
Journal of Information Security and Applications 65 (2022) 103120

A
2
(

S
C
A
a

b

c

d

A

K
C
B
N
D
S

1

a
p
a
d
c
m
a
c

a
E

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

ecurity policies by design in NoSQL document databases
arlos Blanco a,b,∗, Diego García-Saiz a, David G. Rosado b, Antonio Santos-Olmo c, Jesús Peral d,
lejandro Maté d, Juan Trujillo d, Eduardo Fernández-Medina b

ISTR Research Group, Department of Computer Science and Electronics, University of Cantabria, Spain
GSyA Research Group, Technologies and Information Systems Department, University of Castilla-La Mancha, Spain
I+D+i Department, Marisma Shield S.L and Sicaman Nuevas Tecnologías S.L., Tomelloso, Spain
LUCENTIA Research Group, Languages and Computing Systems Department, University of Alicante, Spain

R T I C L E I N F O

eywords:
onceptual modelling
ig Data
oSQL
ocument databases
ecurity

A B S T R A C T

The importance of data security is currently increasing owing to the number of data transactions that are
continuously taking place. Large amounts of data are generated, stored, modified and transferred every second,
signifying that databases require an appropriate capacity, control and protection that will enable them to
maintain a secure environment for so much data. Big Data is becoming a prominent trend in our society, and
increasing amounts of data, including sensitive and personal information, are being loaded into NoSQL and
other Big Data technologies for analysis and processing. However, current security approaches do not take
into account the special characteristics of these technologies, leaving sensitive and personal data unprotected
and consequently risking considerable financial losses and brand damage. In this paper, we focus on NoSQL
document databases and present a proposal for the design and implementation of security policies in this type
of databases. We first follow the concept of security by design in order to propose a metamodel that allows the
specification of both the structure and the security policies required for document databases. We also define
an implementation model by analysing the implementation features provided by a specific NoSQL document
database management system (MongoDB). Having obtained the design and implementation models, we follow
the model-driven development philosophy and propose a set of transformation rules that allow the automatic
generation of the final implementation of security policies. We additionally provide a technological solution
in which the Eclipse Modelling Framework environment is employed in order to implement both the design
metamodel (Emfatic) and the transformations (Epsilon, EGL). Finally, we apply the proposed framework to a
case study carried out in the airport domain. This proposal, in addition to saving development time and costs,
generates more robust solutions by considering security by design. This, therefore, abstracting the designer
from both specific aspects of the target tool and having to choose the best strategies for the implementation
of security policies.
. Introduction

Large amounts of data are routinely generated and transferred by
multitude of mobile applications, social networks, scientific and

rofessional tools and websites. Current tools and technologies must be
ble to handle the scale, speed, variety and complexity of these massive
ata sets [1,2]. Moreover, data is an important and essential asset for
ompanies, public organisations and institutions. Suitable protection
ust, therefore, be guaranteed by making an effort to incorporate

dequate security or privacy measures [3–9] so as to protect these data
orrectly.

∗ Corresponding author at: ISTR Research Group, Department of Computer Science and Electronics, University of Cantabria, Spain.
E-mail addresses: Carlos.Blanco@unican.es (C. Blanco), Diego.Garcia@unican.es (D. García-Saiz), David.GRosado@uclm.es (D.G. Rosado),

solmo@sicaman-nt.com (A. Santos-Olmo), jperal@dlsi.ua.es (J. Peral), amate@dlsi.ua.es (A. Maté), jtrujillo@dlsi.ua.es (J. Trujillo),
duardo.Fdezmedina@uclm.es (E. Fernández-Medina).

One of the database technologies currently used is that of NoSQL
datastores, which are employed in the data management back-end
of several ICT applications such as Big Data owing to their high
levels of scalability, performance and consistency [10,11]. However,
despite their undeniable benefits, they have certain vulnerabilities and
there are some obstacles to their widespread adoption, particularly
with regard to security [12]. In fact, when NoSQL databases were
initially designed, security was not considered to be an important
feature [13], and the security is, therefore, provided on the middleware
and operating system levels [14].
vailable online 2 February 2022
214-2126/© 2022 The Authors. Published by Elsevier Ltd. Th

http://creativecommons.org/licenses/by-nc-nd/4.0/).

ttps://doi.org/10.1016/j.jisa.2022.103120
is is an open access article under the CC BY-NC-ND license

http://www.elsevier.com/locate/jisa
http://www.elsevier.com/locate/jisa
mailto:Carlos.Blanco@unican.es
mailto:Diego.Garcia@unican.es
mailto:David.GRosado@uclm.es
mailto:asolmo@sicaman-nt.com
mailto:jperal@dlsi.ua.es
mailto:amate@dlsi.ua.es
mailto:jtrujillo@dlsi.ua.es
mailto:Eduardo.Fdezmedina@uclm.es
https://doi.org/10.1016/j.jisa.2022.103120
https://doi.org/10.1016/j.jisa.2022.103120
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2022.103120&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Researchers and practitioners have, over the last decade, come to
recognise that security features should be incorporated by means of a
structured and systematic approach. This approach should be perfectly
coupled with the design and other requirements of the system by com-
bining principles from both software and security engineering [3,15],
in what is known as ‘‘Security by design". One possible approach that
has been widely used to incorporate security features throughout the
life cycle of a system’s development is that of model-driven devel-
opment [16–18]. The model-driven approach has been successfully
applied during the development of secure systems, thus allowing se-
curity aspects to be integrated and automatically transformed at all
levels of modelling. These ideas should also be used in secure NoSQL
databases and in systems that make use of this NoSQL technology. One
of these is Big Data, in which security efforts are currently focused on
providing specific solutions at the implementation level [19–23], when
an early identification of security requirements would generate more
robust and higher quality solutions [24].

Furthermore, NoSQL databases are designed on the basis of dif-
ferent data models. These models can be broadly classified into four
categories: key–value, column, graph-oriented and document [25]. Ac-
cording to the DB-Engines Ranking [26], MongoDB ranks as the most
popular NoSQL datastore, in addition to which it uses a document-
oriented data model. The objective of MongoDB is to increase the
horizontal scalability of the data layer with a simple development
complexity and the possibility of storing large amounts of data. NoSQL
performs very impressively when it is necessary to scale through the use
of several machines, and MongoDB is one of the NoSQL databases with
the highest performance rates [27]. The aforementioned reasons had a
great influence on our decision-making process when initially consid-
ering the possibility of focusing on document databases. Our intention
was to use MongoDB as a technological tool for their implementation
in such a way that we could also include the other data models in the
future.

A recent version of MongoDB is MongoDB Enterprise Advanced,
which was released in 2021 [28]. It has advanced security features
that support the CIA triad (Confidentiality, Integrity and Availability),
such as LDAP authentication and authorisation, Kerberos support, the
encryption of data at-rest, FIPS-compliance, and the maintenance of
audit logs. These capabilities extend MongoDB’s already comprehensive
security framework, which includes Role-Based Access Control, PKI cer-
tificates, Read-Only views for field-level security and TLS data transport
encryption. All these measures indicate the work and evolution that is
taking place in NoSQL technologies to make them more secure. These
measures cannot, however, be incorporated into all phases of the design
and development of a database, since these solutions are employed at
the implementation level, once the database has been built. This is
one of the reasons why it is necessary to provide new proposals with
which to incorporate security not only at the implementation level but
also into the design, and to be able to develop more secure and robust
NoSQL databases.

This paper provides a proposal for the design and implementation of
security policies for NoSQL document databases. Its main contributions
are the following:

– The definition of a metamodel for the design of document
databases that will make it possible to establish security policies
in an appropriate manner and relate them to the structural
elements of this type of systems. Designers will be able to use this
metamodel in order incorporate security policies from early stages
(security by design), thus abstracting them from the technical
aspects of specific tools.

– The analysis of the security policy implementation capabilities
offered by a specific document database manager (MongoDB),
the creation of its corresponding implementation model and the
definition of the most appropriate implementation strategies for
2

the casuistry found in the security policies.
– The inclusion of our proposal in a model-driven development
approach, along with the definition of transformations between
the design model and its corresponding implementation in Mon-
goDB. This approach improves development times and costs,
while facilitating its future extension to other tools and platforms.

– The creation of a technological solution for our proposal on the
basis of the Eclipse Modelling Framework tools, along with the
implementation of our design metamodel in Emfatic and the
necessary transformations in Epsilon (EGL).

– The application of our proposal to a case study concerning an
airport. This allows all the stages of the process to be observed,
from the moment at which the designer models the system and
the necessary security policies at the design level, to that at which
the model is automatically transformed to its corresponding im-
plementation in MongoDB. Verification that the solution obtained
effectively satisfies the security policies defined in the design
model.

The remainder of this paper is structured as follows: Section 2
presents an overview of our proposal. Section 3 shows the proposed
metamodel with which to design NoSQL document databases, including
the structural aspects and security policies. Section 4 presents the im-
plementation model for a NoSQL document database management tool,
MongoDB, while Section 5 shows the set of transformation rules (for
both structural elements and security policies) that allows us to convert
our design models into the implementation in MongoDB. Section 6 then
presents a case study carried out with a dataset concerning passenger
management at an airport, showing all the stages of our proposal (de-
sign model, automated transformation and verification that the security
policies modelled are effectively satisfied in the final implementation).
Section 7 discusses the proposals related to NoSQL database security
and secure development that could contribute to solving the problem
presented herein. Finally, the main contributions and our directions for
future work are explained in Section 8.

2. Proposal overview

This section describes our proposal for the design and implementa-
tion of security policies for document databases (Fig. 1).

The components of our proposal can be summarised as follows. We
first defined a specific metamodel for document databases at a level
that allows the abstraction of the technical concepts of the database
manager in which the system will eventually be implemented. This
metamodel allows the modelling of the structural aspects of document
databases (collections, simple fields, compound fields, indexes, etc.). A
role-based access control system, together with a set of security policies
that establish what actions can and cannot be performed on the collec-
tions and fields of the database, can also be modelled. Our proposal,
therefore, includes security by design, thus providing independence
from technology and implementation constraints. This means that these
restrictions are taken into account in the decisions to be made in the
subsequent development phases, thus favouring the higher quality and
robustness of the final solutions. This strategy is an improvement in the
traditional development process, in which security policies are usually
incorporated once the database has been built. This later inclusion
limits the security capabilities that exist in the database manager, and
means that modifications cannot be made to an already planned design
(or that those which are made generate extra effort and cost).

We then followed the model-driven development philosophy to
design a set of transformation rules with which to automate the final
process of implementing the database in a specific tool. The character-
istics and limitations of the target tools made it necessary to first define
an implementation model for the target tool and to carry out an analysis
of the most appropriate implementation strategies (views, projections,
etc.). This information was then used to define the transformation rules

required in order to generate the corresponding implementation in the



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 1. Overview of our proposal.
target tool, which is based on the design model. This implies savings
as regards costs and development time, while improving the final
quality, thus ensuring that the established security policies are properly
implemented. In this paper, we have considered MongoDB as the target
database manager, as it is the most widely used in NoSQL databases.
In this sense, we have designed a set of transformations to generate the
corresponding MongoDB implementation from the design model. The
incorporation of other implementation options in our proposal (other
document database managers such as CouchDB) is identified as future
work, being necessary to define a new set of transformations for each
new manager to be incorporated.

Once the models and the transformations required to generate
their corresponding implementation had been defined, it was necessary
to create a technological solution with which to support the model-
driven development process. This was done using the tools provided
by Eclipse (the Eclipse Modelling Framework), implementing the meta-
model in Ecore (using the Emfatic textual syntax) and the design model
transformations in Epsilon (EGL).

From the designer’s point of view, the steps required in order to
use our proposal are the following. First, the designer creates a design
model of the system, including both the structural aspects and the
necessary security policies. This model is defined according to our
metamodel. The designer then selects which target tool s/he wishes to
use (in this case, MongoDB), and the corresponding set of transforma-
tions is executed. This automatically generates the implementation of
both the structure and the security policies of the document database.
This approach facilitates the designer’s work, since we employ a simpler
design model that frees him/her from the need to know technical
aspects of specific tools and from having to make decisions regarding
correct implementation strategies, since the transformations are in
charge of managing these aspects.

3. Modelling secure policies in document databases

This section shows our proposal for a metamodel for document
databases that allows the designer to model the document database at a
level of abstraction that is independent of the technical implementation
details (Fig. 2). This metamodel includes both the structural aspects
specific to this type of systems and security elements that allow the
establishment of security policies that are adjusted to its characteristics.
We have also designed a set of restrictions with which the models must
comply, which were created in accordance with this metamodel and
will be defined at the end of this section (Table 1).

The elements considered in the metamodel have been identified
through an analysis of the needs in the design of document databases,
as well as an analysis of the characteristics offered by the manage-
ment tools of this type of databases for their implementation. From a
higher level of abstraction (conceptual level) we identified the concepts
needed to represent the structure and security of a document databases.

In order to specify the structure of the document database we need
to include elements such as collections, fields, identifiers or data types.
3

Furthermore, we also need to include one aspect that this kind of
systems considers and that is the possibility of defining simple and com-
posed fields, so that in turn, composed fields can be formed from other
simple or composed fields. This modelling problem can be addressed
with a classical design pattern called composite [29]. This pattern pro-
poses its modelling with a generalisation (Field) specialised in simple
elements (SimpleField) and composed elements (ComposedField), and
an association that indicates that each composed element can be formed
in turn by several Fields (SimpleField or ComposedField).

On the other hand, in order to establish the security policy of the
system, we need to use an access control method that allows us to
classify the subjects and objects of the system and to associate security
privileges to them. In this sense, we have opted for a role-based access
control (RBAC) as it is widely accepted in the industry and it is used
by practically all document database management tools. In this sense,
users are grouped into roles that define security privileges on certain
elements (collections or fields) and certain actions (the usual ones
in databases: read, insert, update, delete). To facilitate the designer’s
work and avoid conflicts between security rules, we consider an open-
world system where the designer has to specify only the security rules
that deny certain privileges on certain elements to certain roles. Our
proposal will then generate at the implementation level the positive
and negative security rules needed to implement the system. From a
lower level of abstraction, we analyse the features offered by docu-
ment database management tools for the implementation (of both the
structure and security of the system) and move up the abstraction
level to obtain a common metamodel. Our metamodel contains the
necessary information to generate the corresponding implementation
in concrete tools, such as MongoDB. For instance, in this analysis we
have identified structural aspects such as collection ids, data types, etc.
and security aspects such as the security actions that can be applied
(hide instances, hide fields, etc.).

Now, the proposed metamodel are described in more detail. The
structural aspects (represented at the top of the figure) make it possible
to model a document database (Database) through the use of a set
of collections (Collection), which can, in turn, contain a set of fields
(Field). For each field, it is possible to indicate the associated informa-
tion regarding whether it is obligatory (required) and or it has intrinsic
restrictions (constraint). Each field can, in turn, be simple (SimpleField)
or composed (ComposedField). A simple field represents an attribute
or a property with a value, which must be one (or various) of the
types of data indicated as being permitted for that field (DataType). For
example, a personal identification field can permit values of the type
‘‘string’’ and ‘‘int’’. It is also necessary to highlight that there are two
special types of data: the arrays, which make it possible to represent
sets of values, or the enumerations, which make it possible to establish
a set of possible values. In our proposal, these values are indicated by
means of a restriction of the field. It is also possible to define composed
fields (ComposedField), which are structures formed of various fields,
be they simple or composed. This concept is represented in the model
by applying the Composite design pattern to the Field, SimpleField and



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 2. Metamodel for secure policies in document databases.
ComposedField classes. Furthermore, each collection is identified by
one or various identifiers (Id), which are, in turn, formed of one or
various simple fields (SimpleField).

The other elements in our metamodel (bottom of the figure) are re-
lated to aspects of security, which allow us to establish security policies
regarding the structural elements of the document database. We have
employed a role-based access control (RBAC) policy for this task, since
it allows us to establish security policies in a manner appropriate to
this type of systems. Moreover, this strategy is chosen and supported by
practically all document database management tools. Our metamodel
makes it possible to establish a hierarchy of roles by making use of the
Role metaclass and of its references to the parent (root) and children
(children) elements. The User metaclass can then be employed to define
specific users to whom a set of roles is assigned, such as a name, a
password and, if necessary, additional fields of information.

We then establish a set of security policies that correctly manage the
user privileges. This is done by considering an open-world approach
in which all actions are permitted unless there is a security policy
that explicitly withdraws permission for specific actions to be carried
out. The open-world approach is appropriate for document databases,
since these databases are oriented towards the massive use of data and
it is, by default, necessary to allow access to them. Our metamodel
has a metaclass whose purpose is to define the security privilege
(RevokePrivilege), which allows the designer to indicate which policies
for which objects are revoked for which subjects. The possible privi-
leges are reflected in the ActionType enumeration and correspond with
the reading (find), creation (insert), modification (update) and delete
(delete) operations.

The objects that are affected by the security policy can be used as
a basis on which to differentiate two types of rules: those that affect
the complete collections and those that affect their fields. These can
be considered as fine-grained rules that make it possible to represent
more specific security constraints. In order to represent these two types
of privileges and their singularities, the RevokePrivilege metaclass has
been specialised into RevokeCollectionPrivilege and RevokeFieldPrivi-
lege. A security policy defined at the collection level, therefore, allows
us to remove policies for a set of roles concerning certain actions (read,
create, modify or delete). For example, in the case of a very simple
database related to purchases with Customer and Order collections, we
could withdraw from a certain role the actions of creation, modification
and deletion as regards the Order collection.
4

With regard to the fine-grained security policies, the main difference
(apart from the type of objects that they affect, which are now fields
rather than collections) lies in the fact that they also make it possible
to establish a greater variety of security actions (securityAction), which
will be carried out if the rule that has been defined is fulfilled. It is
possible to: hide the values affected (the cells) by writing a null value
in their place using the HideValue action; hide all the values in this
field (by writing null in all the cells in that field) using HideAllValues;
hide the field affected by all the instances (the complete column) using
HideField, or hide the instances affected (the rows) using HideInstance.
This last action (HideInstance) can also be used in policies at the
collection level. Moreover, some of these security actions make it
possible (by using an OCL expression) to establish a condition for the
data, which will be evaluated in execution time.

To continue with the previous example, let us now focus on a hypo-
thetical field that indicates whether a customer’s request is confidential
(by means of a Boolean value of true or false) and use this as a basis on
which to describe the effects of applying one of these security actions:

– hideValue would modify all those fields referred to by null values
in the rule. It would, for example, be possible to refer the rule to
the fields ‘‘names’’ and ‘‘surnames’’ and to hide those values if the
condition of the request being confidential was fulfilled.

– hideAllValues would write a null value in all those cells that
referred to the field affected by the rule. We could, for example,
focus on the confidential field and change all the values for null
values, such that it would not be possible to infer which were
confidential and which were not.

– hideField would act in a similar manner, but would completely
hide the confidential field, such that we would see all the requests
but would not know of the existence of the confidential field.

– hideInstance would hide the complete instance, such that if we
were to establish the need to hide confidential requests as a
condition, it would show only those instances and data that were
not confidential.

The proposed metamodel is complemented with a series of restric-
tions that all the models specified must satisfy in accordance with the
metamodel. These restrictions are shown in Table 1, together with
their implementation in OCL, where CO1 is a structural restriction
whose purpose is to seek uniqueness as regards the names of certain



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Table 1
Restrictions that must be fulfilled according to the metamodel.

Table 2
Implementation of metamodel for document databases.

elements. The purpose of the other restrictions (CO2, CO3 and CO4) is,
meanwhile, to seek the correct definition of the security policies.

Finally, our metamodel has been implemented in Ecore (Eclipse
Modelling Framework) using the Emfatic textual syntax (Table 2).

4. Implementation model for MongoDB

This section shows the model of the document database system at
a level of detail that allows its implementation in a specific document
database manager: MongoDB. This model describes the structural and
security elements available in the MongoDB document databases, and
its objective is to assist the automatic transformation process of the
5

database. We have consequently established the most appropriate im-
plementation strategy for each of the elements that were defined in a
more abstract manner in the previous model. Our proposal, therefore,
frees the designer from the need to know the lowest level of details
regarding implementation in specific database managers and from hav-
ing to select the best strategy, which may lead to security errors if
not performed correctly. The implementation model is described by
separating its elements into two models: one containing the structural
aspects (Fig. 3) and the other containing the security aspects (Fig. 4).

With regard to the structural part (Fig. 3), note that the princi-
pal element of the database (Database) is the collection (Collection)
whose structure is described on the basis of the properties of which
it is composed (Property) and whether or not they are required. Each
property can, in turn, be defined as: a simple field (SimpleField) with
a type of associated data; an enumeration (EnumField) with a set of
permitted values; an array of values of a particular type (ArrayField),
or a composed field (ComposedField) with various properties that can,
in turn, be simple, enumerated, arrays or composed fields. Each of these
properties can be associated with expressions that have conditions that
must be fulfilled (Condition). There are also the indices (Index), which
have been defined for a particular collection and are composed of a set
of properties. The use of these elements makes it possible to implement
the structural aspects defined in our metamodel: databases, collections,
ids, simple and composed fields, constraints, data types, etc.

With regard to the security aspects (Fig. 4), on the one hand there is
the concept of view (View) for a collection. If it is not desirable for the
view to contain all the properties in the collection, then it is possible to
carry out a projection indicating which properties belong to the view
and which do not. It is also possible to establish conditions for each
property. It would, for example, be possible to show only a customer’s
name, surname and age, and not their address. On the other hand, if
it is desirable for the view to contain only certain instances, which
makes it possible to establish expressions containing the condition to
be evaluated. It would, for example, be possible to indicate that only
customers over 18 years of age can be shown. The combination of these
two strategies permits the implementation of several of the security
actions defined in the metamodel: hiding fields, instances or fields and
instances.

It is also possible to establish a hierarchy of roles (Role) and
to indicate the privileges that each role has on the basis of which
actions (find, insert, update, remove) are authorised for which resource
(collections or views). Finally, it is possible to define a set of users
(User) of the document database manager, indicating their usernames
and passwords, and assigning each of them to one or more roles from
which they will inherit their security policies.

The use of these elements enables the implementation of the RBAC
system defined in the metamodel, along with the authorisation rules.
The correct implementation of the security policies defined in the meta-
model is not, however, a trivial task, since it must be done on the basis
of the elements available in the final tool, MongoDB. It is, therefore,
necessary to establish a strategy based on the creation of roles and
views, and to represent the semantics of the security policies (permitted
actions, security actions, etc.) in the most appropriate manner.

5. Generating a secure implementation from models

The previous two sections show a metamodel for document
databases with which to represent both structural and security aspects
at a high level of abstraction. They also show an implementation model
that represents the strategies present in document database manage-
ment systems (in this case, MongoDB) at a low level of abstraction for
the implementation of structural and security aspects.

This section shows the definition of the transformations required
in order to employ the high-level document database models (defined
in accordance with our metamodel) so as to automate the secure
implementation process in a specific database manager. In this case,
the tool considered is MongoDB. The transformations carried out will
be grouped into those that manage the structural or security aspects of
the database.



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 3. Implementation model for MongoDB: structural concepts.
Fig. 4. Implementation model for MongoDB: security concepts.
5.1. Structural transformations

The first rules to be applied to the model are those in the set of
transformation rules for the structural aspects (Fig. 5). These are in
charge of generating the database, collections and fields in accordance
with the information in the model. Once the database has been created
(Database2Database transformation), the collections are processed, one
by one (Collection2Collection transformation), in order to create both
the corresponding collection and a JSON schema for validation pur-
poses. The collection fields are then analysed in order to discover those
6

that must be added to the validation schema and thus represent their
restrictions (Field2Required transformation).

A detailed analysis of the fields in the collection is subsequently
carried out (Field2Property transformation). A property containing all
the information necessary as regards the name of the field, the restric-
tions to be applied and the types of data that are admitted (simple,
enumeration, array or composed) is then created for each one. In the
case of the admitted data type, the transformation is served by two
auxiliary rules whose purpose is to process the simple and complex data
types.



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 5. Transformation rules (structural aspects).
Fig. 6. Graphical notation for the SimpleField2Property relation.
The transformation in charge of processing the properties with
simple data (SimpleField2Property transformation) is represented in
Fig. 6 using the graphical syntax specifically proposed by the OMG
Query View Transformation language. This makes it possible to see how
the transformation seeks determined elements in the base model (on
the left-hand side of the figure) and generates another set of elements
in the output model (on the right-hand side of the figure). In this case,
a simple transformation is shown. When provided with a Simple Field
containing information related to its name, permitted data type and
constraints that belongs to a determined collection and database, it
generates a Property in the output model. This property contains said
information and is also associated with said database and collection,
although in this case it forms part of the validation schema of the
collection. This transformation processes the fields containing a basic
data type (int, char, String, etc.), an enumeration data type or arrays
of basic data types.
7

The composed data types are processed in a similar manner (Com-
posedField2Properties transformation), although, since they are in turn
composed of properties (simple or composed), each of them must be
analysed anew (for the Field2Property transformation). Finally, the
indices of each collection (Id2Index transformation) are created, and
each collection may, in turn, have various indices composed of various
simple fields.

5.2. Security policies transformation

Once the structural elements of the document database have been
generated, the following set of transformations (Fig. 7) is in charge of
defining the security elements required to ensure the correct fulfilment
of the security policies defined in the model.

It is first necessary to analyse the hierarchy of the roles defined in
the model in order to generate that configuration at the implementa-
tion level (Role2Role transformation). It is then necessary to discover



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 7. Transformation rules (security policies).
whether associated security policies have been defined for each role in
each collection, and what those policies are, in order to choose the best
implementation strategy (Collection2Privileges transformation). This
transformation is represented in greater detail in Fig. 8. Note that the
transformation selects the set of policies (RevokePrivilege) associated
with a specific role (rName) and a specific collection (cName) from the
base model (left-hand side of the figure). This set of policies contains
both policies at the collection level that refer to that collection and
policies defined at the field level that refer to fields in that collection.
In the output model (right-hand side of the figure), a resource to which
more specific information will later be added (the creation of views, if
necessary, the establishment of permitted actions, etc.) is generated for
the appropriate role and collection. According to the types of policies
that are associated, it is possible to find various situations in which
different actions must be taken when establishing the implementation
strategy required in order to respect these security policies. A specific
transformation is available for each of these situations, such that once
the situation in question is known, the generation of the code is
delegated to that transformation (bottom of the figure).

The possible situations that could be encountered, along with the
implementation strategies that must be applied, are the following:

– Without security policies. The role has no security policy asso-
ciated with it for that collection (WithoutRevokePrivileges2Grant
AllActions transformation). This is the simplest situation. In this
case, it is necessary only to aggregate privileges regarding the
resource that represents the collection with the information con-
cerning the role, granting it all the actions (find, insert, update,
remove).

– Only security policies for collections. The role has policies
associated with the collection, but only with those policies (of the
RevokeCollectionPrivilege type) that affect the collection in its
entirety (OnlyRevokeCollectionPrivileges2GrantedActions trans-
formation). In this case, similar action is taken, although permis-
sion is granted only for those actions that have not been revoked
by the rule. If a security action of the HideInstance type is defined
for the rule, then it will also be necessary to use an auxiliary
rule (HideInstance2Match transformation) in order to implement
a view with a filtering condition.
8

Table 3
Implementation of HideAllValues2Projection transformation.

– Only security policies for fields. The role has policies associated
with the collection, but they are only fine-grained policies (of the
RevokeFieldPrivilege type) that affect fields in the collection (On-
lyRevokeFieldPrivileges2View transformation). MongoDB permits
several implementation mechanisms, and in this case, we select
the mechanism employed for the creation of views. Views restrict
the permitted action to solely ‘‘find’’ (and the other actions



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 8. Graphical notation for the Collection2Privileges relation.
Fig. 9. Graphical notation for the HideAllValues2Projection relation.
will, therefore, be omitted), but allow us to establish the var-
ious security actions associated with the fine-grained rule by
using ‘‘projections’’ (for the HideValue, HideAllValues or Hide-
Field security actions) or ‘‘match’’ (for the HideInstance secu-
rity action). This is done using various auxiliary rules (HideIn-
stance2Match, HideValue2Projection, HideAllValues2Projection
and HideField2Projection transformations). Fig. 9 shows more
details of one of these auxiliary rules (HideAllValues2Projection)
which, given one or various fields, is in charge of carrying out a
projection containing an indication that all the values are null.

– Security policies for collections and fields. The role has poli-
cies associated with the collection and they are of both types,
at the collection and at the fine-grained levels (RevokeCollec-
tionAndFieldPrivileges2View transformation). In this case, as we
are limited by the implementation characteristics provided by
MongoDB, it is necessary to follow a strategy similar to the
9

previous one. We, therefore, establish a view in which we deal
with the policies at the field level, along with their associated
security actions. However, we omit the policies defined at the
collection level, since the fine-grained policies that have been
defined prevail over them.

In the last step, the specific users are aggregated with each of
the roles defined (User2Role transformation). In this case, the name
and password of each user and, optionally, a set of fields containing
additional information related to the user, are indicated.

Having defined the transformations, we implemented them by using
the Epsilon package, specifically EGL (Epsilon Generation Language).
Table 3 shows an example of the implementation in EGL. In this
example, it will be noted that various relations from the structural part
of the document database in charge of generating the collections have
been coded in the same EGL rule in order to indicate the fields required



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
and to process the simple fields. Other EGL rules would process the
composed fields and generate the indices, just as another set of EGL
rules would deal with the security aspects.

6. Case study

This section presents an example that allowed us to verify the
applicability of our proposal. The example employed concerns a doc-
ument database at an airport, and principally handles information
regarding passengers and flights. Various security policies were, there-
fore, defined for it. This example will show how the three phases in
our proposal were applied. It was first necessary (Phase 1) to model
the database according to our metamodel (Section 6.1). It was then
necessary (Phase 2) to apply the transformations defined in order to
automatically generate a secure implementation (Section 6.2). Finally
(Phase 3), we discovered that the solutions obtained respected the
security policies defined (Section 6.3).

6.1. Design

The designer first modelled the document database using the meta-
model defined in this paper. This made it possible to represent both
the structural concepts (collections, simple and composed fields, iden-
tifiers, restrictions, etc.) and the security policies (configuration of
roles, permissions for collections or fields, security actions, etc.). The
model developed was then described, and was separated into that part
of the model representing the structural aspects (Fig. 10) and that
representing the security aspects (Figs. 11–13).

When focusing on the structural aspects (Fig. 10), it will be noted
that various collections have been modelled. The passenger collection
(Passenger) contains the passengers’ personal information (name, ad-
dress, age), along with information regarding whether or not they are
suspicious (suspicious) and their level of risk (low, medium or high). It
also contains information concerning the set of journeys in which each
passenger is involved. Each journey is a collection (Trip) containing
various associated data (the cost, seat number, whether they have
checked in, whether they have boarded and the flight identification
number). Each piece of baggage is, in turn, a collection containing
identifying information: its weight, whether it has been inspected and
whether it is suspicious.

The flights are represented in another collection (Flight), which
contains information regarding the purpose of the flight (commercial or
military), the passengers, the crew, the aircraft used, and the date and
place of departure. These elements are, in turn, collections containing
associated data, such as Place, which make it possible to know the gate,
terminal, airport, city and country. Each flight collection additionally
contains tracking information, which is represented as a set of tracking
values obtained at specific instances. These tracking values are the date
and the time, height, longitude, latitude and speed, and are grouped
together in a composed field (TrackInfo).

The following figures correspond to the part of the model that spec-
ifies the security aspects (Figs. 11–13). We have defined a hierarchy of
roles (Fig. 11), which is used to classify the users of the database and to
define the security policies. There is a main role User that is specialised
into passengers (Passenger) and the airport staff (Staff), which is, in
turn, specialised into administrators (Admin) and security personnel
(Security). The User and Staff roles have been defined as abstracts, such
that it is possible only to create instances of the leaf nodes (Passenger,
Admin and Security).

We define a series of security policies that we wish the document
database system to satisfy (Figs. 12 and 13) .

The security policies are the following:
10
– Security policy 1. The only people who can carry out the inser-
tion, modification and delete actions for the flight (Flight) and
place (Place) collections are the administrators, while the read
action can be carried out by any user. This has been modelled
by defining a collection security policy (FlightAndPlaceInforma-
tion). This revokes permission from roles other than that of
the administrator (Passenger and Security) as regards the inser-
tion, modification and deletion of information concerning the
collections in question (Flight and Place).

– Security policy 2. The passengers can consult information re-
garding flights only if the flights do not have a military purpose,
while the airport personnel can consult information regarding all
flights. We have defined a security policy (FlightPurpose) asso-
ciated with the passenger role. This hides those flight instances
(HideInstance security action) that fulfil the condition of being
flights with a military purpose.

– Security policy 3. The information regarding the passengers (per-
sonal data, flights, baggage) can be consulted, inserted, modified
or deleted only by members of the airport staff (administrators
or security personnel) and never by the passengers themselves.
We have established a security policy at the collection level (Pas-
sengerInformation) that revokes permission from the passengers
as regards carrying out any type of action on the Passenger
collection.

The fine-grained security policies specify security policy 3 in more
detail. This means that it is defined at the collection level and indicates
that the information concerning passengers can be processed only by
the airport staff (administrators and security personnel). This specifi-
cally provides more limits as regards the information about passengers
that the administrators can consult. The fine-grained security policies
are the following:

– Fine-grained security policy 3.1. This policy specifies that, of
the airport staff, the security personnel can consult information
about all the passengers, but the administrators can consult infor-
mation about only those that do not imply a security risk (who
are not catalogued as being suspicious or high risk). They cannot
see the names or addresses of the others (those that do imply a
security risk). A security policy (PassengerSuspicious) has been
established for the administration role. This acts on the name
and address fields and hides the values in question (HideValue
security action) if the condition of the passenger being suspicious
or high risk is fulfilled.

– Fine-grained security policy 3.2. The information regarding
the passengers’ baggage can be consulted only by the security
personnel and not by the administrators. A security policy (Bag-
gage) has been established for the admin role that completely
hides the baggage field (HideField security action). This security
action allows administrators to consult the information regarding
passengers and observe their journeys but not their associated
baggage, or even know of its existence. That is to say, it is not
the case that they will see various pieces of baggage with null
values, but rather that they will not even know that there is an
array of baggage associated with the journey.

– Fine-grained security policy 3.3. The administrators are not
allowed to know the passengers’ ages. A security policy (Pas-
sengerAge) has been established that acts on the administrators,
modifying the values of the passenger age field with null values
(HideAllValues security action).

6.2. Application of transformation rules for the automatic generation of the
implementation

This subsection shows how the transformation rules were applied to
the document database used in the airport case study (Figs. 10, 11, 12
and 13). Upon applying these transformations, we automatically obtain
their corresponding implementation in MongoDB.



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 10. Case study: structural elements.
Fig. 11. Case study: hierarchy of security roles.
Fig. 12. Case study: security policies.
Fig. 13. Case study: fine-grained security policies.
11
Structural transformations

The first step consisted of generating the implementation of the
structure of the document database (collections, fields, etc.) after hav-
ing applied the set of transformation rules that handle the structural
aspects (Fig. 5).

Once the database for the airport had been created, each of the col-
lections in the model was processed in order to generate the code corre-
sponding to that collection, together with its validation schema (Collec-
tion2Collection transformation). A list of the fields that were required
was then added to this schema (Field2Required transformation). The
information (name, data type and restrictions) concerning each simple
or composed field related to the collection (SimpleField2Property and
ComposedField2Property transformations) was also added.

Fig. 14 provides an example of how the SimpleField2Property trans-
formation was applied to the enumerated field ‘‘riskIndex’’ in the
‘‘Passenger’’ collection. This made it possible to generate a property
with the same name and type in the output model in the validation
schema of the ‘‘Passenger’’ collection, in which the values that the
enumerated field can take are reflected in the condition of the property.



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 14. Application of the SimpleField2Property transformation.
Fig. 15. JSON validator for Passenger collection.

After processing the collections, it was necessary to create the
indices required (Id2Index transformation). Fig. 15 shows the code
generated for the Passenger collection, in which it is possible to see the
validation schema. This indicates all the fields of which it is composed
(property), together with their identifying names and the types of data
allowed (bsonType). We should highlight that the riskIndex field is
declared as a type of enumerated data in which the restriction has been
specified as being the set of values that can take that enumeration.
Moreover, the validation schema indicates that all the fields in the
collection are required (indicated in required).

Security policy transformations

After generating the implementation of the structure of the doc-
ument database, the set of transformations in charge of the security
aspects acts (Fig. 7). The transformation is initiated by generating the
hierarchy of roles defined in the model (Role2Role transformation).
In this case, a role will be generated for User, Staff, Admin, Security
and Passenger, although User and Staff are abstract and will not have
users assigned to them. An analysis of each of these roles with their
12
users (Security, Passenger and Admin) will be carried out as follows in
order to show the set of authorisation rules associated with them. They
will then be used as a basis on which to automatically apply an imple-
mentation strategy (Collection2Privileges transformation supported by
transformations for each situation).

Let us begin with the Security role. It will be noted that it affects
only a security policy associated with the Flight and Place collections
(RevokeCollectionPrivilegeFlightAndPlaceInformation). Fig. 16 shows
how the Collection2Privileges transformation is applied to the Security
role and the Place collection. This situation corresponds to the case of a
role being associated only with collection-level security policies, and it
is granted permissions for actions that have not been revoked, signify-
ing that it invokes the OnlyRevokeCollectionPrivileges2GrantedActions
transformation.

Fig. 17 shows the code generated. Note that the Security role has
been granted privileges to execute all the actions (find, insert, update,
remove) for all the collections, with the exception of the Place and
Flight collections, for which it can execute only the Find action. This
is owing to the fact that the rule that affects it withdraws the Insert,
Update and Remove actions for those collections.

We shall now analyse the Passenger role, which is associated with
three of the security policies defined at the collection level. Let us
return to the previous case, which is affected only by collection-level
policies (OnlyRevokeCollectionPrivileges2GrantedActions transforma-
tion), although it implies several more complex transformation rules.
The code generated is shown in Fig. 18.

There is a security policy (FlightAndPlaceInformation) for the Flight
and Place collections that withdraws the Insert, Update and Remove
actions from Passenger for these collections. This is indicated in the
code representing the fact that the Find action is the only one permit-
ted. Another similar policy (PassengerInformation) withdraws all the
actions for the Passenger collection. This collection is represented in the
code because it does not include that collection within its privileges. Fi-
nally, another policy (FlightPurpose) limits the consultations regarding
Flight to only those flights whose purpose is not military. This imple-
mentation is carried out by generating a view (SecurityAction2Match
transformation) called Flight Passenger in which a projection showing
all the fields in a collection is carried out. There is also a match that
filters those views whose Purpose field has a value of ‘military’. This
implementation is shown in 19.

Finally, we shall analyse the Admin role, which is affected by
three fine-grained security policies (RevokeFieldPrivilege) that affect
the fields in the Passenger and Trip collections. In this case, and as is
shown in Fig. 20, all actions are authorised for all the collections, with



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 16. Application of Collection2Privileges transformation.
Fig. 17. Security role with only find security policies in Place and Flight collections.

the exception of Passenger and Trip, for which only the Find action is
granted. Each security policy is then analysed at the level of the field
that affects the role in order to generate the views required for their
implementation (OnlyRevokeFieldPrivileges2View transformation).

One of the security policies (RevokeFieldPrivilegeBaggage) hides
the Baggage field in the Flight collection (HideField security action).
Fig. 21 shows how it is implemented using a view with a projection
that shows all the other fields in the Flight collection except Baggage.

Another security policy (PassengerAge) affects the Passenger col-
lection by indicating that the values regarding the passengers’ ages
must be hidden (HideAllValues). Fig. 22 shows how the HideAllVal-
ues2Projection rule is applied to that security policy, creating a view
with a projection in which the Age field always shows a null value.

Another security policy that is related to the same collection (Pas-
sengerSuspicious) hides the values of the name and address fields
(HideValue) if the passenger is suspicious or has a high risk index.

The implementation of both security policies is shown in Fig. 23, in
which the view created for the Admin role and the Passenger collection
carries out a projection in which the Age field is always null and in
which the Name and Address fields show their original value or a null
value, depending on whether they fulfil the condition established (null
if suspicious is true or if riskIndex is high).

Finally, it is necessary to create the users of the database defined in
the model associated with a specific role, and assign that role to them
(User2Role transformation). This is shown in the example in Fig. 24.
13
6.3. Security policies fulfilment

In this Section, we explain how the implementation of the security
policies generated from the transformation process works. Fig. 25
shows the information that a user with the Security role has retrieved
from the Passenger collection using the ‘‘find’’ operation. In this case,
given that the Security role has no security policies defined for this
collection, all information about all passengers is shown.

However, given that the Admin role has restrictions as regards
the Passenger collection, the information retrieved by a user who has
this role will be different. This scenario is shown in Fig. 26, which
illustrates that, in the case of the Admin role, the find operation must
be performed for the Passenger admin view created in Section 3,
given that this role is not permitted to apply a find operation directly
to the Passenger collection. As will be observed, the ‘‘age’’ value is
hidden with a null value for all passengers. The name and address
fields are also hidden for the passenger with id 5201950 because his
risk index value is high, thus fulfilling the PassengerSuspicious and
PassengerAgesecurity security policies defined for this role in Section 3.

Fig. 27 shows the information obtained by the Security role when
performing a find operation for the Flight collection. Given that this
role has no security policies defined for it that affect the Flight collec-
tion, all data from all flights can be accessed without restrictions.

However, the Passenger role had a security policy for the Flight
collection, which does not allow it to retrieve data regarding military
flights. Fig. 28 illustrates the results obtained after performing a find
operation for the Flight_passenger view, given that the Passenger role
cannot directly access the Flight collection. As will be noted, the flight
with _id 23162 is not shown because its purpose is military, as shown
in Fig. 27.

Finally, the information retrieved from the Flight collection by the
Security role is shown in Fig. 29. As occurred previously, this role has
access to all data without restrictions. Fig. 30 shows the results of the
same operation executed by the Admin role. The difference is that, for
this last role, the ‘‘baggage" field is fully hidden, as required by the
Baggage security policy defined in Section 3.

6.4. Lessons learned

The application of our proposal to the case study has allowed us
to validate its applicability as well as to detect and improve several
aspects.

On the one hand, we have been able to check how a designer can
specify the structure and security policies of the database in a simple



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 18. Passenger role with only find security policies in Place and Flight collections and without any policy in Trip and Passenger collections.
Fig. 19. View to enable Passengers to retrieve filtered Flights.

Fig. 20. Admin role with find permissions limited for the views created from Passenger
and Flight collections.

Fig. 21. View employed to filter Trip data for Admin role.

way using our metamodel. It can be seen how the case study models
(Figs. 10, 11, 12 and 13) are much more concise and visual than the
system implementation. For example, each security policy is modelled
14
as a class with several attributes and at the implementation level
requires the definition of privileges, views, projections, etc. Moreover,
being models independent of the target tools, the designer is freed from
knowing details about the syntax and strategy to be followed for its
correct implementation in a given document database manager.

On the other hand, the case study has allowed us to analyse alter-
natives for the modelling and implementation of each structural and
security aspect and to select those most beneficial for the use of our
proposal by the designer.

Initially, we started by adopting a mixed strategy for the repre-
sentation of security policies that allowed us to define in the same
model both rules that grant privileges and rules that revoke them.
This aspect gives flexibility in modelling but also makes the designer
worry about conflicts between positive and negative rules and their
consistency. In favour of facilitating modelling, we finally decided to
adopt an open-world approach in which the designer only indicates the
revoked privileges and from them the necessary positive and negative
permissions are generated at the implementation level. For example,
the rule ‘‘FlightAndPlaceInformation’’ (Fig. 12) indicates that insert,
update and remove privileges are denied for the Flight and Place
collections. At the implementation level, this is represented by several
policies (one per collection): one to grant read privilege to Flight, one
to grant read to Place, and several to grant read, insert, update and
remove to the other collections.

Another aspect we analysed was the inclusion of the possible se-
curity actions that can be associated with a revoke privilege (hide
instance, hide value, hide all values or hide field). Depending on
whether the revoke privilege is associated with collections or fields, you
can apply different security actions. We evaluated several alternatives,
from the use of an enumeration to a specialisation of the security
actions in two subtypes (collection and field). Moreover, some of these
actions can only be applied to the read privilege. For these reasons,
we finally chose to use an intermediate solution in which we modelled
the security actions with inheritance and added to the metamodel the
necessary constraints to control the exceptional cases.

Furthermore, when developing the transformation rules from the
models to their corresponding implementation, we added minor
changes to the metamodel that would facilitate the flow of application
of these rules. For example, we made the association between Role and
RevokePrivilege navigable in both directions, which makes it easy to
obtain all the rules associated with a given role.

7. Related work

Addressing security early in a software development project has the
potential to avoid, fix and correct security flaws in the later stages of
development. Security issues should ideally be addressed as early as



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 22. Application of the HideAllValues2Projection transformation.
Fig. 23. View to filter Passenger data for Admin role.
Fig. 24. Security user with the security role assigned.

Fig. 25. Find operation in Passenger collection by using Security role.
15
Fig. 26. Find operation in Passenger_admin view by using Admin role.

the software analysis and design phase. This is the core principle of
‘‘Security by design’’, which is advocated by industry and academia [30,
31], although new ‘‘security-by-design’’ proposals are appearing in dif-
ferent environments such as Big Data [32], Cloud Computing [33,34],
IoT [35] and Cyber–physical Systems [36,37]. There are also proposals
as in [38] where the authors present a novel security-by-design method-
ology based on Security Service Level Agreements (SLAs), which can
be integrated within modern development processes and that is able
to support the risk management life-cycle in an almost-completely
automated way.



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
Fig. 27. Find operation in Flight collection by using Security role.

Fig. 28. Find operation in Flight_passenger view by using Passenger role.

Fig. 29. Find operation in Trip collection by using Security role.

Fig. 30. Find operation in Trip_admin view by using Admin role.

Model-Driven Security [17] is an approach that can support the
process of modelling security requirements [39] at a high level of
abstraction in the early stage of software development before the
transaction process and the generation of codes, thus increasing the
16
level of system quality [40]. In this context, some of the best known
proposals are UMLSec [41] and SecureUML [42], among others [43].

Several initiatives have been proposed in order to incorporate se-
curity into the software development life cycle (SDLC) by using dif-
ferent software models. Some initiatives propose that modifications
be made to the traditional lifecycle by incorporating security activi-
ties or tasks [44] with the aim of creating enhanced methodologies
with security aspects [45]. Some examples of this are CLASP [46],
Microsoft SDL [47] or Seven touchpoints [48]. Other proposals are
focused on the definition of security architectures [49–51] or security
patterns [52,53], which help to integrate security into the SDLC and
allow to incorporate all security aspects during the design.

If the incorporation of security aspects into the software lifecycle
from the early stages of development is fundamental as regards ob-
taining a secure and robust system, it is also important for the design
and development of databases. In fact, Bugiotti et al. [54] propose a
database design methodology for NoSQL databases that relies on an
abstract data model whose objective is to represent NoSQL systems in
a system-independent manner. However, it is also necessary to model
proposals for the design and management of NoSQL databases using
well-known security techniques, recommendations, and best practices,
thus allowing the design of efficient, robust and secure databases. Most
of the existing works are focused on the security aspects of MongoDB
or Cassandra [55]. Many of them are limited to finding solutions to
concrete problems in restricted scenarios, and are oriented towards
document [56] or columnar data [57], and always at the implemen-
tation level [58]. Other works focus on cryptographic techniques or
mechanisms for cloud databases [19,59,60] and modelling at a higher
level of abstraction, using Big Data concepts that are not specific to any
NoSQL technology [61]. There are also some service-oriented proposals
but they do not target NoSQL databases, such as the work of Ghazi et al.
in [62] which have developed a comprehensive database security-as-a-
service (DB-SECaaS) system, a three-dimensional approach to securing
data in cloud is presented in [63]. Yamany et al. [64] presented an
intelligent service-oriented architecture security framework, and Song
et al. [65] proposed a generic framework of data protection-as-service
(DPaaS), which, as mentioned above, are not focused on NoSQL.

Among the model-oriented approaches, we can find the work of
Akoka et al. [66], which defines an approach for MDE-based NoSQL
databases in which forward and reverse engineering processes are
combined, or [61], in which a query-driven data modelling process
for Apache Cassandra that defines mapping rules and patterns but does
not support the integration of security policies is described. The work
in [67] proposes NoSQL database design method using conceptual data
model based on Peter Chen’s framework, again without any security
aspect. The authors of [68] define a common conceptual level model
for various types of NoSQL databases. Those of [69] propose an au-
tomatic MDA-based approach that provides a set of transformations,
formalised with the QVT language, with which to translate UML con-
ceptual models into NoSQL models. In [70], the same authors propose
an automatic approach for the implementation of UML conceptual
models in NoSQL systems, including the mapping of the associated OCL
constraints to the code required to verify them. In [71], the authors
present a process with which to extract a model from a collection of
JSON documents stored in MongoDB, while those of [72] propose a
process with which to extract models from a NoSQL document database
that can include several collections. We should also mention [54],
which describes a mapping from a NoSQL document database to a
relational model. ToNoSQLModel process is presented in [73], and is an
MDA-based approach employed to extract a physical model by starting
from a NoSQL document database and includes links between different
collections. A transformation process that ensures the transition from
the NoSQL logic model to a NoSQL physical mode by applying a chain
of transformations that translate it into a succession of models in order
to arrive at a target NoSQL model that complies with existing solutions
is proposed in [74]. In [75] the authors propose a methodology for



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
the logical design of NoSQL document databases converting conceptual
modelling for suitable and efficient logical representation considering
the expected workload of the application. Li et al. proposed an ap-
proach with which to transform UML class diagrams into an HBase
data model [76]. All these proposals propose intermodel transformation
rules for NoSQL without considering the security aspects or policies of
the databases at any point in the transformations. The work in [77]
proposes a security model, based on the use of metadata, to provide
a mechanism of access control for NoSQL graph-oriented database
management system. One proposal that does consider access control
policies for NoSQL databases, but from a modernisation or reverse-
engineering perspective, is the work of [78]. This presents the first
modernisation approach for the introduction of security into NoSQL
document databases through the improvement of access control by
using a domain ontology to detect sensitive information and creating a
conceptual model of the database.

In conclusion, the current proposals for the modelling and develop-
ment of NoSQL databases do not adequately consider security policies
in all stages. Solutions focused on the implementation stage provide
isolated security aspects or mechanisms. Solutions focused on earlier
stages of development, meanwhile, provide modelling and integration
solutions, but consider only structural aspects, and security aspects are,
in most cases, ignored or not appropriate.

8. Conclusions

NoSQL databases are beginning to acquire considerable importance
and are in great demand. This is owing principally to the increase
in Big Data technologies, which has obliged organisations to change
from relational databases to other not necessarily relational models,
such as document, graph-oriented models, etc. NoSQL databases are
scalable, distributed and highly reliable. There is, however, currently
an important obstacle to their generalised adoption: data security. This
is owing to the fact that security is usually added at the end, once the
system is already implemented, which leads to solutions that are prone
to security failures and that are poorly suited to security requirements.
Our proposal is focused on the design and implementation of security
policies in NoSQL document databases by including security from early
stages of the development process (security by design). Security is,
therefore, taken into account in the system design decisions and its
subsequent implementation, thus obtaining more robust systems. To
this end, we first define a metamodel that allows us to define both
the structure and the security policies associated with the document
database at the design level. This signifies that, in order to include
security policies in the system, the designer directly uses design models
(defined according to this metamodel). This facilitates his/her work,
since it allows him/her to be abstracted from the technical aspects
of the tools and the need to know which the best implementation
strategies are.

Our proposal then analyses the characteristics offered by a specific
document database management tool, MongoDB. We subsequently de-
fine a model for the proper implementation of both structural aspects
and security policies in this tool.

Once both models have been defined, our proposal facilitates the
design and implementation of the system, along with the security
policies, using a model-driven development approach. This is done by
defining the relationships that are required between the design model
and the implementation model in MongoDB. These relationships select
the best implementation strategy, thus abstracting the designer from
this task (use of views, projections, etc.). This is completed with the
provision of a technological solution based on the Eclipse Modelling
Framework in which we implement the source metamodel (in Emfatic)
and the necessary transformations (in Epsilon, EGL). The use of the
model-driven approach not only saves time and development costs, but
has also made it possible to obtain an architecture that can be easily
extended to other tools and technologies.
17
We have applied the proposal to a case study of an airport in order
to show the whole process involved in the design and implementation
of the system, together with its associated security policies. In this case
study, a design model was first created in order to make it simple to
see how the system is defined without the inclusion of technical aspects
of specific tools. The transformations defined were then generated
automatically in order to carry out their corresponding implementation
in MongoDB, thus freeing the designer from having to choose specific
implementation strategies. All of the above made it possible to discover
that the solution obtained really did satisfy the security policies initially
modelled.

As future work, we plan to improve our model-driven architecture in
several respects. On the one hand, we intend to include new target doc-
ument database management tools (such as CouchDB or CouchBase).
A new tool would be included through the reuse of our metamodel,
which would make it necessary to analyse the security features offered
by that tool. This would be used as the basis on which to define the
strategies required in order to implement the security policies. Finally,
we would define a set of transformations that would automate the code
generation, starting from our design model.

On the other hand, the architecture could be improved by embrac-
ing other Big Data and NoSQL technologies (columnar, graph-oriented,
key–value, etc.).

In this sense, to incorporate a new technology to our proposal (such
as graph-oriented databases) it will be necessary to carry out a process
similar to the one shown in this paper. It would be necessary to analyse,
on the one hand, the specific structural and security characteristics of
this technology and, on the other hand, the characteristics offered by
the management tools for its final implementation. Based on this, we
would specify our own metamodel for designing this kind of systems,
as well as a set of transformations for each management tool in which
we wish to generate the corresponding implementation.

Once we have several metamodels centred on different technologies
(document, graph-oriented, columnar, etc.), we could go one step
further, which would consist of defining a single metamodel at a
higher level of abstraction. This metamodel would include the elements
necessary to define the structural and security requirements of the
system, independently of the technology that is subsequently decided
to be used in its design. To build this metamodel, we would need to
identify elements common to BigData and NoSQL systems that will be
specify as different elements depending on the technology used.

For example, a structural element that could be called ‘‘container’’
and represents a group of fields could correspond, depending on the
technology chosen, with a collection, node or column family. Or a
security requirement could correspond to different security policies
specifying different security actions, according to what is possible in
that technology.

In the definition of this metamodel, we should ensure that it in-
cludes all the necessary information for the next design stage, in
which a metamodel specific to a particular technology will be used.
Integrating this requirements model in our proposal and applying the
model-driven development approach, we could define transformation
rules that would derive the corresponding design model in a chosen
technology (document, graph-oriented, columnar, etc.) and from there,
the designer would add or modify the necessary aspects in the model
and finally would generate the implementation in a specific tool.

CRediT authorship contribution statement

Carlos Blanco: Conceptualisation, Methodology, Software, Inves-
tigation, Writing – original draft, Writing – review & editing. Diego
García-Saiz: Conceptualisation, Software, Validation, Investigation,
Writing – original draft. David G. Rosado: Conceptualisation, Inves-
tigation, Writing – original draft, Writing – review & editing. Antonio

Santos-Olmo: Conceptualisation, Investigation, Writing – review &



Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.

S

D

c
i

A

1
I
e
a
s
C

R

editing. Jesús Peral: Conceptualisation, Resources, Data curation. Ale-
jandro Maté: Conceptualisation, Resources, Data curation. Juan Tru-
jillo: Supervision, Investigation, Project administration, Funding acqui-
sition. Eduardo Fernández-Medina: Conceptualisation, Investigation,
upervision, Project administration, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgements

This work has been developed within the AETHER-UCLM (PID2020-
12540RB-C42), AETHER-UA (PID2020-112540RB-C43) and PRECON-
4 (TIN2017-86520-C3-3-R) projects funded by ‘‘Ministerio de Ciencia
Innovación, Spain’’, and the AURORA (SBPLY/21/180501/000079)

nd GENESIS (SBPLY/17/180501/000202) projects funded by ‘‘Con-
ejería de Educación, Cultura 𝑦 Deportes, Junta de Comunidades de
astilla-La Mancha, Fondo Europeo de Desarrollo Regional FEDER’’.

eferences

[1] Al-Sai ZA, Abdullah R, heikal Husin M. Big data impacts and challenges: A
review. In: 2019 IEEE Jordan international joint conference on electrical en-
gineering and information technology. IEEE; 2019, p. 150–5. http://dx.doi.org/
10.1109/JEEIT.2019.8717484, https://ieeexplore.ieee.org/document/8717484/.

[2] Singh N, Lai KH, Vejvar M, Cheng TC. Big data technology: Challenges, prospects,
and realities. IEEE Eng Manag Rev 2019;47(1):58–66. http://dx.doi.org/10.1109/
EMR.2019.2900208.

[3] Kantarcioglu M, Ferrari E. Research challenges at the intersection of big data,
security and privacy. Front Big Data 2019;2:1. http://dx.doi.org/10.3389/fdata.
2019.00001.

[4] Mendelson A. Security and privacy in the age of big data and machine learning.
Computer 2019;52(12):65–70. http://dx.doi.org/10.1109/MC.2019.2943137.

[5] Moreno J, Serrano MA, Fernandez-Medina E, Fernandez EB. Towards a security
reference architecture for big data. In: CEUR workshop proceedings. vol. 2062,
2018.

[6] Rawat DB, Doku R, Garuba M. Cybersecurity in big data era: From securing big
data to data-driven security. IEEE Trans Serv Comput 2019;1. http://dx.doi.org/
10.1109/tsc.2019.2907247.

[7] Shamsi JA, Khojaye MA. Understanding privacy violations in big data systems. IT
Prof 2018;20(3):73–81. http://dx.doi.org/10.1109/MITP.2018.032501750, https:
//ieeexplore.ieee.org/document/8378964/.

[8] Tang M, Alazab M, Luo Y. Big data for cybersecurity: Vulnerability disclosure
trends and dependencies. IEEE Trans Big Data 2019;5(3):317–29. http://dx.doi.
org/10.1109/TBDATA.2017.2723570.

[9] Venkatraman S, Venkatraman R. Big data security challenges and strategies.
AIMS Math 2019;4(3):860–79. http://dx.doi.org/10.3934/math.2019.3.860, http:
//www.aimspress.com/article/10.3934/math.2019.3.860.

[10] Diogo M, Cabral B, Bernardino J. Consistency models of NoSQL databases. Future
Internet 2019;11(2):43. http://dx.doi.org/10.3390/fi11020043.

[11] Roy-Hubara N, Sturm A. Design methods for the new database era: a systematic
literature review. Softw Syst Model 2020;19(2):297–312. http://dx.doi.org/10.
1007/s10270-019-00739-8.

[12] Sahafizadeh E, Nematbakhsh MA. A survey on security issues in big data
and NoSQL. Adv Comput Sci Int J 2015;4(4):68–72. http://dx.doi.org/10.1109/
ICITST.2015.7412089, http://www.acsij.org/acsij/article/view/80.

[13] Ramzan S, Bajwa IS, Kazmi R, Amna. Challenges in NoSQL-based distributed data
storage: A systematic literature review. Electronics (Switzerland) 2019;8(5):488.
http://dx.doi.org/10.3390/electronics8050488.

[14] Kurpanik J, Pańkowska M. NOSQL problem literature review. Studia Ekon.
2015;234:80–100.

[15] Moreno J, Fernandez EB, Serrano MA, Fernandez-Medina E. Secure development
of big data ecosystems. IEEE Access 2019;7:96604–19. http://dx.doi.org/10.
1109/ACCESS.2019.2929330.

[16] Basin D, Clavel M, Egea M, De Dios MA, Dania C. A model-driven methodology
for developing secure data-management applications. IEEE Trans Softw Eng
2014;40(4):324–37. http://dx.doi.org/10.1109/TSE.2013.2297116.

[17] Lúcio L, Zhang Q, Nguyen PH, Amrani M, Klein J, Vangheluwe H, et al. Advances
in model-driven security. In: Advances in computers. vol. 93, Elsevier; 2014, p.
103–52. http://dx.doi.org/10.1016/B978-0-12-800162-2.00003-8.

[18] Blanco C, Fernández-Medina E, Trujillo J. Modernizing secure OLAP applications
with a model-driven approach. Comput J 2014;58(10):2351–67. http://dx.doi.
org/10.1093/comjnl/bxu070.
18
[19] Alenezi M, Usama M, Almustafa K, Iqbal W, Raza MA, Khan T. An efficient,
secure, and queryable encryption for NoSQL-based databases hosted on untrusted
cloud environments. Int J Inf Secur Priv 2019;13(2):14–31. http://dx.doi.org/10.
4018/IJISP.2019040102.

[20] Mohammed NM, Niazi M, Alshayeb M, Mahmood S. Exploring software security
approaches in software development lifecycle: A systematic mapping study.
Comput Stand Interfaces 2017;50:107–15. http://dx.doi.org/10.1016/j.csi.2016.
10.001.

[21] Nguyen PH, Kramer M, Klein J, Traon YL. An extensive systematic review on the
model-driven development of secure systems. Inf Softw Technol 2015;68:62–81.
http://dx.doi.org/10.1016/j.infsof.2015.08.006.

[22] Souag A, Mazo R, Salinesi C, Comyn-Wattiau I. Reusable knowledge in se-
curity requirements engineering: a systematic mapping study. Requir Eng
2016;21(2):251–83. http://dx.doi.org/10.1007/s00766-015-0220-8.

[23] Yadav D, Maheshwari DH, Chandra DU. Big data hadoop: Security and privacy.
SSRN Electron J 2019. http://dx.doi.org/10.2139/ssrn.3350308.

[24] Gupta A, Verma A, Kalra P, Kumar L. Big data: A security compliance model. In:
Proceedings of the 2014 conference on IT in business, industry and government:
an international conference by CSI on big Data. 2014, http://dx.doi.org/10.1109/
CSIBIG.2014.7056963.

[25] Gupta S, Singh NK, Tomar DS. Analysis of NoSQL database vulnerabilities. 2018,
https://papers.ssrn.com/sol3/papers.cfm?abstract{_}id=3172769.

[26] DB-Engines. DB-engines ranking of graph DBMS. 2016, http://db-engines.com/
en/ranking/graph+dbms.

[27] García-Ruiz CM, Oliver A, Peral J, Trujillo J, Blanco C, Fernández-Medina E.
Management of sensitive data on NoSQL databases. In: CEUR workshop pro-
ceedings. vol. 1979, 2017, p. 156–69, http://ceur-ws.org/Vol-1979/paper-150.
pdf.

[28] MongoDB Inc. MongoDB security architecture. Tech. rep., 2021, November.
https://www.mongodb.com/white-papers.

[29] Gamma E, Helm R, Johnson R, Vlissides JM. Design patterns: Elements of
reusable object-oriented software. 1st ed.. Addison-Wesley Professional; 1994,
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented.

[30] van den Berghe A, Scandariato R, Yskout K, Joosen W. Design nota-
tions for secure software: a systematic literature review. Softw Syst Model
2017;16(3):809–31. http://dx.doi.org/10.1007/s10270-015-0486-9.

[31] Moral-García S, Moral-Rubio S, Fernández EB, Fernández-Medina E. Enterprise
security pattern: A model-driven architecture instance. Comput Stand Interfaces
2014;36(4):748–58. http://dx.doi.org/10.1016/j.csi.2013.12.009.

[32] Awaysheh FM, Aladwan MN, Alazab M, Alawadi S, Cabaleiro JC, Pena TF.
Security by design for big data frameworks over cloud computing. IEEE Trans
Eng Manag 2021;1–18. http://dx.doi.org/10.1109/TEM.2020.3045661.

[33] Verginadis Y, Michalas A, Gouvas P, Schiefer G, Hübsch G, Paraskakis I.
PaaSword: A holistic data privacy and security by design framework for cloud
services. J Grid Comput 2017;15(2):219–34. http://dx.doi.org/10.1007/s10723-
017-9394-2, http://link.springer.com/10.1007/s10723-017-9394-2.

[34] Veloudis S, Paraskakis I, Petsos C, Verginadis Y, Patiniotakis I, Gouvas P,
et al. Achieving security-by-design through ontology-driven attribute-based
access control in cloud environments. Future Gener Comput Syst 2019;93:373–
91. http://dx.doi.org/10.1016/j.future.2018.08.042, https://linkinghub.elsevier.
com/retrieve/pii/S0167739X17320782.

[35] Vallois V, Guenane F, Mehaoua A. Reference architectures for security-by-design
IoT: Comparative study. In: 2019 Fifth conference on mobile and secure services.
IEEE; 2019, p. 1–6. http://dx.doi.org/10.1109/MOBISECSERV.2019.8686650,
https://ieeexplore.ieee.org/document/8686650/.

[36] Geismann J, Gerking C, Bodden E. Towards ensuring security by design in cyber-
physical systems engineering processes. In: Proceedings of the 2018 international
conference on software and system process. New York, NY, USA: ACM; 2018, p.
123–7. http://dx.doi.org/10.1145/3202710.3203159, https://dl.acm.org/doi/10.
1145/3202710.3203159.

[37] Peisert S, Margulies J, Nicol DM, Khurana H, Sawall C. Designed-in security for
cyber-physical systems. IEEE Secur Priv 2014;12(5):9–12. http://dx.doi.org/10.
1109/MSP.2014.90, http://ieeexplore.ieee.org/document/6924670/.

[38] Casola V, De Benedictis A, Rak M, Villano U. A novel security-by-design method-
ology: Modeling and assessing security by SLAs with a quantitative approach. J
Syst Softw 2020;163:110537. http://dx.doi.org/10.1016/j.jss.2020.110537.

[39] Bulusu ST, Laborde R, Wazan AS, Barrère F, Benzekri A. A requirements
engineering-based approach for evaluating security requirements engineering
methodologies. In: Advances in intelligent systems and computing. vol. 738,
Springer Verlag; 2018, p. 517–25. http://dx.doi.org/10.1007/978-3-319-77028-
4_67.

[40] Masmali O, Badreddin O. Model driven security : A systematic mapping study.
Softw Eng 2019;7(2):30–8.

[41] Jürjens J. Secure Systems Development With UML. Springer-Verlag; 2005, p.
1–309. http://dx.doi.org/10.1007/b137706, http://www.books24x7.com/marc.
asp?bookid=16288.

[42] Lodderstedt T, Basin D, Doser J. SecureUML: A UML-based modeling language for
model-driven security. In: Lecture notes in computer science (including subseries
lecture notes in artificial intelligence and lecture notes in bioinformatics), vol.
2460 LNCS, Dresden: Springer; 2002, p. 426–41. http://dx.doi.org/10.1007/3-
540-45800-x_33.

http://dx.doi.org/10.1109/JEEIT.2019.8717484
http://dx.doi.org/10.1109/JEEIT.2019.8717484
http://dx.doi.org/10.1109/JEEIT.2019.8717484
https://ieeexplore.ieee.org/document/8717484/
http://dx.doi.org/10.1109/EMR.2019.2900208
http://dx.doi.org/10.1109/EMR.2019.2900208
http://dx.doi.org/10.1109/EMR.2019.2900208
http://dx.doi.org/10.3389/fdata.2019.00001
http://dx.doi.org/10.3389/fdata.2019.00001
http://dx.doi.org/10.3389/fdata.2019.00001
http://dx.doi.org/10.1109/MC.2019.2943137
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb5
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb5
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb5
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb5
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb5
http://dx.doi.org/10.1109/tsc.2019.2907247
http://dx.doi.org/10.1109/tsc.2019.2907247
http://dx.doi.org/10.1109/tsc.2019.2907247
http://dx.doi.org/10.1109/MITP.2018.032501750
https://ieeexplore.ieee.org/document/8378964/
https://ieeexplore.ieee.org/document/8378964/
https://ieeexplore.ieee.org/document/8378964/
http://dx.doi.org/10.1109/TBDATA.2017.2723570
http://dx.doi.org/10.1109/TBDATA.2017.2723570
http://dx.doi.org/10.1109/TBDATA.2017.2723570
http://dx.doi.org/10.3934/math.2019.3.860
http://www.aimspress.com/article/10.3934/math.2019.3.860
http://www.aimspress.com/article/10.3934/math.2019.3.860
http://www.aimspress.com/article/10.3934/math.2019.3.860
http://dx.doi.org/10.3390/fi11020043
http://dx.doi.org/10.1007/s10270-019-00739-8
http://dx.doi.org/10.1007/s10270-019-00739-8
http://dx.doi.org/10.1007/s10270-019-00739-8
http://dx.doi.org/10.1109/ICITST.2015.7412089
http://dx.doi.org/10.1109/ICITST.2015.7412089
http://dx.doi.org/10.1109/ICITST.2015.7412089
http://www.acsij.org/acsij/article/view/80
http://dx.doi.org/10.3390/electronics8050488
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb14
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb14
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb14
http://dx.doi.org/10.1109/ACCESS.2019.2929330
http://dx.doi.org/10.1109/ACCESS.2019.2929330
http://dx.doi.org/10.1109/ACCESS.2019.2929330
http://dx.doi.org/10.1109/TSE.2013.2297116
http://dx.doi.org/10.1016/B978-0-12-800162-2.00003-8
http://dx.doi.org/10.1093/comjnl/bxu070
http://dx.doi.org/10.1093/comjnl/bxu070
http://dx.doi.org/10.1093/comjnl/bxu070
http://dx.doi.org/10.4018/IJISP.2019040102
http://dx.doi.org/10.4018/IJISP.2019040102
http://dx.doi.org/10.4018/IJISP.2019040102
http://dx.doi.org/10.1016/j.csi.2016.10.001
http://dx.doi.org/10.1016/j.csi.2016.10.001
http://dx.doi.org/10.1016/j.csi.2016.10.001
http://dx.doi.org/10.1016/j.infsof.2015.08.006
http://dx.doi.org/10.1007/s00766-015-0220-8
http://dx.doi.org/10.2139/ssrn.3350308
http://dx.doi.org/10.1109/CSIBIG.2014.7056963
http://dx.doi.org/10.1109/CSIBIG.2014.7056963
http://dx.doi.org/10.1109/CSIBIG.2014.7056963
https://papers.ssrn.com/sol3/papers.cfm?abstract{_}
http://db-engines.com/en/ranking/graph+dbms
http://db-engines.com/en/ranking/graph+dbms
http://db-engines.com/en/ranking/graph+dbms
http://ceur-ws.org/Vol-1979/paper-150.pdf
http://ceur-ws.org/Vol-1979/paper-150.pdf
http://ceur-ws.org/Vol-1979/paper-150.pdf
https://www.mongodb.com/white-papers
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented
http://dx.doi.org/10.1007/s10270-015-0486-9
http://dx.doi.org/10.1016/j.csi.2013.12.009
http://dx.doi.org/10.1109/TEM.2020.3045661
http://dx.doi.org/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1007/s10723-017-9394-2
http://link.springer.com/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1016/j.future.2018.08.042
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17320782
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17320782
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17320782
http://dx.doi.org/10.1109/MOBISECSERV.2019.8686650
https://ieeexplore.ieee.org/document/8686650/
http://dx.doi.org/10.1145/3202710.3203159
https://dl.acm.org/doi/10.1145/3202710.3203159
https://dl.acm.org/doi/10.1145/3202710.3203159
https://dl.acm.org/doi/10.1145/3202710.3203159
http://dx.doi.org/10.1109/MSP.2014.90
http://dx.doi.org/10.1109/MSP.2014.90
http://dx.doi.org/10.1109/MSP.2014.90
http://ieeexplore.ieee.org/document/6924670/
http://dx.doi.org/10.1016/j.jss.2020.110537
http://dx.doi.org/10.1007/978-3-319-77028-4_67
http://dx.doi.org/10.1007/978-3-319-77028-4_67
http://dx.doi.org/10.1007/978-3-319-77028-4_67
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb40
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb40
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb40
http://dx.doi.org/10.1007/b137706
http://www.books24x7.com/marc.asp?bookid=16288
http://www.books24x7.com/marc.asp?bookid=16288
http://www.books24x7.com/marc.asp?bookid=16288
http://dx.doi.org/10.1007/3-540-45800-x_33
http://dx.doi.org/10.1007/3-540-45800-x_33
http://dx.doi.org/10.1007/3-540-45800-x_33


Journal of Information Security and Applications 65 (2022) 103120C. Blanco et al.
[43] Mashkoor A, Egyed A, Wille R. Model-driven engineering of safety and security
systems: A systematic mapping study. 2020, arXiv preprint arXiv:2004.08471.
http://arxiv.org/abs/2004.08471.

[44] M.Surakhi O, Hudaib A, AlShraideh M, Khanafseh M. A survey on design methods
for secure software development. Int J Comput Technol 2017;16(7):7047–64.
http://dx.doi.org/10.24297/ijct.v16i7.6467.

[45] Kanniah SL, Mahrin MN. A review on factors influencing implementation of se-
cure software development practices. Int J Comput Syst Eng 2016;10(8):3032–9,
https://zenodo.org/record/1127256.

[46] Viega J. Security in the software development lifecycle: An introduction to
{CLASP}, the comprehensive lightweight application security process. Secure
Software, Inc., McLean, Virginia, USA, White Paper.

[47] Howard M, Lipner S. The security development lifecycle: sdl: A process
for developing demonstrably more secure software. Microsoft Press; 2006,
p. 352, http://www.amazon.com/Security-Development-Lifecycle-Michael-
Howard/dp/0735622140.

[48] McGraw G. Software Security: Building Security In. Addison-Wesley Professional;
2006, p. 6. http://dx.doi.org/10.1109/ISSRE.2006.43.

[49] Chondamrongkul N, Sun J, Warren I. Formal security analysis for software
architecture design: An expressive framework to emerging architectural styles.
Sci Comput Program 2021;206:102631. http://dx.doi.org/10.1016/j.scico.2021.
102631, https://linkinghub.elsevier.com/retrieve/pii/S0167642321000241.

[50] Pedraza-Garcia G, Astudillo H, Correal D. A methodological approach to apply
security tactics in software architecture design. In: 2014 IEEE Colombian
conference on communications and computing, COLCOM 2014 - conference
proceedings. 2014, http://dx.doi.org/10.1109/ColComCon.2014.6860432.

[51] Moreno J, Rosado DG, Sánchez LE, Serrano MA, Fernández-Medina E.
Security reference architecture for cyber-physical systems (CPS). J.UCS
2021;27(6):609–34. http://dx.doi.org/10.3897/jucs.68539, https://lib.jucs.org/
article/68539/.

[52] Alvi AK, Zulkernine M. A security pattern detection framework for
building more secure software. J Syst Softw 2021;171:110838. http://dx.
doi.org/10.1016/j.jss.2020.110838, https://linkinghub.elsevier.com/retrieve/pii/
S0164121220302296.

[53] Yoshioka N, Washizaki H, Maruyama K. A survey on security patterns.
Prog Inform 2008;(5):35. http://dx.doi.org/10.2201/NiiPi.2008.5.5, http://www.
hillside.net/patterns/definition.html http://www.nii.ac.jp/pi/n5/5{_}35.html.

[54] Bugiotti F, Cabibbo L, Atzeni P, Torlone R. Database design for NoSQL systems.
In: Lecture notes in computer science (including subseries lecture notes in
artificial intelligence and lecture notes in bioinformatics), vol. 8824, Springer;
2014, p. 223–31. http://dx.doi.org/10.1007/978-3-319-12206-9_18.

[55] Zugaj W. Analysis of standard security features for selected NoSQL systems. Am
J Inf Sci Technol 2019;3(2):41. http://dx.doi.org/10.11648/j.ajist.20190302.12.

[56] Pasqualin D, Souza G, Buratti EL, de Almeida EC, Del Fabro MD, Weingaertner D.
A case study of the aggregation query model in read-mostly NoSQL document
stores. In: Proceedings of the 20th international database engineering & appli-
cations symposium on. New York, New York, USA: ACM Press; 2016, p. 224–9.
http://dx.doi.org/10.1145/2938503.2938546.

[57] Weintraub G, Gudes E. Data integrity verification in column-oriented NoSQL
databases. In: Lecture notes in computer science (including subseries lecture
notes in artificial intelligence and lecture notes in bioinformatics), vol. 10980
LNCS, Springer Verlag; 2018, p. 165–81. http://dx.doi.org/10.1007/978-3-319-
95729-6_11.

[58] Solsol IL, Vargas HF, Díaz GM. Security mechanisms in NoSQL dbms’s: A
technical review. In: Communications in computer and information science. vol.
1154 CCIS, 2020, p. 215–28. http://dx.doi.org/10.1007/978-3-030-46785-2_18.

[59] Ahmadian M, Plochan F, Roessler Z, Marinescu DC. SecureNoSQL: An approach
for secure search of encrypted NoSQL databases in the public cloud. Int J Inf
Manag 2017;37(2):63–74. http://dx.doi.org/10.1016/j.ijinfomgt.2016.11.005.

[60] Ferretti L, Colajanni M, Marchetti M. Supporting security and consistency for
cloud database. In: Lecture notes in computer science (including subseries lecture
notes in artificial intelligence and lecture notes in bioinformatics), vol. 7672
LNCS, 2012, p. 179–93. http://dx.doi.org/10.1007/978-3-642-35362-8_15.

[61] Liu L. Security and privacy requirements engineering revisited in the big data
era. In: Proceedings - 2016 IEEE 24th international requirements engineering
conference workshops. Institute of Electrical and Electronics Engineers Inc.; 2017,
p. 55. http://dx.doi.org/10.1109/REW.2016.7.
19
[62] Ghazi Y, Masood R, Rauf A, Shibli MA, Hassan O. DB-SECaaS: a cloud-
based protection system for document-oriented NoSQL databases. EURASIP J Inf
Secur 2016;2016(1):16. http://dx.doi.org/10.1186/s13635-016-0040-5, https://
jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-016-0040-5.

[63] Prasad P, Ojha B, Shahi RR, Lal R, Vaish A, Goel U. 3 dimensional security in
cloud computing. In: 2011 3rd international conference on computer research
and development. vol. 3, 2011, p. 198–201. http://dx.doi.org/10.1109/ICCRD.
2011.5764279.

[64] EL Yamany HF, Capretz MA, Allison DS. Intelligent security and access control
framework for service-oriented architecture. Inf Softw Technol 2010;52(2):220–
36. http://dx.doi.org/10.1016/j.infsof.2009.10.005, https://linkinghub.elsevier.
com/retrieve/pii/S0950584909001761.

[65] Song D, Shi E, Fischer I, Shankar U. Cloud data protection for the
masses. Computer 2012;45(1):39–45. http://dx.doi.org/10.1109/MC.2012.1,
http://ieeexplore.ieee.org/document/6127995/.

[66] Akoka J, Comyn-Wattiau I. Roundtrip engineering of NoSQL databases. Enterp
Model Inf Syst Archit (EMISAJ) 2018;13:281–92.

[67] Shin K, Hwang C, Jung H. NoSQL database design using UML conceptual data
model based on peter chen’s framework. Int J Appl Eng Res 2017;12(5):632–6.

[68] Banerjee S, Sarkar A. Modeling NoSQL databases: from conceptual to logical level
design. In: 3rd International conference applications and innovations in mobile
computing. (February 2016):2016, p. 10–2.

[69] Abdelhedi F, Ait Brahim A, Atigui F, Zurfluh G. MDA-based approach for NoSQL
databases modelling. In: Lecture notes in computer science (including subseries
lecture notes in artificial intelligence and lecture notes in bioinformatics), vol.
10440 LNCS, 2017, p. 88–102. http://dx.doi.org/10.1007/978-3-319-64283-3_7,
http://link.springer.com/10.1007/978-3-319-64283-3{_}7.

[70] Abdelhedi F, Ait Brahim A, Zurfluh G. Applying a model-driven approach
for UML/OCL constraints: Application to NoSQL databases. In: Panetto H,
Debruyne C, Hepp M, Lewis D, Ardagna CA, Meersman R, editors. In: Lecture
notes in computer science (including subseries lecture notes in artificial intelli-
gence and lecture notes in bioinformatics), vol. 11877 LNCS, Cham: Springer
International Publishing; 2019, p. 646–60. http://dx.doi.org/10.1007/978-3-
030-33246-4_40.

[71] Klettke M, Störl U, Scherzinger S. Schema extraction and structural outlier
detection for JSON-based NoSQL data stores. In: Lecture notes in informatics
(LNI), proceedings - series of the gesellschaft fur informatik (GI). vol. 241, 2015,
p. 425–44.

[72] Sevilla Ruiz D, Morales SF, García Molina J. Inferring versioned schemas from
NoSQL databases and its applications. In: Lecture notes in computer science
(including subseries lecture notes in artificial intelligence and lecture notes
in bioinformatics), vol. 9381, Cham: Springer; 2015, p. 467–80. http://dx.
doi.org/10.1007/978-3-319-25264-3_35, http://link.springer.com/10.1007/978-
3-319-25264-3{_}35.

[73] Brahim A, Ferhat R, Zurfluh G. Model driven extraction of NoSQL databases
schema: Case of MongoDB. In: Proceedings of the 11th international joint
conference on knowledge discovery, knowledge engineering and knowledge
management. vol. 1, SCITEPRESS - Science and Technology Publications; 2019,
p. 145–54. http://dx.doi.org/10.5220/0008176201450154.

[74] Fatima Kalna, Abdessamad Belangour, Mouad Banane AE. MDA transformation
process of a PIM logical decision-making from NoSQL database to big data NoSQL
PSM. Int J Eng Adv Technol 2019;9(1):4208–15. http://dx.doi.org/10.35940/
ijeat.a1619.109119.

[75] de Lima C, dos Santos Mello R. A workload-driven logical design approach for
NoSQL document databases. In: Proceedings of the 17th international conference
on information integration and web-based applications & services. New York, NY,
USA: ACM; 2015, p. 1–10. http://dx.doi.org/10.1145/2837185.2837218.

[76] Li Y, Gu P, Zhang C. Transforming UML class diagrams into HBase based on
meta-model. In: Proceedings - 2014 international conference on information
science, electronics and electrical engineering. vol. 2, 2014, p. 720–4. http:
//dx.doi.org/10.1109/InfoSEEE.2014.6947760.

[77] Morgado C, Busichia Baioco G, Basso T, Moraes R. A security model for
access control in graph-oriented databases. In: 2018 IEEE international con-
ference on software quality, reliability and security (QRS). IEEE; 2018,
p. 135–42. http://dx.doi.org/10.1109/QRS.2018.00027, https://ieeexplore.ieee.
org/document/8424965/.

[78] Maté A, Peral J, Trujillo J, Blanco C, García-Saiz D, Fernández-Medina E. Improv-
ing security in NoSQL document databases through model-driven modernization.
Knowl Inf Syst 2021. http://dx.doi.org/10.1007/s10115-021-01589-x.

http://arxiv.org/abs/2004.08471
http://arxiv.org/abs/2004.08471
http://dx.doi.org/10.24297/ijct.v16i7.6467
https://zenodo.org/record/1127256
http://www.amazon.com/Security-Development-Lifecycle-Michael-Howard/dp/0735622140
http://www.amazon.com/Security-Development-Lifecycle-Michael-Howard/dp/0735622140
http://www.amazon.com/Security-Development-Lifecycle-Michael-Howard/dp/0735622140
http://dx.doi.org/10.1109/ISSRE.2006.43
http://dx.doi.org/10.1016/j.scico.2021.102631
http://dx.doi.org/10.1016/j.scico.2021.102631
http://dx.doi.org/10.1016/j.scico.2021.102631
https://linkinghub.elsevier.com/retrieve/pii/S0167642321000241
http://dx.doi.org/10.1109/ColComCon.2014.6860432
http://dx.doi.org/10.3897/jucs.68539
https://lib.jucs.org/article/68539/
https://lib.jucs.org/article/68539/
https://lib.jucs.org/article/68539/
http://dx.doi.org/10.1016/j.jss.2020.110838
http://dx.doi.org/10.1016/j.jss.2020.110838
http://dx.doi.org/10.1016/j.jss.2020.110838
https://linkinghub.elsevier.com/retrieve/pii/S0164121220302296
https://linkinghub.elsevier.com/retrieve/pii/S0164121220302296
https://linkinghub.elsevier.com/retrieve/pii/S0164121220302296
http://dx.doi.org/10.2201/NiiPi.2008.5.5
http://www.hillside.net/patterns/definition.html
http://www.hillside.net/patterns/definition.html
http://www.hillside.net/patterns/definition.html
http://www.nii.ac.jp/pi/n5/5{_}
http://dx.doi.org/10.1007/978-3-319-12206-9_18
http://dx.doi.org/10.11648/j.ajist.20190302.12
http://dx.doi.org/10.1145/2938503.2938546
http://dx.doi.org/10.1007/978-3-319-95729-6_11
http://dx.doi.org/10.1007/978-3-319-95729-6_11
http://dx.doi.org/10.1007/978-3-319-95729-6_11
http://dx.doi.org/10.1007/978-3-030-46785-2_18
http://dx.doi.org/10.1016/j.ijinfomgt.2016.11.005
http://dx.doi.org/10.1007/978-3-642-35362-8_15
http://dx.doi.org/10.1109/REW.2016.7
http://dx.doi.org/10.1186/s13635-016-0040-5
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-016-0040-5
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-016-0040-5
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-016-0040-5
http://dx.doi.org/10.1109/ICCRD.2011.5764279
http://dx.doi.org/10.1109/ICCRD.2011.5764279
http://dx.doi.org/10.1109/ICCRD.2011.5764279
http://dx.doi.org/10.1016/j.infsof.2009.10.005
https://linkinghub.elsevier.com/retrieve/pii/S0950584909001761
https://linkinghub.elsevier.com/retrieve/pii/S0950584909001761
https://linkinghub.elsevier.com/retrieve/pii/S0950584909001761
http://dx.doi.org/10.1109/MC.2012.1
http://ieeexplore.ieee.org/document/6127995/
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb66
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb66
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb66
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb67
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb67
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb67
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb68
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb68
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb68
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb68
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb68
http://dx.doi.org/10.1007/978-3-319-64283-3_7
http://link.springer.com/10.1007/978-3-319-64283-3{_}
http://dx.doi.org/10.1007/978-3-030-33246-4_40
http://dx.doi.org/10.1007/978-3-030-33246-4_40
http://dx.doi.org/10.1007/978-3-030-33246-4_40
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb71
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb71
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb71
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb71
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb71
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb71
http://refhub.elsevier.com/S2214-2126(22)00012-6/sb71
http://dx.doi.org/10.1007/978-3-319-25264-3_35
http://dx.doi.org/10.1007/978-3-319-25264-3_35
http://dx.doi.org/10.1007/978-3-319-25264-3_35
http://link.springer.com/10.1007/978-3-319-25264-3{_}
http://link.springer.com/10.1007/978-3-319-25264-3{_}
http://link.springer.com/10.1007/978-3-319-25264-3{_}
http://dx.doi.org/10.5220/0008176201450154
http://dx.doi.org/10.35940/ijeat.a1619.109119
http://dx.doi.org/10.35940/ijeat.a1619.109119
http://dx.doi.org/10.35940/ijeat.a1619.109119
http://dx.doi.org/10.1145/2837185.2837218
http://dx.doi.org/10.1109/InfoSEEE.2014.6947760
http://dx.doi.org/10.1109/InfoSEEE.2014.6947760
http://dx.doi.org/10.1109/InfoSEEE.2014.6947760
http://dx.doi.org/10.1109/QRS.2018.00027
https://ieeexplore.ieee.org/document/8424965/
https://ieeexplore.ieee.org/document/8424965/
https://ieeexplore.ieee.org/document/8424965/
http://dx.doi.org/10.1007/s10115-021-01589-x

	Security policies by design in NoSQL document databases
	Introduction
	Proposal overview
	Modelling secure policies in document databases
	Implementation model for MongoDB
	Generating a secure implementation from models
	Structural transformations
	Security policies transformation

	Case study
	Design
	Application of transformation rules for the automatic generation of the implementation
	Structural transformations
	Security policy transformations
	Security policies fulfilment
	Lessons learned

	Related work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


