
Environ. Res. Lett. 19 (2024) 044023 https://doi.org/10.1088/1748-9326/ad3143

OPEN ACCESS

RECEIVED

21 November 2023

REVISED

28 February 2024

ACCEPTED FOR PUBLICATION

7 March 2024

PUBLISHED

15 March 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Which data assimilation method to use and when: unlocking the
potential of observations in shoreline modelling
MAlvarez-Cuesta∗, A Toimil and I J Losada
IHCantabria—Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Isabel Torres 15, 39011 Santander, Spain
∗ Author to whom any correspondence should be addressed.

E-mail: alvcuestam@unican.es

Keywords: shoreline prediction, data assimilation, remote sensing, climate change, 4D-Var, Kalman filter

Supplementary material for this article is available online

Abstract
Shoreline predictions are essential for coastal management. In this era of increasing amounts of
data from different sources, it is imperative to use observations to ensure the reliability of shoreline
forecasts. Data assimilation has emerged as a powerful tool to bridge the gap between episodic and
imprecise spatiotemporal observations and the incomplete mathematical equations describing the
physics of coastal dynamics. This research seeks to maximize this potential by assessing the
effectiveness of different data assimilation algorithms considering different observational data
characteristics and initial system knowledge to guide shoreline models towards delivering results as
close as possible to the real world. Two statistical algorithms (stochastic ensemble and extended
Kalman filters) and one variational algorithm (4D-Var) are incorporated into an equilibrium
cross-shore model and a one-line longshore model. A twin experimental procedure is conducted to
determine the observation requirements for these assimilation algorithms in terms of accuracy,
length of the data collection campaign and sampling frequency. Similarly, the initial system
knowledge needed and the ability of the assimilation methods to track the system nonstationarity
are evaluated under synthetic scenarios. The results indicate that with noisy observations, the
Kalman filter variants outperform 4D-Var. However, 4D-Var is less restrictive in terms of initial
system knowledge and tracks nonstationary parametrizations more accurately for cross-shore
processes. The findings are demonstrated at two real beaches governed by different processes with
different data sources used for calibration. In this contribution, the coastal processes assimilated
thus far in shoreline modelling are extended, the 4D-Var algorithm is applied for the first time in
the field of shoreline modelling, and guidelines on which assimilation method can be most
beneficial in terms of the available observational data and system knowledge are provided.

1. Introduction

Sandy shorelines are among themost dynamic coastal
environments on Earth, cover one-third of ice-
free coasts, host key socioeconomic activities and
provide valuable flood protection for many coastal
cities worldwide (Toimil et al 2023). Predicting how
they react to natural and anthropogenic drivers is
becoming one of the most important challenges in
coastal science (Toimil et al 2020a, Splinter and
Coco 2021). Physics-based modelling is the most
viable alternative for efficiently generating various

related predictions, from short-term cross-shore sed-
iment transport (Miller and Dean 2004, Yates et al
2009, Splinter et al 2014) to long-term shoreline
changes driven by longshore transport (Pelnard-
Considère 1956) and water level changes (Bruun
1962, McCarroll et al 2021).

For shoreline models to provide reasonable pre-
dictions, their free parameters need to be tuned
via calibration (Splinter et al 2013, Montaño et al
2020), which presents several challenges. One chal-
lenge is the computational cost associated with
traditional calibration techniques, including Monte
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Carlo variants such as general likelihood uncertainty
estimation (Simmons et al 2017) or minimization
of a cost function using gradient-free algorithms
(Hewageegana and Canestrelli 2021).

Another challenge arises from the fact the val-
idation of physics-based shoreline models is limited
to a few monitored coastal sites (Turner et al 2016,
Ludka et al 2019, Castelle et al 2020). In this sense,
the release of satellite imagery and its use in coastal
science (Luijendijk et al 2018, Vos et al 2019, Sabour
et al 2020, Sánchez-García et al 2020), as well as the
emergence of new forms of monitoring such as cit-
izen initiatives (Harley and Kinsela 2022) and the
application of the Internet of Things (IoT) techno-
logy (Tien et al 2023), have enabled important steps
forwards. However, guidelines for determining the
quantity (the length of the observation campaign and
the sampling frequency) and quality (the accuracy of
the measurements) of the data required for calibra-
tion to provide reliable estimates are still lacking.

Increased data availability has boosted the use of
artificial intelligence (AI) and data assimilation (DA)
in geophysical modelling in recent years (Kim et al
2021, Sonnewald et al 2021, Kelp et al 2023). While
AI can be used to infer system dynamics directly from
observational data (Kuglitsch et al 2023), DA blends
a dynamic model with observations to better estim-
ate the true state of a system and eventually tune its
unknown parameters (Asch et al 2016). Unlike tra-
ditional calibration methods (Simmons et al 2017,
Hewageegana and Castrelli 2021), DA allows for the
joint tuning of parameters and predictions so that the
true (unknown) state of the system can be efficiently
reproduced considering the uncertainty of the model
and the observations, through just one or a reduced
number of model runs. There are two main families
of DA methods: statistical and variational methods.
The former requires the minimization of the uncer-
tainty of the model error (Kalman 1960), while the
latter seeks to minimize a cost function that repres-
ents the mismatch between the model and the obser-
vations (LeDimet and Talagrand 1986).

Variational methods, such as 4D-Var (the 4-
dimensional variational method), and statistical
methods, such as Kalman filter-based algorithms,
have both been widely used for data assimilation in
meteorology and oceanography (e.g. Houtekamer
et al 2005, Neveu et al 2016, Stopa 2018). The choice
between them boils down to a trade-off between
accuracy, computational complexity, the character-
istics of the observations and the characteristics of the
type of analysis to be conducted (Kalnay et al 2007).
Kalman filters are more flexible and easier to imple-
ment than 4D-Var in systems with real-time data
updates (Lorenc 2003). Nevertheless, despite its com-
plexity and the need for an adjoint model, 4D-Var
also has advantages. It considers the entire time inter-
val of interest as a whole to optimize the estimation

of the initial state. This can be very useful in systems
where the observations are irregularly distributed
over time. Additionally, 4D-Var can be more accurate
for nonlinear and dynamic systems (Caya et al 2005).
In the field of coastal impacts, the latter advantage can
translate into improvements in addressing changing
trends and nonstationarities such as those arising
from climate change.

To date, there have been few DA applications
in shoreline modelling, and these applications have
been limited to statistical methods (Kalman filters)
combined with observations, whereas variational
algorithms have remained unexplored. Shoreline pre-
diction with DA was first introduced by Long and
Plant (2012) by combining the extendedKalman filter
(eKf) with a cross-shoremodel plus a linear term rep-
resenting longshore processes using synthetic obser-
vations. Vitousek et al (2017) developed an integ-
rated longshore and cross-shore model in combina-
tion with an eKf fed with LiDAR observations, while
Alvarez-Cuesta et al (2021) used satellite data together
with an eKf and a multiprocess shoreline model.
Whereas the LiDAR observations were accurate (with
a root mean square error, RMSE, of <1 m) and
recorded once a year, the satellite observations were
noisy (RMSE ∼ 10 m) but sampled more frequently
(biweekly). Ibaceta et al (2020) employed a cross-
shore model and an Ensemble Kalman filter (EnKf)
to track nonstationary parameters using observations
from video cameras (RMSE ∼ 0.5 m, sampled on a
daily to weekly basis). Vitousek et al (2021) used an
EnKf to assess the uncertainty of shoreline predictions
due to wave forcing while additionally using camera-
derived observations. Recently, Vitousek et al (2023)
introduced a localized EnKf together with a previ-
ously developed multiprocess shoreline model that
accounted for spatial dependencies in the littoral cells
of California’s coasts. They concluded that the use
of satellite-derived shorelines yielded results similar
to those obtained using monthly in situ GNSS data
(RMSE∼ 1 m) from Ocean Beach.

The free model parameters to be tuned through
DA should not change with variations in climate
forcing (waves and water levels) because, by defini-
tion, they are independent of any other model input.
In reality, however, this expectation may not hold
(Ibaceta et al 2020, 2022), and climate variability may
consequently compromise the quality of the calibra-
tion process, due to hidden dependencies between
the wave climate and the free model parameters that
should be disentangled by the assimilation algorithm.
Thus, shoreline forecasts may benefit from the incor-
poration of climate-dependent parametrizations, as
the world’s coasts are expected to be exposed to
unprecedented drivers due to climate change (Toimil
et al 2020b, Lobeto et al 2021).

Themain objective of this paper is to provide gen-
eral guidelines for exploiting current shoreline obser-
vations to guide physics-based models of shoreline
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evolution at different scales using the most appro-
priate assimilation algorithm. To achieve this goal,
the coastal processes considered in data-assimilated
shoreline modelling are extended; the 4D-Var assim-
ilation algorithm is applied, for the first time to the
authors’ knowledge, to shoreline modelling; and the
data and system knowledge requirements for the suc-
cess of statistical and variational algorithms are ana-
lysed. Conclusions are drawn on the basis of synthetic
exploratory cases and are subsequently verified at two
real beaches subject to different coastal processes and
with different data used for calibration.

2. Methods

2.1. Numerical models
In this work, shoreline evolution is regarded as a
linear sum of cross-shore and longshore processes.
The short-term coastal response to changes in wave
action andwater levels results in cross-shore sediment
transport that moves sediment from the beach face
to the offshore bar (erosion) and vice versa (accre-
tion). Conversely, the obliqueness of the wave angle
with respect to the coastline drives longshore sedi-
ment transport, whose gradients generate shoreline
changes on a yearly time scale.

Using a physics-basedmodelling approach, cross-
shore processes are modelled following Miller and
Dean (2004), as shown in equation (1), but in addi-
tion, the astronomical tide is included, as in Toimil
et al (2017). The model translates changes in waves
and water levels to shoreline changes driven by the
imbalance between the equilibrium shoreline Yeqc and
the instantaneous shoreline Yc

∂Yc
∂t

= K+/−
c [Y eq

c −Yc] (1)

where K+/−
c is the accretion/erosion cross-shore rate

and Yeqc may be expressed as:

Yeqc =∆y0 −W∗
b

(
0.106Hsb + SS+AT

B+ hb

)
. (2)

∆y0 is an empirical parameter that ensures that
short-term fluctuations oscillate around a baseline
position,W∗

b is the breaking line width,Hsb is the sig-
nificant breaking wave height, SS is the storm surge,
AT is the astronomical tide amplitude, B is the beach
profile berm height and hb is the breaking depth.

Longshore changes are modelled at fixed shore-
normal transects, which define the cell boundaries
where the longshore transport gradients are evalu-
ated. Gradients in longshore sediment transport gen-
erate landward or seaward displacements of the active
part of the beach profile:

∂Yl
∂t

=− 1

B+ dc

∂Q

∂x
. (3)

Yl is the distance from the onshore point of the
transect to the shoreline, dc is the closure depth, ∂x
is the transect spacing and Q is the longshore sed-
iment transport calculated according to the Coastal
Engineering Research Center (CERC) expression:

Q= KlH
2.5
sb sin(2α) (4)

where Kl is an empirical constant and α is the angle
between the wave crests (θb) and the shoreline (θs).

2.2. Data assimilation algorithms
Given a set of observations y that are scattered in
time and space, DA attempts to find the optimal state
x defined by the variables evolved by the dynamic
model. Shoreline observations y can be acquired
through various means, such as video imagery, satel-
lite imagery or in situ surveys conducted at sampling
intervals spanning from hours to several months.
These digitalized shorelines, whose spatial resolution
depends on the acquisition method, are then inter-
polated onto a set of model transects. The state x is
formed by the model predictions (Yc and Yl for cross-
shore and longshore processes, respectively) and aug-
mented by the free model parameters (K+/− and
Kl for cross-shore and longshore processes, respect-
ively). For cross-shore processes, a single transect is
considered in the state vector. In contrast, the state
vector for longshore transport is formed by Yl and Kl

at every transect used to discretize the shoreline.
Considering the state and the observations as ran-

dom variables, the DA problem consists of solving the
Bayes equation that gives the posterior distribution of
the state (x) given the observations based on the prior
state distribution and the likelihood of the observa-
tions:

p(x|y) =
p(x)p(y|x)

p(y)
(5)

where p(y) is the marginal probability density func-
tion of the observations. It acts as a normalizing con-
stant that ensures that p(x|y) is a valid probability dis-
tribution (integrates to one).

A common practise in statistical and variational
methods is to assume that the distributions are nor-
mal so that they can bemodelled in terms of themean
and the covariance matrix (B): p(x)∼N

(
xb, Bb

)
,

p(y|x)∼N (0,R), and p(x|y)∼N (xa,Ba), where
the superscripts b and a stand for background and
analysis, respectively. The initialization ofBb is key for
the success ofDA algorithms (Bannister 2008a); inter-
ested readers can refer to the supplementary material
for further details. R is the observation error covari-
ance matrix. It is common to assume unbiased and
uncorrelated errors (i.e. a diagonal R matrix), where
each term is the variance of the observation error dis-
tribution function, which depends on the accuracy of
the data source (e.g. satellite images, LiDAR, GNSS,
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video camera footage), plus the variance of the inter-
polation errors that arise when mapping the tempor-
ally and spatially scattered observations to the mod-
elled state (negligible in shoreline modelling).

The covariance matrix for a Kalman filter is
denoted by P, and its initial value coincides with the
initial background covariance matrix, P0 = Bb0. The
initial background covariance matrix is constructed
by assuming no correlations between the model state
and the parameters (Evensen et al 2022). The back-
ground covariance matrix is formed from the errors
of the state with respect to the background. The error
in the initial shoreline position is assumed to be sim-
ilar to the error in the observations, and the errors on
the parameters are of the same order of magnitude
as but smaller than the values of the initial constants.
The interested reader is referred to the supplementary
material for further details on the initialization of P0.

In sequential assimilation, there are two computa-
tional steps: forecasting, which involves a free model
run, and correction, which involves an information
flow from the observations to the model.

During the forecasting step (superscript f), the
analysis state xai is propagated in time considering the
model’s dynamic equation:

x fi+1 =Mi (x
a
i ) . (6)

The eKf propagates the analysis covariance mat-
rix Pai analytically using the tangent linear modelMi

of M at instant i considering the covariance of the
model’s uncertainty or process noise Q:

P f
i+1 =MiP

a
iM

T
i +Q. (7)

During the correction step, the Kalman equations
yield the mean xai+1 and the covariance Pai+1 of the
posterior distribution in a sequential fashion every
time a new observation yi+1 is available (figure 1(a)):

xai+1 = x
f
i+1 +Ki+1

(
yi+1 −H

(
x fi+1

))
Ki+1 = P

f
i+1H

T
(
HP f

i+1H
T +Ri+1

)−1

Pai+1 = (I−Ki+1H)P
f
i+1,

. (8)

H is a nonlinear observation operator that maps
the model state to the observation space, and H is
its linearization. It is generally a temporal and spa-
tial interpolation that enables the comparison of the
model state (i.e. the shoreline) to the observations.
I is the identity matrix, and K is the Kalman gain,
which weights the model state with respect to the
observations.

Due to the size of Pfi+1, which scales with the size
of the augmented state, thismatrix is unfeasible to cal-
culate in many environmental applications. Thus, it

can be approximated using a sample of evolved states,
leading to the EnKf (Evensen 1994).

In the SEnKf, each ensemble member is ana-
lytically evolved following equation (6), and

the covariance matrix P f
i+1 is directly obtained

from the ensemble without analytical derivations
(figure 1(b)):

P f
i+1 =

1

N− 1
Xf
i+1X

f
i+1

T
(9)

where Xf
i+1 is the perturbation matrix defined by

subtracting the ensemble mean from each ensemble
member’s state and N is the number of ensemble
members.

In the SEnKf, the observations need to be per-
turbed for every ensemble member and updated so
that the variance according to the SEnKf analysis cor-
rectly represents the variance according to the eKf

analysis (i.e. (I−Ki+1H)P
f
i+1). Thus, equation (8)

becomes:

xai+1 = x
f
i+1 +Ki+1

(
yi+1 + ϵy −H

(
x fi+1

))
,

ϵy =N (0,Ri+1) . (10)

Adding noise to the observations via random
sampling from N (0,Ri+1) avoids the divergence of
the SEnKf by adjusting the analysis variance. As the
magnitude of the sampling noise depends on the
error of the observations via the covariance matrix
Ri+1, the larger the data source error is, the larger
the sampling error introduced in the SEnKf. This fact
limits the application of the SEnKf when the vari-
ations in the time of the state are relatively small com-
pared to the data source error.

The magnitude of the sampling noise depends on
the error of the observations via the covariancematrix
Ri+1.

In variational methods, the sought solution is
the one that maximizes the posterior probability of
p(x|y) (i.e. the mode), and no uncertainty estimate
of the analysis state is obtained. In 4D-Var, DA is per-
formed in a time window that enables future observa-
tions to be considered in prediction at a previous time
step (figure 1(c)).

Considering that inside the timewindow, the state
trajectory is governed solely by the model dynamics
(strong-constraint 4D-Var), the minimization of the
cost function (equation (11)) yields the most prob-
able state

J(x0) = Jb +
∑

Jobs =
1

2

(
x0 − xb0

)T
B−1
0

(
x0 − xb0

)
+

1

2

K∑
i=0

(H (xi)− yi)
TR−1

i (H (xi)− yi) (11)

where x0b is the a priori background state, B0 is the
initial background error covariance matrix, x0 is the
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Figure 1. DA process following statistical and variational approaches. Please, note that the uncertainty in the state and in the
observations are characterized by their covariance matrices.

initial state vector, Ri is the observation error cov-
ariance matrix, K is the number of steps in the time
window and xi is the state at time ti of observation
yi. Note that ultimately, J is a function of x0, as xi =
Mi−1 (Mi−2 . . .M0 (x0)). Additionally, if there are
no observations at a given step i, yi =H (xi) = 0.

Minimizing J requires the term-by-term calcula-
tion of the gradient of the cost function to guide a des-
cent algorithm:

∇J(x0) = B
−1
0

(
x0 − xb0

)
+

K∑
i=0

MT
0 . . .M

T
i−1H

T
i R

−1
i (H (xi)− yi) .

(12)

Solving for ∇J(x0) implies the backpropagation
of the innovation vector yi−H (xi) using the trans-
pose (MT) or adjoint of the model operator dynam-
ics. Deriving the adjoint of the forwardmodel enables
the computation of the gradient of the cost function,
as shown in the supplementary material.

The 4D-Var algorithm consists of iteratively run-
ning the forward model (equation (6)), calculating
the cost function (equation (11)) and its gradient
(equation (12)), and applying a descent algorithm to

find the optimal initial state vector x0. J(x0) is usually
nonquadratic, preventing the descent algorithm from
reaching the global minimum, which corresponds to
the usually unknown ground-truth (reference) solu-
tion. Hence, incremental 4D-Var and control vari-
able transformations are usually required in practical
applications. These techniques are comprehensively
described in the supplementary material.

2.3. Description of the test cases
The parameter estimation skill of the different DA
algorithms is tested considering the observation
data requirements in terms of accuracy, length and
sampling frequency and also the required system
knowledge in terms of initial conditions and para-
meter nonstationarity. Cross-shore and longshore
processes are studied in isolation following the twin
experimental procedure. Thismethod consists of gen-
erating a ground-truth simulation (reference) using
a set of parameters by freely running the dynamical
model. This simulation is then used to generate the
observations for other simulations, in which the ini-
tial parameter set is altered but the dynamical model
is enhanced by the DA algorithms.
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Cross-shore processes are modelled at a single
transect. The reference cross-shore shoreline posi-
tion is Yst,0 = 0, and the accretion and erosion con-
stants are K+ = 0.002 and K+ = 0.04, respectively.
Waves and water levels correspond to real time series
obtained from Alvarez-Cuesta et al (2023). The equi-
librium profile for the cross-shoremodel is character-
ized by Dean’s parameter (Dean 1991) with a value of
A= 0.25. Longshore processes are modelled by con-
sidering a 3 km embayment discretizedwith 15 shore-
normal transects. The reference initial shoreline is a
parabola calculated such that the cross-shore length
of the embayment is 100 m. Null flow conditions
are imposed at the boundaries to simulate a closed
system, and the wave dynamics are constant, with
Hsb = 2m and θb =−30◦. A uniform longshore con-
stantKl = 50m1/2/day is considered at every transect.
Further details about the reference state of the system
and the initialization of the perturbed simulations for
the twin experiments are provided in the supplement-
ary material.

The length of the simulations is 30 years, divided
into a calibration phase (DA-guided run) and a val-
idation phase (free run without DA). When analys-
ing the observations and the initial system knowledge
requirements, the validation phase covers the last
10 years.When analysing the nonstationary evolution
of the system, because the ability of the DA algorithm
to track changes in the model parameters from the
observations is measured, DA is never switched off,
and the calibration period covers thewhole time span.
The main characteristics of the terms influencing the
physics-based process equations (equations (2)–(4))
in the test cases and the specific characteristics of the
different DA methods (i.e. the number of ensemble
members for the SEnKf and its initialization, the tem-
poral window for 4D-Var, and the definitions of the
state covariance matrix B and the process noise mat-
rix Q) are described in the supplementary material.

Different error metrics are used to test the capab-
ilities of the DA algorithms throughout the analysis
during the validation phase:

• DA benefit (DAB). This metric measures the
improvement of a DA algorithm with respect to
the background simulation (without DA) in terms
of the root mean squared error (RMSE) between
the altered simulation and the reference simulation
during the validation period:

DAB [%] =

(
1− RMSE(Yalt, DA)

RMSE(Yalt, b)

)
∗ 100 (13)

where the subindex alt stands for ‘altered’ and b for
‘background’.

• Parameter error (eK). Thismetricmeasures the dif-
ference between the DA value at the end of the cal-
ibration period and the reference value

eK [%] =

(
Kalt, DA −Kr

Kr

)
∗ 100. (14)

The subindex r refers to the reference simulation.
For longshore processes, eK is calculated based on
the mean DA parameter across all transects.

• Computational burden (CPU). This quantity is
measured in seconds.

• Percentage of time within acceptable limits
(PTWL). This metric is used to evaluate whether a
DA algorithm is capable of tracking nonstationary
variations in the model parameters. The acceptable
limits are defined as a 20% range of a parameter
around its reference value.

3. Results

3.1. The role of the observations: quantity and
quality
The performance of the DA algorithms is tested by
using observationswith different levels of added noise
(N

(
0, ϵ2

)
), where ϵ includes the error on the obser-

vations, as well as variations due to different obser-
vation lengths and different sampling frequencies. In
figure 2(a), the performance metrics are analysed for
different observation lengths and added noise levels
considering a fixed sampling frequency of 15 days.
In figure 2(b), the sampling frequency is analysed
together with the length of the observations for an
observation error of 1 m.

This analysis shows that the Kalman filters per-
form better than 4D-Var for both cross-shore and
longshore processes when the reference parameters
do not vary in time. For cross-shore processes, the eKf
slightly outperforms the SEnKf, as it achieves a DAB
larger than 80% in almost every scenario at a smaller
computational expense. In the case of longshore pro-
cesses, the SEnKf outperforms the other algorithms
in terms of DAB and eK when the error on the obser-
vations is greater than 7 m and when the length of
the observations is shorter than 3 years. Conversely,
4D-Var performs well when the error on the obser-
vations is less than 4 m for both cross-shore and
longshore processes. For greater observation errors,
increasing the length of the observations is not clearly
correlated with an improvement in DAB. This fact
is explained by the random nature of the observa-
tions together with the lack of flow dependency of
the state covariancematrix between assimilation win-
dows (interested readers are referred to the supple-
mentary material for a detailed explanation). For
longshore processes, the length of the observations
should exceed 5 years to yield a relative error on the
model constant of less than 20%of the reference value
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Figure 2. Analysis of the role of observations on the performance of the DA algorithms for cross-shore and longshore processes.
Panel (a): influence of the length of the observations campaign and the error of the observations. Panel (b): influence of the length
of the observations campaign and the sampling interval. The DAB is shown in coloured squares and the inner dots represent the
eK and CPU cost.

of the parameter. From a computational perspective,
the SEnKf is the most demanding algorithm because
of the use of an ensemble, and its cost increases with
the number of observations for simulations exceeding

50 s. Themost efficient algorithm in the case of cross-
shore processes is the eKf, with an average simulation
cost of less than 10 s, while 4D-Var is also computa-
tionally efficient but becomes more expensive as the
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length of the observations increases, as the minimiz-
ation algorithm needs to be executed more times.

Regarding the sampling interval of the observa-
tions, the DA algorithms do not show great differ-
ences in the 1–60 days range. The SEnKf yields a DAB
greater than 80% for all sampling intervals from 1
to 60 days, and the relative parameter error is always
smaller than 20% for both longshore and cross-shore
processes. The eKf yields a DAB of more than 80%
in every case, except when the sampling interval is
60 days and the length of the observations is one year
for cross-shore processes or two years for longshore
processes. However, the longer the sampling inter-
val is, the more observations are required to reduce
the relative error of the parameters from the 20%–
40% range to the 0%–20% range. Similarly, 4D-Var
yields a DAB of more than 80% in every case for
cross-shore processes, but its parameter convergence
is compromised when the sampling interval of the
observations is greater than 30 days for campaign dur-
ations of less than four years. In the case of long-
shore processes, to guarantee good convergence of the
algorithm, observations over more than 3 years are
required if the sampling interval is greater than one
month.

3.2. The role of system knowledge: prior knowledge
and temporal evolution (parameter
nonstationarity)
The initial state of the perturbed simulations is mod-
ified by taking different quantiles from the upper and
lower tails of the CDF of the reference simulation, as
detailed in the supplementary material. Observations
with no added noise are assimilated every 15 days.

In figure 3(a), the performance metrics are ana-
lysed for different campaign durations and initializ-
ation values. The Kalman filters require more pre-
cise initialization than does 4D-Var for cross-shore
processes, which is especially noticeable for extreme
quantiles (0.999). In this case, the SEnKf requires
more than 10 years of observations; the eKf, 5 years;
and 4D-Var, 2 years to achieve a DAB greater than
80%. For longshore processes, the Kalman filters
converge to the reference value even for extreme
quantiles, but 4D-Var requires more than 5 years to
successfully converge in the case of the 0.999 quantile.
The different time scales associated with longshore
and cross-shore processes may explain the different
convergence rates.

The skill of theDAalgorithms in tracking the vari-
ations in time of the free model parameters (para-
meter nonstationarity) is measured by forcing the
cross-shore and longshore numerical models using
square waves. A square wave is formed by pulses such
that the value of the varying parameter alternates
between two discrete levels in a regular and repetit-
ive manner. The pulse period, defined as the time it

takes for one complete cycle of the waveform to occur,
is used in combination with the error of the obser-
vations to rank the different DA algorithms. The DA
performance indicators are calculated for the whole
simulation period, as the calibration and validation
phases coincide, and biweekly observations are used
for assimilation.

In figure 3(b), the performance of the DA meth-
ods is analysed for different pulse periods of the
square wave and for different observational errors. In
this case, 4D-Var clearly outperforms the Kalman fil-
ters for cross-shore processes. All DA algorithms per-
form better for longer pulse periods, but the error
on the observations is found to be a critical para-
meter when analysing parameter nonstationary. For
cross-shore processes, the SEnKf never reaches a DAB
greater than 80%, even for clean observations. The
eKf performs slightly better, but clean observations
are required for this algorithm to show an improve-
ment with respect to the background simulation. In
comparison, 4D-Var outperforms the Kalman filters,
achieving a DAB greater than 50% for observations
with an error of 3 m. For longshore processes, due
to its nature, the DAB is always greater than 80%
because the shoreline position associated with long-
shore changes does not oscillate around an equilib-
rium position, as in the case of cross-shore processes,
meaning that the background simulation completely
diverges if no DA is applied. However, the PTWL is
compromised in the cases of shorter pulse periods
and noisy observations. In these cases, the best per-
forming algorithm is the eKf, which achieves a PTWL
greater than 80% for periods of 12 years or more
with clean observations. For shorter periods or nois-
ier observations, the parameter estimates from the
eKf oscillate around the reference value but may fall
outside the acceptable limits for the PTWL, as shown
in figure 3(c).

3.3. Application to real cases
The different DA algorithms were tested at two
coastal sites, Tairua and Castellón. Tairua is a cross-
shore-dominated 1.2 km long pocket beach located
on the eastern coast of the Coromandel Peninsula,
New Zealand. Shoreline, wave and water paramet-
ers were obtained from Montaño et al (2020).
Shoreline observations were obtained from video
cameras on a daily basis, with an acquisition error
of 0.5 m. Castellón is a longshore-dominated beach
located on the Mediterranean coast of Spain. Data
were obtained from Álvarez-Cuesta et al (2021),
and shoreline observations were extracted using the
CoastSat algorithm on a bimonthly basis, with an
acquisition error of 10 m (Vos et al 2019).

In this case, the no DA (background) and DA
simulations were initialized using typical values for
the model parameters following USACE (1984) and
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Figure 3. Analysis of the role of the system knowledge on the performance of the DA algorithms for cross-shore and longshore
processes. Panel (a): influence of the prior knowledge of the system, measured as the length of the observations campaign and the
initialisation quantile. Panel (b): influence of the error of the observations and the period of the non-stationary pulse of the true
parameter’s variation. Panel (c): time evolution of the shoreline position and the non-stationary evolution of the free parameters
is displayed for cross-shore and longshore processes. The DAB is shown in coloured squares and the inner dots represent the eK in
panel a and the PTWL in panel b.

Miller and Dean (2004) without assuming any prior
system knowledge. The results are shown in figure 4.
At Tairua, the DAB, calculated with respect to the

background simulation during the validation period,
exceeds 50% for 4D-Var and 44% and 36% for the
eKf and SEnKf, respectively. All three algorithms
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Figure 4. Performance of the DA algorithms at two real sites: left, Tairua beach and right, Castellón beach. Top panels: the
reference shoreline evolution is represented in black, the no DA simulation in grey, while in red, green and blue the DA shoreline
predictions obtained using the SEnKf, the eKf and the 4D-Var, respectively. The bottom panels represent the temporal evolution
of the parameters according to the different DA algorithms. The grey shaded area corresponds to the calibration period, while the
reminder corresponds to the validation period.

provide satisfactory results, but 4D-Var outperforms
the Kalman filters, yielding an RMSE of 4.4 m. At
Castellón, after calibration with noisy satellite obser-
vations for longshore processes, 4D-Var is the worst
performing algorithm, achieving a DAB of 71%,
whereas the SEnKf reaches a DAB of 85%. The res-
ults are consistent with the conclusions derived from
the synthetic cases for cross-shore and longshore pro-
cesses. For cross-shore processes and almost clean
observations, all themethods yield similar results, but
4D-Var slightly outperforms theKalman filters.When
modelling longshore processes using noisy observa-
tions, the Kalman filters perform better than 4D-
Var, as the latter requires more accurate observa-
tions to achieve optimal performance. However, the
DAB values obtained in the real cases are smaller
than those obtained for the equivalent theoretical case
shown in figure 2. This fact can be attributed to cas-
cading forcing conditions and model errors arising
from our incomplete knowledge of the physical
system.

4. Discussion and conclusions

The results of the different DA methods are summar-
ized in the form of a scorecard in table 1. For low-
quality (noisy) data, the Kalman filters outperform
4D-Var for both cross-shore and longshore processes.

The strong constraint assumption of 4D-Var, which
imposes the requirement that the system trajectory is
determined by the model equations within the assim-
ilation window, may need to be relaxed to properly
integrate inaccurate data, as in weak-constraint 4D-
Var (Kalnay et al 2007). However, 4D-Var and the
eKf both provide better results than the SEnKf when
the system is initialized far from the reference state
and when it evolves nonlinearly for both cross-shore
and longshore processes. In these cases, both 4D-Var
and the eKf explicitly incorporate the tangent linear
and adjoint operators of the system dynamics, while
the SEnKf derives the corresponding magnitudes by
propagating an ensemble of states. In such cases, the
ensemble may not properly sample the true system
covariance, resulting in filter divergence even if addit-
ive covariance inflation is applied to the ensemble
members by considering the process noise covari-
ance matrix Q. In contrast to the eKf and 4D-Var,
the SEnKf is relatively easy to implement because this
DA algorithm derives the required information from
the physical system by propagating an ensemble of
states without the need for further analytical deriv-
ations. This fact may explain why Kalman filters have
thus far been favoured over variational methods in
shoreline modelling. For simulations with reduced
state vectors (O ∼10–100 elements), the eKf is more
efficient than the SEnKf because it requires only one
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Table 1. Score card of the different DA algorithms for cross-shore and longshore processes. The more stars, the better the performance of
the algorithm.

DA
Method

Performance
with low
quality data

Performance
with limited
observa-
tions

Performance
with reduced
prior system
knowledge.

Performance
in tracking
system non-
stationarity

CPU
efficiency

Ease of
Implementation

Cross-shore
SEnKF ∗∗∗ ∗∗∗ ∗∗ ∗ ∗ ∗∗∗

eKF ∗∗∗ ∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗

4D-Var ∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗

Longshore
SEnKF ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗ ∗∗∗

eKF ∗∗ ∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗

4D-Var ∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗ ∗

forward simulation. For larger states, however, the
propagation of the full analytically derived covariance
matrix of the eKf is prohibitive, and its representation
in the ensemble space of the SEnKf becomes a more
affordable solution.

The results presented in this work seek to provide
general guidelines to help decide which DA method
to use on the basis of the main physical pro-
cesses of interest as well as the available observations
and system knowledge. While we have extensively
examined conventional andwidely used formulations
for shoreline modelling, the adoption of alternat-
ive process-based or data-guided formulations would
necessitate a comparable sensitivity analysis akin to
the one presented here. This step is crucial for determ-
ining the most appropriate DA method for a given
modelling approach. Additionally, similar conditions
and simple rules have been used here to initialize all
the methods in terms of the background error covari-
ance B or process noise covariance Q. Although sub-
stantial work has been done regarding the initializ-
ation of B for state estimation problems (Bannister
2008a, 2008b), its definition for parameter estima-
tion problems remains challenging (Smith et al 2013),
as does the initialization of an ensemble consistent
with prescribed B and Q matrices. The results may
be substantially improved through careful fine tun-
ing of those magnitudes, for instance, with a case-
specific derivation of the matrix Q, as in Ibaceta et al
(2020). Importantly, the use ofDAdoes not guarantee
a significant improvement in the results in real cases if
the background covariance and process noise are not
properly set. This is because the perfect model hypo-
thesis is not satisfied and errors from wave dynam-
ics and model parametrizations may cascade, ham-
pering the convergence of the DA algorithms. Thus,
further research is required to define the B and Q
matrices and ensemble initialization for DA problems
involving combined state and parameter estimation
in shoreline modelling.

As remote sensing data are revolutionizing coastal
science, this study aims to optimize the way such

data are employed in combination with traditional
physics-based equations to produce more accurate
shoreline projections. Such optimization will lead to
improved hazard forecasts for risk management and
climate change adaptation. DA can overcome some of
the main limitations of purely data-driven methods
while also complementing them. The data depend-
ence of data-driven methods can be compensated for
by the consideration of the physics of the relevant
processes in DA methods, while data-driven models
can efficiently process raw observational data to feed
into DA algorithms. DA is also an excellent tool for
data handling, as it allows new observations to be
directly integrated into real-time modelling systems,
ultimately contributing to the development of digital
twin models (Hoffmann et al 2023).
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