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Abstract. We show that the perturbation class for the upper
semi-Fredholm operators between two Banach spaces X and Y co-
incides with the strictly singular operators whenX is subprojective
and that the perturbation class for the lower semi-Fredholm oper-
ators coincides with the strictly cosingular operators when Y is
superprojective. Similar results were proved in [7] under stronger
conditions for X and Y .

1. Introduction

Given a class A of operators between Banach spaces, its perturbation
class PA is defined as the class of all operators K such that T +K ∈ A
for every T ∈ A. This definition is not intrinsic, in the sense that
determining whether an operator belongs to PA involves studying its
behaviour with respect to every operator in A. In this regard, it is
useful to find an intrinsic characterisation for a perturbation class PA,
as its existence means that membership of an operator can be checked
based on properties of the operator alone.

For the upper semi-Fredholm operators Φ+, it has been long known
that strictly singular operators belong to PΦ+ [9, Theorem 5.2]; an
operator is strictly singular if its restriction to a closed infinite-dimen-
sional subspace is never an isomorphism. Similarly, for the lower semi-
Fredholm operators Φ−, strictly cosingular operators belong to PΦ−

[14, Corollary 1]; an operator T is strictly cosingular if its composi-
tion QT with the quotient operator Q of a closed infinite-codimensional
subspace is never a surjection. The perturbation classes problem for
the semi-Fredholm operators is the question of whether these pairs of
classes (PΦ+ and SS; PΦ− and SC) coincide [5, page 74] [12, 26.6.12]
[13, Section 3]. This question remained open for a time, but was even-
tually proved to have a negative answer in general: there exists a sep-
arable, reflexive Banach space Z such that PΦ+(Z) 6= SS(Z) and
PΦ−(Z

∗) 6= SC(Z∗) [6].
However, it is still interesting to find pairs of spaces for which the

answer to the perturbation classes problem is positive, as it means
that, at least for them, the relevant components of PΦ+ and PΦ−

do admit an intrinsic characterisation. There are several known such
cases, including some classical results [10] [15].
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In Theorems 5 and 7, we prove that the perturbation classes prob-
lem for Φ+(X, Y ) has a positive answer when X is subprojective and
similarly that the perturbation classes problem for Φ−(X, Y ) has a pos-
itive answer when Y is superprojective. A Banach space X is subpro-
jective if every closed infinite-dimensional subspace of X contains an
infinite-dimensional subspace complemented in X ; a Banach space X
is superprojective if every closed infinite-codimensional subspace of X
is contained in an infinite-codimensional subspace complemented in X .
Subprojective and superprojective spaces were introduced by Whitley
to study strictly singular and strictly cosingular operators [16]; see [7]
for a fairly complete list of examples known at the time and [11] [8]
and [4] for more recent discoveries.

Theorems 5 and 7 improve on the following, previously known re-
sults.

Theorem 1. [10] [3] Let X and Y be Banach spaces such that Φ+(X, Y )
is not empty and Y is subprojective. Then PΦ+(X, Y ) = SS(X, Y ).

Proof. Note that Φ+(X, Y ) 6= ∅ implies that SS(X, Y ) ⊆ PΦ+(X, Y ) ⊆
In(X, Y ) [3, Theorem 3.6] and that Y subprojective implies that
SS(X, Y ) = In(X, Y ) [2, Theorems 4.3 and 4.4]. �

Theorem 2. [10] [3] Let X and Y be Banach spaces such that Φ−(X, Y )
is not empty and X is superprojective. Then PΦ−(X, Y ) = SC(X, Y ).

Proof. Note that Φ−(X, Y ) 6= ∅ implies that SC(X, Y ) ⊆ PΦ−(X, Y ) ⊆
In(X, Y ) [3, Theorem 3.6] and that X superprojective implies that
SC(X, Y ) = In(X, Y ) [2, Theorems 4.3 and 4.4]. �

Theorem 5 is stronger than Theorem 1 because the hypotheses in
Theorem 1 (Φ+(X, Y ) 6= ∅ and Y subprojective) imply that X itself is
subprojective, as they mean that a finite-codimensional subspace of X
is isomorphic to a subspace of Y , and closed subspaces of subprojective
spaces are subprojective too. Similarly, Theorem 7 is stronger than
Theorem 2 because the hypotheses in Theorem 2 (Φ−(X, Y ) 6= ∅ and
X superprojective) imply that Y itself is superprojective, as they mean
that a finite-codimensional subspace of Y is isomorphic to a quotient
of X , and quotients of superprojective spaces are superprojective too.

Theorems 5 and 7 also improve on similar results obtained for spaces
satisfying the formally stronger conditions of strong subprojectivity
and strong superprojectivity introduced in [7]. A Banach space X
is strongly subprojective if every closed infinite-dimensional subspace
of X contains an infinite-dimensional subspace complemented in X
with complement isomorphic to X ; a Banach space X is strongly su-
perprojective if every closed infinite-codimensional subspace of X is
contained in an infinite-codimensional subspace complemented in X
that is isomorphic to X . Clearly, a strongly subprojective space X
is subprojective, although the question remains open as to whether
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there are subprojective spaces that are not strongly subprojective, and
likewise for the classes of superprojective and strongly superprojective
spaces.

Theorem 3. [7, Theorems 2.6 and 3.7] Let X and Y be Banach spaces.

(a) If X is strongly subprojective and Φ+(X, Y ) is not empty, then

PΦ+(X, Y ) = SS(X, Y ).
(b) If Y is strongly superprojective and Φ−(X, Y ) is not empty, then

PΦ−(X, Y ) = SC(X, Y ).

We will use standard notation. Given a (bounded, linear) operator
T : X −→ Y , N(T ) and R(T ) will denote the kernel and the range of T ,
respectively. L(X, Y ) will stand for the set of all operators from X
to Y ; if A is a class of operators, then A(X, Y ) = A ∩ L(X, Y ) and
A(X) = A(X,X). If N is a closed subspace of X , we will denote the
induced natural quotient operator by QN : X −→X/N .

2. Results

We begin with a simple result that can be found in [1, Theorem 7.21].
We include a proof for the convenience of the reader.

Proposition 4.

(a) If K ∈ PΦ+(X, Y ) and A ∈ L(X), then KA ∈ PΦ+(X, Y ).
(b) If K ∈ PΦ−(X, Y ) and B ∈ L(Y ), then BK ∈ PΦ−(X, Y ).

Proof. (a) If A is bijective, let T ∈ Φ+(X, Y ); then TA−1 ∈ Φ+(X, Y ),
so T + KA = (TA−1 + K)A ∈ Φ+(X, Y ), hence KA ∈ PΦ+(X, Y ).
For the general case, it is enough to note that A can be written as the
sum of two bijective operators.

The proof of (b) is similar. �

The next result was already known for X strongly subprojective [7].

Theorem 5. Let X and Y be Banach spaces such that Φ+(X, Y ) is

not empty and X is subprojective. Then PΦ+(X, Y ) = SS(X, Y ).

Proof. Since Φ+(X, Y ) is not empty, Y must contain some closed sub-
space L isomorphic to a finite-codimensional subspace of X ; in partic-
ular, L must be subprojective.

LetK ∈ L(X, Y )\SS(X, Y ); we have to show that K /∈ PΦ+(X, Y ).
SinceK is not strictly singular, there exists a closed infinite-dimensional
subspace U of X such that K|U is an isomorphism. Considering the
relative positions of the subspaces K(U) and L inside Y , three cases
may happen:

(a) K(U) ∩ L is finite-dimensional and K(U) + L is closed;
(b) K(U) ∩ L is infinite-dimensional;
(c) K(U) ∩ L is finite-dimensional and K(U) + L is not closed.
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(a) If K(U) ∩ L is finite-dimensional and K(U) + L is closed, we
can assume that K(U) ∩ L = {0} by passing to a smaller U if nec-
essary. Since X is subprojective, we may further assume that U is
complemented in X , so there exists a closed subspace M of X such
that X = U ⊕ M and, as M is an infinite-codimensional subspace
of X and L is isomorphic to a finite-codimensional subspace of X ,
there exists an isomorphic embedding S : M −→L. Define an operator
T : X = U ⊕ M −→Y as T (u + m) = −K(u) + S(m), where u ∈ U
and m ∈ M ; then T ∈ Φ+(X, Y ) but U ⊆ N(T +K), so T +K /∈ Φ+,
which proves that K /∈ PΦ+(X, Y ).

(b) If K(U)∩L is infinite-dimensional, we can pass to U ∩K−1(L) to
assume that K(U) ⊆ L and, since X is subprojective, we may further
assume that U is complemented in X , so there exists a projection
P : X −→X with range U . Now, KP can be seen as an operator
KP : X −→L that is not strictly singular, where Φ+(X,L) is not empty
and L is subprojective, so KP /∈ PΦ+(X,L) by Theorem 1. As such,
KP /∈ PΦ+(X, Y ) and K /∈ PΦ+(X, Y ) by Proposition 4.

(c) IfK(U)∩L is finite-dimensional andK(U)+L is not closed, there
exists a compact operator K1 : X −→Y such that (K +K1)(U) ∩ L is
infinite-dimensional [7, Theorem 2.6], and then it follows thatK+K1 /∈
PΦ+(X, Y ) from case (b) and finally that K /∈ PΦ+(X, Y ). �

Next we recall a technical lemma.

Lemma 6. [7, Lemma 3.5] Let K ∈ L(X, Y ) and let Y0 be a closed

subspace of Y such that QY0
K is surjective. If E is a closed subspace

of X such that K−1(Y0) ⊆ E, then Y contains a closed subspace F such

that Y0 ⊆ F and E = K−1(F ). Moreover, if E is infinite-codimensional

in X, then F is infinite-codimensional in Y .

The next result was already known for Y strongly superprojective [7].

Theorem 7. Let X and Y be Banach spaces such that Φ−(X, Y ) is

not empty and Y is superprojective. Then PΦ−(X, Y ) = SC(X, Y ).

Proof. Since Φ−(X, Y ) is not empty, X must contain some closed sub-
space N such that X/N is isomorphic to a finite-codimensional sub-
space of Y ; in particular, X/N must be superprojective.

Let K ∈ L(X, Y )\SC(X, Y ); we have to show that K /∈ PΦ−(X, Y ).
SinceK is not strictly cosingular, there exists a closed, infinite-codimen-
sional subspace Z ⊂ Y such that QZK is surjective, where QZ is the
natural quotient operator from Y onto Y/Z; note that this means that
R(K) + Z = Y . Considering the relative positions of the subspaces
K−1(Z) and N inside X , three cases may happen:

(a) K−1(Z) +N is finite-codimensional in X , hence closed;

(b) K−1(Z) +N is infinite-codimensional in X ;

(c) K−1(Z) +N is finite-codimensional in X but K−1(Z) + N is
not closed.
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(a) If K−1(Z) + N is finite-codimensional in X , hence closed, we
can assume that K−1(Z) + N = X by passing to a larger Z if nec-
essary. Since Y is superprojective, we may further assume that Z is
complemented in Y , so there exists a projection P : Y −→Y with ker-
nel N(P ) = Z, for which R(P ) = R(PK) = PK(N). Also, as Z
is an infinite-codimensional complemented subspace of Y and X/N is
isomorphic to a finite-codimensional subspace of Y , there exists a sur-
jection S : X/N −→Z, so Z = R(SQN) = SQN

(

K−1(Z)
)

. Define an
operator T : X −→Y as T = SQN − PK; then N ⊆ N(SQN ) and
N(PK) = K−1

(

N(P )
)

= K−1(Z) so

R(T ) = (SQN − PK)
(

K−1(Z) +N
)

= SQN

(

K−1(Z)
)

+ PK(N) = Z +R(P ) = Y,

hence T is surjective and T ∈ Φ−(X, Y ). However, T + K = SQN +
(IY − P )K, so R(T +K) ⊆ Z and T +K /∈ Φ−(X, Y ), which proves
that K /∈ PΦ−(X, Y ).

(b) If K−1(Z) +N is infinite-codimensional in X , we can assume
that N ⊆ K−1(Z) by passing to a larger Z if necessary using Lemma 6
and, since Y is superprojective, we may further assume that Z is com-
plemented in Y , so there exists a projection P : Y −→Y with kernel
N(P ) = Z. As in the previous case, R(PK) = R(P ), so PK /∈
SC(X, Y ). Furthermore, N ⊆ K−1(Z) = N(PK), so PK factors
through X/N and there exists an operator T : X/N −→Y such that
PK = TQN , where T /∈ SC(X/N, Y ) because PK /∈ SC(X, Y ) and SC
is a surjective operator ideal [12]. As such, since Φ−(X/N, Y ) is not
empty and X/N is superprojective, it follows that T /∈ PΦ−(X/N, Y )
by Theorem 2 and there exists an operator S ∈ Φ−(X/N, Y ) such that
S + T /∈ Φ−(X/N, Y ), for which

(S + T )QN = SQN + PK /∈ Φ−(X, Y )

while SQN ∈ Φ−(X, Y ), so PK /∈ PΦ−(X, Y ) and K /∈ PΦ−(X, Y ) by
Proposition 4.

(c) If K−1(Z) +N is finite-codimensional in X but K−1(Z) + N
is not closed, there exists a compact operator K1 : X −→Y such that
(K +K1)−1(Z) +N is infinite-codimensional in X [7, Theorem 3.7],
and then it follows that K + K1 /∈ PΦ−(X, Y ) from case (b) and
finally that K /∈ PΦ−(X, Y ).

�
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6 MANUEL GONZÁLEZ, JAVIER PELLO, AND MARGOT SALAS-BROWN
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