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Abstract

This article reviews the most recent advances on the contri-
bution of electromembrane-based technologies to waste
valorisation through their implementation in the sustainable
recovery and storage of energy from waste streams. Two
driving forces are considered, salinity and pH gradients.
Recent advances and challenges in ion exchange membranes
(IEMs) and bipolar membranes (BPMs) are presented.
Reverse electrodialysis (RED) and reverse bipolar membrane
electrodialysis (RBMED) are evaluated as primary batteries to
harvest energy from salty streams. The potential of combining
RED/ED and RBMED/BMED as sustainable secondary bat-
teries is also presented. Overall, it is concluded that increasing
the membrane performance is a key aspect to rise the maturity
of the proposed technologies along with their adaptation to the
different characteristics of current and future waste streams
potentially available for energy recovery and storage.
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Introduction to electrodialysis processes
for energy recovery and storage

In meeting the growing global energy demand while
keeping emissions at bay, electromembrane technolo-
gies are recently regarded as key suppliers of continuous

renewable electricity from unconventional energy sour-
ces. Reverse electrodialysis (RED) and reverse bipolar
membrane electrodialysis (RBMED) are the leading
technologies for converting the energy from salinity
(SGE) and pH (pHGE) gradients into useful electricity.
The use of low-cost electrolytes like alkali and acid so-
lutions has made closed-loop electrodialysis (RED-ED)
and closed-loop bipolar membrane electrodialysis
(RBMED-BMED) rechargeable batteries a more
preferred choice over conventional redox flow batteries
(RFBs) for energy storage.

This scenario has also opened new possibilities for saline
waste streams in energy production. The focus of this
review is on the recent progress made in electro-
membrane-based technologies and their implementa-
tion in novel applications for energy recovery and stor-
age, with a special emphasis on significant findings and
challenges on the use of waste streams.

RED and RBMED work the opposite to ED and BMED,
respectively. In RED, two streams with different salinity
are mixed in a controlled way to recover SGE and pro-
duce an electrical current. Whereas in RBMED, two
streams with different pH, typically an acidic and an
alkaline solution, are controlled neutralized allowing the
harvesting of pHGE.

Additionally, ED processes can be combined to achieve
sustainable energy storage (secondary batteries). The
combination of ED and RED stages using different
salinity streams provides the so call salinity gradient flow
battery (SGFB), while the combination of BMED and
RBMED applied to different pH solutions is the key of
the acid-base flow battery (ABFB) concept.

Therefore, as seen in Figure 1, electromembrane based
technologies could act as: a) energy recovery devices
(primary batteries), and b) flow batteries (FBs) to store
and recover energy from solutions (second-
ary batteries).

SGE-RED harvesting from wastewaters has gained
attention in the last decade increasing the maturity of
the technology [1,2]. However, pHGE recovery is still at
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Electromembrane based technologies: a) primary batteries by harvesting energy from waste streams, b) secondary (flow) batteries that store and recover

energy from solutions.

a lower technological readiness level (TRL) although
attracting attention in recent years [3].

Both the SGFB and the ABFB have been presented as
safe and sustainable energy storage devices that could
overcome the limitations of other batteries such as the
toxicity of the chemical materials, intensive use of
critical raw materials, pollution or high costs. Unlike
other alternatives, the rated power and the total energy
capacity are decoupled, in both systems [4]. The rated
power is related to the stack size, number and size of the
membranes implemented, while the total energy ca-
pacity depends on the volumes of the solutions,
providing enormous flexibility and versatility to be in-
tegrated in multiple applications and scales.

Electromembranes for energy recovery and
storage

Ion-exchange membranes (IEMs) and  bipolar
membranes (BPMs) are key components of the primary
and secondary batteries based on salinity or
pH gradients.

Ion-exchange Membranes (IEMs) determine the overall
output energy produced in RED processes for energy
harvesting. Important modifications over conventional
ED membranes have been tackled to assure the needs of

SGE-RED processes. On the one hand, RED processes
operate at ambient temperature and atmospheric pres-
sure, conditions at which the thermal stability and the
mechanical strength of IEMs are not crucial. Besides,
water dissociation in the RED cell is negligible, thereby
solutions pH is expected to be stable and close to
neutrality. On the other hand, it is crucial to decrease the
RED cell electrical resistance and increase the mem-
brane permselectivity over the conventional ED IEM to
attain the goals of high energy efficiency and power
density (PD) in RED. Conventional ED IEMs devel-
oped by companies such as Asahi Glass, Fujifilm, Fuma-
tech, Tokuyama, RALEX or Dupont cannot meet the
RED threshold level for the gross PD generated [5]. The
use of perfluorinated or partially fluorinated materials
such as Nafion in cation exchange membranes (CEMs)
benchmark membranes impairs the ion conductivity and
their life cycle environmental sustainability [6]. As a
result, non-perfluorinated materials have attracted
attention for IEMs fabrication. Two strategies stand out
in recent years:

o Developing new bare and blended polymeric IEMs. Poly(vi-
nyl alcohol) (PVA) based IEMs have been tested in
several studies reaching PD in the range of 0.4 W m~?2
to 1.82 W m 2 The use of sulfonated poly-
etheretherketone (SPEEK) and
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poly(epichlorohydrin) (PECH) as CEM and anion
exchange membranes (AEM) has been reported to
achieve a gross PD of 1.3 W m™? [7,8].

o Modification of conventional TEMs. Polypyrrole (PPy)/
chitosan composites have been used to modify com-
mercial CEM membranes (Fujifilm) achieving a 40%
increase of the PD compared to commercial CEM [9].
Cationic functional groups, e.g. 1-methyl-imidazolium
(IMD) or tetramethylammonium (TMA), have been
added to conventional polgl(arylene ether sulfone)
(PAES) achieving 1.2 W m™ . Inorganic nanomaterials
have been also used to modify CEMs through physical
blending, sol—gel, or infiltration methods. Novel
nanocomposite CEMs synthesized through oxidized
multiwalled carbon nanotubes blended with poly (2,6-
dimethyl-1,4-phenylene oxide) (SPPO) improved the
highest gross PD by 0.48 W m 2. In another work the
maximum PD of 1.3 W m™% was obtained using
functionalized iron (III) oxide (FzOg—SOﬁ') and
SPPO composites as CEM. No nanocomposite AEMs
have been reported so far [10].

Bipolar membranes (BPMs) arc composed of anion and
cation exchange layers (AEL and CEL), with an
interfacial layer in between. Such membranes can
operate in forward bias (water formation) and reverse
bias (water dissociation). Thanks to the generated pH
gradient across the BPM, the ABFB has the potential
to obtain an energy density more than 3 times higher
compared to the SGFB [11]. Nevertheless, BPMs have
historically been designed for acid/base production and
therefore, current commercial BPMs are not optimized
for energy harvesting or ABFB applications. To be
feasible on a larger scale, BPMs should assure stable
performance in both reverse and forward bias, espe-
cially with low water dissociation potential in reverse
bias and low voltage drop during forward bias. Al-
Dhubhani et al. [12] compared the performance of
five commercial BPMs under both biases and observed
different behaviours that were explained by the
different selectivities of the AEL and the CEL towards

H" and OH™ among the commercial BPMs evaluated.
An increase of the BPMs asymmetry, that is, the
thickness ratio between the AEL and CEL, decreases
the overall membrane resistance and it can also be
beneficial to balance the asymmetrical co-ion fluxes
through layers. Currently the main bottlenecks of the
BPMs are related to: 1) the AEL chemical stability,
which can suffer in highly alkaline conditions
(pH > 11); ii) the stability at high current density, as
BPMs need to withstand high currents also under for-
ward bias; and iii) the imperfect permselectivity [12].

Currently, bipolar membranes are limited to
500—1000 A m 2 in the charging phase. Typically, cur-
rent densities in the range of 100—300 A m~ % are
selected for BMED in battery applications. Although
higher current densities could be employed, using lower
current densities improves the electrical performance in
terms of reducing the specific energy consumption
(SEC, kWh kg_l of product) of the charge, and increasing
the round-trip efficiency (RTE) of the battery (charge
and discharge).

The performance of BPMs under forward bias is still
almost unexplored in the literature [12]. At present, the
current density employed in the discharge phase is
limited to 30 A m™—? [13,14] to avoid delamination of the
BPM, occurring when water accumulates in the inter-
layer. These limitations make that, although BPMs have
been used for decades in acid/based production, their
application in energy conversion technologies is still far
from the industrial scale [15]. Table 1 summarizes the
state of the art and target values of the more relevant
properties of BPM in energy recovery and stor-
age applications.

Valorization of waste streams through
salinity gradient energy recovery and
storage

SGE, which can potentially be harnessed from the
combination of two solutions with different salinity, is

Table 1
State of the art and target values of the more relevant properties of BPM in energy recovery and storage applications (adapted from
Ref. [11]).
Property State of the art Desired
Mechanical stability at high current density — 500—1000 A m~2 >1000 A m~2
Reverse bias (BMED)
Mechanical stability at high current density — <30 A m~2 (could be increased for short operating times) >100 A m™2

Forward bias (RBMED)
Thermal stability
Chemical stability
lon selectivity

Price [16] 273 € m2

Stable in 20—-40 °C
AEL suffers from highly alkaline conditions (pH > 11)
High selectivity up to 1.0 M product concentration

>60 °C

Long-term stability at high pH
>1.0 M product concentration
109 € m~2, as for IEMs
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estimated by the calculation of the Gibbs free energy of
mixing (4G,;). Increasing the salinity differences
generate  greater theoretical AG,m [17], e.g.
seawater—river water (0.6 mol L' and 0.0015 mol L.™!
respectlvely) seawater desalmatlon brine—wastewater
(1.2 mol L~' — 0.01 mol L™ ), engmeered solutions
(4.0 mol L' — 0.02 mol L), and hypersalme
brines—river water (5.3 mol L' —0.0015 mol L ') reach
4G, of 0.76, 1.53, 6.71 and 10.5 kWh m™ of low
concentrated solution (LLCS). The output is the energy
recovered, thus, the main results reported are power
densities and specific energy. These results are not only
dependent on solutions, but also on the module size. End
concentrations are not typically reported, but as in other
open loop systems, the final concentration would be
determined by the residence time of the solutions in
the stack.

Besides the relevance of IEMs, other components play an
important role in RED efficiency. Efforts are oriented
towards finer spacers than those in ED, contributing to
decrease the ionic resistance of water streams, although
at the expense of suffering enhanced fouling and pres-
sure drop. The use of non-electroconductive spacers
generates a shadow effect, which lowers the active
membrane area and increases the ohmic resistance.
Studies showed that the shadow effect could be
responsible of reductions over 40% of the RED process
efficiency [10]. Ruthenium, iridium coated in titanium
and graphite are common electrodes used with a recy-
clable electrolyte solutlon the iron based redox couple
(Fe?*/Fe*™) or [Fe(CN)6]*/[Fe(CN)]* being the most
reported in the literature [18]. RED works seek the
maximization of both PD and specific energy recovery;
therefore, research has been carried out to evaluate
different couples of waste streams, module sizes and
operating conditions.

The first pilot-scale RED plant was built and operated
in Italy under the REAPower 2project WWWw.reapower.eu,
with 125 cell pairs and 50 m” of total membrane area,
registering 65 W (PD of 1.3 W m_z) [19]. Since then,
several attempts to upscale RED technology have been
reported; however, the PD of large-scale RED systems is
still constrained within 0.38—2.7 W m ™2 of cell pair [20].

The advances in SGE-RED provide a new tool for the
valorization of saline waste streams. The evaluation of
the technology using seawaters with different salinity
and the effluent of a wastewater treatment plant
predicted Values for SGE harvesting between 7 and
60 Wh m > of reclaimed water, the upper value being for
the Mediterranean Sea water [21]. Tristan et al. evalu-
ated the recovery of SGE by means of RED in seawater
reverse osmosis (SWRO) desalination plants worldwide
using the waste brine as high concentrated solution
(HCS) [22] concluding that net specific energy values

in the range of 0.08—0.15 kWh per m ™~ of RO brines and
net PD of 2.0—3.7 W m~2 could be obtained. C1poll1na
and coworkers [23], operating with 5 mol L' NaCl
concentrated solutions as those found in bitterns from
saltworks, reported PD of 5.0, 2.2 and 3.4 W m~2 in
experiments performed using commercial membrane
stacks provided by Fujifilm, Fumatech and Suez,
respectively. Recently, produced waters (PW), gener-
ated in oil and gas production, have been identified as
suitable HCS solutions for SGE recovery due to their
high salinity (up to 270 g L™ 1) and huge global pro-
duction (41 mllllon m day_l) [24—26]. A maximum PD
of 2.5 W m~2 was observed during 25 days of long-run
continuous operation using real PW as HCS (equiva-
lent NaCl concentration of 50.3 g L.~ 1) and an artificial
solution of 0.7 g L™ ! NaCl as LCS [25]. Gaber et al.
reported the generamon of 0.94 W m~% when operating
with 150 and 3 g L~! NaCl solutions as HCS and LCS,
respectively, pointing out that the SGE generated could
potentially satisfy the energy requirements for treating
oilfield PW [24].

Working with real water and wastewaters, which contain
natural organic matter and divalent ions, may induce
fouling phenomena and reduce electromembranes per-
formance. Membrane fouling mitigation strategies
include periodic feedwater switching, chemical clean-
ing, UV lamps or even membrane modification with
good results reported in literature [20,25,27] that sup-
port the viability of the technology in real scenarios.

Few studies have evaluated the economic feasibility of
SGE-RED. At present, the levelized cost of energy
(LCoE) falls in the range 0.2—0.5 USD kWh™ Wthh is
not yet competitive with other well stabllshed renew-
able energy sources such as wind or solar photovoltaic
(0.1—0.15USD kWh™ ) [20]. However, one of the latest
contributions indicates that the LCoE of SGE-RED
could be reduced to 0.1 USD kWh™! achieving an
energy efficiency of 40% [28].

Additionally, the combination of ED and RED has been
proposed as an alternative for energy storage, especially
if surplus power from intermittent renewable energies is
available [17,29—32]. An ED/RED energy storage
system (Figure 2a), also named SGFB or concentration
battery, relies on the energy transformation into chem-
ical potential by ED during the charging period and
then, the conversion of the chemical potential energy
stored in the form of a concentration difference, in
electricity through RED during the discharge use. Both
phases can be carried out in the same device in a closed-
loop system where the main target is the maximization
of the RTE, i.e., the maximization of the ratio between
the energy recovered in the discharge phase and the
applied energy in the charging phase. Kingsbury et al.
[30] made the first attempt to demonstrate the SGFB
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Working principles of: a) SGFB, ED as charging phase and RED as discharging phase; and b) ABFB, BMED as charging phase and RBMED as

discharging phase.

device operation on a commercially available RED stack.
However, RTE not higher than 21—34% were obtained
due to water osmosis. Later, van Egmond et al. [31],
identified four processes that dissipated the available
free energy while cycling the SGFB: a) the resistance of
the IEM and water to transport ions, with an ohmic
component and the presence of boundary layers that
limit mass transport; b) non-perfect selectivity of IEMs,
which lowers the Nernst potential; ¢) water trans-
portation, and d) co-ion transportation, that both change
the salt concentration. Recently, an “ion-plus SGFB” has
been proposed where the addition of supporting ions in
low concentrations (0.1 M) to both the HC and LC
solutions would significantly decrease the internal
electric resistance withing the SGFB cell and facilitate
the transformation of Gibbs free energy in the
discharging cycles while decreasing the current con-
sumption in the charging cycles, as well as accelerate the

ion transfer without sacrificing the SG. This strategy
reduced the electrical resistance between 62.4 and
90.7% and doubled the PD [32].

Valorization of waste streams through pH
gradient energy recovery and storage

It is calculated that the global annual waste acids gen-
eration is equivalent to 100 million tons of concentrated
H,SO4. The neutralization energy of a strong acid and a
strong base is around —79.9 k] mol L. If such global
quantities of waste acid and base are utilized as acidic
and alkaline electrolytes in an electroneutralization
energy (ENE) cell, an estimate of the energy that could
be harvested is around 44 TWh [33]. Despite the
availability of large volumes of acidic and alkaline
wastewaters generated in various industrial processes
such as chemical production, electroplating, dyeing, and
papermaking, pHGE recovery is so far a little-known
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research topic [14,33]. Because both RBMED and ABFB
are in an early stage of development, research on both
technologies has been restricted to using synthetic so-
lutions based on NaCl, HCI and NaOH.

To date, studies have aimed applications in ABFB, rather
than simply harvesting the pHGE contained in waste-
waters [34]. ABFB have been proposed as an improve-
ment of SGFB due to their potential to achieve higher
energy and power densities [35]. In ABFB charging and
discharging cycles are performed in the same device,
working in a closed-loop (Figure 2b). Several strategies are
being proposed to pursue the objective of increasing the
RTE, such as applying low current densities
(100—300 A m~%) to reduce the energy consumption of
the charge phase, and increasing the current density in
the discharge phase up to the maximum admissible to
avoid BPM delamination (<30 A m ™).

The stability of an ABFB working in BMED/RBMED
cycles using NaOH and HCI model solutions at labora-
tory scale was demonstrated, reaching a high energ;
density of 2.9 Wh L' and a PD up to 3.7 W m™“.
However, unwanted transport of protons and hydroxyl
ions caused energy dissipation, leading to low coulombic
efficiencies between 13 and 27% [35]. Xia et al. [36]
used a 20-triplet stack and 1 mol L~! NaOH and HClI
solutions, reporting a PD of =15 W m~2 excluding
electrode losses.

Zaffora et al. [13] reported results of PD of =17 W m~?
for the discharge phase working in single pass mode with
1 mol L' NaOH and HCI solutions, estimating an
energy density of 10.3 Wh L ! of acid for the complete
discharge. After testing the performance of five different
commercial membranes, Al-Dhubhani et al. [12]
reached a RTE of 65% using current densities of 60 A
m~? during discharge and 240 A m™* during charge. As
previously stated, understanding the behavior of BPMs
under forward and reverse bias in multi-ion solutions
results essential [37] for ABFB to be competitive with

other commercial flow batteries, such as vanadium redox
flow batteries (VRFB) [13,15].

Currently, a successful example of ABFB demonstration
has been reported in Pantelleria (Italy). A pilot plant of
1.0 kW rated power was designed, installed, and oper-
ated, to provide the local power plant with additional
energy storage, useful to meet the high energy demand
in summer months [4,37,38]. Environmental and eco-
nomic assessments revealed the outstanding potential
of ABFB systems when compared to VRFB [38]. The
net levelized cost of storage (LLCoS) was 3.07 € kWh™!
for ABFB in contrast to 6.05 € kWh™! for VRFB.

It may be envisioned that the pHGE will have broad
applications in various fields, including the development

of energy-efficient energy devices, industrial acid and
alkali wastewater treatment, or electrochemical syn-
thesis, but at the current stage, pHGE-assisted devices
suffer from several bottlenecks including complicated
assembly processes due to the employment of
acid—base asymmetric electrolytes; relatively poor sta-
bility and durability due to the inevitable ion leakage/
crossover and continuous consumption of acid and base;
high internal electrical resistance of the device due to
the use of a BPM or multiple ion-exchange membranes/
compartments; the relatively high cost of using a BPM;
and limited options of electrode reactions to pair a
device due to the scarcity of pH-sensitive re-
actions [33].

Conclusions

This work reports the most recent advances on the state
of the art of SGE and pHGE recovery as well as their
respective application to energy storage using salinity or
pH gradient flow batteries.

The strength of SGE-RED for energy recovery relies on
the maturity of the technology and the advanced
development of tailored RED membranes, while im-
provements are still required in other elements of the
stack such as spacers. Nevertheless, the increasing
generation of waste streams in the water industry
together with the need for a continuous supply of
renewable energy are a real challenge for the growth of
SGE-RED. Despite its greater thermodynamic poten-
tial, the RBMED shows at the current state a weaker
position as competitor for energy recovery, harmed by
the more complex BPM requirements for energy re-
covery applications.

ABFBs present several strengths for energy storage over
SGFBs, showing potential to achieve higher energy ca-
pacities. Both are safer and more sustainable than other
batteries and have great flexibility and versatility due to
the decoupling of rated power (stack) and total energy
capacity (solution volumes).

Opverall, the main weakness of electromembrane pro-
cesses for energy recovery and storage lies in the need to
advance in the development of electromembranes
designed for energy applications, particularly in BPM
intended for ABFB systems.
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Abbreviations

ABFB acid-base flow battery
AEL  anion exchange layer
AEM anion exchange membrane

BMED bipolar membrane electrodialysis

BPM  bipolar membrane

CEL  cation exchange layer
CEM cation exchange membrane
ED electrodialysis

HCS  high concentrated solution
IEM  ion-exchange membrane
LCoE levelized cost of energy
LCS  low concentrated solution
PD Power density

pHGE pH gradient energy

PW produced waters

RBMED reverse bipolar membrane electrodialysis

RED reverse electrodialysis

RTE  round-trip efficiency

SGE  salinity gradient energy
SGFB salinity gradient flow battery
SWRO seawater reverse 0smosis
VRFB vanadium redox flow batteries
4G, Gibbs free energy of mixing
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