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A B S T R A C T   

Detecting resonant effects in bridges has been studied for many years, but it has only been solved in a closed form 
for simple bridges. This article presents a simplified method that enables the calculation of resonance velocities 
in all types of bridges in an easy manner. The method is based on the concept of dynamic influence line and is 
validated through finite element models. These models range from simply supported bridges to complex real 
bridges such as the Almonte Viaduct, the world’s longest arch bridge of its typology. In the real bridge models, a 
dynamic analysis is performed according to the Eurocode to identify train velocities that induce resonant effects, 
and these velocities are checked against the simplified method with very good results.   

1. Introduction 

The main dynamic design standards for railway bridges are Eurocode 
[1] and Arema [2], as they are the reference standards for many local 
regulations [3,4]. Both regulations share similar philosophies, running 
different standard trains at different velocities within the design velocity 
range, with a marked step between velocities to be refined if a resonant 
effect is detected. All cases covered above must be studied at least twice. 
Once for the maximum bridge weight situation and once for the mini
mum bridge weight situation, as the bridge vibration modes are affected. 
Neither standard indicates how many sections and at which locations 
the accelerations resulting from the dynamic analyses need to be eval
uated. This large number of cases, not without uncertainty, represents 
such a high computational cost that dynamic analyses are only carried 
out in the final phase of the bridge design when the geometry is already 
defined. Therefore, if the dynamic analysis reports inappropriate dy
namic behaviour of the structure, it often causes major setbacks at the 
design level. To avoid this situation, known geometric solutions, which 
may not be optimal, tend to be used to avoid setbacks. Even when the 
dynamic analysis has been carried out, there is no simplified calculation 
method available to ensure that the results provided by the FE models 
are correct, since the use of these programs requires decisions to be 
made that can affect the dynamic results, for example, the discretisation 
used [5]. 

The simplified method presented in this article has been developed 

to; avoid the need for such a large number of cases, to be able to perform 
dynamic calculations at early stages of the project to provide more 
efficient solutions, to know which sections need to be evaluated in a 
dynamic calculation and to be able to check the results of an FE model. 
Analytical solutions to detect resonant effects have been developed over 
the years, but always for simply supported bridges [6–8]. Nowadays, 
there are fundamental theories and analytical methods for simple sup
ported bridges [9], but the research into dynamic calculations con
tinues, for example: the interaction of the structure with differential 
settlements [10], with the terrain [11], or with the vehicle [12–14]. The 
effect of vehicle-structure interaction has been implemented, for 
example, in the analytical solution to determine resonant effects, but in 
simply supported bridges with one span [15,16] or two spans [17,18], or 
one span with end restraints [19]. In more complex bridges, resonance 
calculations by simplified methods is performed either based on statis
tical analysis with the aim simply to detect trends [20] or by 
semi-empirical methods [21]. Moreover, there are methods based on the 
Fourier series [22] for continuous beams, but again, the mathematical 
complexity reduces their practical applicability. Additionally, there are 
interesting dynamic studies that relate bridge acceleration to train ve
locity to generate prevention alarms [23,24] and that measure vibration 
mode accuracy in real bridges detecting free vibration situations [25]. 
Some research studies are based on monitoring data to analyse dynamic 
behaviour of bridges, such as real damping ratios in bridges [26] or the 
damage level through neural networks [27]. 
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Finally, due to mathematical complexity or due to the limitations of 
the methods, only FE models are generally used to perform dynamic 
calculations in design bridge companies. However, they demand simple 
methods to check FE models. In that context, the proposed simplified 
method offers different novelties compared to the methods listed pre
viously, that include: ease of use from a practical standpoint, resonance 
velocity detection even in complex bridges, identification of critical 
points of the bridges, and providing a useful tool to be applied both in 
the design phase stage and in the calculation stage, to check FE model 
results easily. For all these reasons, it is believed that the simplified 
method presented here can provide an easy and reliable tool for the 
contrast analysis of resonant effects with FE models in complex bridges, 
saving computational cost, incorporating design criteria in early phases 
of the bridge project and, ultimately, providing understanding of reso
nance more easily in all types of structures under the passage of moving 
loads. This article is structured in an Introduction that contextualises the 
problem and discusses the lack of knowledge on this subject in the main 
bridge design regulations. Next, a description is provided of the cases 
analysed and the computer tools (finite element models, FEMs) with 
which the analysis was carried out in the Materials and Methods section. 
The “Basis of Simplified Method” section describes the proposed 
formulation and verifies it for simple ideal bridges. Then, in the section 
“Validation of Simplified Method”, two results from two real bridges 
with real FE design models are compared with results from the proposed 
simplified method. Finally, the main conclusions of the research are 
presented. 

2. Materials and methods 

A total of 6 dynamic analyses were carried out on 6 different 

structures, divided into 4 case studies on idealised bridges and 2 appli
cation cases on real High-Speed Railway bridges. In all of them, the 
performance of the proposed simplified method is analysed. The 4 case 
studies were modelled with the finite element program Sofistik with 
plate type elements. Sofistik is a calculation program that is well known 
for static [28] and dynamic modelling of bridges [29,30]. The 2 appli
cation cases were modelled using beam elements with the FE program 
Midas Civil, which is also extensively used in modelling static [31] and 
dynamic behaviour of bridges [32,33]. FE models of the application 
cases were provided by the company Arenas&Asociados for this 
research, which was therefore carried out with the real calculation 
models with which these bridges were designed. Thus, different types of 
models (slab and beam models) and different finite element software 
packages (Sofistik and Midas) were used in order to demonstrate that 
simplified methods provide reliable results in all cases. 

2.1. Case studies 

For the 4 case studies, simply supported slab bridges with a width of 
15.56 m and a constant depth of 0.8 m of solid section were considered. 
The first 3 cases (C1 to C3) have a modulus of elasticity similar to that of 
concrete (3.5e7 kN/m2), while the fourth (C4) has a variable modulus of 
elasticity, in order to keep the vibration frequency constant when 
varying the geometry. The specific weight for cases C1 to C4 is similar of 
that of concrete (25 kN/m3). The main parameters of the dynamic an
alyses and the FE models of each structure are shown in Table 1. For the 
study of the resonance phenomenon in cases C1 to C4, the two main 
bending modes of each structure were analysed. 

For the case studies C1 to C4, the load sequence from the considered 
train is as defined in Table 2. The train travels at a constant velocity 

Table 1 
Main analysis parameters and FE models for cases from C1 to C4.  

Case No of spans Span Length (L) Span Ratio Vel. Range (km/h) Damping (%) Load Type FE Model 

C1 1 18 - 20-320 0.0 AA 

C2 2 18 + 18 1.00 20-400 0.0 AA 

C3 2 16 + 20 0.80 20-400 0.0 AA 

C4 2 L*+L* 1.00 289 0.0 AA 

* The span length L of the spans varies from 9 m to 63 m. 

Table 2 
Load sequence from AA train for case studies C1 to C4.  

Train Number of axles N Distance between axles D (m) Point forces P (kN) 
AA 23 18 170 
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along the longitudinal axis of the structure. All the case studies were 
analysed with a damping of 0%. The modes of vibration considered in 
cases C1 to C4, as well as the distance between points of maximum 
displacement (Lm), are shown in Table 3. 

2.2. Application cases 

The method proposed in this article was applied to two real High- 
Speed concrete bridges. Two bridges of different typology were cho
sen, one is a variable span girder bridge and the other is an arch bridge, 
since this typology, due to its uniqueness, is a focus of interest for dy
namic study [34,35]. The bridges are shown below:  

• Viaduct over the Aragón River (C5), part of the Cantabrian- 
Mediterranean corridor High-Speed line, near the town of Marcilla, 
Spain, Fig. 1, Fig. 2.  

• Almonte Viaduct (C6), part of the Madrid-Extremadura corridor 
High-Speed line, at the Alcántara reservoir, Spain, Fig. 3, Fig. 4. 

World record in its typology [36–41], concrete arch bridge for rail
ways, 384 m main span. 

The moving loads applied to both bridges correspond to the trains 
defined in the Eurocode [1]. Their definition is shown below, Fig. 5. 

For the Viaduct over the Aragón River (C5), the first 20 modes of 
vibration of the structure were analysed in the "empty" state, that is, 
considering the self-weight and the permanent load. The first 20 vi
bration frequencies are shown in Table 4: 

In the dynamic analysis carried out on the Almonte Viaduct (C6), the 
first 100 modes of vibration of the structure in the "empty" state were 
analysed, considering the self-weight and the permanent load. The first 
100 vibration frequencies are shown in Table 5: 

The summary of the characteristics of the dynamic analyses per
formed in Cases C5 and C6 are shown in Table 6: 

3. Basis of simplified method 

The proposed simplified method for detecting resonance effects in 

Table 3 
Modes of vibration 1 (a) and 2 (b) in load cases C1 to C4.  

Fig. 1. Geometric definition (above) and FE model (below) of the Viaduct over the Aragón River (C5).  
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railway bridges and its theoretical basis is developed and explained 
below. Firstly, the concept of the dynamic influence line is deduced. 
Secondly, the expression for the resonance velocity is obtained. Subse
quently, the influence of the equivalent force and the influence of the 
relative span length are analysed. Additionally, since the previous case 
analyses focused solely on flexural modes of vibration, the simplified 
method has been applied to include a torsional mode of vibration to 
comprehensive the research. Finally, based on all the above, the meth
odology of the simplified method is presented. 

3.1. Dynamic influence line 

In this section, the concept of dynamic influence line is developed as 

the theoretical basis of the simplified method presented in this research. 
In other words, this section demonstrates how, when a dynamic load is 
located at one point of a structure, the equivalent load acting on another 
point of that structure can be estimated from the mode of vibration. That 
is, how the deformation of a mode of vibration can be associated with a 
line of influence when the loads are dynamic. To approximate the 
problem, we will first consider how to calculate the effective part of a 
load in a static analysis. In a simply supported beam under a distributed 
load q(x), Fig. 6a, we want to know which equivalent force Feq(L/2) 
located at the centre of the beam, Fig. 6b, produces the same displace
ment at the centre of the beam d(L/2) as the load q(x). 

If the equivalent force, but of opposite sign, Fig. 6c, were added to 
the original situation of the distributed load, Fig. 6a, the result at the 

Fig. 2. Deck cross-section for constant depth (left), variable depth (right), Viaduct over the Aragón River (C5).  

Fig. 3. Geometric definition (above) and finite element model (below) of the Almonte Viaduct (C6).  

Fig. 4. Typ. Deck cross-section (left) and arch cross-sections (right), Almonte Viaduct (C6).  
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point of application of the equivalent force would be a zero displace
ment, as if it were a support. In other words, the equivalent force that 
produces the same displacement as any force system at a point can be 
calculated as the reaction that occurs at an "imaginary" support placed at 
that point, Fig. 6d. Once the static case has been explained, the dynamic 
case is analysed. Everything explained in the static case is applicable in 
the dynamic case, the only difference being that in the dynamic case the 
reaction of the imaginary support varies with time. To analyse this 
variation, this article proposes the modification of Maxwell’s theorem to 
consider it in a dynamic analysis. We start from the previous beam with 
the imaginary support at the centre of the beam. Consider for this 

situation two independent states. First, the state (0), Fig. 7a, where a 
unit dynamic load is located at point x, is applied at instant t and pro
duces a displacement under it of value d(0)

(x,t). Secondly, state (1), 
Fig. 7b, where a unitary abrupt displacement of the imaginary support 
has occurred which causes the deformation vibration mode d(1)

(x,t) to be 
activated. 

W(1)
ext = F(1)

eq(L/2,t) 1 

Train N D(m) d(m) P(kN) 
A1 18 18 2.0 170 
A2 17 19 3.5 200 
A3 16 20 2.0 180 
A4 15 21 3.0 190 
A5 14 22 2.0 170 
A6 13 23 2.0 180 
A7 13 24 2.0 190 
A8 12 25 2.5 190 
A9 11 26 2.0 210 

A10 11 27 2.0      210 

Fig. 5. Train loads (A1-A10) from Eurocode.  

Table 4  
First 20 natural frequencies of Aragón Viaduct.  

Mode f (Hz) Mode f (Hz) Mode f (Hz) Mode f (Hz) 

1 0.94 6 2.30 11 3.69 16 4.70 
2 1.33 7 2.50 12 3.92 17 4.79 
3 1.58 8 2.74 13 4.01 18 5.33 
4 1.61 9 2.87 14 4.04 19 5.91 
5 2.09 10 3.50 15 4.07 20 6.00  

Table 5  
First 100 natural frequencies of Almonte Viaduct.  

Mode f (Hz) Mode f (Hz) Mode f (Hz) Mode f (Hz) Mode f (Hz) 

1 0.27 21 2.48 41 4.02 61 7.34 81 9.19 
2 0.56 22 2.56 42 4.07 62 7.56 82 9.24 
3 0.75 23 2.67 43 4.25 63 7.64 83 9.36 
4 0.79 24 2.73 44 4.25 64 7.67 84 9.57 
5 0.89 25 2.78 45 4.39 65 7.82 85 9.94 
6 0.89 26 2.88 46 4.49 66 7.90 86 9.95 
7 0.94 27 2.971 47 4.57 67 8.00 87 10.20 
8 1.10 28 3.07 48 4.57 68 8.12 88 10.28 
9 1.21 29 3.17 49 4.59 69 8.28 89 10.92 
10 1.23 30 3.24 50 4.67 70 8.31 90 11.45 
11 1.41 31 3.27 51 4.71 71 8.40 91 11.53 
12 1.42 32 3.56 52 4.82 72 8.46 92 11.94 
13 1.45 33 3.57 53 5.16 73 8.49 93 12.04 
14 1.48 34 3.58 54 5.33 74 8.57 94 12.25 
15 1.69 35 3.59 55 5.43 75 8.63 95 12.44 
16 1.79 36 3.75 56 5.58 76 8.71 96 12.63 
17 1.96 37 3.79 57 5.76 77 8.91 97 12.86 
18 2.23 38 3.84 58 6.24 78 8.91 98 12.89 
19 2.36 39 3.97 59 6.53 79 9.05 99 12.99 
20 2.40 40 3.97 60 7.01 80 9.18 100 13.20  

Table 6 
Summary of load Cases C5 and C6.  

Nº Bridge 
Length 

Nº of 
modes 

Load 
type 

Vel. 
Analised 
(km/h) 

Vel. 
Step 
(km/ 
h) 

Damping 
(%) 

5 546 m 20 A1- 
A10 

20-410 10 0 

6 996 m 100 A1- 
A10 

20-420 10 5  
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If we analyse the work of the external forces done in a third state, 
state (2), the sum of state (0) at first and state (1) afterwards, the result 
would be: 

W(0+1)
ext = 1d(0)

(x,t) + F(1)
eq(L/2,t)1 − 1d(1)

(x,t) + F(0)
eq(x,t) 1 

If we calculate state (2) as the sum of state (1) in the first place plus 

state (0) we obtain: 

W(1+0)
ext = F(1)

eq(L/2,t)1+ 1d(0)
(x,t)

Assuming linear behaviour of the structure, state (2) must be equal 
regardless of the loading process, therefore: 

Fig. 6. a: Beam loads,: Equivalent force to loads: Equivalent force in the opposite direction.: Reaction at imaginary support.  

Fig. 7. a:State (0): State (1).  

Fig. 8. Vibration mode 1 of case C1 at instant t.  
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W(0+1)
ext = W(1+0)

ext  

F(0)
eq(L/2,t) = d(1)

(x,t)

That is, the reaction of the imaginary support and, therefore, the 
equivalent force when a load acts at a position x of the structure at 
instant t, is the deflection in state (1), at that point x and instant t. Where 
d(1)
(x,t) is the dynamic and deformed influence line of any given mode of 

vibration for instant t. In principle, the line of influence for another 
instant would be different, since the amplitude of the mode of vibration 
oscillates with time. However, if the loads are applied at instant t + nT, 
where n is a natural number and T is the period of vibration, then the 
dynamic influence line remains constant because the amplitude of the 
mode of vibration is constant for multiples of the period. 

3.2. Resonance velocity 

In this section, a general expression for resonance velocity is 
deduced. In order to clarify it with an example and to demonstrate it 
numerically, this section uses a FE model to analyse the single-span 
bridge of case C1, whose mode 1 has a frequency f of value 2.86 Hz. 
The load sequence from AA train has a wheelbase of D= 18 m, see 
Table 1. Considering the previous section, mode of vibration 1 corre
sponds to the line of influence of the equivalent force at the centre of the 
span, Fig. 8. The loads of the AA train are positioned on the dynamic line 
of influence (maximum unit amplitude) so that the equivalent force is 
maximum, for a given instant t. Therefore, a load is placed in the centre 
of the span, leaving the rest of the loads outside the structure due to the 
geometry of the bridge and the load sequence from AA train, as shown in 
Fig. 8. In this configuration, as a consequence of the geometry of the line 
of influence, the load is most effective when it is in the centre, that is, Feq 
= 1P = P. If, due to the forward velocity of the train AA, the second load 
is at the same position as the first load was when the mode of vibration is 
at the same position at instant t, the equivalent force on the structure 
will be added to the previous one Feq = 1P + 1P = 2P, Fig. 9. 

The fact that the line of influence is at the same position at instant t 
when the second load passes through the centre of the span (t + T), 
defines the velocity V of movement of the loads, since the time between 
two equal positions of the mode is precisely the period T. As the distance 
between loads is constant, D, this process will be repeated for all the 
loads if the velocity V also remains constant, being in that case Feq,end =

mP where m is the number of loads and, therefore, a resonance process 
will occur in the bridge because with each transit of load the Feq will 
increase. The velocity associated with this process will be the resonance 

velocity Vr,mi,n=1 of that mode of vibration i for a time separation be
tween loads nT, with n = 1, and it can be calculated as the distance 
between loads D divided by the period of vibration T associated with the 
frequency of the mode f. Thus, the resonance velocity results in Eq. (1): 

Vr,m,n =
D
nT

=
Df
n

(1) 

For case C1, the resonance velocities are shown in Table 7: 
The point of the structure with maximum acceleration associated 

with this resonance velocity will be the centre of the span, because it is 
the point of maximum displacement of the mode that is activated, mode 
1. In Fig. 10, the maximum acceleration of the span centre on transit of 
the load sequence from AA train is shown for the different velocities 
evaluated based on FE model results. The resonance velocity Vr,m1,n=1 
from Table 7 marked with a vertical line for the value of 185.3 km/h 
matches perfectly with the peak of maximum accelerations shown by the 
diagram obtained. 

In other words, the resonance velocity of the bridge in case 1 was 
predicted correctly. 

In addition, minor peaks can be found in Fig. 10 around the velocities 
of approximately 90 and 60 km/h. The explanation for these accelera
tion peaks associated with those velocities is as follows. From what has 
been stated so far, it has been assumed that the loads take a time equal to 
the vibration period T to reach the position of the predecessor, but in 
reality, they could take a time multiple of nT (n = 2, n = 3, etc.) and the 
amplitude of the mode position, or line of influence, would remain the 
same when the load passes through the centre of the span. In this way, 
we can speak of resonance velocity submultiples, and they are calculated 
in Table 7 (Vr,m1,n=2 and Vr,m1,n=3). As can be seen in Fig. 10, the reso
nance velocities for n = 2 and n = 3, marked with a vertical line, match 
perfectly with the small acceleration peaks. Note that the values pre
sented in Table 7 match the values obtained with the method outlined in 
[21]. The accelerations associated with sub-multiple velocities are al
ways much smaller than the acceleration for n = 1 because they occur 
for lower velocities and, furthermore, because they are influenced by 

Fig. 9. Vibration mode 1 of case C1 at instant t + T.  

Table 7 
Considered resonance velocities for case C1 calculated with Eq. (1).   

D f n V (km/h) 

Vr,m1,n=1 18 2.86 1 185.3 
Vr,m1,n=2 18 2.86 2 95.7 
Vr,m1,n=3 18 2.86 3 61.8 
Vr,m2,n=1 18 11.40 1 738.7  

J. Sánchez-Haro et al.                                                                                                                                                                                                                         



Engineering Structures 305 (2024) 117668

8

damping. As the structure vibrates freely for a time equal to several 
periods before the arrival of the next load, the damping dissipates the 
energy of the system before reintroducing energy. Moreover, sub
multiples in complex structures do not always produce acceleration 
peaks, as the process of load arrival up to the point of maximum 
equivalent load can have its influence and virtually eliminate the ac
celeration peak associated with a submultiple velocity. In the same way 
that the resonance velocity of mode 1 was calculated, the resonance 
velocity of mode 2 can be obtained for n = 1 in case C1. For this mode, 
the resonance velocity would be: 

Vr,m2,n=1 =
D
T
= Df = 18 x 11.40 x 3.6 = 738.7 km/h 

This velocity is outside the range of velocities studied in case C1, so it 
should not be considered. In any case, if the velocity range were up to 
800 km/h, due to the shape of this second mode, this velocity would not 
trigger mode 2 for the reasons explained in the following section. 

3.3. Influence of equivalent force 

In this chapter, the influence of the equivalent force on resonant 
effects of the bridge is shown. To this end, a continuous structure with 

two spans is analysed. Two cases will be shown, in the first one the 
length of the spans will be equal (C2) and in the second one they will 
have a ratio between them of 0.8 (C3). In both cases, results from Eq. (1) 
are compared with results from FE models. 

3.3.1. Equal span lengths L1/L2 = 1 
The simplified method is applied for case C2 in the same way as for 

case C1. First, vibration mode 1, which has a frequency of 2.86 Hz, is 
analysed. This mode is the line of influence of the equivalent force at 
either of the two span centres, as they have equal amplitude, Fig. 6a. 
Using the mode as the line of influence, the load sequence from AA train 
is placed so that it provides the maximum equivalent force. In this case, 
we place the first two loads of the AA train at the centre of the spans,  
Fig. 11. 

In this case, the resonance velocity of mode 1 would be: 

Vr,m1,n=1 = Df = 18 x 2.86 x 3.6 = 185.3 km
/

h 

However, the equivalent force would be zero in this case, since, 
having amplitudes of opposite sign, the load of one span cancels out that 
of the other. 

Feq = 1P − 1P = 0 

Fig. 10. Diagram of maximum span centre accelerations of case C1. FE Model Vs Simplified method.  

Fig. 11. Vibration mode 1 in case C2 at instant t.  Fig. 12. Vibration mode 2 in case C2 at instant t.  
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Since this will happen with the following two loads of the AA train on 
the structure at instant t + T, the final equivalent force in this case is 
zero and therefore mode 1 will not be activated for its resonance ve
locity. The second mode is analysed next, placing the loads in the same 
way as for mode 1, Fig. 12, at instant t. 

The resonance velocity in this case for the second mode is: 

Vr,m2,n=1 = Df = 18 x 4.46 x 3.6 = 289.0 km
/

h 

And the equivalent force for instant t will be: 

Feq = 0.95P+ 0.95P = 1.8P 

For instant t + T, mode 2 will have the same amplitude and, there
fore, the equivalent force will increase with each step of the loads.  
Fig. 13 shows the result of the dynamic analysis of case C2. It shows the 
maximum acceleration of the centres of span 1 and span 2 (super
imposed) in case C2 on transit of the load sequence from AA train for 
different velocities. It can be seen that for the value of the mode 1 
resonance velocity (Vr,m1,n=1=185.3 km/h) marked with a vertical line, 
there is no acceleration peak. That is, the zero equivalent force prevents 
any resonant amplification from occurring. Note that according to the 
method outlined [21], there should be resonant effects for that velocity, 
but as can be verified with the finite element results (Fig. 13), there are 

none. The reason is that the simplified method showed in that research 
does not take into account the influence of the equivalent force. How
ever, for the mode 2 resonance velocity value (Vr,m2,n=1 = 289.0 km/h), 
a very sharp peak appears. 

Note that for a velocity value slightly above 140 km/h another minor 
peak appears. This peak corresponds to the submultiple of Vr,m2 for 
n = 2: 

Vr,m2,n=2 =
Df
2

=
18
2

x 4.46 x 3.6 = 144.5 km/h  

3.3.2. Unequal span lengths L2/L1 = 1.25 
In this section, the case C2 process is repeated, but with unequal 

spans of ratio 0.80, case C3. Unlike what happened in case C2 for mode 
1, because the spans are not exactly equal, when positioning the load 
sequence from AA train on mode 1, the equivalent force does not 
completely cancel out, Fig. 14. 

The equivalent force, in absolute value, resulting from positioning 
the loads in this case is: 

Feq = + 0.95P − 0.45P = 0.5P 

The resonance velocity for mode 1 in this case is: 

Fig. 13. Maximum acceleration diagram of the span centres. FE Model Vs Simplified method.  

Fig. 14. Vibration mode 1 of case C2 at instant t.  Fig. 15. Vibration mode 2 in case C3 at instant t.  
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Vr,m1,n=1 = Df = 18 x 2.679 x 3.6 = 173.5 km
/

h 

As for the second mode, based on Fig. 15, the equivalent force and 
resonance velocity are: 

Feq = 1.0P+ 04P = 1.4P  

Vr,m2,n=1 = Df = 18 x 4.86 x 3.6 = 314.9 km
/

h 

Fig. 16 shows the result of the dynamic analysis for case C3. It shows 
the maximum accelerations of the span centres on passage of the AA 
train for different velocities. 

Fig. 16 shows that, unlike case C2, for the value of the resonance 
velocity of mode 1 (Vr,m1,n=1=173.5 km/h) marked with a vertical line, 
there is a small acceleration peak because the equivalent force is not 
zero, although it is small. For this velocity, it can be seen in Fig. 16 that 
the centre of span with the highest acceleration is the centre of span 2, 

consistent with the deformation of vibration mode 1, Fig. 14. The large 
acceleration peak, as expected from the equivalent force, is for the 
resonance velocity of mode 2 (Vr,m2,n=1 = 314.9 km/h). In this case, 
because the activated mode is mode 2, it is span 1 that has the highest 
acceleration, consistent with the deformation of vibration mode 2, 
Fig. 15. Note that the ratio between the maximum accelerations of the 
two span centres is the same as the ratio between the displacements of 
the span centres of mode 2. In addition to the velocity associated with 
mode 1 and the velocity associated with mode 2, there is also a peak in 
the value of the submultiple of mode 2 and, therefore, with more ac
celeration at the centre of span 1: 

Vr,m2,n=2 =
Df
2

=
18
2

x 4.86 x 3.6 = 157.5 km/h  

Fig. 16. Diagram of maximum span centre accelerations in case C3. FE Model Vs Simplified method.  

Fig. 17. Max. acc. Vs Lm/D parameter, case C4. Resonance vel. of mode 2 (289 km/h). FE Model results.  
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3.4. Influence of the relative span length 

The analysed cases shown so far (C1, C2 and C3) have in common 
that the distance between axles D is practically the same as the distance 
between the points of maximum displacements of the modes, parameter 
Lm, Table 3. This section analyses the influence of the relative span 
length in the resonance effects based on the Lm/D parameter. For this 
purpose, the dynamic analysis based on results from FE model in case C4 
was carried out varying the parameter Lm/D between values of 0.5 and 5. 
The analysed bridge has two equal span lengths, but that length is 
changed in order to modify the parameter Lm/D while the modulus of 
elasticity is transformed in an appropriate way to balance the stiffness 
and keep the natural frequency constant. The velocity considered for the 
AA train to pass through structure C4 is 289.0 km/h for all values of the 
Lm/D parameter. This is the resonance velocity of mode 2 (mode 1 would 
not be activated for its resonance velocity because the displacement 
amplitude is equal in both spans, but of opposite sign). The results of the 
dynamic analysis in case C4 are shown in Fig. 17, where you can see the 
maximum acceleration of the centre of one span (the other span centre 
will have the same value due to the symmetry of the mode) as a function 
of the parameter Lm/D for the mode 2 resonance velocity. 

As can be seen in Fig. 17, when the parameter Lm/D approaches 1, the 
acceleration value increases exponentially. Departing from that value, 
except for some small undulations in the environment between Lm/D 
= 1.5 and Lm/D = 2.5, the acceleration decreases very quickly. That is, 
for resonance to occur in a bridge when a train passes, there is not only a 
temporal factor (resonance velocity), but also a spatial factor (parameter 
Lm/D). Both factors have to be present for resonance to occur in signif
icant terms. The explanation of how a large value of spatial factor Lm/D 
can avoid resonance is as follows. If Lm/D is sufficiently large, the loads 
will have practically not moved their relative position in the span during 
the time of a half-period T. That is, although it is the resonance velocity 
and, therefore, the load occupies the position of its predecessor in a time 
T, the movement is negligible regarding the length of the span. In this 
way, since the load is in an almost fixed position, the influence line adds 
approximately the same value during a half-period (positive mode 
amplitude) as it subtracts in the next half-period (negative mode 
amplitude). In conclusion, as the load practically does not move, the 
equivalent force provided by the dynamic line of influence is zero over a 
period T. 

3.5. Torsional mode of vibration 

So far, the analysed vibration modes have corresponded to flexural 
modes, as they are often the most relevant. However, the proposed 
simplified method can be applied to any vibration mode. To verify this, 
in this section, the C1 case is recalculated, but with the loads moving 
along the bridge on a laterally shifted axis of 3.8 m from the central axis, 
as shown in Fig. 18a. For this dynamic analysis, in addition to the 
flexural modes indicated in Table 3, the torsional mode with a frequency 
of 5.75 Hz is considered, as shown in Fig. 18b. Another difference from 
the analysis conducted in Section 3.2 is that in that section, only the 

accelerations of point P0, the central point, were checked, while now the 
accelerations of points P1 and P2, lateral points, are also analysed 
(Fig. 18a). 

The results of resonance velocities obtained by applying Eq. 1 of the 
simplified method for both flexural and torsional modes are presented in  
Table 8. 

In Fig. 19, the results from finite element analysis for points P0 
(dashed line and dot, central axis) and P1 (solid line, lateral axis) are 
shown. Vertical lines identify the resonance velocities as indicated in 
Table 8, with a dashed line and double dot for the flexural mode 
(n = 1,2,3) and a dotted line for the torsional mode (n = 1,2,3). As 
observed in Fig. 19, for the velocity of 372 km/h at point P1 on the 
lateral axis, there is a peak acceleration in FE results coinciding with the 
resonance velocity predicted by the simplified method for the torsional 
mode, which is not present in FE results for the central axis at point P0. 
Note also that at point P1, at the velocity of 185 km/h, the acceleration 
is amplified compared to the central axis at point P0. This occurs 
because the flexural resonance velocity (n = 1) coincides with the first 
submultiple of the torsional resonance velocity (n = 2), and both modes 
are superimposed. 

To confirm that the peak accelerations at 372 km/h are indeed due to 
torsion, the first few seconds of the acceleration-time diagrams for 
points P1 and P2 are shown for resonance velocities of 185 km/h 
(Fig. 20a) and 372 km/h (Fig. 20b). As evident in the resonance velocity 
of 185 km/h, the accelerations of points P1 and P2 coincide, charac
teristic of a longitudinal flexural mode. Conversely, at the resonance 
velocity of 372 km/h, the accelerations of points P1 and P2 exhibit 
opposite accelerations, indicative of a torsional mode, as predicted by 
the simplified method. 

3.6. Simplified method methodology 

Based on all the information presented in Section 3, the methodology 
of the simplified method is established and summarized in the following 
points:  

1. Place the loads (train) on the vibration mode (influence line) looking 
for the maximum equivalent force to identify the vibration modes 
that will have a non-negligible equivalent force result. A quantitative 
analysis is sufficient. The remaining modes will not be activated. 

Fig. 18. a: Load axes. Checked points.: Torsional mode: 5.75 Hz.  

Table 8 
Considered resonance velocities for case C1 with lateral and central axis 
calculated with Eq. 1.   

Flexural mode (m=1) Torsional mode (m=2) 

f (Hz) 2.86 f (Hz) 5.75 

Train D(m) n Vr (Km/h) n Vr (Km/h) 
AA 18 1 185,5 1 372,4 
AA 18 2 92,8 2 186,2 
AA 18 3 61,8 3 124,1  
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2. From the selected modes of vibration, discard those where the 
maximum displacement occurs in a span with the parameter Lm/D 
greater than 2.0, as these modes will not be activated either.  

3. Calculate all resonance velocities for n = 1 according to Eq. 1 for all 
non-discarded vibration modes and for each train with different 
equispaced axle distances (although the locomotives and some 
wagons may not have equispaced axles, disregard their influence on 
the results and focus on the repeated axle pattern. The amplification 
due to repeated axles is much more significant than some loads that 
do not follow the pattern).  

4. If any of the resonance velocities for n = 1 for any vibration mode is 
outside the range of study velocities for that project, consider the 
resonance velocity of that mode for n = 2 according to Eq. (1) (n ≥ 3 
is considered negligible in any case).  

5. Each resonance velocity will present the maximum acceleration at 
the point of the bridge with the maximum displacement associated 
with the corresponding mode of vibration. 

4. Validation of simplified method 

In this section, the simplified method is validated using two real 
complex bridges: a deck arch bridge (Almonte Viaduct) and a continuous 
variable-depth box girder bridge (Viaduct over Aragón River). Both 
structures are analysed using a finite element (FE) model according to 
Eurocode verification methods, and the results are compared with those 
obtained using the simplified method. 

4.1. Viaduct over Aragón River 

Next, case C5 is analysed. This case is an analysis of a real bridge; the 
Viaduct over the Aragón River. The dynamic analysis was carried out 
according to Eurocode [1], the main characteristics of which are shown 
in Table 6. For this analysis, all span centres of different lengths have 
been checked, specifically the centres of spans 1, 3, 4, 6 and 8, Fig. 1. 
The simplified method explained in the article for detecting resonant 
effects for this real case has been applied. There are 20 vibration modes 
considered (Table 4), each of which will have a resonance velocity for 
each type of train, since they have different distances between axles. 

Fig. 19. Diagram of maximum accelerations at P1 of case C1. Latera axis Vs Central axis. FE Model Vs Simplified method.  

Fig. 20. a:Accel. Vs Time diagram. Flexural resonance. V= 185 km/h.b: Accel. Vs Time diagram. Torsional resonance. V= 372 km/h.  
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Some resonance velocities will be above the 410 km/h project maximum 
velocity, so they will be beyond the study range. In that case, we would 
have to consider their largest submultiples within the study range. As 
there are 10 different trains and 20 modes of vibration, the total number 
of velocities that need to be checked is 200. Consequently, 20 check 
points along the bridge need to be considered per the maximum 
displacement in each mode of vibration. However, and after what was 
stated in the article, by analysing the shape of the vibration modes, the 
number of modes to be considered can be reduced. Specifically, the 
analysis of the modes of vibrations 3, 12 and 20 of the Viaduct over the 
Aragón River are shown in detail, as they are representative. Fig. 21 

shows mode 3 with the placements of the loads of train A1. As can be 
seen, this mode will not be activated significantly. The equivalent force 
Feq is very small because the loads cancel out, having the same values 
and opposite signs (check equal areas), just as happened in cases C2 and 
C3 for mode 1. 

Fig. 22 shows the mode of vibration 12 with the placement of the 
train A1 loads. The shape of mode 12 does enable a non-negligible 
equivalent force (more and larger loads over the structure than under 
the structure). However, due to the length of the spans where the 
maximum displacement occurs, a value of Lm/D ≥ 2.2 is produced for all 
trains A1-A10, so the activation of mode 12 will be residual. The 

Fig. 21. Mode of vibration 3 of Viaduct over Aragón River. A1 train load placements.  

Fig. 22. Mode of vibration 12 of Viaduct over Aragón River. A1 train load placements.  
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discussion of why modes 3 and 12 will not be activated (small Feq and/or 
large Lm/D) are also applicable to the first 19 vibration modes of the 
Viaduct over the Aragón River. 

Fig. 23 shows mode of vibration 20 with the placements of the train 
A1 loads. Mode 20 is the first mode that has a significant equivalent 
force result and Lm/D parameter values between 1.3 and 2, depending on 
the train considered. For this reason, it is the mode that will be activated 
with the highest intensity of the 20 modes of vibration considered in the 
analysis. Due to the fact that mode 20 presents the maximum displace
ment in the centre of span 8 approximately, it will be this section which 
develops the highest accelerations for the velocities corresponding with 
mode 20 frequency from train A1 to A10. 

The results of the dynamic analysis of case C5 are shown in Fig. 24. 
Each line represents the envelope of the accelerations from trains A1 to 
A10 at the check sections defined in Fig. 1. As can be seen, the centre of 
span 8 (SC8) develops the highest acceleration peaks, consistent with the 

activation of mode 20. The check section SC8 has been studied deeply in 
the areas of greatest acceleration (detail A and detail B, Fig. 24) to check 
whether the acceleration peaks are caused by velocities predicted by the 
simplified method for each train. 

The resonance velocities, n = 1, and the submultiple n = 2 for each 
train on mode of vibration 20 are shown in Table 9. Note that the values 
outside the project range (>410 km/h) are marked in grey. 

The detail of zone A is shown in Fig. 25. In this figure, the law of 
maximum accelerations of each train (only trains from A1 to A5 are 
shown for the sake of clarity) forms the total envelope of section SC8 
shown in Fig. 24 for velocities from 320 to 410 km/h. Note that above 
350 km/h the envelope is formed for the resonance velocities of train A1 
and A2. The resonance velocities of trains A1 and A2 shown in Table 9 
have been highlighted with a vertical line. It can be seen that the ac
celeration peaks from dynamic analysis of the Aragón River Viaduct 
coincides perfectly with the resonance velocities shown in Table 9. 

Fig. 23. Mode of vibration 20 of Viaduct over Aragón River. A1 train load placements.  

Fig. 24. Acc. envelope. Trains A1 to A10 in sections SC1, SC3, SC4, SC 6 and SC8. FE model results.  

J. Sánchez-Haro et al.                                                                                                                                                                                                                         



Engineering Structures 305 (2024) 117668

15

To illustrate more clearly how resonance occurs only for a single 
train according to its specific resonance velocity, Fig. 26 shows the ac
celeration versus time diagram developed by section SC8 from the dy
namic analysis of the Aragón Viaduct at a velocity of 410 km/h 
(resonance velocity of train A2 according to the results shown in 
Table 9). 

It can be seen in Fig. 26 that train A2 (red line) produces an accel
eration of 2.7 m/s2 at section SC8 (as the envelope of Fig. 25 shows), 
while the rest of the trains (black lines) produce an acceleration under 
0.8 m/s2. Detail B defined in Fig. 24 is shown in Fig. 27, where it is 
demonstrated that the envelope of each train (for clarity, only trains A5 
to A10 are shown) forms the total envelope of section SC8 for the ve
locity range from 200 km/h to 350 km/h. The resonance velocities for 
n = 2 defined in Table 9 are highlighted with vertical lines. As can be 
seen in Fig. 27, the acceleration peaks coincide perfectly with the 
resonance velocities of the multiples of n = 2 for each train shown in 
Table 9. Under 190 km/h, it is the submultiples of n > 2 that generate 
the envelope, although with a non-zero damping these peaks would have 
been strongly reduced. For example, the peaks of 30 and 60 km/h shown 
in Fig. 24 are caused by train A8 with submultiples n = 9 and n = 18, 

Table 9 
Resonance Velocities for n = 1 and n = 2 of mode 20 of Viaduct over Aragón River.  

Mode 20 f (Hz) =5.996 Vr,m20,n (km/h) 

Train D (m) n=1 n=2 
A1 18 388.5 194.3
A2 19 410.1 205.1
A3 20 431.7 215.9
A4 21 453.3 226.6
A5 22 474.9 237.4
A6 23 496.5 248.2
A7 24 518.1 259.0
A8 25 539.6 269.8
A9 26 561.2 280.6 

A10 27 582.2 291.4 

Fig. 25. Analysis of Detail A. FE Model results Vs. Simpl. Method. Max acc. Vs Vel. of trains (A1-A5).  

Fig. 26. FE model results. Acceleration Vs time diagram at section SC8 of 
Aragón River Viaduct. Velocity 410 km/h. Trains A1 to A10. 
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respectively. Based on this analysis, zone A in Fig. 24 can be identified as 
the resonance zone for n = 1 and zone B as the resonance zone for n = 2. 
In conclusion, for the Viaduct over the Aragón River, the simplified 
method predicts perfectly the resonance velocities of each train that will 
produce acceleration amplification and also correctly predicts the points 
that need to be checked because it identifies the mode that will be 
activated. 

4.2. Almonte viaduct 

Case C6 is analysed below. This case is an analysis of a real bridge, 
the Almonte Viaduct, the world’s longest high-velocity train arch bridge. 
Analogously to the Viaduct over the Aragón River, a dynamic analysis 
was carried out in the Almonte Viaduct according to Eurocode [1]. The 
main characteristics of the analysis are shown in Table 6. The sections 
analysed were the centres of spans 1, 3, 6, 7, 8, 9, 10 and 11 (centre of 
the bridge), Fig. 3. Spans 2 and 4 have not been considered for analysis 
because they have the same length as span 3, which is the typical span 
for approaching the arch. The simplified method for detecting resonant 
effects shown in the article for this real case is applied. A total of 100 
modes of vibration were considered in the analysis (Table 5). Every 

single mode of vibration has its corresponding resonance velocity for 
each type of train (different distances between axles). Some resonance 
velocities will be greater than the maximum velocity of the project 
(420 km/h), thus their main submultiples within the project’s velocity 
range must be considered. In total, there would be 1000 velocities and 
100 sections to analyse. However, by studying the shape of the modes of 
vibration and according to the concepts shown in this article, the 
number of velocities to be analysed can be reduced by discarding the 
modes that will not be activated significantly. To give an example of how 
this is done, the specific analysis of modes 1, 9, 20 and 50 is shown,  
Fig. 28. 

The activation of mode 1 will not be significant because it goes up 
and down in equal parts approximately, thus the equivalent forces 
produced after trains A1-A10 will be cancelled, just as happened with 
mode 1 for cases C2 and C3. Mode of vibration 9 has the displacement in 
the same upward direction, so there will be a significant equivalent 
force. However, the length of the wave over the arch produces a mini
mum value of parameter Lm/D > 3, so the activation of mode 9 will be 
practically negligible. The activation of mode 20 will be residual for the 
same reason as that of mode 1, the spans that go up and down cancel 
each other’s equivalent force. Actually, these arguments could be 

Fig. 27. Analysis of Detail B. FE model results Vs. Simp. Method Max. acc. Vs Vel. of trains (A5-A10). Note that the effect of the front and rear bogies does not modify 
the structural response, as their impact is negligible compared to the amplification caused by the repeated wagons. 

Fig. 28. Modes 1, 9, 20 and 50 of vibration of Almonte Viaduct.  
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applied to the first 49 vibration modes of the Almonte Viaduct. How
ever, mode 50 is the first mode that has an important equivalent force 
and Lm/D parameter between 1.3 and 2 depending on the train consid
ered. For this reason, mode of vibration 50 will be activated with greater 
intensity. Due to the fact that mode 50 has maximum displacement at 
approximately the centre of span 1, this section will be the one that 
presents the highest accelerations. The activation of modes from 51 to 
100 will be residual for the same reason as the first 49 modes. That 
means only the resonance velocity of mode 50 really needs to be 
checked. 

The result of the dynamic analysis of the Almonte Viaduct that in
cludes 100 modes of vibration for all the span centres defined in Fig. 3 is 
shown in Fig. 29. Each line represents the acceleration envelope of the 
trains A1-A10 for the corresponding check section. As can be seen, it is 
span 1 that develops the envelope with the highest accelerations, 
consistent with the activation of mode 50. Two zones of maximum ac
celerations in the SC1 envelope can be identified in Fig. 29, detail A and 
detail B. 

Note that it is the centre of span 1 that presents higher accelerations, 
as was expected after applying the simplified method. Section SC1 was 
studied in detail in order to check whether the acceleration peaks are 

produced due to the velocities calculated in Table 10 in the detail A and 
detail B zones (see Fig. 29). Here the resonance velocities (n = 1) of 
mode of vibration 50 for trains A1-A10 and the main submultiples 
(n = 2) are shown. Note that values beyond the project’s range are 
marked in grey. 

The results of the detail A zone are shown in Fig. 30. The velocities in 
Table 10 are highlighted by the corresponding vertical lines. As can be 
checked, the maximum accelerations for each train form the SC1 en
velope in the range of 270 km/h to 390 km/h. Note that the maximum 
accelerations from dynamic analysis match with the corresponding 
vertical lines strongly. 

The detail B zone is shown in Fig. 31 where the velocities in Table 10 
for n = 2 and trains A6 to A10 are highlighted with vertical lines. The 
maximum accelerations of each train form the envelope of SC1 for ve
locities from 180 km/h to 250 km/h. It can be seen that the acceleration 
peaks match perfectly with the velocities predicted by the simplified 
method for each train. Below 140 km/h, the submultiples of n > 2 
generate the envelope but, due to the damping, the peaks of accelera
tions remained practically eliminated, Fig. 29. 

In conclusion, the simplified method also perfectly predicts, for a 
bridge like the Almonte Viaduct, the resonance velocities that each train 

Fig. 29. Acc. Envelope. Trains A1 to A10 in SC1, SC3, SC6, SC7, SC8, SC9, SC10 and SC11. FEM.results.  

Table 10 
Resonance velocities of mode 50 for n = 1 and n = 2 in Almonte Viaduct.  

Mode 50 f (Hz) =4.67 Vrm50n (km/h)
Train D (m) n=1 n=2

A1 18 302.7 151.4
A2 19 319.5 159.8
A3 20 336.3 168.2
A4 21 353.2 176.6
A5 22 370.0 185.0
A6 23 386.8 193.4
A7 24 403.6 201.8
A8 25 420.4 210.2
A9 26 437.2 218.6

A10 27 454.1 227.0
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will produce depending on the distance between axles. Additionally, the 
simplified method also correctly predicts the section that needs to be 
checked, as it identifies the main mode that will activate (mode 50) and 
those that will not among the 100 modes involved in the dynamic 
analysis. 

5. Conclusions 

The article presented a simplified method to calculate the sections to 
check and the resonance velocities that can occur in bridges. The 
simplified method was verified based on FE Model results in 4 ideal 
simple bridges and subsequently in two real High-Speed bridges of 
different typology. In all cases, the simplified method predicted the 
resonant effects and the sections of the bridge where they occur very 
precisely. 

The main contributions and novelties of the method regarding the 

existing methods are the following: 
Firstly, it is the only method that enables the calculation of resonance 

velocity in complex bridges easily. Unlike cases of single or double-span 
beams discussed in the literature, the article analyses not only simple 
cases but also a deck arch bridge and a continuous variable-depth box 
girder bridge to demonstrate its validity across various typologies 
without increasing the difficulty. Secondly, its calculation simplicity 
stands out, making it faster and more manageable than other methods, 
providing greater practical applicability. Thirdly, it is the only method 
that, for each specific resonance velocity, identifies the point on the 
bridge where the maximum acceleration will occur by associating the 
resonance velocity with the excitation of a specific vibration mode. This 
feature is crucial when a finite element analysis is performed to detect 
resonance in bridges, as engineers have to decide, based on their judg
ment, which points along the bridge are the most critical to check for 
acceleration. These properties of the simplified method are based on 

Fig. 30. Analysis of Detail A. FE model results Vs Simp. Method. Max. acc. Vs Vel. of trains (A1-A5).  

Fig. 31. Analysis of Detail B. FE Model results Vs. Simp. Method. Max. acc. Vs Vel. of trains (A6-A10).  
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three novel theoretical concepts related to dynamic calculation: dy
namic influence line, equivalent force, and relative span length. To use 
the simplified method effectively, a deep understanding of these con
cepts is required, which balances out its straightforward mathematical 
application. Finally, due to its simplicity, it is a very useful tool to easily 
check whether the acceleration peaks that may result from an FE model 
are correct or may be due to an error in the numerical modelling. 

CRediT authorship contribution statement 

Sánchez-Haro Javier: Writing – original draft, Methodology, 
Investigation, Formal analysis, Data curation, Conceptualization. Me
rino Emilio: Validation, Software, Resources, Project administration. 
Capellán Guillermo: Validation, Supervision, Resources, Funding 
acquisition. Fernández Begona: Writing – review & editing, Software, 
Data curation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The authors would like to thank the company Arenas&Asociados for 
providing the real calculation models of the Viaduct over the Aragón 
River and the Almonte Viaduct. Thanks to this, both the acceleration 
versus velocity diagrams and the modes of vibration that were used for 
the design of both bridges were used in this research. 

References 

[1] Eurocode 1-Actions on Structures Part 2-Traffic Loads on Bridges, 2003. 
[2] American Railway Engineering and Maintenance-of-Way Association, 2012. 
[3] Spanish Regulation. Actions considered in railway bridges (IAPF-11), 2012. 
[4] California High-speed Rail Authority. Design Criteria Manual Book III part A.1, 

2015. 
[5] Sánchez-Haro J, Lombillo I, Capellan G. Modelling criteria proposal for dynamic 

analysis of beam bridges under moving loads using fem models. Strucures 2023;50: 
651–69. 

[6] Yang Y-B, Yau J-D, Hsu L-C. Vibration of simple beams due to trains moving at high 
speeds. Eng Struct 1997;19(11):936–44. https://doi.org/10.1016/S0141-0296(97) 
00001-1. 

[7] Li A, Su M. The resonant vibration for a simply supported girder bridge under high- 
speed trains. ” J Sound 1999;Vibr. 224(5):897–915. https://doi.org/10.1006/ 
jsvi.1999.2226. 

[8] A. Domenech P. Museros. J. Nasarre A. Castillo-Linares ” Behavior of simply 
supported high-speed railway bridges at resonance: Analysis of the influence of the 
vehicle model and simplified methods for dynamic analyses” International 
Conference on Noise and Vibration Engineering 2 1057–1072 2012. ISBN: 
978–162276825-7. 

[9] Xia H, Zhang N, Guo W. Fundamental Theories and Analytical Methods for 
Vibrations of Simply-Supported Beams Under Moving Loads”, Book. Adv High- 
Speed Rail Technol 2017:85–147. 

[10] J.D..Yau L. Fryba” Interaction dynamics of a high-speed train moving on multi- 
span railway bridges with support settlements” Proceedings of ISMA - International 
Conference on Noise and Vibration Engineering and USD - International 
Conference on Uncertainty in Structural Dynamics 995–963. 2014. 

[11] Ülker-Kaustell M, Karoumi R, Pacoste C. Simplified analysis of the dynamic soil- 
structure interaction of a portal frame railway bridge. Eng Struct 2010;32(11): 
3692–8. https://doi.org/10.1016/j.engstruct.2010.08.013. 

[12] Liu L, Zuo Z, Yau JD, Urushadze S. A simplified method to assess vehicle–bridge 
interaction for train-induced vibration of light-weight railway bridges. J Chin Inst 
Eng Trans Chin Inst Eng A 2022;45(8):651–60. https://doi.org/10.1080/ 
02533839.2022.2126400. 

[13] Cheng Z, Zhang N, Sun Q, Shen Z, Liu X. Research on Simplified Calculation 
Method of Coupled Vibration of Vehicle-Bridge System”. Shock Vibr 2021; 
9929470. https://doi.org/10.1155/2021/9929470. 

[14] Zhai W, Han Z, Chen Z, Ling L, Zhu S. Train–track–bridge dynamic interaction: a 
state-of-the-art review. ” I J Veh Mech Mobil 2019;57(7). https://doi.org/10.1080/ 
00423114.2019.1605085. 

[15] Xia H, Li HL, Cuo WW, De Roeck G. “Vibration Resonance and Cancellation of 
Simply Supported Bridges under Moving Train Loads” J. of Eng. Mechanics 2013; 
140(5). https://doi.org/10.1061/(ASCE)EM.1943-7889.000071. 

[16] Museros P, Moline E, Martinez-Rodrigo MD. Free vibrations of simply-supported 
beam bridges under moving loads: Maximum resonance, cancellation and resonant 
vertical acceleration. ” J Sound Vib 2013;332(2):326–45. https://doi.org/ 
10.1016/j.jsv.2012.08.008. 

[17] Yang YB, Yau JD. Resonance of high-speed trains moving over a series of simple or 
continuous beams with non-ballasted tracks. Eng Struct 2017;143:293–305. 
https://doi.org/10.1016/j.engstruct.2017.04.022. 

[18] Martinez-Rodrigo MD, Andersson A, Pacoste C, Karoumi R. Resonance and 
cancellation phenomena in two-span continuous beams and its application to 
railway bridges. Eng Struct 2020;222(1). https://doi.org/10.1016/j. 
engstruct.2020.111103. 

[19] H. Bigelow B. Hoffmeister and M. Feldmann ” Simplified design of filler beam 
railway bridges for high-speed traffic” Proceedings of ISMA - International 
Conference on Noise and Vibration Engineering and USD 2018 - International 
Conference on Uncertainty in Structural Dynamic. 1621–1934 2018. ISBN: 
978–907380299-5. 
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