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Abstract
Let SS and SC be the strictly singular and the strictly cosingular operators acting
between Banach spaces, and let P�+ and P�+ be the perturbation classes for the
upper and the lower semi-Fredholm operators. We study two classes of operators
�S and �C that satisfy SS ⊂ �S ⊂ P�+ and SC ⊂ �C ⊂ P�−. We give some
conditions underwhich these inclusions becomeequalities, fromwhichwederive some
positive solutions to the perturbation classes problem for semi-Fredholm operators.

Keywords Perturbation classes problem · Semi-Fredholm operator · Strictly singular
operator

Mathematics Subject Classification 47A55 · 47A53

1 Introduction

The perturbation classes problem asks whether the perturbation classes for the upper
semi-Fredholmoperators P�+ and the lower semi-Fredholmoperators P�− coincide
with the classes of strictly singular operators SS and strictly cosingular operators SC,

respectively. This problem was raised in [9] (see also [5, 19]), and it has a positive
answer in some cases [11, 13–15, 21], but the general answer is negative in both cases
[10], [8, Theorem 4.5]. However, it remains interesting to find positive answers in
special cases because the definitions of SS and SC are intrinsic: to check that K is in
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one of them only involves the action of K , while to check that K is in P�+ or P�−
we have to study the properties of T + K for T in a large set of operators.

In this paper, we consider two classes �S and �C introduced in [2] that satisfy

SS(X ,Y ) ⊂ �S(X ,Y ) ⊂ P�+(X ,Y ) and

SC(X ,Y ) ⊂ �C(X ,Y ) ⊂ P�−(X ,Y ).

We study conditions on the Banach spaces X ,Y so that some of these four inclu-
sions become equalities, and we derive new positive answers to the perturbation
classes problem for semi-Fredholm operators. When �+(X ,Y ) �= ∅, we show that
�S(X ,Y ) = P�+(X ,Y ) when Y × Y is isomorphic to Y , SS(X ,Y ) = �S(X ,Y )

when some quotients of X embed in Y (Theorem 3.1), and adding upwe get conditions
implying that SS(X ,Y ) = P�+(X ,Y ) (Theorem 3.2). When �−(X ,Y ) �= ∅ we
prove similar results (Theorems 4.1 and 4.2). We also state some questions concerning
the classes �S and �C.

Notation. Along the paper, X , Y and Z denote Banach spaces and L(X ,Y ) is the
set of bounded operators from X into Y . We write L(X) when X = Y . Given a closed
subspace M of X ,we denote JM the inclusion of M into X , and QM the quotient map
from X onto X/M . An operator T ∈ L(X ,Y ) is an isomorphism if there exists c > 0
such that ‖T x‖ ≥ c‖x‖ for every x ∈ X .

The operator T ∈ L(X ,Y ) is strictly singular, and we write T ∈ SS, when there
is no infinite dimensional closed subspace M of X such that the restriction T JM is
an isomorphism; and T is strictly cosingular, and we write T ∈ SC, when there
is no infinite codimensional closed subspace N of Y such that QNT is surjective.
Moreover, T is upper semi-Fredholm, T ∈ �+, when the range R(T ) is closed and
the kernel N (T ) is finite dimensional; T is lower semi-Fredholm, T ∈ �−, when
R(T ) is finite codimensional (hence closed); T is Fredholm, T ∈ �, when it is upper
and lower semi-Fredholm; and T is inessential, T ∈ In, when IX − ST ∈ � for each
S ∈ L(Y , X).

2 Preliminaries

The perturbation class PS of a class of operators S is defined in terms of its
components:

Definition 2.1 Let S denote one of the classes �+, �− or �. For spaces X ,Y such
that S(X ,Y ) �= ∅,

PS(X ,Y ) = {K ∈ L(X ,Y ) : for each T ∈ S(X ,Y ), T + K ∈ S}.

We could define PS(X ,Y ) = L(X ,Y ) when S(X ,Y ) is empty, but this is not
useful. The components of P� coincide with those of the operator ideal of inessential
operators In when they are defined [1], but given S ∈ L(Y , Z) and T ∈ L(X ,Y ), S
or T in P�+ does not imply ST ∈ P�+, and similarly for P�− [10]. However, the
following result holds, and it will be useful for us.
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Proposition 2.1 Suppose that K ∈ P�+(X ,Y ), L ∈ P�−(X ,Y ), S ∈ L(Y ) and
T ∈ L(X). Then, SK , KT ∈ P�+(X ,Y ) and SL, LT ∈ P�−(X ,Y ).

Proof Suppose that K ∈ P�+(X ,Y ) and let S ∈ L(Y ) and U ∈ �+(X ,Y ). If S is
bijective, then S−1U ∈ �+(X ,Y ), hence U + SK = S(S−1U + K ) ∈ �+; thus
SK ∈ P�+(X ,Y ). In the general case, S = S1 + S2 with S1, S2 bijective; thus,
SK = S1K + S2K ∈ P�+(X ,Y ).

The proof of the other three results is similar. �	

3 The perturbation class for8+

Given two operators S, T ∈ L(X ,Y ), we denote by (S, T ) the operator from X into
Y × Y defined by (S, T )x = (Sx, T x), where Y × Y is endowed with the product
norm ‖(y1, y2)‖1 = ‖y1‖ + ‖y2‖.

Inspired by the results of Friedman [6], the authors of [2] defined the following
class of operators.

Definition 3.1 Suppose that �+(X ,Y ) �= ∅ and let K ∈ L(X ,Y ). We say that K is
�-singular, and write K ∈ �S, when for each S ∈ L(X ,Y ), (S, K ) ∈ �+ implies
S ∈ �+.

The definition of �S(X ,Y ) is similar to that of P�+(X ,Y ), but the former one is
easier to handle because the action of S and K is decoupled when we consider (S, K )

instead of S + K .

With our notation, [6, Theorems 3 and 4] can be stated as follows:

Proposition 3.1 [2, Proposition 2.2] Suppose that �+(X ,Y ) �= ∅. Then,

SS(X ,Y ) ⊂ �S(X ,Y ) ⊂ P�+(X ,Y ).

Note that SS is an operator ideal but P�+ is not; P�+(X ,Y ) is a closed subspace
of L(X ,Y ), and P�+(X) is an ideal of L(X).

Proposition 3.2 �S(X ,Y ) is closed in L(X ,Y ).

Proof Let {Tn} be a sequence in �S(X ,Y ) converging to T ∈ L(X ,Y ). Suppose that
S ∈ L(X ,Y ) and (S, T ) ∈ �+(X ,Y × Y ). Note that the sequence (S, Tn) converge
to (S, T ), because ‖(S, Tn) − (S, T )‖ = ‖Tn − T ‖.

Since �+(X ,Y × Y ) is an open set, there exists a positive integer N such that
(S, TN ) ∈ �+(X ,Y × Y ). Then, TN ∈ �S(X ,Y ) implies S ∈ �+(X ,Y ). Thus
T ∈ �S(X ,Y ). �	

We state some basic questions on the class �S.

Question 3.1 Suppose that �+(X ,Y ) �= ∅.

(a) Is �S(X ,Y ) a subspace of L(X ,Y )?
(b) Is �S an operator ideal?
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(c) Is Proposition 2.1 valid for �S?
Answering a question in [6], an example of an operator K ∈ P�+ \�S was given

in [2, Example 2.3], but we do not know if the other inclusion can be strict.

Question 3.2 Suppose that �+(X ,Y ) �= ∅. Is SS(X ,Y ) = �S(X ,Y )?

A negative answer to Question 3.2 would provide a new counterexample to the
perturbation classes problem for �+.

Let us see that the inclusions in Proposition 3.1 become equalities in some cases.
An infinite dimensionalBanach spaceY is isomorphic to its square, denotedY×Y 


Y , in many cases: L p(μ) and �p (1 ≤ p ≤ ∞), c0, and C[0, 1]. On the other hand,
James’ space J and some spaces of continuous functions on a compact like C[0, ω1]
are not isomorphic to their square, where ω1 is the first uncountable ordinal. See [4,
20].

Theorem 3.1 Suppose that the spaces X and Y satisfy �+(X ,Y ) �= ∅.

1. If Y × Y 
 Y , then �S(X ,Y ) = P�+(X ,Y ).

2. If every infinite dimensional subspace of X has an infinite dimensional subspace
N such that X/N embeds in Y , then SS(X ,Y ) = �S(X ,Y ).

Proof (1) Let U : Y × Y → Y be a bijective isomorphism and let V ,W ∈ L(Y )

such that U (y1, y2) = V y1 + Wy2. If K ∈ P�+(X ,Y ), for each S ∈ L(X ,Y )

such that (S, K ) ∈ �+ we have U (S, K ) = V S + WK ∈ �+. By Proposition 2.1,
WK ∈ P�+(X ,Y ). Then, V S ∈ �+, hence S ∈ �+. Thus we conclude that
K ∈ �S(X ,Y ).

(2) Let K ∈ L(X ,Y ), K /∈ SS. By the hypothesis, there exists an infinite dimen-
sional subspace N of X such that K JN is an isomorphism, and there is an isomorphism
U : X/N → Y . Then, S = UQN ∈ L(X ,Y ) is not upper semi-Fredholm. We will
prove that K /∈ �S by showing that (S, K ) ∈ �+.

Recall that ‖QN x‖ = dist(x, N ). We can choose the isomorphism U so that
‖Sx‖ = ‖UQN x‖ ≥ dist(x, N ) for each x ∈ X . Moreover, there is a constant
c > 0 such that ‖Kn‖ ≥ c‖n‖ for each n ∈ N .

Let x ∈ X with ‖x‖ = 1, and let 0 < α < 1 such that c(1 − α) = 2‖K‖α.

If dist(x, N ) ≥ α, then ‖Sx‖ ≥ α. Otherwise, there exists y ∈ N such that
‖x − y‖ < α; hence ‖y‖ > 1 − α. Therefore,

‖Kx‖ ≥ ‖Ky‖ − ‖K (x − y)‖ ≥ c(1 − α) − ‖K‖α = ‖K‖α.

Then, ‖(S, K )x‖1 = ‖Sx‖ + ‖Kx‖ ≥ min{‖K‖α, α}, hence (S, K ) is an
isomorphism; in particular (S, K ) ∈ �+, as we wanted to show. �	

In the known examples in which SS(X ,Y ) �= P�+(X ,Y ) in [8, 10], the space Y
has a complemented subspace which is hereditarily indecomposable in the sense of
[3, 16, 17]. Therefore, the question arises.

Question 3.3 Suppose that X and Y satisfy �+(X ,Y ) �= ∅ and Y × Y 
 Y .

Is SS(X ,Y ) = P�+(X ,Y )?
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ABanach space X is subprojective if every closed infinite dimensional subspace of
X contains an infinite dimensional subspace complemented in X . The spaces c0, �p
(1 ≤ p < ∞) and Lq(μ) (2 ≤ q < ∞) are subprojective [22]. See [7, 18] for further
examples.

Corollary 3.1 Suppose that �+(X ,Y ) �= ∅ and the space X is subprojective. Then,
SS(X ,Y ) = �S(X ,Y ).

Proof Every closed infinite dimensional subspace of X contains an infinite dimen-
sional subspace N complemented subspace in X; thus X/N is isomorphic to the
complement of N .Since�+(X ,Y ) �= ∅, the quotient X/N is isomorphic to a subspace
of Y and we can apply Theorem 3.1. �	

The next result is a refinement of Theorem 3.1 that is proved using the previous
arguments.

Theorem 3.2 Suppose that �+(X ,Y ) �= ∅, Y × Y embeds in Y and every infinite
dimensional subspace of X has an infinite dimensional subspace N such that X/N
embeds in Y . Then, SS(X ,Y ) = P�+(X ,Y ).

Proof Since Y × Y embeds in Y , there exist isomorphisms V ,W ∈ L(Y ) such that
R(V ) ∩ R(W ) = {0} and R(V ) + R(W ) is closed. Hence, there exists r > 0 such
that ‖y1 + y2‖ ≥ r(‖y1‖ + ‖y2‖) for y1 ∈ R(V ) and y2 ∈ R(W ), and clearly we can
choose V ,W so that r = 1.

Let K ∈ L(X ,Y ) with K /∈ SS. Select an infinite dimensional subspace M of X
such that K JM is an isomorphism, and let N be an infinite dimensional subspace of M
such that there exists an isomorphismU : X/N → Y . We can assume that ‖Uz‖ ≥ z
for each z ∈ X/N .

The operator S = VUQN /∈ �+, and proceeding like in the proof of (2) in
Theorem3.1,we can show that S+WK ∈ �+.Then,WK /∈ P�+, hence K /∈ P�+,

by Proposition 2.1. �	
Corollary 3.2 If X is separable, Y ×Y embeds in Y , and Y contains a copy of C[0, 1],
then SS(X ,Y ) = �+(X ,Y ).

Proof It is well known that the spaceC[0, 1] contains a copy of each separable Banach
space. �	

The class �S is injective in the following sense:

Proposition 3.3 Given an operator K ∈ L(X ,Y ) and an (into) isomorphism L ∈
L(Y ,Y0), if LK ∈ �S(X ,Y0), then K ∈ �S(X ,Y ).

Proof Let K ∈ L(X ,Y ) and let L ∈ L(X ,Y0) be an isomorphism into Y0 such that
LK ∈ �S(X ,Y0). Take S ∈ L(X ,Y ) and suppose that (S, K ) ∈ �+(X ,Y × Y ).

Then, (LS, LK ) = (L × L)(S, K ) ∈ �+(X ,Y0 × Y0), where (L × L) ∈ L(X ×
X ,Y0 × Y0) is defined by (L × L)(x1, x2) = (Lx1, Lx2).

Since LK ∈ �S(X ,Y0) we obtain LS ∈ �+(X ,Y0). Therefore S ∈ �+(X ,Y ),

hence K ∈ �S(X ,Y ). �	
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4 The perturbation class for8−

Given two operators S, T ∈ L(X ,Y ), we denote by [S, T ] the operator from X × X
into Y defined by [S, T ](x1, x2) = Sx1 + T x2, where X × X is endowed with the
maximum norm ‖(x1, x2)‖∞ = max{‖y1‖, ‖y2‖}.
Definition 4.1 Suppose that �−(X ,Y ) �= ∅ and let K ∈ L(X ,Y ). We say that K is
�-cosingular, and write K ∈ �C, when for each S ∈ L(X ,Y ), [S, K ] ∈ �− implies
S ∈ �−.

Like in the case of�S, the definition of�C(X ,Y ) is similar to that of P�−(X ,Y ),

but the former one is easier to handle because the action of S and K is decoupled when
we consider [S, K ] instead of S + K .

Proposition 4.1 [2, Proposition 2.5] Suppose that �−(X ,Y ) �= ∅. Then,

SC(X ,Y ) ⊂ �C(X ,Y ) ⊂ P�−(X ,Y ).

Note that SC is an operator ideal but P�− is not; P�−(X ,Y ) is a closed subspace
of L(X ,Y ), and P�−(X) is an ideal of L(X).

Proposition 4.2 �C(X ,Y ) is closed in L(X ,Y ).

Proof Let {Tn} be a sequence in �C(X ,Y ) converging to T ∈ L(X ,Y ). Suppose that
S ∈ L(X ,Y ) and [S, T ] ∈ �−(X × X ,Y ). Note that the sequence [S, Tn] converge
to [S, T ].

Since �−(X × X ,Y ) is an open set there exists a positive integer N such that
[S, TN ] ∈ �−(X × X ,Y ). Hence, TN ∈ �C(X ,Y ) implies S ∈ �−(X ,Y ). �	
Question 4.1 Suppose that �−(X ,Y ) �= ∅.

(a) Is �C(X ,Y ) a subspace of L(X ,Y )?
(b) Is �C an operator ideal?
(c) Is Proposition 2.1 valid for �C?

Answering a question in [6], an example of an operator K ∈ P�− \ �C was given
in [2], but we do not know if the other inclusion can be strict.

Question 4.2 Suppose that �−(X ,Y ) �= ∅. Is SC(X ,Y ) = �C(X ,Y )?

A negative answer to Question 4.2 would provide a new counterexample to the
perturbation classes problem for �−.

Next we will show that the inclusions in Proposition 4.1 become equalities in some
cases.

Theorem 4.1 Suppose that the spaces X and Y satisfy �−(X ,Y ) �= ∅.

1. If X × X 
 X, then �C(X ,Y ) = P�−(X ,Y ).

2. If every infinite codimensional closed subspace of Y is contained in an infinite
codimensional closed subspace N which is isomorphic to a quotient of X, then
�C(X ,Y ) = SC(X ,Y ).
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Proof (1) Let U : X → X × X be a bijective isomorphism and let U1,U2 ∈ L(X)

such that U (x) = (U1x,U2x). If K ∈ P�−(X ,Y ), for each S ∈ L(X ,Y ) such that
[S, K ] ∈ �−(X × X ,Y ) we have [S, K ]U = SU1 + KU2 ∈ �−(X ,Y × Y ). By
Proposition 2.1, KU2 ∈ P�−(X ,Y ).Then, SU1 ∈ �−(X ,Y ), hence S ∈ �−(X ,Y ).

Thus we conclude that K ∈ �C(X ,Y ).

(2) Let K ∈ L(X ,Y ) K /∈ SC. Then, there exists an infinite codimensional closed
subspace M of Y such that QN K is surjective. By the hypothesis, there exist an
infinite codimensional closed subspace N such that M ⊂ N and a surjective operator
V ∈ L(X , M).

Observe that S = JN V ∈ L(X ,Y ) is not in�−.Weprove that K /∈ �C by showing
that [S, K ] ∈ �−(X × X ,Y ).

Indeed, note that R(S) = N . Moreover QN K surjective implies R(K ) + N = Y .

Since R([S, K ]) = R(S) + R(K ), [S, K ] is surjective. �	
In the known examples in which SC(X ,Y ) �= P�−(X ,Y ) in [8, 10], the space X

has a complemented subspace which is hereditarily indecomposable. Therefore, the
question arises.

Question 4.3 Suppose that �−(X ,Y ) �= ∅ and X × X 
 X .

Is SC(X ,Y ) = P�−(X ,Y )?

A Banach space X is superprojective if each of its infinite codimensional closed
subspaces is contained in some complemented infinite codimensional subspace. The
spaces c0, �p (1 < p < ∞) and Lq(μ) (1 < q ≤ 2) are superprojective. See [7, 12]
for further examples.

Corollary 4.1 Suppose that �−(X ,Y ) �= ∅ and the space Y is superprojective. Then,
�C(X ,Y ) = SC(X ,Y ).

Proof Every closed infinite codimensional subspace of Y is contained in an infinite
codimensional complemented subspace N . Since �−(X ,Y ) �= ∅, there exists T ∈
L(X ,Y ) with R(T ) ⊃ N , and composing with the projection P on Y onto N we get
R(PT ) = N , and we can apply Theorem 4.1. �	

The following result is a refinement of the previous results in this section.

Theorem 4.2 Suppose that �−(X ,Y ) �= ∅, there exists a surjection from X × X onto
X , and every closed infinite codimensional subspace of Y is contained in a closed
infinite codimensional subspace N which is isomorphic to a quotient of X . Then,
P�−(X ,Y ) = SC(X ,Y ).

Proof K ∈ L(X ,Y ), K /∈ SC. Then, there exists an infinite codimensional subspace
N of Y such that QN K is surjective. By hypothesis, we can assume that there exists
a surjective operator U : X → N . Then, S = JNU ∈ L(X ,Y ) is not in �−.

Moreover, [S, K ] is surjective: R([S, K ]) = R(S)+ R(K ) = N + R(K ) = Y , hence
[S, K ] ∈ �−(X × X ,Y ).

Let V : X → X × X be a surjection and let V1, V2 ∈ L(X) such that V (x) =
(V1x, V2x) for each x ∈ X . Then, [S, K ]V = SV1 + KV2 ∈ �−(X ,Y ). Since
SV1 /∈ �−, we get KV2 /∈ P�−; hence K /∈ P�− by Proposition 2.1. �	
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Corollary 4.2 If Y is separable, there exists a surjection from X × X onto X , and X
has a quotient isomorphic to �1, then SC(X ,Y ) = �−(X ,Y ).

Proof It is well known that every separable Banach space is isomorphic to a quotient
of �1. �	

The class �C(X ,Y ) is surjective in the following sense:

Proposition 4.3 Given K ∈ L(X ,Y ) and a surjective operator Q ∈ L(Z , X), if
K Q ∈ �C(Z ,Y ), then K ∈ �C(X ,Y ).

Proof Let S ∈ L(X ,Y ) such that [S, K ] ∈ �−(X × X ,Y ), and let Q : Z → X
be a surjective operator. Then, the operator Q × Q ∈ L(Z × Z , X × X) defined
by (Q × Q)(a, b) = (Qa, Qb) is surjective. Thus, [S, K ](Q × Q) = [SQ, K Q]
is in �−(Z × Z ,Y ). Since K Q ∈ �C(Z ,Y ), we obtain SQ ∈ �−(Z ,Y ), hence
S ∈ �−(X ,Y ), and we conclude K ∈ �C(X ,Y ). �	

The dual space (X × X , ‖ · ‖∞)∗ can be identified with (X∗ × X∗, ‖ · ‖1) in the
obvious way. Hence, the conjugate operator [S, T ]∗ can be identified with (S∗, T ∗).
Indeed, for x∗ ∈ X∗ and x ∈ X , we have

〈[S, T ]∗x∗, x〉 = 〈x∗, [S, T ]x〉 = 〈x∗, Sx + T x〉
= 〈S∗x∗ + T ∗x∗, x〉 = 〈(S∗, T ∗)x∗, x〉.

As a consequence, [S, T ] ∈ �− if and only if (S∗, T ∗) ∈ �+. Similarly, (S, T )∗
can be identified with [S∗, T ∗].

The following result describes the behavior of the classes of �-singular and �-
cosingular operators under duality.

Proposition 4.4 Let K ∈ L(X ,Y ).

1. If K ∗ ∈ �S(Y ∗, X∗), then K ∈ �C(X ,Y ).

2. If K ∗ ∈ �C(Y ∗, X∗), then K ∈ �S(X ,Y ).

Proof (1) Let S ∈ L(X ,Y ) such that [S, K ] ∈ �−(X × X ,Y ). Then, [S, K ]∗ ∈ �+.

Since [S, K ]∗ ≡ (S∗, K ∗), we have (S∗, K ∗) ∈ �+(Y ∗, X∗ × X∗), and from K ∗ ∈
�S(Y ∗, X∗) we obtain S∗ ∈ �+(Y ∗, X∗); therefore, S ∈ �−(X ,Y ), and hence
K ∈ �C(X ,Y ).

The proof of (2) is similar. �	
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