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ABSTRACT

We present a free-form lens model for the multiply lensed quasar in the galaxy cluster SDSS J1004+4112. Our lens model draws
minimal assumptions on the distribution of mass in the lens plane. We have paid particular attention to the model uncertainties on the
predicted time delay originating from the particular configuration of model variables. Taking into account this uncertainty, we obtained
a value of the Hubble constant of H0 = 74+9

−13 km s−1 Mpc−1, which is consistent with recent independent estimates. The predicted time
delay between the central image E and image C (the first to arrive) is ∆TE−C = 3200 ± 200 days for the estimated Hubble constant.
Future measurements of ∆TE−C will allow for a tighter constraint to be imposed on H0 in this cluster-QSO system.
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1. Introduction

The SDSS J1004+4112 galaxy cluster is a gravitational lens at
a redshift of z = 0.68, which produces five images of a back-
ground quasar at redshift z = 1.734. This gravitationally lensed
quasar was found in the Sloan Digital Sky Survey by Inada et al.
(2003), when the large separation between its multiple images
was noticed. Following the discovery of SDSS J1029+2623
(Inada et al. 2006), currently SDSS J1004+4112 is the second
lensed quasar with the greatest reported separation.

There is a broad range of previously published works based
on this lens system and many of them have been focused
on observational constraints, for instance, cluster substructure
(Oguri et al. 2004), central quasar image (faintest image E;
Naohisa et al. 2005), background lensed sources (Sharon et al.
2005; Liesenborgs et al. 2009; Oguri 2010), and time delays
between the four brightest images (ABCD) of the quasar
(Fohlmeister et al. 2007, 2008; Muñoz et al. 2022).

Additionally, most lens mass models of SDSS J1004+4112
were performed using parametric techniques: Inada et al.
(2003), Oguri et al. (2004), Fohlmeister et al. (2007, 2008),
Oguri (2010), Forés-Toribio et al. (2022), Napier et al. (2023),
Liu et al. (2023). Some non-parametric models are also available
(e.g., Williams & Saha 2004; Saha et al. 2006; Liesenborgs et al.
2009; Mohammed et al. 2015). However, the model derived by
Perera et al. (2024) is the only free-form model that includes
the three independent delays between the four brightest images
that have been recently and accurately measured (Muñoz
et al. 2022).

Most recently, following the method proposed by Refsdal
(1964), Napier et al. (2023) used the Lenstool software to
measure the Hubble constant from six measured time delays
(including three independent delays of SDSS J1004+4112)
and parametric mass models. They obtained H0 = (71.5 ±
61) cm s−1 Mpc−1. In addition, Liu et al. (2023) focused on

SDSS J1004+4112, using the GLAFIC software to estimate
H0 from its measured delays and 16 parametric models
with equal weight. The resulting Hubble constant is H0 =
67.5+14.5

−8.9 km s−1 Mpc−1.
In this work, we explore Refsdal’s method in the lensed

quasar with the most precise time delays among those with a
large number of observation constraints for the lensing mass
and image separation exceeding 10/arcsec. A large number of
observation constraints are required to successfully reconstruct
the lensing mass from a non-parametric method, so galaxy-
scale lensed quasars are usually studied from parametric models.
At present, there are no non-parametric lens mass recon-
structions that use the three well-measured time delays of
SDSS J1004+4112 to estimate the Hubble constant. Thus, the
current work complements the two recent studies of the system
(see: Liu et al. 2023; Napier et al. 2023) to achieve a more com-
prehensive perspective.

For the lens mass reconstructions, the redshifts and image
positions of seven lensed galaxies were considered, taken from
Oguri (2010). The lensed sources are found at four different red-
shifts, which means that we do not need to be concerned about
the mass-sheet degeneracy (Diego et al. 2007). In the case of
sources at different redshifts, different models tend to find similar
mass profiles that are not biased, demonstrating that the degener-
acy does not exist for multiple lensed sources (Meneghetti et al.
2017). With regard to the measured time delays, as in the work of
Forés-Toribio et al. (2022), their formal errors (see Muñoz et al.
2022) are enlarged by a factor of 5. We also remark that quasar
image flux ratios at near-infrared and radio wavelengths (which
are less sensitive to microlensing effects) are used to weight mass
models. The method used for this cluster can be applied to future
data with similar measurements.

The paper is organized as follows: Sect. 2 gives a brief
description of the gravitational lensing theory, proposing the
mathematical formulation of the problem and briefly explains
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the WSLAP+ strong lensing inversion code (Diego et al. 2005,
2007) used to derive the free-form lens model. Section 3 presents
21 different reconstructed lens models, used to account for the
uncertainty in the predicted time delays from the lens model. In
Sect. 4, the likelihood functions of H0 and the weight of each
model are discussed. Finally, in Sect. 5, the obtained estimation
of H0 is shown, followed by a discussion of the results in Sect. 6.

In this work, we assume a cosmology with parameters ΩM =
0.3 and ΩΛ = 0.7. The mass models derived in this work scale as
1/H0, which depends very weakly on the values of ΩM and ΩΛ

within the currently accepted ranges of these parameters. The
time delay also scales as 1/H0 which is by far the most relevant
cosmological dependence.

2. Lens modeling

The reconstructed lens models of SDSS J1004+4112 described
in this article are obtained with the free-form code WSLAP+
(Diego et al. 2005, 2007). Details are given in the references.
Here, we simply give a brief description of the algorithm. The
lensing problem in its most basic form is formulated linearly as

β = θ − α(θ,M(θ)), (1)

with θ corresponding to the observed positions of the lensed
images, β the unknown positions of the background galaxies,
M(θ) the unknown mass distribution of the lens and α(θ,M(θ)
the deflection angle that corresponds to the observed position θ.

The deflection angle is the contribution to the deflection of
all the mass distribution, that is obtained by integrating

α(θ,M(θ)) =
4G
c2

Dls

DsDl

∫
M(θ′)

θ − θ′

|θ − θ′|2
dθ′ (2)

where Dls, Dl, and Ds are the angular distances from the lens to
the source galaxy, from the observer to the lens, and from the
observer to the source correspondingly.

The problem is discretized assuming the lens is divided into
Nc cells, in each of which the mass is nearly constant, assign-
ing a mass mi to each cell. The deflection angle Eq. (2) is then
approximated by a sum

α(θ) =
4G
c2

Dls

DsDl

∑
Nc

mi
θ − θi

|θ − θi|
2 = γM (3)

this is, the deflection is approximated by the contribution of Nc
discrete masses mi (contained in the array of masses M), in posi-
tions θi in the direction of θ − θi and magnitude mi/|θ − θi|. The
matrix γ hence contains the deflection field at position θ j from a
grid point at position θi with mass mi = 1.

The galaxy cluster SDSS J1004+4112 shows a distribution
of tangential strong lensing arcs over the image. Discretizing
these lensed arc positions into Nθ points, the lens equation can
be formulated as a linear problem between unknown positions β
and the masses mi

β = θ − γM (4)

where β and θ are 2Nθ vectors containing the x and y unknown
positions in the source plane and the image positions in the
image plane, while M is the mass vector containing the Nc mass
cells. γ is a 2Nθ × Nc whose i-th row γi gives the linear relation
between the mass distribution contained in the vector M and the
deflection angle in the corresponding θi position contained in the
i-th row of the θ vector. The mass distribution can also contain

Fig. 1. Example of a dynamic grid with 199 points used for the smooth
dark matter distribution.

a contribution from a compact component associated with mem-
ber galaxies. This component can be divided into different layers
that from the point of view of Eq. (4) behave as additional grid
points. The number of layers must be at least Nl = 1 if all galax-
ies are placed in the same layer and up to Nl = Ngal if we assign
one layer per galaxy. In this work, we adopt one single layer for
all galaxies, that is, Nl = 1.

The system has 2Ns + Nc + Nl unknowns (lens masses and
source positions), that can be reduced assuming the Ns sources
can be approximated by point sources, this is, forcing the θ posi-
tions of the arcs correspond to the Ns source positions. This can
be formalized as

θ = ΓX, (5)

where Γ is a 2Nθ×(Nc +Nl +2Ns) known matrix given by the grid
configuaration and positions of lensed galaxies and M contains
all the unknowns, namely, the mass elements and positions of
the lensed galaxies in the source plane.

As the problem may be ill-conditioned and too big to use
matrix inversions, approximate numerical methods are used, for
instance, the bi-conjugate gradient method (Press et al. 1997)
can produce a fast solution to the system of equations given
by Eq. (5). However, models obtained with this approach often
return unphysical solutions where elements in the mass vector,
M, can adopt negative values. This is solved by imposing the
constraint that the mass must be always positive. This type of
problem can be solved by somewhat slower, but still very fast
quadratic programming algorithms (see Diego et al. 2005).

A first solution is obtained where the lens plane is initially
discretized with a regular 16 × 16 grid. This is similar to assum-
ing no prior knowledge about the distribution of the mass since
all grid points play the same role in the system of equations given
by Eq. (5). After this first solution, a multi-resolution grid is per-
formed, which is based on the previously obtained lens model.
This new grid increases the number of grid points in the areas
where the matter concentration of the original solution is greater
by making the cells’ size inversely proportional to the matter
density. Figure 1 shows a multi-resolution grid with 199 points,
which concentrates more grid points in the center as a higher
mass density is expected.
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3. Lens model results

The uncertainty in the derived Hubble constant is dominated by
the uncertainty in the lens model. In order to capture this uncer-
tainty, we derived a range of models, all of them consistent with
the observed set of linear constraints (positions of lensed galax-
ies and QSO). The observed time delays or relative magnifica-
tions, are not included in our set of constraints. In the case of
WSLAP+, a major source of uncertainty in the lens model orig-
inates in the particular choice of the grid used to describe the
smooth component of the mass. The grid configuration is a free
variable in WSLAP+. For the number of constraints used in this
work, grid configurations with 150–300 points can produce sat-
isfactory results in terms of reproducing the position of lensed
galaxies with relatively smooth critical curves. A larger number
of grid points results in unstable and unreliable solutions and
smaller numbers result in a lack of resolution. The cases pre-
sented should capture the expected range of uncertainty.

Another source of variability comes from the starting point
of the minimization. It is possible to choose among an infinite
number of initial conditions. After each minimization, each solu-
tion differs slightly from other solutions obtained with a different
seed. We varied both the grid and initial seed to explore the range
of valid models.

3.1. Range of lens models

We derived a total of 21 lens models: one with a uniform grid of
16×16 points, nine with a dynamical grid of 199 points, six with
a different dynamical grid of 248 points, and an additional five
models with a different dynamical grid of 299 points. However,
only the 20 multiresolution grids were used to compute the esti-
mation of the Hubble constant since the solution obtained with
the regular 16 × 16 grid lacks resolution in the central region.

Figure 2 shows the convergence of 10 of the 21 models
used, including the initial model obtained with the uniform grid
16 × 16 = 256 grid points.The first number in the legend indi-
cates the number of grid points, while Model1, Model2, and
Model3 are different realizations (different initial conditions) for
the same grid configuration. Models that are not shown have sim-
ilar profiles. These profiles are consistent with the ones derived
by Liu et al. (2023) using a parametric model. Despite the rela-
tive similarity between profiles, the small changes between mod-
els are the main source of uncertainty in the predicted time delay,
and hence in the derived value for the Hubble constant. Figure 3
shows the magnification map of the lens model, obtained with
the dynamic grid of 199 points in Fig. 1 plotted in red on top of
the galaxy cluster shown in blue.

3.2. Predicted time-delay for image E

Each of the lens models described in the previous subsection
gives a prediction for the image E time-delay for a canonical
Hubble constant H0 = 70 km s−1 Mpc−1. Thus, by re-scaling
the predicted time delays to the value of the Hubble constant
measured, H0 = 74 km s−1 Mpc−1 (see Sect. 5), we can obtain
a predicted time-delay with respect to image C of 3200 ±
200 days. This is approximately 1 yr longer than the expected
value reported in Forés-Toribio et al. (2022), who obtained a pre-
dicted time delay of about 8 yr.

A robust determination of the time delay of image E (with
respect to image C) would play an important role since this
measurement would significantly improve the precision in the
estimation of the Hubble constant. However, image E is very

Fig. 2. Convergence κ for 10 models computed for a source at z = 1.
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Fig. 3. Magnification map of the reconstructed lens of
SDSS J1004+4112 using the dynamic grid with 199 points.

faint. This means that the typical magnification ratio between
images D and E is µD/µE ∼ 30 (with a great variation among
different models) and, consequently, it is reasonable to assume
that image E is about 30 times fainter than image D at opti-
cal wavelengths (neglecting possible extinction and microlens-
ing effects). Hence, if the r-band magnitude of D is ∼21 (see
Table 1 of Muñoz et al. 2022), the expected r-band magnitude
of D would be ∼24.7 mag. Additionally, E is located in a bright
and crowded sky region, so it seems extremely difficult to build
its optical light curve from current facilities.

4. Constraints on H0

It is common to express the Hubble constant H0 as:

H0 = h × cm s−1 Mpc−1,

where h = H0/100 is referred to as the reduced Hubble constant
and it is a dimensionless physical constant.
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Table 1. Observed time delay, flux ratios, and adopted intrinsic flux
ratio variation for the QSO images of SDSS J1004.

Image A B C D E

Obs. delay (days) 825.99 ± 2.10 781.92 ± 2.20 ≡0 2456.99 ± 5.55 –
Flux (this paper) 1.84 ± 0.03 1.50 ± 0.03 ≡1 0.741 ± 0.016 0.015 ± 0.011
Flux (Oguri) 2.2 ± 0.6 1.6 ± 0.65 ≡1 0.56 ± 0.22 0.006 ± 0.004
Flux (Hartley) 1.7 ± 0.2 1.10 ± 0.17 ≡1 0.32 ± 0.12 –
Int Variab. 0.3 0.2 0 0.16

In order to measure H0, Refsdal (1964) proposed that the
gravitational lensing effect could be used. In fact, when a light
ray is deflected by a gravitational lens, its trajectory is modified
and therefore its traveling time, due to the light’s finite propaga-
tion speed. The expression that describes the time delay of the
perturbed ray with respect to the one that follows a straight path
is displayed in Eq. (6):

t(θ) =
1 + zl

c
DlDs

Dls

[
1
2

(θ − β)2 − Φ(θ)
]
, (6)

with zl indicating the redshift of the lens.
The three angular distances involved in Eq. (6) are inversely

proportional to the Hubble constant, H0, therefore, we say
that the time delay scales as 1/h. In addition, the magnitude
expressed in Eq. (6) is not measurable; instead, we chose to mea-
sure the time delay relative to one of the images.

Using the lens models derived in the previous section, we
are able to confront the predictions of the time delay of the mul-
tiple images of the QSO with the observations, both relative to
image C. Our lens models predict the time delay for a canonical
value of H0 = 70 km s−1 Mpc−1, which is a reduced Hubble con-
stant of h = 0.7. Hence, these time delays are re-scaled to a new
reduced Hubble constant (h′) by multiplying the predicted time
delays, x = h′/0.7

Likelihood

For each lens model, we can derive a probability for the pres-
ence of h by minimizing the weighted difference between
the predicted and observed time delays (∆TMi and ∆Tobs,
respectively):

p(Mi, h) ∝
∏

j=A,B,C,D

exp

− (∆T j
Mi
− ∆T j

obs)
2

2σ2
j

 , (7)

where the index j runs over the four positions, A, B, C, and D.
In addition, the proportionality sign just expresses the lack of a
normalization constant. The values of σ j are computed at each
of these four positions as the dispersions of the time delays pre-
dicted by the lens models. Image E has no observable time delay
and hence is not included in the definition of the likelihood.

Since we have different lens models derived under different
assumptions, we need to compute the joint probability from all
models. We adopted the conservative approach that the com-
bined probability from all lens models is the sum of probabil-
ities of the models (see, e.g., Vega-Ferrero et al. 2018). A more
aggressive approach would be to consider that the joint prob-
ability is the product of the individual probabilities, but this
implies all models are independent from each other. This is not
true since all lens models are derived using the same algorithm,

with some assumptions common to several models (e.g., the grid
configuration, definition of the compact component, or lensing
constraints).

The joint probability is then defined as:

P(M, h) ∝
N∑

i=1

wi p(Mi, h), (8)

where the sum runs over the N lens models, p(Mi, h) is the prob-
ability given in Eq. (7) and the term wi is the weight assigned
to each model. Once again, the proportionality sign just indi-
cates the lack of a normalization constant. This weight is deter-
mined by how well a particular model reproduces the observed
flux ratios between the different images of the QSO. We define
this weight as (dropping the subscript i);

w = exp

−1
2

 ( FB
FC
−

µB
µC

)2

σ2
CB

+
( FD

FC
−

µD
µC

)2

σ2
CD


 · (9)

In the above definition, we have ignored image E since this is
very close to the center of the BCG galaxy and extremely faint.
In addition, initially, we did not include the flux ratio, FA/FC,
in w Eq. (9) because the A image is very close to a critical line
and, thus, the magnification ratio, µA/µC, in some models might
be a strongly biased estimator of FA/FC. Hence, in an abun-
dance of caution, image A was ignored for respect to the defi-
nition of the weight. We computed the flux ratios as the average
of three flux ratios from our own measurements in the IR band
F814W, measurements published in Oguri (2010) and radio flux
in Hartley et al. (2021). The values of σCB, and σCD are the com-
bination of the observed dispersion of flux ratios between differ-
ent measurements and the expected variation due to the intrinsic
variability:

σ2
XY = σ2

XYo
+ σ2

int. (10)

For the intrinsic variability in the F814W HST filter, we adopted
a value of σint = 0.2 for image B and σint = 0.16 for image D
from Li et al. (2018) and Morganson et al. (2014). The measured
time delays, flux ratios measured by the indicated authors, and
estimated intrinsic variability are summarized in Table 1. The
flux ratios from Oguri and this work correspond to the F814W
HST filter and Hartley’s in the 5 GHz radio band.

5. H0 results

Each of the models obtained in this work has a different con-
tribution to the prediction of the value of the Hubble constant.
Figure 4 shows the contribution of each of the models to the
final likelihood, this is, it shows the function defined by each
weighted probability in the likelihood function in Eq. (8).

Our main results are incorporated in Fig. 5. In this figure,
we show the probability for the reduced Hubble constant
using three different schemes. The standard scheme relies on
Eqs. (7)–(9) and the 20 lens models, leading to the probability
distribution shown in blue. Selecting the 11 lens models with the
highest resolutions (248 and 299 grid points), we were also able
to obtain the distribution in red. Additionally, we considered the
20 lens models and a modified version of Eq. (9), including flux
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Fig. 4. Contribution of the seven models with the highest weights to the
final likelihood.

Fig. 5. Probability distribution of h obtained from time-delay predicted
by the lens models using different analyses.

ratios with respect to A (flux ratios FB/FA, FC/FA, and FD/FA)
and the corresponding model magnification ratios, to produce
the probability distribution in green. The shaded regions outline
the 68% confidence intervals. Thus,

H0 = 74+9
−13 km s−1 Mpc−1 (standard scheme)

H0 = 74+9
−14 km s−1 Mpc−1 (selecting high − resolution

lens models)

H0 = 77+14
−11 km s−1 Mpc−1 (including the flux and

magnifications of the A image).

6. Conclusions

These results are in agreement with recent estimates reported
in Liu et al. (2023) and Napier et al. (2023). The present paper,
along with these two works, show that the Hubble constant must
lie in the 60−80 km s−1 Mpc−1 range. The uncertainty in H0 can
be reduced in the future with deeper observations of this cluster,
which would reveal more lensed galaxies and their correspond-
ing redshifts. This would take advantage of lensing by galaxy
clusters, which typically can have over an order of magnitude
more lensing constraints than classic galaxy-QSO lensing. Also,

future observations of lensed SNe in galaxy clusters will pro-
vide competitive constraints on H0, similar to those obtained
with SN Refsdal (Vega-Ferrero et al. 2018; Kelly et al. 2023), or
SN H0pe (Frye, in prep.).

To conclude, we analyze the contribution of this work to the
Hubble tension problem. The Hubble tension refers to the 4σ to
6σ discrepancy between estimations of H0 from early universe
measurements and late universe results. The most precise predic-
tions of the Hubble constant using early universe results come
from the CMB Plank Collaboration (Planck Collaboration XII
2020) that obtained H0 = 67.49 ± 0.53 km s−1 Mpc−1 with 68%
confidence level (CL). In the late universe, however, the most
precise results come from different techniques: using distance
ladder Cepheid calibration in the Large Magellanic, Riess et al.
(2019) estimated H0 = 74.03 ± 1.42 km s−1 Mpc−1; the SNe Ia
distance calibration by the SH0ES collaboration (Riess et al.
2022) that obtained H0 = 73.30 ± 1.04 km s−1 Mpc−1 (68% CL);
and gravitational lensing on quasars by H0LiCOW collaboration
(Wong et al. 2019) that obtained H0 = 73.3+1.7

−1.8 km s−1 Mpc−1

(68% CL) and TDCOSMO with H0 = 77.1+7.3
−7.1 km s−1 Mpc−1

(Shajib et al. 2023) in their latest result. There is a chance that
the tension might be fictitious (e.g., the resulting effects of the
selection of the SNe Ia or use of inadequate lens mass mod-
els) or real, in which case a modified cosmological model would
be required (e.g., Dainotti et al. 2021; Goicoechea & Shalyapin
2023; Shalyapin et al. 2023). Nonetheless, our results do not
show any tension with any of the results in either the early uni-
verse or late universe, although this is largely due to the lens
model uncertainties.
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Appendix A: Additional estimated parameters

Table A.1 includes the convergence, κ; shear, γ; and shear direc-
tion, φ, for the quasar’s five images for the 20 lens models used

in this work for the estimation of the Hubble constant, together
with the mean value for these in the last row of the Table.

Table A.1. Convergence κ, shear γ and shear direction φ of the multi-resolution lens models for the different QSO images.

QSO.A QSO.B QSO.C QSO.D QSO.E

κ 0.85 0.71 0.70 1.09 8.19
199/Model1 γ 0.54 0.40 0.74 1.40 4.99

φ 14.23 10.94 18.31 27.26 39.33
κ 0.88 0.74 0.75 1.13 8.04

199/Model2 γ 0.56 0.42 0.75 1.40 4.89
φ 14.55 11.28 18.41 27.21 39.22
κ 0.80 0.67 0.64 1.02 8.39

199/Model3 γ 0.54 0.41 0.74 1.42 5.14
φ 14.08 11.03 18.32 27.47 39.50
κ 0.86 0.73 0.73 1.11 8.09

199/Model4 γ 0.55 0.41 0.75 1.40 4.92
φ 14.45 11.23 18.35 27.22 39.26
κ 0.87 0.74 0.74 1.10 7.88

199/Model5 γ 0.56 0.42 0.75 1.39 4.81
φ 14.64 11.48 18.43 27.15 39.13
κ 0.87 0.74 0.75 1.10 7.78

199/Model6 γ 0.57 0.43 0.75 1.39 4.76
φ 14.76 11.62 18.48 27.13 39.07
κ 0.87 0.75 0.75 1.10 7.71

199/Model7 γ 0.57 0.43 0.75 1.39 4.73
φ 14.86 11.73 18.52 27.11 39.03
κ 0.88 0.75 0.76 1.10 7.59

199/Model8 γ 0.58 0.44 0.76 1.39 4.67
φ 15.00 11.88 18.56 27.09 38.95
κ 0.85 0.72 0.72 1.06 7.67

199/Model9 γ 0.57 0.44 0.75 1.39 4.74
φ 14.93 11.82 18.52 27.15 39.04
κ 0.86 0.74 0.72 1.03 7.01

248/Model1 γ 0.62 0.48 0.76 1.36 4.41
φ 15.81 12.80 18.69 26.83 38.61
κ 0.88 0.77 0.75 1.03 6.63

248/Model2 γ 0.63 0.49 0.76 1.33 4.19
φ 16.14 12.97 18.58 26.49 38.28
κ 0.88 0.77 0.74 1.00 6.52

248/Model3 γ 0.63 0.48 0.75 1.31 4.12
φ 16.12 12.74 18.49 26.28 38.18
κ 0.85 0.73 0.72 1.01 6.99

248/Model4 γ 0.61 0.47 0.77 1.34 4.40
φ 15.75 12.53 18.87 26.62 38.60
κ 0.81 0.67 0.63 0.93 7.38

248/Model5 γ 0.64 0.48 0.75 1.30 4.07
φ 15.18 12.01 18.84 26.70 38.93
κ 0.88 0.76 0.72 0.99 6.39

248/Model6 γ 0.64 0.48 0.75 1.30 4.07
φ 16.30 12.80 18.35 26.27 38.10
κ 0.85 0.75 0.72 1.01 7.06

299/Model1 γ 0.61 0.47 0.75 1.33 4.41
φ 15.63 12.53 18.44 26.58 38.62
κ 0.89 0.79 0.77 1.07 6.72

299/Model2 γ 0.63 0.48 0.75 1.37 4.21
φ 16.05 12.78 18.37 26.89 38.31
κ 0.80 0.67 0.63 0.92 7.36

299/Model3 γ 0.57 0.43 0.76 1.35 4.61
φ 14.84 11.58 18.65 26.71 38.888
κ 0.81 0.68 0.63 0.90 7.17

299/Model4 γ 0.58 0.43 0.76 1.33 4.50
φ 15.01 11.62 18.54 26.54 38.74
κ 0.88 0.78 0.75 1.02 6.59

299/Model5 γ 0.63 0.48 0.74 1.32 4.17
φ 16.07 12.88 18.31 26.47 38.25
κ 0.86 ± 0.03 0.73 ± 0.04 0.72 ± 0.04 1.04 ± 0.06 7.36 ± 0.59

Mean γ 0.59 ± 0.03 0.45 ± 0.03 0.75 ± 0.01 1.36 ± 0.03 4.57 ± 0.31
φ 15.2 ± 0.7 12.0 ± 0.7 18.50 ± 0.16 26.9 ± 0.4 38.8 ± 0.4
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