑡 ∫R

(ℎ𝑡 + 𝜕𝑥ℎ
2)𝑑𝑥 = 0.

As far as the unidirectional model (10) is concerned, using again (26), the model is written in conservation form

ℎ𝑡 + 𝜕𝑥
( 3
4
ℎ2 + 1

2
N (ℎN ℎ) − 1

4
(N ℎ)2 − 1

2
Qℎ − ℎ

2

)

= 0, (31)

which implies, when ℎ → 0 as 𝑥 → ±∞, the preservation in time of

∫R
ℎ𝑑𝑥.

f, in addition, we multiply (31) by h, integrate on R and use Lemma 3.1, then the 𝐿2 norm

∫R
ℎ2𝑑𝑥,

is the second conserved quantity. Finally, the unidirectional model (10) also admits a Hamiltonian structure

ℎ𝑡 =
1
2𝜖

𝜕𝑥𝛿𝐸(ℎ),

where now 𝛿𝐸 = 𝛿𝐸
𝛿ℎ and

𝐸(ℎ) = 1
2 ∫R

(

ℎ2 − ℎ3 + (Bℎ)2 + ℎ(N ℎ)2
)

𝑑𝑥, (32)

and where the phase space for (32) involves smooth enough functions ℎ vanishing at infinity.

4. Well-posedness for the non-local Boussinesq system

In this section we will show the well-posedness of system (5). Due to the coupled nature of the equations when performing the
a priori energy estimates we need to symmetrize the system. To this end, let us introduce the following functional space

 = {(ℎ, 𝑣) ∈ 𝐻2(R) ×𝐻3(R) ∶ ‖(ℎ, 𝑣)‖ = ‖(ℎ, 𝑣)‖2
𝐿2(R)×𝐿2(R) +

‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖

2

𝐿2(R)
+ ‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

2

𝐿2(R)
< ∞}. (33)

f 𝑚(𝜉) = 𝜉2

1+𝜉2 denotes the Fourier multiplier of the operator L (cf. (7)) then in (33) T =
√

L denotes the operator with Fourier
symbol

√

𝑚(𝜉), and therefore it formally satisfies T 2 = L . Then the norm introduced in the definition of  in (33) is related to a
classical seminorm in 𝐻𝑘(R) as follows.

Lemma 4.1. Let 𝑘 ∈ N and 𝑓 ∈ 𝐿2(R) be smooth enough. Then, there exists a constant 𝐶 > 0 such that
‖

‖𝜕𝑘𝑓‖‖ ≤ 𝐶
(

‖𝑓‖ + ‖

‖

√

L 𝜕𝑘𝑓‖‖
)

. (34)
7

‖

𝑥
‖𝐿2 𝐿2

‖

𝑥
‖𝐿2
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Proof. Let 𝑅 > 0 and 𝐵(0, 𝑅) = {𝑥 ∈ R ∶ |𝑥| ≤ 𝑅}. Using Parseval identity we have that

‖

‖

‖

𝜕𝑘𝑥𝑓
‖

‖

‖

2

𝐿2 = ‖

‖

‖

𝜕𝑘𝑥𝑓
‖

‖

‖

2

𝐿2 = ∫R
𝜉2𝑘|𝑓 (𝜉)|2 = ∫𝐵(0,𝑅)

𝜉2𝑘|𝑓 (𝜉)|2 𝑑𝜉 + ∫R⧵𝐵(0,𝑅)
𝜉2𝑘|𝑓 (𝜉)|2 𝑑𝜉.

The first integral can be bounded by

∫𝐵(0,𝑅)
𝜉2𝑘|𝑓 (𝜉)|2 𝑑𝜉 ≤ 𝑅2𝑘

∫R
|𝑓 (𝜉)|2 𝑑𝜉 = 𝑅2𝑘

‖𝑓‖2
𝐿2 . (35)

On the other hand, note that for 𝜉 ∈ R ⧵ 𝐵(0, 𝑅) we have the pointwise bound

𝜉2

1 + 𝜉2
≥ 𝑅2

1 + 𝑅2
.

hen it holds that

∫R⧵𝐵(0,𝑅)
𝜉2𝑘|𝑓 (𝜉)|2 𝑑𝜉 ≤ 1 + 𝑅2

𝑅2 ∫R⧵𝐵(0,𝑅)
𝜉2+𝑘

1 + 𝜉2
𝜉𝑘|𝑓 (𝜉)|2 𝑑𝜉 ≤ 1 + 𝑅2

𝑅2
‖

‖

‖

√

L 𝜕𝑘𝑥𝑓
‖

‖

‖

2

𝐿2 . (36)

Therefore, choosing for instance 𝑅 = 1, (35), (36) yield (34). □

Then we see that  is a modified version of 𝐻2 ×𝐻3.

heorem 2. For (ℎ0, 𝑣0) ∈ 𝐻2 ×𝐻3 there exist a time 0 < 𝑇𝑚𝑎𝑥 and a unique solution

(ℎ, 𝑣) ∈ 𝐶((0, 𝑇𝑚𝑎𝑥),𝐻2 ×𝐻3)

f the ivp of (5) with ℎ(𝑥, 0) = ℎ0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ R.

roof. We first focus on obtaining some a priori estimates. We define the energy

(𝑡) = ‖(ℎ, 𝑣)‖2
𝐿2×𝐿2 +

‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖

2

𝐿2 +
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

2

𝐿2 , (37)

where the norm considered in the space 𝐿2(R) × 𝐿2(R) is given by

‖(𝑓, 𝑔)‖𝐿2×𝐿2 =
(

‖𝑓‖2
𝐿2 + ‖𝑔‖2

𝐿2

)1∕2
, 𝑓 , 𝑔 ∈ 𝐿2(R).

Multiplying the first equation of (5) by ℎ, the second by 𝑣, adding the resulting equalities and integrating on R we have
1
2
𝑑
𝑑𝑡

‖(ℎ, 𝑣)‖2
𝐿2×𝐿2 = −∫R

(

(ℎ𝑣)𝑥 + 𝑣𝑥
)

ℎ 𝑑𝑥 − ∫R

(

𝑣𝑣𝑥 + [L ,N ℎ]ℎ + N ℎ
)

𝑣 𝑑𝑥.

Now integration by parts, the application of Hölder and Young inequalities, and the Sobolev embedding 𝐻
1
2+𝜖(R) ↪ 𝐿∞(R) for 𝜖 > 0

lead to
1
2
𝑑
𝑑𝑡

‖(ℎ, 𝑣)‖2
𝐿2×𝐿2 ≤ 𝐶 ‖

‖

𝑣𝑥‖‖𝐿∞ ‖ℎ‖2
𝐿2 ≤ ‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

3

𝐿2 + ‖ℎ‖3
𝐿2 . (38)

Next, we deal with the other terms in (37). Multiplying the first equation in (5) by L 𝜕4𝑥ℎ and integrating we have

∫R
L 𝜕4𝑥ℎℎ𝑡 𝑑𝑥 = −∫R

(ℎ𝑣)𝑥L 𝜕4𝑥ℎ 𝑑𝑥 − ∫R
𝑣𝑥L 𝜕4𝑥ℎ 𝑑𝑥. (39)

On the other hand, multiplying the second equation in (5) by 𝜕6𝑥𝑣 and integrating we obtain

∫R
𝑣𝑡𝜕

6
𝑥𝑣 𝑑𝑥 = −∫R

𝑣𝑣𝑥𝜕
6
𝑥𝑣 𝑑𝑥 − ∫R

[L ,N ℎ]ℎ𝜕6𝑥𝑣 𝑑𝑥 − ∫R
N ℎ𝜕6𝑥𝑣 𝑑𝑥. (40)

Since −L = 𝜕𝑥N , integrating by parts we find that the last term in (39) is given by

− ∫R
𝑣𝑥L 𝜕4𝑥ℎ 𝑑𝑥 = ∫R

𝑣𝑥N 𝜕5𝑥ℎ 𝑑𝑥 = −∫R
𝜕6𝑥𝑣N ℎ 𝑑𝑥. (41)

Moreover, we have that

∫R
ℎ𝑡L 𝜕4𝑥ℎ 𝑑𝑥 = 1

2
𝑑
𝑑𝑡

‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖

2

𝐿2 , −∫R
𝑣𝑡𝜕

6
𝑥𝑣 𝑑𝑥 = 1

2
𝑑
𝑑𝑡

‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

2

𝐿2 . (42)

hen, adding (39) and (40), and using (41), (42) lead to

1
2
𝑑
𝑑𝑡

(

‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖

2

𝐿2 +
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

2

𝐿2

)

= −∫R
(ℎ𝑣)𝑥L 𝜕4𝑥ℎ 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼1

+∫R
𝑣𝑣𝑥𝜕

6
𝑥𝑣 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐼2

+∫R
[L ,N ℎ]ℎ𝜕6𝑥𝑣 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼3

. (43)

e now estimate each of the integrals 𝐼𝑖 in (43). First, notice that integration by parts yields

𝐼2 = − 𝜕2(𝑣𝑣𝑥)𝜕3𝑣 𝑑𝑥 = −3 (𝜕3𝑣)2𝑣𝑥 𝑑𝑥,
8

∫R 𝑥 𝑥 2 ∫R 𝑥
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and thus

|𝐼2| ≤ 𝐶 ‖

‖

𝜕𝑥𝑣‖‖𝐿∞
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

2

𝐿2 ≤ 𝐶 ‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

3

𝐿2 , (44)

where in the second inequality we used the Sobolev embedding 𝐻
1
2+𝜖(R) ↪ 𝐿∞(R) for 𝜖 > 0.

Integrating by parts the first term 𝐼1 we find that

𝐼1 = −∫R
𝜕3𝑥(ℎ𝑣)𝜕

2
𝑥L ℎ 𝑑𝑥 = −∫R

(

𝜕3𝑥𝑣ℎ + 𝜕2𝑥𝑣ℎ𝑥 + 𝑣𝑥𝜕
2
𝑥ℎ

)

𝜕2𝑥L ℎ 𝑑𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐽1

−∫R
𝑣𝜕3𝑥ℎ𝜕

2
𝑥L ℎ 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽2

.

e use Hölder inequality to estimate 𝐽1 as

|𝐽1| ≤ 𝐶
(

‖ℎ‖𝐿∞
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖𝐿2 +
‖

‖

‖

𝜕2𝑥𝑣
‖

‖

‖𝐿∞
‖

‖

𝜕𝑥ℎ‖‖𝐿2 + ‖

‖

𝑣𝑥‖‖𝐿∞ ‖

‖

ℎ𝑥𝑥‖‖𝐿2

)

‖

‖

‖

𝜕2𝑥L ℎ‖‖
‖𝐿2

≤ 𝐶 ‖

‖

ℎ𝑥𝑥‖‖𝐿2
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖𝐿2
‖

‖

‖

𝜕2𝑥L ℎ‖‖
‖𝐿2 . (45)

s for 𝐽2, using the identity (cf. (13))

L = −𝜕2𝑥(1 − 𝜕2𝑥)
−1 = Id − Q, (46)

e obtain that

𝐽2 = −∫R
𝑣𝜕3𝑥ℎ

(

𝜕2𝑥ℎ − Q𝜕2𝑥ℎ
)

𝑑𝑥 = −1
2 ∫R

𝑣𝜕𝑥(𝜕2𝑥ℎ)
2 𝑑𝑥 + ∫R

𝑣𝜕3𝑥ℎQ𝜕2𝑥ℎ 𝑑𝑥.

Using integration by parts in both terms we infer that

|𝐽2| ≤ 𝐶 ‖

‖

𝑣𝑥‖‖𝐿∞ ‖

‖

ℎ𝑥𝑥‖‖
2
𝐿2 ≤ ‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖𝐿2
‖

‖

ℎ𝑥𝑥‖‖
2
𝐿2 . (47)

In a similar way, expanding the commutator and using (46) again lead to

𝐼3 = ∫R
(L (N ℎℎ) − N ℎL ℎ) 𝜕6𝑥𝑣 𝑑𝑥 = −∫R

Q(N ℎℎ)𝜕6𝑥𝑣 𝑑𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐾1

+∫R
N ℎQℎ𝜕6𝑥𝑣 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾2

.

We rewrite both terms 𝐾1 and 𝐾2 as

𝐾1 = −∫R
(N ℎℎ)𝑥L 𝜕3𝑥𝑣 𝑑𝑥,

and

𝐾2 = −∫R
(N ℎQℎ)𝑥𝑥𝑥𝜕3𝑥𝑣 𝑑𝑥 = −1

2 ∫R
𝜕4𝑥

(

(Qℎ)2
)

𝜕3𝑥𝑣 𝑑𝑥 = −∫R
𝜕2𝑥

(

(Qℎ𝑥)2 − QℎL ℎ
)

𝜕3𝑥𝑣 𝑑𝑥.

Using the fact that, cf. (7),
‖

‖

‖

√

L 𝑓‖‖
‖𝐿2 ≤ 𝐶 ‖𝑓‖𝐿2 , 𝑓 ∈ 𝐿2, (48)

hen the term 𝐾1 can be bounded by

|𝐾1| ≤ 𝐶 ‖

‖

ℎ𝑥𝑥‖‖
2
𝐿2

‖

‖

‖

L 𝜕3𝑥𝑣
‖

‖

‖𝐿2 ≤ ‖

‖

ℎ𝑥𝑥‖‖
2
𝐿2

‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖𝐿2 , (49)

or some constant 𝐶. As far as 𝐾2 is concerned, by expanding the derivatives, tedious but a straightforward computation and using
48) again shows that

|𝐾2| ≤ 𝐶 ‖Qℎ‖𝐿∞
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖𝐿2
‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖𝐿2 ≤ 𝐶 ‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖𝐿2
‖

‖

ℎ𝑥𝑥‖‖𝐿2
‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖𝐿2 , (50)

for some constant 𝐶. From (44), (45), (47), (49), and (50) we conclude that

1
2
𝑑
𝑑𝑡

(

‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖

2

𝐿2 +
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

2

𝐿2

)

≤ 𝐶
(

‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

3

𝐿2 +
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖𝐿2
‖

‖

ℎ𝑥𝑥‖‖
2
𝐿2

+ ‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖𝐿2
‖

‖

ℎ𝑥𝑥‖‖𝐿2
‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖𝐿2

)

. (51)

Applying Lemma 4.1 and Young’s inequality to (51) leads to

1
2
𝑑
𝑑𝑡

(

‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖

2

𝐿2 +
‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

2

𝐿2

)

≤ 𝐶
(

‖

‖

‖

√

L 𝜕2𝑥ℎ
‖

‖

‖

3

𝐿2 + ‖ℎ‖3
𝐿2 +

‖

‖

‖

𝜕3𝑥𝑣
‖

‖

‖

3

𝐿2

)

, (52)

or some constant 𝐶. Combining estimates (38) and (52) yields

′ 3
2 (𝑡), (53)
9

 (𝑡) ≤ 𝐶
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which ensures a local time of existence 𝑡∗ > 0 such that (𝑡) ≤ 4(0), 0 < 𝑡 < 𝑡∗. In order to construct the solutions, we first define
he approximate problems using mollifiers (cf. proof of Theorem 4). More precisely, the regularized system is given by

ℎ𝜖𝑡 + 𝜖(𝜖ℎ
𝜖𝜖𝑣

𝜖)𝑥 + 𝜖𝜖𝑣
𝜖
𝑥 = 0, (54a)

𝑣𝜖𝑡 + 𝜖(𝜖𝑣
𝜖𝜕𝑥𝜖𝑣

𝜖) +
[

L ,N ℎ𝜖
]

ℎ𝜖 + N ℎ𝜖 = 0. (54b)

By the properties of the mollifiers we can repeat the previous energy estimates and provide the same a priori bounds for the
egularized system of (54a)–(54b). Hence, we will find a uniform time of existence 𝑇𝑚𝑎𝑥 > 0 for the sequence of regularized problems.
o conclude the argument, we pass to the limit. Furthermore, the continuity in time for the solution (instead of merely weak
ontinuity) is obtained as follows: first, the energy estimate (53) yields the strong right continuity at 𝑡 = 0. Moreover, it is easy to
heck that changing variables 𝑡 = −𝑡 provides the strong left continuity at 𝑡 = 0 and hence the continuity in time for the solutions.
o conclude let us remark that the uniqueness follows by a classical contradiction argument as in Theorem 4. □

. Well-posedness in Sobolev spaces for the bidirectional non-local wave equation

In this section, we provide the local-well posedness on the bidirectional non-local wave Eq. (9).

heorem 3. Let (ℎ0, ℎ1) be such that (ℎ0 − 1, ℎ1) ∈ 𝐻4 ×𝐻3 and

‖ℎ0 − 1‖𝐿∞ < 1∕2.

hen, there exist 0 < 𝑇 and a unique solution to (9)

(ℎ − 1, ℎ𝑡) ∈ 𝐶([0, 𝑇 ],𝐻4 ×𝐻3),

ith initial value (ℎ0, ℎ1).

roof. As before, existence and uniqueness of solutions of (9) are based on deriving useful a priori energy estimates. To this end,
e write ℎ = 1 +𝑤 and then Eq. (9) becomes

𝑤𝑡𝑡 + L𝑤 =
(

(1 +𝑤)𝑤𝑥 + [L ,N 𝑤]𝑤
)

𝑥 − 2
(

(1 +𝑤)𝑤𝑡
)

𝑥 . (55)

We define the energy

(𝑡) = ‖

‖

𝑤𝑡
‖

‖

2
𝐻3 +

‖

‖

‖

√

L 𝜕3𝑥𝑤
‖

‖

‖

2

𝐿2 + ‖𝑤‖

2
𝐻4 . (56)

esting Eq. (55) against 𝑤𝑡 and integrating by parts we have

1
2
𝑑
𝑑𝑡

(

‖

‖

𝑤𝑡
‖

‖

2
𝐿2 +

‖

‖

‖

√

L𝑤‖

‖

‖

2

𝐿2

)

= ∫R
(𝑤2

𝑥 + (1 +𝑤)𝑤𝑥𝑥)𝑤𝑡 𝑑𝑥 + ∫R
([L ,N 𝑤]𝑤)𝑥 𝑤𝑡 𝑑𝑥

− 2∫R

(

(1 +𝑤)𝑤𝑡𝑥𝑤𝑡 +𝑤𝑥𝑤
2
𝑡
)

𝑑𝑥 ≤ 𝐶(𝑡)3∕2.

In particular,
𝑑
𝑑𝑡

‖

‖

𝑤𝑡
‖

‖

2
𝐿2 ≤ 𝐶(𝑡)3∕2.

Furthermore, from the Cauchy–Schwarz inequality and (56)
𝑑
𝑑𝑡

‖𝑤‖

2
𝐿2(R) = 2∫R

𝑤𝑡𝑤 𝑑𝑥 ≤ 2 ‖𝑤‖𝐿2 ‖
‖

𝑤𝑡
‖

‖𝐿2 ≤ (𝑡).

On the other hand, it holds that

1
2
𝑑
𝑑𝑡

(

‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖

2

𝐿2 +
‖

‖

‖

√

L 𝜕3𝑥𝑤
‖

‖

‖

2

𝐿2

)

= −∫R
(𝑤2

𝑥 + (1 +𝑤)𝑤𝑥𝑥)𝜕6𝑥𝑤𝑡 𝑑𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑀1

−∫R
[L ,N 𝑤]𝑤𝜕7𝑥𝑤𝑡 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀2

+ 2∫R

(

(1 +𝑤)𝑤𝑡𝑥𝜕
6
𝑥𝑤𝑡 +𝑤𝑥𝑤𝑡𝜕

6
𝑥𝑤𝑡

)

𝑑𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑀3

.

n order to estimate each of the integrals 𝑀𝑖, we first notice a hiding energy extra term in 𝑀1. Integrating by parts we obtain

𝑀1 = −1
2
𝑑
𝑑𝑡

‖

‖

‖

𝜕4𝑥𝑤
‖

‖

‖

2

𝐿2 −∫R
𝑤2

𝑥𝜕
6
𝑥𝑤𝑡 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀12

−∫R
𝑤𝑤𝑥𝑥𝜕

6
𝑥𝑤𝑡 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀13

.

t is easy to check that after integration by parts

|𝑀12
| ≤ |

|𝜕3(𝜕𝑥𝑤)2𝜕3𝑤𝑡 𝑑𝑥
|

| ≤ 𝐶
(

‖

‖𝜕4𝑤‖

‖

‖𝑤𝑥
‖ ∞ + ‖

‖𝜕3𝑤‖

‖

‖𝑤𝑥𝑥
‖ ∞

)

‖

‖𝜕3𝑤𝑡
‖

‖ . (57)
10

| | ∫R |

𝑥 𝑥
| ‖

𝑥
‖𝐿2 ‖ ‖𝐿

‖

𝑥
‖𝐿2 ‖ ‖𝐿

‖

𝑥
‖𝐿2
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Similarly, integrating by parts we have that

𝑀13 = −∫R
𝜕3𝑥(𝑤𝑤𝑥𝑥)𝜕3𝑥𝑤𝑡 𝑑𝑥 = −∫R

𝑤𝜕5𝑥𝑤𝜕3𝑥𝑤𝑡 𝑑𝑥 + 𝚕.𝚘.𝚝, (58)

here

|𝚕.𝚘.𝚝| ≤ 𝐶
(

‖

‖

‖

𝜕3𝑥𝑤
‖

‖

‖𝐿2
‖

‖

𝑤𝑥𝑥
‖

‖𝐿∞ + ‖

‖

𝑤𝑥𝑥
‖

‖𝐿∞ ‖

‖

𝑤𝑥𝑥
‖

‖𝐿2 + ‖

‖

𝑤𝑥
‖

‖𝐿∞
‖

‖

‖

𝜕4𝑥𝑤
‖

‖

‖𝐿2

)

‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖𝐿2 , (59)

nd, after integration by parts again

− ∫R
𝑤𝜕5𝑥𝑤𝜕3𝑥𝑤𝑡 𝑑𝑥 = 1

2 ∫R
𝑤𝜕𝑡(𝜕4𝑥𝑤)2 𝑑𝑥 + ∫R

𝑤𝑥𝜕
4
𝑥𝑤𝜕3𝑥𝑤𝑡 𝑑𝑥. (60)

The last term in (60) can be bounded as
|

|

|

|

∫R
𝑤𝑥𝜕

4
𝑥𝑤𝜕3𝑥𝑤𝑡 𝑑𝑥

|

|

|

|

≤ 𝐶 ‖

‖

𝑤𝑥
‖

‖𝐿∞
‖

‖

‖

𝜕4𝑥𝑤
‖

‖

‖𝐿2
‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖𝐿2 . (61)

Thus, from (58), estimates (59), (61) imply that

𝑀13 =
1
2 ∫R

𝑤𝜕𝑡
(

𝜕4𝑥𝑤
2) 𝑑𝑥 + l.o.t (62)

where by means of Young’s inequality we find that

|l.o.t| ≤ 𝐶
(

‖

‖

‖

𝜕3𝑥𝑤
‖

‖

‖𝐿2
‖

‖

𝑤𝑥𝑥
‖

‖𝐿∞ + ‖

‖

𝑤𝑥𝑥
‖

‖𝐿∞ ‖

‖

𝑤𝑥𝑥
‖

‖𝐿2 + ‖

‖

𝑤𝑥
‖

‖𝐿∞
‖

‖

‖

𝜕4𝑥𝑤
‖

‖

‖𝐿2

)

‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖𝐿2 ≤ 𝐶(𝑡)3∕2.

n order to estimate the commutator term 𝑀2, let us recall that from (13) we have

𝑀2 = −∫R

[

Q,Q𝑤𝑥
]

𝑤𝜕7𝑥𝑤𝑡 𝑑𝑥 = −∫R
Q

(

Q𝑤𝑥𝑤
)

𝜕7𝑥𝑤𝑡 𝑑𝑥 + 1
2 ∫R

𝜕𝑥 (Q𝑤)2 𝜕7𝑥𝑤𝑡 𝑑𝑥.

Using the duality 𝐻̇−4− 𝐻̇4 argument and the fact that Q is continuous between 𝐻𝑠(R) and 𝐻𝑠+2(R) for any 𝑠 ∈ R we readily check
that

|

|

𝑀2
|

|

≤ 𝐶
(

‖

‖

Q(Q𝑤𝑥𝑤)‖
‖𝐻̇4 + ‖

‖

‖

𝜕𝑥(Q𝑤)2‖‖
‖𝐻̇4

)

‖

‖

‖

𝜕7𝑥𝑤𝑡
‖

‖

‖𝐻̇−4

≤ 𝐶
(

‖

‖

Q𝑤𝑥𝑤‖

‖𝐻̇2 + ‖

‖

‖

(Q𝑤)2‖‖
‖𝐻̇5

)

‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖𝐿2

≤ 𝐶
(

‖

‖

𝑤𝑥
‖

‖𝐿2 ‖
‖

𝑤𝑥𝑥
‖

‖𝐿2 + ‖

‖

‖

𝜕3𝑥𝑤
‖

‖

‖

2

𝐿2

)

‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖𝐿2 ≤ 𝐶(𝑡)3∕2, (63)

for some constant 𝐶, where in the last inequality we used that 𝐻𝑠 is a Banach algebra for 𝑠 > 1
2 and Young’s inequality. Similarly,

splitting 𝑀3 and integrating by parts we infer that

|𝑀3| =
|

|

|

|

2∫R
𝑤𝑡𝑥𝜕

6
𝑥𝑤𝑡 +𝑤𝑤𝑡𝑥𝜕

6
𝑥𝑤𝑡 +𝑤𝑥𝑤𝑡𝜕

6
𝑥𝑤𝑡 𝑑𝑥

|

|

|

|

≤ 𝐶
(

‖

‖

‖

𝜕3𝑥𝑤
‖

‖

‖𝐿2
‖

‖

𝑤𝑡𝑥
‖

‖𝐿∞ + ‖

‖

𝑤𝑥𝑥
‖

‖𝐿∞ ‖

‖

𝑤𝑡𝑥𝑥
‖

‖𝐿2 + ‖

‖

𝑤𝑥
‖

‖𝐿∞
‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖𝐿2 +
‖

‖

‖

𝜕4𝑥𝑤
‖

‖

‖𝐿2
‖

‖

𝑤𝑡
‖

‖𝐿∞

+ ‖

‖

‖

𝜕3𝑥𝑤
‖

‖

‖𝐿2
‖

‖

𝑤𝑥𝑡
‖

‖𝐿∞

)

× ‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖𝐿2 ≤ 𝐶(𝑡)3∕2 (64)

ence, combining estimates (57)–(64) and from (56) we conclude that

𝑑
𝑑𝑡

(𝑡) ≤ 𝐶
(

(𝑡)3∕2 + (𝑡)
)

+ 1
2 ∫R

𝑤𝜕𝑡
(

𝜕4𝑥𝑤
)

𝑑𝑥.

ntegrating in time leads to

(𝑡) ≤ (0) + 𝐶 ∫

𝑡

0

(

3∕2(𝑠) + (𝑠)
)

𝑑𝑠 + 1
2 ∫

𝑡

0 ∫R
𝑤(𝑥, 𝑠)𝜕𝑠

(

𝜕4𝑥𝑤(𝑥, 𝑠)
)2 𝑑𝑥𝑑𝑠.

o deal with the latter integral we use Fubini’s theorem and integrate by parts in time which yields

(𝑡) ≤ (0) + 𝐶 ∫

𝑡

0

(

3∕2(𝑠) + (𝑠)
)

𝑑𝑠 − 1
2 ∫

𝑡

0 ∫R
𝑤𝑠(𝑥, 𝑠)(𝜕4𝑥𝑤(𝑥, 𝑠))2 𝑑𝑥𝑑𝑠

− 1
2

(

∫R
𝑤0(𝑥)(𝜕4𝑥𝑤0(𝑥))2 𝑑𝑥 − ∫R

𝑤(𝑥, 𝑡)(𝜕4𝑥𝑤(𝑥, 𝑡))2 𝑑𝑥
)

. (65)

efining, for 𝑇 > 0

𝖤𝑇 = sup (𝑡) = sup
(

‖

‖

𝑤𝑡
‖

‖

2
𝐻3 +

‖

‖

‖

√

L 𝜕3𝑥𝑤
‖

‖

‖

2

𝐿2 + ‖𝑤‖

2
𝐻4

)

,

11

0≤𝑡≤𝑇 0≤𝑡≤𝑇
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Fig. 1. Positive real roots of the polynomial 𝑃𝑡(𝑦) for 𝑡 ≪ 1.

taking the supremum in time in (65) and Hölder’s inequality lead to

𝖤𝑇 ≤ 𝖤0 + 𝐶𝑡
(

𝖤3∕2𝑇 + 𝖤𝑇

)

+ 1
2
‖

‖

𝑤0
‖

‖𝐿∞
‖

‖

‖

𝜕4𝑥𝑤0
‖

‖

‖

2

𝐿2 +
1
2

sup
0≤𝑡≤𝑇

(

‖𝑤‖𝐿∞
‖

‖

‖

𝜕4𝑥𝑤
‖

‖

‖

2

𝐿2

)

+ 1
2

sup
0≤𝑡≤𝑇 ∫

𝑡

0
‖

‖

𝑤𝑠
‖

‖𝐿∞
‖

‖

‖

𝜕4𝑥𝑤
‖

‖

‖

2

𝐿2 𝑑𝑠. (66)

Furthermore, writing

𝑤(𝑥, 𝑡) = 𝑤0(𝑥) +𝑤(𝑥, 𝑡) −𝑤0(𝑥) = 𝑤0(𝑥) + ∫

𝑡

0
𝜕𝑠𝑤(𝑥, 𝑠) 𝑑𝑠,

then Sobolev embedding yields

sup
0≤𝑡≤𝑇

‖𝑤‖𝐿∞ ≤ ‖

‖

𝑤0
‖

‖𝐿∞ + 𝑡 sup
0≤𝑡≤𝑇

‖

‖

‖

𝜕3𝑥𝑤𝑡
‖

‖

‖𝐿2 . (67)

Therefore combining (66), (67), and Young’s inequality we find that

𝖤𝑇 ≤ 𝖤0 + 𝖤3∕20 + 𝐶𝑡
(

𝖤3∕2𝑇 + 𝖤𝑇

)

+ ‖

‖

𝑤0
‖

‖𝐿∞ sup
0≤𝑡≤𝑇

‖

‖

‖

𝜕4𝑥𝑤
‖

‖

‖

2

𝐿2 , (68)

for some constant 𝐶. Now taking 𝑤0 with ‖

‖

𝑤0
‖

‖𝐿∞ = 1
2 , from the definition of 𝐸𝑇 and (68) it holds that

𝖤𝑇 ≤ 2
(

𝖤0 + 𝖤3∕20

)

+ 2𝐶𝑡
(

𝖤3∕2𝑇 + 𝖤𝑇

)

,

which is valid for 𝑡 ∈ (0, 𝑡1), 𝑡1 = min{1, 𝑇 }. (Sharper inequalities can be obtained, if necessary, from smaller choices of ‖
‖

𝑤0
‖

‖𝐿∞ ).
Noticing that 𝖤𝑞𝑇 ≤ 𝖤2𝑇 + 1 for 𝑞 = 1 and 𝑞 = 3

2 and the fact that 𝑡 ∈ (0, 𝑡1), 𝑡1 = min{1, 𝑇 } (in particular 0 < 𝑡 < 1), we find that the
polynomial estimate

𝖤𝑇 ≤ 𝖭0 + 4𝐶𝑡𝖤2𝑇 , (69)

holds. Here we have used the notation 𝖭0 = 2
(

𝖤0 + 𝖤3∕20 + 2𝐶
)

. Similar polynomial estimates as (69) have been derived in [8]. Let
us define the polynomial 𝑡(𝑦) = 4𝐶𝑡𝑦2 − 𝑦 + 𝖭𝟢, so that 𝑡(𝖤𝖳) ≥ 0. The roots of 𝑡 are computed as

𝑦± =
1 ±

√

1 − 16𝐶𝑡𝖭0

8𝐶𝑡
.

Taking 0 < 𝑡 ≪ 1 (for instance 0 < 𝑡 = 1
32𝐶𝖭0

) we have (cf. Fig. 1)

0 < 𝑦− = 4𝖭𝟢

(

1 −
√

1∕2
)

< 𝑦+ = 4𝖭𝟢

(

1 +
√

1∕2
)

and

0 < 𝑦 < 4𝖭 < 𝑦 .
12

− 0 +
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Furthermore, the application 𝑡 → 𝖤𝑡 is continuous for 𝑡 ∈ [0, 𝑇 ). This, together with the fact that 𝖤0 < 𝖭0 and 𝑡(𝖭0) > 0, implies
hat

∀𝑡 ∈ (0, 𝑡⋆), 𝖤𝑇 < 4𝖭0, (70)

here 𝑡⋆ = min{ 1
32𝐶𝖭0

, 1, 𝑇 }.
Similarly as before, in order to perform the a priori estimates rigorously and construct the local existence of solutions we follow

regularization procedure. More precisely, the regularized version of (55) takes the form

𝑤𝜖
𝑡𝑡 + L𝑤𝜖 =

(

 𝜖 ((1 +  𝜖𝑤𝜖) 𝜖𝑤𝜖
𝑥
)

+
[

L ,N 𝑤𝜖]𝑤𝜖)
𝑥 − 2 𝜖 ((1 +  𝜖𝑤𝜖) 𝜖𝑤𝜖

𝑡
)

𝑥 . (71)

Repeating the same a priori estimates for the regularized equation (71) we can deduce the analogue of (70) namely

∀𝑡 ∈ (0, 𝑡⋆), 𝖤𝑇 < 4𝖭0, (72)

where 𝑡⋆ = min{ 1
32𝐶𝖭0

, 1, 𝑇 𝜖}. Notice that the time of existence of the solution depends a priori on the regularization parameter 𝜖.
Nevertheless, the following argument shows that (72) holds independently of the parameter 𝜖. Indeed, take 𝑇 𝜖 the first time such
that

𝖤𝑇 𝜖 = 8𝖭0.

We observe that the precise choice of the quantity 8𝖭0 is not special. One could choose also any other quantity bigger than 4𝖭0 to
make the argument work. If the previous equality does not hold, that is, 𝖤𝑇 𝜖 < 8𝖭0, this implies that 𝑇 𝜖 = ∞, and hence we conclude
since 𝑡⋆ is the minimum) that 𝑡⋆ is independent of 𝜖. On the other hand if 𝑇 𝜖 is finite then 𝑡⋆ = min{ 1

32𝐶𝖭0
, 1, 𝑇 𝜖} = min{ 1

32𝐶𝖭0
, 1}.

Indeed, this assertion follows from invoking the continuity of 𝖤𝑇 of the regularized problem, and using that by construction 𝖤𝑇 𝜖 = 8𝖭0
and 𝖤𝑡⋆ < 4𝖭0. This concludes the proof. □

6. Well-posedness in Sobolev spaces for unidirectional non-local wave model

The main goal of this section is to prove the local well-posedness of Eq. (10) in 𝐿2 based Sobolev spaces. Note first that, using
(13), we have −L = Q − 1, and (10) can be rewritten as (we set 𝜀 = 1 for simplicity)

ℎ𝑡 = −1
2
(

3ℎℎ𝑥 + [Q,Qℎ𝑥]ℎ − Qℎ𝑥 − ℎ𝑥
)

. (73)

For this equation, we show the following local well-posedness result.

Theorem 4. Let 𝑠 > 3
2 and ℎ0 ∈ 𝐻𝑠(R) with mean zero. Then there exist 𝑇max > 0 and a unique local solution ℎ ∈ 𝐶([0, 𝑇max),𝐻𝑠(R))

of (73) with ℎ(0) = ℎ0.

Proof. The proof follows from the combination of appropriate a priori energy estimates and the use of a suitable approximation
procedure using mollifiers, cf. [23]. Thus, we first focus in deriving a priori energy estimates and later comment briefly on the
approximation procedure to construct the solution. We begin by reminding (cf. Section 3) that the mean property is conserved in
time by the solutions

∫R
ℎ(𝑥, 𝑡) 𝑑𝑥 = ∫R

ℎ0(𝑥) 𝑑𝑥,

as well as the 𝐿2 norm

∫R
ℎ2(𝑥, 𝑡) 𝑑𝑥 = ∫R

ℎ20(𝑥) 𝑑𝑥.

Furthermore, applying 𝛬𝑠 to (73), multiplying by 𝛬𝑠ℎ and integrating we obtain

1
2
𝑑
𝑑𝑡

‖ℎ‖2𝐻̇𝑠 = −3
2 ∫R

𝛬𝑠(ℎℎ𝑥)𝛬𝑠ℎ 𝑑𝑥 − 1
2 ∫R

𝛬𝑠 ([Q,Q𝑥ℎ]ℎ
)

𝛬𝑠ℎ 𝑑𝑥 (74)

+ 1
2 ∫R

𝛬𝑠Qℎ𝑥𝛬
𝑠ℎ 𝑑𝑥 + 1

2 ∫R
𝛬𝑠ℎ𝑥𝛬

𝑠ℎ 𝑑𝑥.

Using the self-adjointness of the operator Q, a straightforward computation shows that the last two terms on the right hand-side
of (74) are zero. The first term can be estimated by means of the classical Kato-Ponce commutator as follows. Using integration by
parts, we rewrite

∫R
𝛬𝑠(ℎℎ𝑥)𝛬𝑠ℎ 𝑑𝑥 = ∫R

[𝛬𝑠, ℎ]ℎ𝑥𝛬𝑠ℎ 𝑑𝑥 + ∫R
ℎ𝛬𝑠ℎ𝑥𝛬

𝑠ℎ 𝑑𝑥

= [𝛬𝑠, ℎ]ℎ𝑥𝛬𝑠ℎ 𝑑𝑥 − 1 ℎ𝑥|𝛬
𝑠ℎ|2 𝑑𝑥.
13

∫R 2 ∫R
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Now, invoking the first equation in Lemma 1.1 with 𝑝 = 2, 𝑝1 = ∞, 𝑝2 = 2, we have that
|

|

|

|

∫R
𝛬𝑠(ℎℎ𝑥)𝛬𝑠ℎ 𝑑𝑥

|

|

|

|

≲ ‖

‖

[𝛬𝑠, ℎ]ℎ𝑥‖‖𝐿2 ‖𝛬𝑠ℎ‖𝐿2 + ‖

‖

ℎ𝑥‖‖𝐿∞ ‖𝛬𝑠ℎ‖2𝐿2

≲ ‖

‖

ℎ𝑥‖‖𝐿∞ ‖𝛬𝑠ℎ‖2𝐿2 . (75)

The second term on the right hand side in (74) can be bounded as follows. Expanding the commutator and using the self-adjointness
of Q yield

∫R
𝛬𝑠 ([Q,Q𝑥ℎ]ℎ

)

𝛬𝑠ℎ 𝑑𝑥 = ∫R
𝛬𝑠(Qℎ𝑥ℎ)𝛬𝑠Qℎ 𝑑𝑥 − ∫R

𝛬𝑠(Qℎ𝑥Qℎ)𝛬𝑠ℎ 𝑑𝑥. (76)

Then applying the second estimate in Lemma 1.1 with 𝑝 = 2, 𝑝1, 𝑝3 = ∞, 𝑝2, 𝑝4 = 2, the Sobolev embedding 𝐻
1
2+𝜖(R) ↪ 𝐿∞(R) for

𝜖 > 0, and the fact that Q is continuous between 𝐻𝑠(R) and 𝐻𝑠+2(R) for any 𝑠 ∈ R we find that
|

|

|

|

∫R
𝛬𝑠(Qℎ𝑥ℎ)𝛬𝑠Qℎ 𝑑𝑥

|

|

|

|

≲ ‖

‖

𝛬𝑠(Qℎ𝑥ℎ)‖‖𝐿2 ‖𝛬𝑠Qℎ‖𝐿2

≲
(

‖

‖

𝛬𝑠Qℎ𝑥‖‖𝐿∞ ‖ℎ‖𝐿2 + ‖

‖

Qℎ𝑥‖‖𝐿∞ ‖𝛬𝑠ℎ‖𝐿2
)

‖𝛬𝑠Qℎ‖𝐿2

≲
(

‖ℎ‖
𝐻𝑠− 1

2 +𝜖
‖ℎ‖𝐿2 + ‖ℎ‖

𝐻− 1
2 +𝜖

‖ℎ‖𝐻𝑠

)

‖ℎ‖𝐻𝑠−2 .

imilarly, one can show that
|

|

|

|

∫R
𝛬𝑠(Qℎ𝑥Qℎ)𝛬𝑠ℎ 𝑑𝑥

|

|

|

|

≲
(

‖ℎ‖
𝐻𝑠− 1

2 +𝜖
‖ℎ‖𝐻−2 + ‖ℎ‖

𝐻− 1
2 +𝜖

‖ℎ‖𝐻𝑠−2

)

‖ℎ‖𝐻𝑠 .

Thus,
|

|

|

|

∫R
𝛬𝑠 ([Q,Q𝑥ℎ]ℎ

)

𝛬𝑠ℎ 𝑑𝑥
|

|

|

|

≤ 𝐶 ‖

‖

ℎ0‖‖𝐿2

(

‖ℎ‖
𝐻𝑠− 1

2 +𝜖
+ ‖ℎ‖𝐻𝑠−2

)

‖ℎ‖𝐻𝑠 (77)

where we have used that ‖ℎ‖
𝐻− 1

2 +𝜖
+ ‖ℎ‖𝐻−2 ≤ 𝐶 ‖ℎ‖𝐿2 = 𝐶 ‖

‖

ℎ0‖‖𝐿2 , for some constant 𝐶.
Therefore, combining estimates (75), (77) leads to

𝑑
𝑑𝑡

‖ℎ‖2𝐻𝑠 ≤ 𝐶 ‖

‖

ℎ𝑥‖‖𝐿∞ ‖ℎ‖2𝐻𝑠 + 𝐶 ‖

‖

ℎ0‖‖𝐿2

(

‖ℎ‖
𝐻𝑠− 1

2 +𝜖
+ ‖ℎ‖𝐻𝑠−2

)

‖ℎ‖𝐻𝑠 (78)

hich in particular gives the following inequality
𝑑
𝑑𝑡

‖ℎ‖2𝐻𝑠 ≤ 𝐶
(

‖

‖

ℎ𝑥‖‖𝐿∞ + 1
)

‖ℎ‖2𝐻𝑠 . (79)

Using the Sobolev embedding 𝐻
1
2+𝜖(R) ↪ 𝐿∞(R), 𝜖 > 0, we observe that

𝑑
𝑑𝑡

‖ℎ‖2𝐻𝑠 ≤ 𝐶 ‖ℎ‖3𝐻𝑠 , (80)

for some constant 𝐶 independent of 𝑡. Defining (𝑡) = ‖ℎ‖2𝐻𝑠 , estimate (80) leads to the following differential equation

 ′(𝑡) ≤ 𝐶3∕2(𝑡), (81)

with 𝐶 = 𝐶𝑠 > 0 which ensures a uniform time of existence 𝑇max > 0 such that

(𝑡) ≤ 4(0), 0 < 𝑡 < 𝑇max.

Once this uniform time of existence has been obtained, the local existence result follows classical regularization procedure (cf. [23])
as follows. First, we consider a symmetric and positive mollifier  ∈ 𝐶∞

𝑐 ,  (𝑥) = 𝐽 (|𝑥|) such that ∫R  = 1. For 𝜖 > 0 we define
 𝜖 = 1

𝜖  ( 𝑥𝜖 ) and consider the regularized problem

𝜕𝑡ℎ
𝜖 = −1

2
(

 𝜖( 𝜖ℎ𝜕𝑥 𝜖ℎ) + [Q,Qℎ𝜖𝑥]ℎ
𝜖 − Qℎ𝜖𝑥 −  𝜖 𝜖ℎ𝜖𝑥

)

. (82)

In (82), the conserved quantities are also preserved by the flow and the previous bounds (75)–(77) and thus (78) hold. Therefore,
we may find a time of existence 𝑇 ⋆ > 0 for the sequence of regularized problems. Using compactness arguments and passing to
the limit conclude the proof of existence. The continuity in time for the solution (instead of merely weak continuity) is obtained
by classical arguments (cf. [23]): On the one hand, the differential equation (81) yields the strong right continuity at 𝑡 = 0. On the
other hand, it is easy to check that changing variables 𝑡 = −𝑡, we can repeat once again the same bounds and provide the strong
left continuity at 𝑡 = 0. Combining both arguments shows the continuity in time of the solution.

As for uniqueness, let ℎ1, ℎ2 ∈ 𝐶([0, 𝑇max),𝐻𝑠(R)) be two solutions corresponding to the same initial condition and denote
ℎ = ℎ2 − ℎ1. Then ℎ̂ satisfies

𝜕 ℎ̂ = −1 (

3ℎ2ℎ2 − 3ℎ1ℎ1 + [Q,Qℎ2 ]ℎ2 − [Q,Qℎ1]ℎ1 − Qℎ̂ − ℎ̂
)

. (83)
14
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Then, multiplying (83) by ℎ̂ and integrating, we have

1
2
𝑑
𝑑𝑡

‖

‖

‖

ℎ̂‖‖
‖

2

𝐿2 = −3
2 ∫R

(

ℎ̂ℎ2𝑥 + ℎ1ℎ̂𝑥
)

ℎ̂ 𝑑𝑥 + ∫R

[

[Q,Qℎ2𝑥]ℎ
2 − [Q,Qℎ1𝑥]ℎ

1
]

ℎ̂ 𝑑𝑥.

Using (27a), it is not hard to check that each commutator can be rewritten as a Burgers-type nonlinear-term and therefore
|

|

|

|

|

∫R

[

[Q,Qℎ2𝑥]ℎ
2 − [Q,Qℎ1𝑥]ℎ

1
]

ℎ̂ 𝑑𝑥
|

|

|

|

|

≤ 𝐶
(

‖

‖

‖

ℎ1‖‖
‖𝐿∞ + ‖

‖

‖

ℎ2‖‖
‖𝐿∞

)

‖

‖

‖

ℎ̂‖‖
‖

2

𝐿2 ≤ 𝐶,

for some constant 𝐶. Similarly, integrating by parts,
|

|

|

|

∫R

(

ℎ̂ℎ2𝑥 + ℎ1ℎ̂𝑥
)

ℎ̂ 𝑑𝑥
|

|

|

|

≤ 𝐶
(

‖

‖

‖

𝜕𝑥ℎ
1‖
‖

‖𝐿∞ + ‖

‖

‖

𝜕𝑥ℎ
2‖
‖

‖𝐿∞

)

‖

‖

‖

ℎ̂‖‖
‖

2

𝐿2 .

Defining 𝛽(𝑡) = ‖

‖

‖

ℎ1‖‖
‖𝐿∞ + ‖

‖

‖

ℎ2‖‖
‖𝐿∞ + ‖

‖

‖

𝜕𝑥ℎ1
‖

‖

‖𝐿∞ + ‖

‖

‖

𝜕𝑥ℎ2
‖

‖

‖𝐿∞ , then

1
2
𝑑
𝑑𝑡

‖

‖

‖

ℎ̂‖‖
‖

2

𝐿2 ≤ 𝐶𝛽(𝑡) ‖‖
‖

ℎ̂‖‖
‖

2

𝐿2 .

Uniqueness holds applying Grönwall’s inequality. □

Remark 1. One can readily check that a direct consequence of the derived estimates in the proof of Theorem 4 provides the
following blow-up criterion when combined with the logarithmic Sobolev inequality (cf. Lemma 1.2) which we state as a theorem
for the sake of clarity.

Theorem 5 (Blow-up criteria). Let 𝑠 > 3
2 , ℎ0 ∈ 𝐻𝑠(R) with zero mean and let 𝑇max > 0 be the lifespan associated to the solution ℎ to (73)

with ℎ(𝑥, 0) = ℎ0(𝑥). Then ℎ blows-up in finite time 𝑇max if and only if

∫

𝑇max

0
‖

‖

ℎ𝑥(𝜏)‖‖BMO 𝑑𝜏 = ∞. (84)

Proof. The result follows as a direct consequence of estimate (79). Using the logarithmic inequality in Lemma 1.2 we find that
𝑑
𝑑𝑡

‖ℎ‖𝐻𝑠 ≤ 𝐶
(

1 + ‖

‖

ℎ𝑥‖‖BMO
[

1 + log(1 + ‖ℎ‖𝐻𝑠 )
])

‖ℎ‖𝐻𝑠 , (85)

for some constant 𝐶. From (85), it holds that

1 + ‖ℎ‖𝐻𝑠 ≤
[

(1 + ‖

‖

ℎ0‖‖𝐻𝑠 )exp
(

1 + 𝐶𝑇max
)

]exp
(

𝐶 ∫ 𝑇max
0 ‖ℎ𝑥(𝜏)‖BMO 𝑑𝜏

)

.

Therefore, if there exists 𝐿 > 0 such that

∫

𝑇max

0
‖

‖

ℎ𝑥(𝜏)‖‖BMO 𝑑𝜏 < 𝐿,

then

1 + ‖ℎ‖𝐻𝑠 ≤
[

(1 + ‖

‖

ℎ0‖‖𝐻𝑠 )exp
(

1 + 𝐶𝑇max
)

]exp(𝐶𝐿)
.

To show the converse, if ∫ 𝑇max
0

‖

‖

ℎ𝑥(𝑡)‖‖BMO 𝑑𝑡 = ∞, by means of the embedding 𝐻
1
2 (R) ⊂ BMO(R), we deduce that the solution ℎ(𝑥, 𝑡)

ill blow up in finite time and (84) follows. □

. A wave breaking result for the unidirectional non-local wave model

In this section, we investigate the possible wave breaking phenomena for Eq. (10), that is, the formation of an infinite slope in the
olution in the 𝑥-direction. As we did for the well-posedness result in Section 6, it is more convenient to work with the alternative
ormulation (73). The following lemma shows that for the maximal time of existence 𝑇max > 0, we have that the solutions remains
ounded. More precisely,

emma 7.1. Let 𝑠 > 7∕2, ℎ0 ∈ 𝐻𝑠(R), and let 𝑇𝑚𝑎𝑥 > 0 be the maximal time of existence of the unique solution ℎ of (73) given by
heorem 4. Then

sup
𝑡∈[0,𝑇max)

‖ℎ(𝑡)‖𝐿∞(R) < ∞. (86)

roof. To establish the 𝐿∞ bound, we follow a pointwise method (cf. [6,7]). Due to Theorem 4, we have that ℎ ∈ 𝐶([0, 𝑇max),𝐻𝑠) ∩
1([0, 𝑇max),𝐻𝑠−1), hence by the Sobolev embedding theorem, if 𝑠 > 7∕2 we have that ℎ ∈ 𝐶1([0, 𝑇max) × R). In particular,

𝑚(𝑡) = inf ℎ(𝑥, 𝑡) = ℎ(𝑥𝑡, 𝑡), 𝑀(𝑡) = sup ℎ(𝑥, 𝑡) = ℎ(𝑥𝑡, 𝑡), for 𝑡 > 0,
15
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a

a

(for some 𝑥𝑡, 𝑥𝑡) are Lipschitz functions. Following [7], one can readily check that 𝑀(𝑡) satisfies

|𝑀(𝑡) −𝑀(𝑠)| =

{

ℎ(𝑥𝑡, 𝑡) − ℎ(𝑥𝑠, 𝑠) if 𝑀(𝑡) > 𝑀(𝑠)

ℎ(𝑥𝑠, 𝑠) − ℎ(𝑥𝑡, 𝑡) if 𝑀(𝑠) > 𝑀(𝑡)

≤

{

ℎ(𝑥𝑡, 𝑡) − ℎ(𝑥𝑡, 𝑠) if 𝑀(𝑡) > 𝑀(𝑠)

ℎ(𝑥𝑠, 𝑠) − ℎ(𝑥𝑠, 𝑡) if 𝑀(𝑠) > 𝑀(𝑡)

≤

{

|𝜕𝑡ℎ(𝑥𝑡, 𝑧)||𝑡 − 𝑠| if 𝑀(𝑡) > 𝑀(𝑠)

|𝜕𝑡ℎ(𝑥𝑠, 𝑧)||𝑡 − 𝑠| if 𝑀(𝑠) > 𝑀(𝑡)

≤ max
𝑦,𝑧

|𝜕𝑡ℎ(𝑦, 𝑧)||𝑡 − 𝑠|.

Similarly

|𝑚(𝑡) − 𝑚(𝑠)| ≤ max
𝑦,𝑧

|𝜕𝑡ℎ(𝑦, 𝑧)||𝑡 − 𝑠|.

From Rademacher’s theorem it holds that 𝑀(𝑡) and 𝑚(𝑡) are differentiable in 𝑡 almost everywhere. Furthermore

𝑀 ′(𝑡) = lim
𝛿→0

ℎ(𝑥𝑡+𝛿 , 𝑡 + 𝛿) − ℎ(𝑥𝑡, 𝑡)
𝛿

= lim
𝛿→0

ℎ(𝑥𝑡+𝛿 , 𝑡 + 𝛿) − ℎ(𝑥𝑡, 𝑡) ± ℎ(𝑥𝑡+𝛿 , 𝑡)
𝛿

≤ lim
𝛿→0

ℎ(𝑥𝑡+𝛿 , 𝑡 + 𝛿) − ℎ(𝑥𝑡+𝛿 , 𝑡)
𝛿

≤ 𝜕𝑡ℎ(𝑥𝑡, 𝑡).

In a similar fashion, we obtain that

𝑀 ′(𝑡) = lim
𝛿→0

ℎ(𝑥𝑡+𝛿 , 𝑡 + 𝛿) − ℎ(𝑥𝑡, 𝑡)
𝛿

= lim
𝛿→0

ℎ(𝑥𝑡+𝛿 , 𝑡 + 𝛿) − ℎ(𝑥𝑡, 𝑡) ± ℎ(𝑥𝑡, 𝑡 + 𝛿)
𝛿

≥ lim
𝛿→0

ℎ(𝑥𝑡, 𝑡 + 𝛿) − ℎ(𝑥𝑡, 𝑡)
𝛿

≥ 𝜕𝑡ℎ(𝑥𝑡, 𝑡).

As a consequence

𝑀 ′(𝑡) = 𝜕𝑡ℎ(𝑥𝑡, 𝑡) a.e. (87)

Similarly

𝑚′(𝑡) = 𝜕𝑡ℎ(𝑥𝑡, 𝑡) a.e.

Therefore, from (87), evaluating (73) at 𝑥 = 𝑥𝑡 and noticing that ℎ𝑥(𝑥𝑡, 𝑡) = 0, we have

𝑀 ′(𝑡) = −1
2
(

[Q,Qℎ𝑥(𝑥𝑡)]ℎ(𝑥𝑡) − Qℎ𝑥(𝑥𝑡)
)

. (88)

Moreover, from (12), the estimates

‖𝐺‖𝐿∞ = 1
2
, ‖

‖

𝜕𝑥𝐺‖

‖𝐿∞ = 1
2
,

nd Young’s inequality, it holds that

Qℎ(𝑥𝑡) ≤ ‖𝐺‖𝐿∞(R) ‖ℎ‖𝐿2(R) =
1
2
‖ℎ‖𝐿2(R) , (89)

[Q,Qℎ𝑥(𝑥𝑡)]ℎ(𝑥𝑡) ≤ ‖𝐺‖𝐿∞(R) ‖‖Qℎ𝑥ℎ‖‖𝐿2(R) + ‖

‖

Qℎ𝑥‖‖𝐿∞(R) ‖Qℎ‖𝐿∞(R) ≤
1
2
‖ℎ‖2

𝐿2 . (90)

From (88), the estimates (89), (90) and the preservation of the 𝐿2 norm by the solutions of (73) imply that

𝑀 ′(𝑡) ≤ 1
4

(

1 + ‖

‖

ℎ0‖‖
2
𝐿2

)

,

nd therefore

𝑀(𝑡) ≤ 𝑀(0) + 1
4

(

1 + ‖

‖

ℎ0‖‖
2
𝐿2

)

𝑡. (91)

for 𝑡 ∈ [0, 𝑇max). In a similar way, we have

𝑚(𝑡) ≥ 𝑚(0) − 1
4

(

1 + ‖

‖

ℎ0‖‖
2
𝐿2

)

𝑡. (92)

for 𝑡 ∈ [0, 𝑇max). Thus combining (91) and (92) we conclude that

sup
𝑡∈[0,𝑇max)

‖ℎ(𝑡)‖𝐿∞(R) ≤ ‖

‖

ℎ0‖‖𝐿∞(R) +
1
4

(

1 + ‖

‖

ℎ0‖‖
2
𝐿2

)

𝑇max < ∞, (93)

and (86) holds. □

Next, let us state the wave breaking result.
16
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Theorem 6. Let 𝑠 > 9
2 , ℎ0 ∈ 𝐻𝑠(R), and let ℎ be the solution of (73) with initial value ℎ0. Assume that

inf
𝑥∈R

ℎ0,𝑥(𝑥) ≤ −𝐻0, (94)

or some positive constant 𝐻0, which depends on ‖

‖

ℎ0‖‖𝐿2(R) , ‖ℎ0‖𝐿∞ and is specified below. Then there exists 𝑇𝑏 < ∞ such that

lim inf
𝑡→𝑇𝑏

(

inf
𝑥∈R

ℎ𝑥(𝑥, 𝑡)
)

= −∞. (95)

Proof. Similarly as in the proof of Lemma 7.1, we follow a pointwise method to derive an ODE which breaks down in finite time.
Again, due to Theorem 4, we have that ℎ ∈ 𝐶([0, 𝑇max),𝐻𝑠)∩𝐶1([0, 𝑇max),𝐻𝑠−1), hence by the Sobolev embedding theorem, if 𝑠 > 9∕2
then ℎ𝑥 ∈ 𝐶1([0, 𝑇max) × R). We begin by setting

𝑚(𝑡) = inf
𝑥∈R

ℎ𝑥(𝑥, 𝑡) = ℎ𝑥(𝑥𝑡, 𝑡), for 𝑡 ∈ [0, 𝑇max),

for some 𝑥𝑡. Arguing as in Lemma 7.1, one can check that 𝑚(𝑡) is Lipschitz and hence via Radamacher’s Theorem it is inferred that

𝑚′(𝑡) = 𝜕𝑡ℎ𝑥(𝑥𝑡, 𝑡), a.e.

ifferentiating (73) with respect to 𝑥 and using (46) yield

ℎ𝑥𝑡 = −1
2
(

3ℎ2𝑥 + 3ℎℎ𝑥𝑥 + 𝜕𝑥[Q,Qℎ𝑥]ℎ − Qℎ + ℎ − ℎ𝑥𝑥
)

. (96)

valuating (96) at 𝑥 = 𝑥𝑡 and noticing that ℎ𝑥𝑥(𝑥𝑡, 𝑡) = 0 we have

𝑚′(𝑡) = −3
2
𝑚(𝑡)2 +(𝑡), (97)

with

(𝑡) = 1
2
(

𝜕𝑥[Q,Qℎ𝑥]ℎ(𝑥𝑡, 𝑡) − Qℎ(𝑥𝑡, 𝑡) + ℎ(𝑥𝑡, 𝑡)
)

.

We now estimate the quantity (𝑡). First notice, from (12), that

‖Qℎ + ℎ‖𝐿∞ ≤ ‖𝐺 ⋆ ℎ‖𝐿∞ + ‖ℎ‖𝐿∞ ≤ ‖𝐺‖𝐿∞ ‖ℎ‖𝐿2 = 1
2
‖ℎ‖𝐿2 + ‖ℎ‖𝐿∞ . (98)

n the other hand, from the Sobolev embedding 𝐻
1
2+𝜖(R) ↪ 𝐿∞(R) for 𝜖 > 0 and the fact that Q is continuous between 𝐻𝑠(R) and

𝑠+2(R) for any 𝑠 ∈ R, then the commutator term is bounded by

𝜕𝑥[Q,Qℎ𝑥]ℎ(𝑥𝑡, 𝑡) ≤ ‖

‖

[Q,Qℎ𝑥]ℎ‖‖
𝐻

1
2 +𝜖 (R)

≤ ‖

‖

Qℎ𝑥ℎ‖‖
𝐻− 3

2 +𝜖 (R)
+ ‖

‖

‖

(Qℎ)2‖‖
‖𝐻

3
2 +𝜖

. (99)

he first term on the right hand-side of (99) is bounded by

‖

‖

Qℎ𝑥ℎ‖‖
𝐻− 3

2 +𝜖
≤ 𝐶 ‖ℎ‖2

𝐿2(R) , (100)

and the second term can be estimated from the Sobolev algebra property as
‖

‖

‖

(Qℎ)2‖‖
‖𝐻

3
2 +𝜖

≤ 𝐶 ‖Qℎ‖2
𝐻

3
2 +𝜖

≤ 𝐶 ‖ℎ‖2
𝐿2(R) , (101)

for some constant 𝐶. The bounds (98)–(101), the 𝐿∞ estimate (93), and the time preservation of the 𝐿2 norm by ℎ lead to

(𝑡) ≤ 𝐶
(

‖ℎ‖2
𝐿2(R) + ‖ℎ‖𝐿2(R) + ‖ℎ‖𝐿∞(R)

)

≤ 𝐶
(

‖

‖

ℎ0‖‖𝐿∞(R) +
(

1 + ‖

‖

ℎ0‖‖
2
𝐿2

)

(𝑡 + 1)
)

. (102)

Using (102), then (97) implies

𝑚′(𝑡) ≤ −3
2
𝑚(𝑡)2 + 𝐴 + 𝐵𝑡, (103)

where 𝐴 and 𝐵 are the positive constants, depending on ‖

‖

ℎ0‖‖𝐿∞ , ‖
‖

ℎ0‖‖𝐿2 , determined in (102).
In order to show the wave breaking result, let us assume that the initial data is such that (cf. [28])

𝑚(0) ≤ −𝐶, (104)

for some positive constant 𝐶 such that 𝐶2 > 4𝐴. Then 2𝐴 − 𝑚(0)2∕2 < 0 and

𝑚′(𝑡)
|

|

|

|𝑡=0
≤ −𝑚(0)2 − 1

2
𝑚(0)2 + 2𝐴 ≤ −𝑚(0)2 < 0.

Therefore there exists a sufficiently small 0 < 𝛿 such that 𝑚′(𝑡) < 0, for 0 ≤ 𝑡 < 𝛿. This implies 𝑚(𝑡) < 𝑚(0) ≤ −𝐶 and similarly
𝐴 − 𝑚(𝑡)2∕2 < 0 for 0 ≤ 𝑡 < 𝛿. Thus, if 0 < 𝑡 ≤ min{𝛿, 𝐴∕𝐵} from (103) it holds that

𝑚′(𝑡) ≤ −𝑚(𝑡)2 − 1𝑚(𝑡)2 + 2𝐴 ≤ −𝑚(𝑡)2.
17
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T

This leads to

𝑚(𝑡) ≤ 𝑚(0)
𝑚(0)𝑡 + 1

. (105)

aking the initial datum such that
1

−𝑚(0)
≤ 𝐴

𝐵
, (106)

note that (104), (106) define a constant 𝐻0 for which 𝑚(0) satisfies (94), and (105) implies the existence of a time 𝑇𝑏 where (95)
holds. □
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